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The objective of this study is to investigate numerically the 
transient growth of a vapor bubble in a liquid under flash evap  
oration conditions, i.e. when the surrounding pressure field is 
decaying with time. 

Results are obtained for different flash-down pressure drops, 
pressure decay rates, Peclet numben, and salt concentrations. 
Some of the primary condusions are : (1) the growth curves 
show a t31Z power dependence of the radius as a function of time 
t, (2) higher euternally-imposed rates of pressure decay increase 
the bubble growth rates. up to three-fold in the cases considered 
in this study. Comparison to other researchers' experimental 
and theoretical results is favorable. 

The primary contribution is in considering a prescribed 
transient driving pressure difference, and limiting cases of liquid 
temperature profiles, both considerations bringing flash evap* 
ration bubble growth analysis much doser to reality than ac- 
complished so far. 

1. INTRODUCTION 

The vapor generation process in flash evaporation involves the 
liberation of bubbles from the bulk of the liquid. These bubbles 
originate from existing gas nudei or solid partides which act 
as sites for heterogeneous vapor nucleation in the bulk liquid. 
The bubbles, once generated, can grow under the influence of 
the existing superheat in €he bulk liquid, which results from 
the pressure reduction in the vapor space. 

The problem of spherical phase growth and collapse has cap- 
tured the attention of many researchers over the last 30 years. 
Plesset and Zwick (1954), as well as Fonter and Zuber (1954) 
originally solved the problem of spherical growth of a vapor 
bubble in an infinite liquid with uniform superheat. It has been 
confirmed by many experiments that bubble growth is initially 
controlled by surface tension, then by liquid inertia, and finally 
by heat transfer in the liquid. Most of the earlier studies as- 
sumed heat transfer-controlled growth because of the fact that 
the initial stages last for a very short time. Later extensions 
to the uniform superheat calculations induded the addition of 

timedependent superheats, mass diffusion of noncondensables, 
and nonequilibrium at the bubble i n t e r h e  among other fat- 

tors (cf. Mikic, Rohsenow and Griffith (1970). Zwick (1960). 
Jones and Zuber (1976), Burelbach and Bankoff (1987). Toda 
and Kitamura (1983). Cha and Henry (1982), Theofanous et 
al. (1969), Inoue and Xoki (1975), Wittke and Chao (1967), 
Ruckenstein and Davis (1971), Pinto and Davis (1971)). Darby 
(1964) examined experimentally nucleate boiling from a heated 
surface enclosing a pool of liquid. Hooper et al. (1966) studied 
the flashing phenomenon by suddenly reducing the pressure in 
the vapor space above a pool of liquid, with superheats of up to 
36'C. Abdelmessih (1968) considered spherical bubble growth 
in a highly superheated liquid. Based on the experiments of 
Hooper et al. described above, he developed a correlation for 
the radius as a quadratic function of the imposed superheat. 
The commonly used expression (t112 relationship) was shown 
to deviate from the experimental results for cases when the 
superheats are high (of the order of 25'C). 

The objectives of this analysis are: a) to solve for the tem- 
perature field around a vapor bubble for a low Reynolds number 
flow caused by bubble growth and translation in an infinite vol- 
ume of liquid, and b) to predict the bubble growth history for 
a vapor bubble for various translation velocities in a pressure 
field which corresponds to that found in flashing. 

2. PROBLEM FORSIULATION 

The following assumptions are made to simplify the problem: 
(1) Spherical bubble. For typical conditions, the Weber num- 
ber is in the range of 0.1, which would keep the bubble spheri- 
cal, (2) Rectilinear bubble motion in the vertical direction. (3) 
Infinite evpanse of the liquid for the time period of bubble m e  
tion, (4) Constant surface tension. (5) Uniform temperature 
and pressure inside the growing bubble, (6) Local equilibrium 
conditions at the interface, (7) Growth of the bubble limited 
by heat transfer in the liquid, (8) Constant translation velocity 
corresponding to a range from creeping flow to potential flow 
(0 < Re < 50) for the range of parameters considered, (9) Bub- 
ble nudeation at a certain depth has already occurred by means 
of heterogeneous nudeation on preferred sites within the liquid. 
and the initial conditions for growth are thus specified. The 
temperature differences driving bubble growth in the range of 
parameters considered here are of the order of a few degrees C. 
and the pressure differences are correspondingly s m d .  As lim- 



iting cases, we examine a step increase in the superheat which 
causes the babble to  grow as a result of the sudden pressure 
drop in the vapor space above the liquid, and also a linearly 
increasing temperature profile extending from the bubble sar- 
face temperature to the value iar away from the babble in the 
liquid. In r redistic case, where many bnbbla grow simultane- 
ously, the temperature of the liquid between adjacent bubbles 
rises from the interface of one bubble to the liquid mid-point 
between the bubbles, and then decreases to  the interface of 
the second bubble. A linear temperature profile is one simple 
Limiting case representing this situation, (10) Mass diffusion is 
not considered as an additional transport process. Its influence 
was estimated using an order of magnitude analysis for typical 
concentrations of disdved air in water, and was found to be 
small. 

The schematic of the problem is shown in Fig. 1. The 
origin is taken to be the center of the bubble and moving with 
it. Spherical polar coordinates are employed for the problem 
description. Azimuthal symmetry renders the problem two- 
dimensional (r, 6). 

The flow problem involves the simultaneous solution of the 
momentum balances on either side of the moving bubble inter- 
face. Such a solution of the equations of motion for the case 
of creeping motion (that is. when the inertial terms are negli- 
gible) has been derived by Hadamard and Rybuynski. For a .  
bubble of radius R traveling at  velocity V,, their solution can 
be expressed in terms of the stream function w: 

r2 sin' tJ r - 
+u = Um- I ( l  f r ) [ 1 - j i i ]  

This flow solution is next employed in the thermal energy equa- 
tion for the liquid phase. For a growing bubble. a superimposed 
radial velocity representing the ,growth rate is also considered. 
The liquid energy equation is written as: 

The energy balance at  the interface gives: 

d ( t r ~ ~ , , h ~ ~ )  dt 3 = - 1- k E ( R .  a r  6. t )  ZZR' i n  ode ( I )  

The following limiting cases of initial temperature conditions 
are used: 
Linear Temperature Profile: 

Step Temperature Profile: 

T(r9B.O) = T,, r > R,, 
T(r,e.O) = Tsat,~, r = & 

T(R,@,t) = T,, at r = R 
T(m.B;t) = T, 

Figure 1: Schematic of Bubble Growih and SIorion during Flash- 
ing 

where Rref is an arbitrary reference radius (far away from the 
bubble interface). 

For an assumed exponential decay of the vapor space pres- 
sure reduction (this has been shown to be a valid model by 
Kung and Lester 1981), the pressure p in :he vapor space at 
any time can be written as: 

where p; is the initial and p i  rhe final vapor space pressures. 
and ,3 is the inverse of the time constant of the depressurization 
transient. Clapeyron's equation: 

This relation can be used to relate the bubble surface temper- 
ature to the given pressure reduction characteristics. 

2.1 Scaling 

The following dimensionless quantiiies are introduced: 

A further transformation in the radial coordinate is em- 
ployed as follows: 

y = e 2 - 1  

This results in finer grid spacing near the bubble surface and 
coarser spacing far away from the surface. 

Using equations (1) and (2) for the velocities and equations 
(9) for scaling in equation ( 4 ,  we set: 



where P e  is the Pedet Number ( = U, Ria). Note that the 
translation velocity U, is used as the velocity scale in the cal- 
culation of Pedet  Number. The  growth term is represented by 
2. For a growing and translating bubble, the  natural velocity 
scale is the velocity of translation. 

T h e  g o w t h  rate equation now becomes: 

i3Q i = $6 F(o.e,t) sin 0d8, y(0) = 1 (11) 

In the  above equation, J a  represents the Jakob Number sig- 
nifying the effect of liquid superheat on bubble growth. T h e  
set  of equations (10) and (11). with the conditions in dimen- 
sionless form constitute a complete set for the  determination of 
y as  a function of time for given parameter values J a  (equiva- 
lently, by a specification of the pressure reduction pa rme te r s  
in equation (7) and Pe. T h e  results obtained are limited to  
spherical bubbles (as determined by the limiting Weber Xum- 
ber) and also to  situations where bubble spacing is such that  
bubble coalescence is not an  important mechanism. The range 
of radii examined here is still relevant to a typical flash evapora- 
tion situation where many bubbles form and coalesce for large 
radius ratios. 

3. SOLUTION PROCEDURE 

Equations (10) and (11) are solved numerically using the finite 
difference Alternating Direction Implicit (ADI) method. 

During the numerical integration, checks are made in the 
program to  ensure convergence. The radial step increments 
in the numerical scheme are taken such that the change in 
the computed temperature far away from the bubble surface 
compared to  the value at  infinity is less than a prescribed tol- 
erance limit (typically corresponding to  O.Ol°C for To = 
100°C). The cdculations are terminated when the Weber num- 
ber reaches a level of about 0.1 (the assumption of spherical 
shape being questionable a t  this stage). T h e  thermodynamic 
properties are taken to  be functions of temperature. 

Table 1 gives a list of the ranges of parameters and dimen- 
sional quantities that correspond to  the calculations. 

Quantity 
Temperature, To,'C 
Radius, R, mrn 
Rise Velocity, Urn, m/s 
Pedet  Number, Pe 
Jakob Number, Ja 
Reynolds Number, Re 
Salinity, C, % 
Prandtl  Number, Pr 
Weber Number, W e  
Time constant, P-' , ms 

P. s-' 
P' 

Typical value 
100 
0.1 
0.2 
100 
50 
20 
3.5 
2.14 
0.05 
100 
10 
0.5 

Table 1: Parameters and Physical Variables used in the Nu- 
merical Solution of Bubble Growth 

r - 4% 
Figure 2: Bubble Growth as a Function of Time for Different 
p' and Pe; fl = 20s-', Linear Initial Temperature Profile. The 
Three Curves Corresponding to Pe = 0, 10 and 100 for each p- 
Merge into One Line 

4. RESULTS AND DISCUSSION 

The results are primarily expressed in the form of growth curves. 
.As described in the problem formulation, the cause of lo- 

cal superheat in the liquid which causes the bubble to  g o ~  
is the reduction of pressure in the vapor space above the liq- 
uid. Therefore. the primary parameters which control theentire 
transient are the magnitude and rate of this pressure reduction. 
quantified by p'(= pf/p;) and 3. Translation of the bubble is 
represented by the Peclet number (Pe), and C is the salinity of 
the liquid. The  range of parameters chosen covers a range of 
engineering interest for flash evaporation. All the illustrations 
employ a dimensionless time defined by r = at/I?o2, and the 
type of initidly imposed temperature profile is also indicated. 

Figure 2 shows the dimensionless bubble radius as a func- 
tion of time up to  about 0.1 seconds. As shown by the three 
different pressure reductions. a larger pressure reduction (cor- 
responding t o  p' = 0.1) results in a steeper growth curve as 
compared to  a smaller reduction (p' = 0.9). The available su- 
perheat for bubble growth is higher for the larger pressure drop, 
and this results in increased driving forces for growth. The di- 
mensionless bubble radius reached for the case of p- = 0.1 a t  
larger times, shows that  an  order of magnitude difference can 
occur in the  bubble size if the imposed pressure reduction is 
large enough. An important feature in Fig. 2 is the change of 
the radius as a function of time. The conventional asymptotic 
solution (for bubble growth governed by heat transfer in the 
liquid alone) predicts a t ' f2 dependence. However, a ?I2 de- 
pendence is observed in this study, because this case addresses a 
nonunifonn temperature field, in contrast t o  the uniform levels 
of superheat examined by most researchers. The  trend shown 
here follows the one given by Zwick (1960) for the case of a 
rapidly heated liquid, and the comparison with that study is 
made further below. 

Figure 3 shows the effect of changing the translation Pedet 
number on the growth curve. The curves in this figure have 



Figure 3: Effect of Translation Pedet Number on Bubble 
Growrh; p' = 0.9. 0 = 20s-', Linear Initial Temperature Pro- 
file 

also been drawn for Peclet numbers beyond the range of Table 
1, in order to illustrate the trend. The creeping flow solutions 
are strictly valid only up to Pe = 1. .Uthough Pe is very high 
for some of the calculations, those calculations were done for 
extrapolation purposes, to examine trends only. Translation 
is seen to increase the growth, but only slightly for the range 
considered in this study, i.e. 0 5 P e  5 100. The relative 
contributions of the growth and translation terms in equation 
(10) are different for the different cases of pressure reductions 
considered here. For low pressure reductions (high p'), the bub- 
ble translation term causes convection of heat along the bubble 
translation axis (in the infiniteexpanse of liquid assumed in this 
study) and therefore the local superheat is sustained at a high 
level since the bubble in its motion, becomes exposed to fresh 
liquid. thus increasing the growth rate. On the other hand, as 
seen in Fig. 4, the Pedet number does not have any perceptible 
effect for high pressure reduction (low p'j. The growth term in 
equation (10) overcomes the contribution from the translation 
term sufficiently, and the radial latent heat transfer from the 
liquid to the vapor controls the resulting growth behavior. It 
may be noted from the Figure 3 that a Pe of .5OO results in 
almost 50 % higher radius than that at a Pe of 100 after about 
0.1 seconds. 

Figure 5 shows that'the growth rate is higher for the initial 
step profile, because of the availability of high local superheat. 
For later times, this immediate effect will be reduced as the 
temperature profile becomes flatter, and the initial profile is 
not liliely to have a significant effect. 

Figure 6 shows the effect of varying the time constant of 
pressure reduction on the growth curve. By changing the pa- 
rameter f l  in the pressure reduction equation (7). a range of 
pressure drops-from a 'step' reduction to a 'smooth' reduction 
can be simulated. The lowest curve in the figure corresponds 
to a very slow reduction, where the pressure remains practi- 
cally a t  the initial value. -4.5 expected, the growth is slowest for 
this case (the nonzero growth occurs due to conduction in the 

Figure 4: Effect of' Translation Peclet Number on Bubble 
Growth; p' = 0.1, 0 = 20s-', Linear Initial Temperature Pro- 
file 

Figure 5: Effect of the Initial Temperature Field Around the 
Bubble on Growth; P e  = 10. ,9 = 20 s-' . 'STEP' Represents an 
Initial Step Temperature Profile Starting from the Bubble Wail 
to a Region far away from the Bubble. 'LINEAR' Corresponds 
to a Linearly Varying Profile 

7 -0lIR: 

Figure 6: Effect of the Time Constant of the Pressure Redoc- 
tion on Bubble Growth, Linear Initial Temperature Profle 



liquid). The imposition of a sudden pressure reduction (cor- 
responding to a time constant of 5 milliseconds) results in the 
highest growth curve. However, as time goes on, the growth 
rate is not increasing, and even decreares slightly, in contrast 
with the lower curves which still show an increase in the growth 
rate. 

Figure 7 shows the effect of salinity of the liquid pool ar a 
parameter in the calculation of thermophysical and transport 

properties of the liquid. A complete analysis would include 
the mass diffusion equation for salt. However, for the short- 
time, heat transfer-controlled growth considered here, that dif- 
fusion has a small effect, and boiling point elevation is probably 
the dominant (although not sole) effect of salinity on bubble 
growth. Two values of the salt concentration were examined 
here: 0 , for pure water, and 0.035 for water with 3.5 % con- 
centration of salt (typical sea water, used in desalination where 
flash evaporation distillation is widely used). Since the flashing 
occurs due to the imposition of pressure reduction in the va- 
por space, this pressure ratio is the governing parameter in the 
resulting process, and thus the effect of salinity war examined 
here via the elevation of the boiling point. In the numerical 
code, the boiling point elevation corresponding to the concen- 
tration of the salt in thesolution is computed using a correlation 
developed by Fabuss and Korosi, ar a function of temperature, 
pressure and concentration. This additional temperature rise 
is used in equation (8) for the saturation temperature. 

Figure T shows that bubbles grow faster for the higher salin- 
ity cases. Indeed, the direct increase of the available superheat 
dose to the bubble wall, due to the boiling point elevation, re- 
sults in increased growth. Since the level of local temperature 
elevation caused by salinity is of the order of O.S0C, this effect 
is important a t  the lower pressure reductions. 

Zwick's model (1960) is more representative of the condi- 
tions under investigation in this study, and the slope of the 
growth curve is indeed less steep in the early stages and in- 
creases with time. Figure 8 compares our results with those 
available in the literature on bubble growth in flashing. The 
data of Abdelmessih (1968) for high superheats, and the data of 
Miyatake et al. (1980) - both for uniform superheats - are used 
for comparison. The comparison is shown because these experi- 
mental data  are the only ones available in our range of interest, 
and it does demonstrate sirnilar.overall values (although not 
necessarily trends, because of the different conditions). Those 
results show a typical t1f2 profile for radius as a function of 
time. However, the comparison of the growth curve from our 
computations (for creeping flow conditions and for We < 0.1) 
is in mcellent agreement with a flf2 profile, as found by Zwick 
(1960). The nonuniform superheats encountered here are an 
essential feature of the process, ar shown by the comparison 
with Zwick's data. 

5. CONCLUSIONS 

(1) Bubble growth is proportional to t3fZ, as found by Zwick 
(1960) for the case of a varying superheat surrounding the bub- 

ble. This behavior of the bubble radius as a function of time 
is in direct contrast to that for a uniform superheat (Plesset 
and Zwick, 1954, and Forster and Zuber, 1954) where a t1l2 
dependence on time is observed. 
(2) Translation increares the size of the bubble for low super- 
heats. For large Pedet numben, the effect can be up to 50 %. 
(3) Bubble growth rates increase with the initial temperature 
gradient in the liquid at the bubble interface. 
(4) Bubble growth rates increase with the rate of vapor space 
pressure reduction. 
(5) Bubble growth rates increare with salinity, especially for 
small pressure reductions. 
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Figure 7: Effect of Salinity of the Pool on Bubble Growth: 
p' = 0.9. Pc = 10, P = 20s-', Linear Iuitial Temperature 
Profile 

AT - 83 '  C 

1 
. .  . ' . ' ' i . . . . ' . ' ' .  

? 
6 

: (ms) 

Figure 8: Comparison with JlLiyatake et al. (1987), Abdelmes- 
sih (1968). Zwick (1960); p' = 0.9,Pe = 0.0 = 20s-', Linear 
Initid Temperature Profile 



6. NOMENCLATURE 

drag coefficient 
specific heat of the liquid 
concentration of NaCl in the solution 
latent heat of vaporization 
Jakob number, ATCp/h 
thermal conductivity of liquid 
final pressure in the vapor space 
initial vapor space pressure 
Peclet number, 2UWRo/ar 
Prandtl number, Cpp/k 
radial coordinate 
bubble radius at any time t 
initial radius of the bubble 
Reynolds number, 2RUw/w 
time 
traversal time for the pressure wave 
initial temperature of the p o d  
saturation temperature inside the  bubble 
liquid temperature far away from the bubble 
bubble surface temperature 
liquid velocity far from the bubble 
Weber number, 2RUWzp1/a 
thermal diffusivity 
time constant of the depressurization 
dimensionless radial coordinate 

angular coordinate 
dimensionless temperature 
ratio of viscosities p,/pr 
viscosity 
density 
surface tension 
dimensionless time 
stream function 
pressure drop in the vapor space 
superheat in the liquid 
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