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B.SYMBOLS 

A area, m2 :y shape coefficient in Plank's equalion 
c specific heat, J!kg K q he,ll nux, J/m2s 
d diameter r radius, m 

hiS latent heat of fusion (melting or freezing), Jlkg K R radial position of the freeze-front, m 
II enthalpy, h R shape coefficient in Plank's equation 

I time. s h convective heat transfer coefficient, WIm 2s 
T temperature, K. or OCk thermal conductivity, W/m K 
II velocity of lhe freeze· from due to density change, L characteristic length 

m the time-variation conStant of the ambient mls 
v specific volume, m3/kgtemperature Ta' KJs
 
V volume of the body, m3
 

Biot number, == h Uk
 x coordinate 
Fourier number, o:tfL2 X position of the freezing front along the x-direclion, 
Stefan number, ::: c(T - Tf)/h ts mo 
dimensionless time parameter y coordinale
 
pressure, Pa z coordinate
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Greek Symbols 
CI. lhennal diffusivity, m2/s
 

~ lhennal "boundary layer" growth constant
 

S lhennal "boundary layer"
 

t:.vl.s (specific volume of the solid phase) - (specific
 
volume of the liquid phase), m3/kg 

K ==t; 
A. freezing rate parameter, dimensionless
 

I-l == pip,

S dimensionless position of the freezing front, =XIL
 
p density, kg/m3
 

e dimensionless temperature, Eq. (8-51)
 
X. concentration, kglkg; or dimensionless distance x/L
 
00 shape factor [Eq. (8-38)]
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century, and the number of published papers is now in .the 
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is given in Subsection V, "Applications Bibliography" 

below under the specific topics in which freezing plays an 
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Subscripts 
o 
a 
c 
f 

f. 
fs 

o 
s 
w 

at the surface (x:::O) 
ambient (fluid surrounding the freezing object) 

coolant 
fusion (melting or freezing) 
inner; or initial (at t=O) 

liquid 
phase-change from liquid to solid 

outer 

solid 

at wall 
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D.	 INTRODUCTION, APPLICATIONS, AND BASIC 
PHYSICAL CONCEPTS 

Freezing occurs naturally, such as with environmental ice in 
the atmosphere (hail, icing on aircraft), on water bodies and 
ground regions at the earth's surface, and in the magma at 
the envelope of the molten earth core. It is also a part of 
many technological processes, such as preservation of 
foodstuffs, refrigeration and air-conditioning, snow and ice 
making, manufacturing (such as casting, molding, sintering, 
combustion synthesis, coating and electro-deposition, 
soldering, welding, high energy beam cutling and fonning, 
crystal growth, electro-discharge machining, printing), 
organ preservation and cryosurgery, and thermal energy 
storage using solidlliquid phase-changing materials. A 
bi bl iography for these appl ical ion s, wi th a brief in troduc­
tion, is given in Subsection V, "Applications Bibliography." 
Freezing is often accompanied by melting, and the thermo­
dynamics as well as transpon principles-and thus the 
mathematical treatment--of the two processes are very 
similar. Specific discussion of melting is given in Section 
507.9 of this Databook.
 

Tn simple thermodynamic systems (i.e., without external
 
fields, surface tension, etc.) of a pure material, freezing
 
occurs at certain combinations of temperalUre and pressure.
 
Since pressure Iypicall y has a reI at ive Iy smaller in fl uence,
 
only the freezing temperature is often used La identify this
 
phase transition.
 

It is noteworthy that many liquids can be cooled to tempera­

tures significantly below the freezing temperature without
 
solidification taking place. 111is phenomenon is known as
 
supercooling. Water, for example, is known to reach
 
temperatures of about -40 C wjthout freeZing, and silicates
 
and polymers can sustain supercooling levels of hundreds of
 
degrees. To initiate freezi ng, it is necessary to form or
 
introduce a solid-phase nucleus into the liquid. Once this
 
nucleus is in trod uced, [reezi ng proceeds rapidly. Further
 
information can be found in Alexiades and Solomon [II ­

[3], Knight [40], Perepezko and Uttomark [53], and
 
Pounder [55].
 

TIle conditions for freeZing are strongly dependent on the
 
concenuation when the material contains more than a single
 
species. Furthermore, freezing is also influenced by eXlernal
 
effects, such as elecuic and magnetic fields. in more
 
complex thermodynamic systems.
 

The equilibrium thermodynamic system parameters during 
phase transition can be calculated from the knowledge that 
the partial molar Gibbs free energies (chemical potentials) 
of each component in the two phases mus! be equfll (cf. 
Alexiades and Solomon [3], Hultgren el af [35), Kurz and 
Fi sher [4 IJ, Lior [45], and Pou Iikakos [54]). One imponant 
result of using this principle for SImple Sl ngle-component 

(T) and pressure (P) during the transition from the liquid to 
the solid phase, viz 

dP his-:-- Eq. (8-1)dT Tc..vis 

where his is the enthalpy difference between phases (= lis ­
hi < 0, the lateot heat of freezing), and c..vis is the specific 
volume difference between the phases (= Vs - Vi ). Examina­
tion of Eq. (8-}) shows that increasing the pressure will 
result in an increase of the freezing temperature if c..vis < 0 
(i.e., when the specific volume of the liquid is higher than 
that of the solid, which is a property of tin, for example), 
but will result in a decrease of the freezing temperature 
when 6.vlS> 0 (for water, for example). The latter case 
explains why ice may melt under the pressure of a skate 
blade. 

In some materials, called glassy, the phase change between 
the liquid and solid occurs with a gradual transition of the 
physical pcopcnies, from those of one phase to those of the 
other. When the liquid phase flows during the process. the 
flow is strongly affected because the viscosity increases 
greatly as the liquid changes to solid. Other malerials, such 
as pure metals and ice, and eutectic alloys, have a definite 
line of demarcation between the liquid and the solid, and 
the transition is abrupt. This situation is easier to analyze 
and is therefore more rigorously addressed in the literature. 

To illustrate the above-described gcadualtransition, most 
distinctly observed in mixtures, consider the equilibrium 
phase diagram for a binary mixture (or alloy) composed of 
species a and b, shown in Fig. 8-1. Phase diagrams, or 
equations describing them, become increasingly compli­
cated as the number of components increases). X is the 
concentration of species b in the mixture. t denotes the 
liquid, s the solid, s~ a solid with a lattice structure of 
species a in its solid phase but containing some molecules 
of species b in that laltice, and sb a sol id with a Ian ice 
structure of species b in its solid phase but containing some 
molecules of species a in that lattice. "Liquidus" denotes 
the boundary above which the mixture is just liquid, and 
"sol idus" is the boundary separating the final sol id mixture 
of species a and b from the sol id-liquid mixture zones and 
from the other zones of solid S~ and solid sb. 

For illustration, assume thal a liquid mixture is at poin! I. 
characterized by concentration Xl and temperature T t (Fig. 
8-1), and is cooled (descending along the dashed line) while 
mainlaining the concentration constanl. When the tempera­
ture drops below the liquidus line. solidification Slarts, 
creating a mixture of liquid and of solid sa. Such a two­
phase mixture is called the mushy zone. At point 2 in Lhat 

mushy zone; for example, the solid phflse (sa) porlion 
contains a concentration X2.s;; of component b, and Ihe 
Iiquid phase portion contains a concentration Xv of 
component b. The ratio of the mass of the solid Sa to that of 

systems is the Clapeyron equation relating the temperature the liquid is determined by the lever rule, :lnd is 
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(X2.l - X2)/{ X2 - X2,5) at point 2. Further cooling to below 
the solidus line, say to point 3, results in a solid mixture (or 
alloy) of Sa and SJ,. containing concentrations X3,so and X3.Sb 

of species b, respectively. The ratio of the mass of the solid 
Sa to that of Sb is again determined by the lever rule, and is 

(X3.Sb - X3)1( X3 - ;(3.s) at point 3. 

T 

l +s, 
s, 

S.+Sb3 __ ..... __ ._ .. .......~l;5.~ .
 

o X,	 1x 
Figure 8-1.	 A LUjuid-Solid Phase Diagram ofa Binary 

Mixture 

A unique situation occurs if the initial concentration of the 
liquid is x.e: upon constant concentration cooling, the liquid 
fonns the solid mixture Sa + Sb having the same concentra­
tion Xe and without the formation of a two-phase zone. Xe 
is called the eutectic concentration, and the resulting solid 
mixture (or alloy) is called a eutectic. 

It is obvious from the above that the concentration distribu­
tion changes among the phases, which accompany the 
freezing process (Fig. 8-1), are an important factor in lhe 
composition of alloys, and are lhe basis for freeze-separa­
tion processes. 

The presence of a lwo-phase mixture zone with tempera­
lure-dependent concentration and phase-proportion obvi­
ously complicates 'heat transfer analysis, and requires the 
simultaneous solution of both the heat and mass transfer 
equations. Furthennore, the liquid usually does not solidify 
on a simple planar surface between the phases. Crystals of 
the solid phase are fanned at some preferred locations in the 
liquid, or on colder solid surfaces inunersed in the liquid, 
and as freezing progresses the crystals grow in the fonn of 
intricately-shaped fingers, called dendrites. This compli­
cates the geometry significantly and makes mathematical 
modeling of the process very difficult. An introduction to 

these phenomena and further references are available in 
Chalmers [13], Colucci-Mizenko et al (20], Flemings {27], 
Kurz and Fisher [41), Murray et al (49). Poulikakos, [54], 
Trivedi and Kurz (65), Gilpin [98]-[100J, Prescott et al 
(124) and Glicksman et at and Hayashi and Kunimine (both
 
cited in Subsection V. B.).
 

Flow of the liquid phase often has an imponant role in the
 

inception of-and during-melting and freezing (cf. 
Cheung and Epstein (17), Yao and Prusa [72] and refer­
ences (79)-[152]). The flow may be forced, such as in the 
freezing of a liquid flowing through or across a cooled pipe, 
andlor may be due to natural convection that arises when­
ever there are density gradients in the liquid, here generated 
by temperature and possibly concentration gradients. It is 
noteworthy that the change in phase usually affects the 
original flow, such as when the liquid flowing in a cooled 
pipe gradually freezes, and the frozen solid thus reduces lhe 
flow passage, or when the evolving dendritic structure 
gradually changes the geometry of the solid surfaces that 
are in contact with the liquid (cf. Cheng and Wong [85], 
Cho and Qzisik [88], Epstein and Cheung [91, 92], Epstein 
and Hauzer [93), Gilpin (lOl ,\02). Hirata and Hanaoka 
[106], Hirata and Ishihara (107), Hwang and Tsai [107]. 
Kikuchi et 01 (112), Kuzay and Epstein [115], Lee and 
Hwang [116), Madejski [119], Sampson and Gibson [129, 
130), Seki er of (135), Thomason ef at (144), Weigand et al 

(147), Zerkle and Sunderland {I52]). Under such circum­
stances, strong coupling may exist between the heat transfer 
and fluid mechanics, and also with mass transfer when more 
than a single species is prescnt, and the process must be 
mOdeled by an appropriate set of continuity, momentum, 
energy, mass conservation, and stale equations, which need 
to be solved simultaneously. 

E. PREDICTIVE METHODS 

The mathematical description of the freezing process is 
characterized by non-linear partial differential equations, 
which have anaJytical (closed-form) solutions for only a 
few simplified cases. As explained above, the problem 
becomes even less tractable when flow accompanies lhe 
process, or when more lhan a single species is presenl. A 
very large amount of work has been done in developing 
solution melhods for the freezing problem (sometimes also 
called the Stefan problem, after the seminal paper by Stefan 
[62]), published both as monographs and papers, and 
included in the list of references to this Section (Alcxiades 
and Solomon (3). Bankoff [6), Chadam and Rasmussen 
[ 12]. Cheng and Seki [16], Cran k [22J, Fasano and 
Primicerio [26LHill [33], Qzisik [51), Tanasawa and Lior 
[64J, Yao and Prusa (72), and references [I52J - [273), with 
emphasis on the reviews by Fox [175J, Friedman [178], 
Fukusako and Seki fl79J, Meinnanov (209). Ockendon and 
Hodgkins (219), Rubinshtein [233], and Wilson et al [266] . 
Generically, solutions are obtai oed either by 1) Iinearizi ng 
the original equations (e.g., perturbation methods) where 
appropriate, and solving lhese linear equations, or 2) 
simplifying the original equations by ncglcl:ting terms. such 
as the neglection of lhennaJ capacity in lhe "quasi-static 
method" described in Subsection IV below, or 3) using the 
"inlegral method," which satisfies energy conservation over 
the entire body of interest, as well as the boundary condi-
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tions, but is only approximately Correct locally inside the 
body (Subsection IV. A. below), or 4) employing a numeri­
cal method. 

Many numerical methods have been successfully employed 
in the solution of freezing problems, both of the finite 
difference and element types, and many well-tested 
software programs exist that include solutions for that 
purpose. A significant difficulty in the formulation of the 
numerical methods is the fact that the liquid-solid interface 
moves and perhaps changes shape as freezing progresses 
(making this a "moving boundary" or "free boundary" 
problem). This requires continuous monitoring of the 
interface position during the solution sequence, and 
adjustment of the numerical model cell or element proper­
ties to those of the particular phase present in them at the 
time-step being considered (cf. Alexiades and Solomon [3], 
Crank [22], Dilley and Lior (171 J, Fasano and Primicerio 
(26], Fox (175], Friedman (178J, Furzeland [180], Gupta 
and Kumar [185], Hsu et at [189], Hyman [192]. Kim et al 
(197), Meyer [212, 213]. Mon and Araki (218), Ockendon 
and Hodgkiss [219], Rubinsky and Shitrer [234], Saunders 
(239], Siegel et al (245), Tsai and Rubinsky [255). 
Udaykumar and Shyy [256], Vick and Nelson [258J, Wilson 
et al [266], Yoo and Rubinsky [268], Yu et at [269], 
Zabaras and Mukherjee [270], Zhang et at [273]). Several 
formulations of the original equations were developed to 
simplify their numerical solution. One of them is the 
popular "enthalpy method" discussed in more detail in 
Subsection iV.B. below. 

The predictive equations provided below are all for materi­
als whose behavior can be characterized as being pure. This 
would also apply to multi-component material where 
changes of the freezing temperature and of the composition 
during the freezing process can be ignored. General 
solutions for cases where these can not be ignored are much 
more difficult to obtain, and the readers are referred to the 
literature; some of the key citations are provided in refer­
ences (3), [27). [41], [77J, [2651 and Subsection V.B. 

Furthermore, the solutions presented here by closed-fonn 
equations are only for simple geometries, since no such 
solutions are available for complex geometries. Simplified 
expressions. however, are presented for freezing times also 
in arbitrary geometries. 

II. PREDICTIVE EQUATIONS FOR
 
FREEZING WITHOUT FLOW
 

A.	 ONE-DIMENSIONAL FREEZING WITHOUT 
DENSITY CHANGE 

Examination of the simplified one-dimensional case 
provides some important insights into the phenomena, 
identifies the key parameters, and allows analytical solu­

this class of problems. In this Section we deal with cases in 
which the densities of both phases are the same, and in 
which the freezing liquid does not flow, thus also ignoring, 
for simplification, the effects of buoyancy-driven convec­
tion that accompanies the freezing process when a tempera­
ture gradient ex.ists in the liquid phase. As stated in Subsec­
tion I.E., the effects of natural convection may sometimes 
be significant, and information about this topic can be found 
in the references quoted in that Section. Freezing of non­
opaque media may also include internal radiative heat 
transfer, which is ignored in the equations presented below. 
Infonnation about such problems is contained in references 
[14] and (31]. 

The solutions presented below can be found in many books 
and reviews that deal with melting and freezing (cf. refs. [3], 
(6), [22], [33], [41 J, [45], [72], and [179J, [209], [233]) and in 
textbooks dealing with heat conduction (cf. [51] and [54]). 

1.	 Solutions fo[" Materials that are Initially at the
 
Freezing Temperature
 

If the liquid to be frozen is initially at the freezing tempera­
ture throughout its extent. as shown in Fig. 8-2, heat 
transfer occurs in the solid phase only. This somewhat 
simplifies the solution and is presented first. 

T Solid LiqUId 

T, (x.t) 

Phase -<: hangc 
interlace 

/ 

o X (I) 

Figure 8-2. Freezing ofa Semi-infinite Liquid Initially at 
the FusiQn Temperature. Heat cOllaucrioll rakes place 
consequently in olle of the phases only. 

Consider a liquid of infinite extent is to the right (x> 0) of 
the infinite surface at x = 0 (i.e., semi-infinite). described in 
Fig. 8-2. initially at the freeZing temperature '0. For timc 
t> 0 the temperature of the surface (at x ::: 0) is lowered to 
To < h and the solid consequently Slarts to freeze there. In 
this case the temperature in the liquid remains constant, 
Ts =Tf so the temperature distribution needs to be calcu­
lated only in the solid phase. It is assumed that Ihe liquid 
remains motionless and in place. The initial condition in the 
solid is 

tions and thus qualitative predictive capability for at least ~(x,t)=Tf in x>O. at £=0, Eq. (8-2) 
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the boundary condition is 

T.(O,t)=1Q for t>O, Eq. (8-3) 

and the liquid-solid interfacial temperature and heat flux 
continuity conditions, respectively, are 

TAX{t)] = Tf for t> 0, Eq. (8-4) 

-ks(~T.) = p,his dXd(t) for t > 0, Eg. (8-5) 
oX [X(I)] t 

The analytical solution of this problem yields the tempera­
ture distribution in the solid as 

er{20) 
T (x, t) =To + (TJ - To) for t > 0, Eg. (8-6) s en A' 

where erf stands for the error junction (described and 
tabulated in mathematics handbooks), and A' is the solution 
of the equation 

Eg. (8-7) 

with 

NStet being the Stefan Number, here defined for the solid as 

_ cs {To -1J)
N SI<, = I' Eg. (8-8) 

Its 

recalling that the latent heal of freezing, his. must be entered 
into the equations as a negative value. Equation (8-7) can be 
solved to find the value of A' for the magnitude of Nsrec 
which is calculated for the problem at hand by using Eq. 
(8-8). The solution of Eq. (8-7), yielding the values ofA' as 
a function of Ns,e, for 0:5 NSre :5 5, is given in Fig. 8-3. 

1.2 ..,-------------------, 

1.0 

0.8 
'A' 

0.6 

0.4 

0.2 

0.0 -f-----,,....-----r-..----,--r--..-------.---.-----.,....--I 
o 2 3 4 5 

NSte , 
Figure 8-3. The Root A'of Eq. (8-7) 

The interface position(which also is the freezing front 
progress) is defined by Eq. (8-9) 

Eq. (8-9) 

EXAMPLE 
The temperature of the vertical surface of a large 
volume of liquid paraffin used for heat storage, initially 
at the freezing temperarure. 7,. =Tt = 60 ·C. is suddenly 
lowered to 30·C. Any motion in the melt may be 
neglected. How long would it take for the paraffin to 
sol idify to a depth of 0.1 m? Gi ven properties: O'.s = 
(1.09)10-7 m2/s, Ps = Pt =814 kg/m), his =-241 kJlkg, 
Cs =2.14 kJlkg T. To find the required time we use Eq. 
(8-9), in which the value of A' needs to be detennined. 
'A' is calculated from Eq. (8-7) or determined from Fig. 
8-3, which requires knowledge of Nsle,. From Eq. (8-8) 

_ (2.14kJ I kg 'C)(30'C - 60 ·C)
N - 0.266.S,e , -241.2kJ I kg 

The solution of Eq. (8-7) as a function of Ns,cs is given 
in Fig. 8-3, yielding 'A' "" 0.4. Using Eq. (8-9). the time 
of interest is calculated by 

1= [X{t)]2 _ (O.lm)2 

4 'A.' 20:, - 4(O.4)2[(l.09)1O-7 m2 Is] 

=(1.43)105
5 =39.8h. 

2. Solutions for Materials that are Initially not at the 
Freezing Temperature 

If, initially, the liquid to be frozen is above the freezing 
temperature, conductive heat transfer takes place in both 
phases. Consider a semi-infinite liquid initially at a 
tern perature T; higher ilian the freezi ng temperature 1). (Fig. 
8-4). At time t =0 at the liquid surface temperature at x = ° 
is suddenly lowered to a temperature To < Tt,and main­
tained at that temperature for I > 0. Consequently, the liquid 
starts to freeze at x = O. and the freezing interface (separat­
ing in Fig. 8-4 the solid to its left from the liquid on its 
right) located at the position x =XCI) moves gradually (0 the 
right (in the posilive x direction). 

Solid Liqu,dT 

___--Tl ~ T, 
asx-)oo 

T, (x.l) T, 

-+­
PIus<xh3llP.C 
inlcrfaoc 

./ 

o X(l) 

Figure 8-4. Freezing ofa Semi-infinite LUjuid Initiolly at 
an Above-freezil/g Temperaiure. Heat conduction takes 
place in bOI}, phases. 
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The analytical solution of this problem yields the tempera­
ture distributions in the liquid and solid phases, respec­
tively, as 

Eq. (8-10) 

and 

Eq. (8-11) 

where erfc is the complementary error function; "is a 
constant, obtained from the solution of the equation 

Eq.(8-l2) 

where Nsre is the Stefan number defined by Eq. (8-8). 
s 

Solulions of Eq. (8-12) are available for some speci fic cases 
in several of the references (cf. [3] and [51 D, and can, in 
general, be obtained relatively easily by a variety of 
commonly-used software packages used for the solution of 
nonlinear algebraic equations. 

The transient position of the freezing interface is 

1!2
X(t) =21.. ( as' ) , Eq. (8-13) 

where A. is the solution of Eq. (8-12), and thus the expres­
sion for the rate of freezing, i.e. the velocity of the motion 
of the solid-liquid interface, is 

dX(t) =Aal!2t-112, Eq. (8-14) 
dt s 

B. ONE·DIMENSIONAL FREEZING WITH 
DENSITY CHANGE 

For most materials the density ofthc liquid and solid phases 
is somewhat different, usually by up to about 10% and in 
some cases up to 30%. Usually the density of the liquid 
phase is smaller than that of the solid one, causing volume 
expansion upon melting and shrinkage upon freezing. TItis 
phenomenon causes, for example. a manufacturing problem 
in that metals and plastic materials filling a mold in their 
liquid phase shrink when solidified, forming voids in the 
solid and a poorly-conduCting gas layer bet ween the mold 
(or container) wall. Water is one of the materials in which 
the density of the liquid phase is higher than that of the 
solid one, and thus ice floats on water, and pipes tend to 
burst when water confined in them freezes. If the densilies 

of the liquid and solid phases differ, motion of the phase­
change interface is not only due to the phase change 
process, but also due to the associated volume (density) 
change. 

A reasonably good analytical solution for small (- ±10%) 
solid-liquid density differences is available (Alexiades. and 
Solomon (3D for the semi-infinite slab at x ~ 0, initially 
solid at Ti > Tf> frozen by imposing a constant temperature 
To < Tf at the surface x =0 (Fig. 8-4). £t is assumed that 
Pi> Ps, Cl ,cs' k t , ks, his, and T r are constants and positive. 
The freeze front X(c) starts at x = X(O)-="",() and advances to 
the right. Buoyancy-driven convection is ignored, but the 
volume expansion of the solid upon freezing is considered, 
in that it pushes the entire liquid volume rightward (Fig. 8­
4) without friction, at unifonn speed u(t) without motion 
inside the liquid itself. The temperature distributions are, in 
the solid and liquid phases 

erf[2k) 
Eq. (8-15)

~(x,t) = To + (Tf - To) ertA'" 

in 0 S;x S; X(t) for I >0, 

erfc[-X--(I-Il)KAm
]2-jCi;i 

Tt(x,t)=T,-(T;-Tm ) (.~~ )
erfc 1l1V\.'" 

in x;:: X(r) for I> O. Eq.(8-16) 

The location of the freezing front is 

Eq. (8-17) 

and the speed of the liquid body motion due to the expan­
sion is 

v(r) = (I -Il )1..'"-ja;/i. Eq.(8-18) 

Jn Eqs. (8- 15) - (8-18) A.'" is the Toot of the equation 

NSr., NS'~l r= 

A."'e)..-2 ertA'" - (J.lJ(A"')e(Il!U.~f erfc(IlKA"') ='V 1t, 

Eq. (8-19) 

which can, for the specific problem parameters, be solved 
numerically or by usi ng one of the many soft ware packages 
for solving nonlinear algebraic equations. The remaining 
parameters are defined as 

E c.(To - Tf ) 

his 

Eq. (8-20) 

K=~' 
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with his taking a negative value in this freezing problem. 
Ts(X,I)=TO(r)+[Tf-TO(l)]X~t) inO::;x::;X(t) fOrl~O,Because of the approximate nature of this analytical 

solution it is expected that Eq. (8-17) slightly overestimates 
Eq. (8-22)the melt front position. If p, < Ps. freezing would cause the 

solid to shrink, moving the liquid leftward, in a direction 
opposite to that of the freezing interface, and the solution 
represe nted by Eqs. (8- 15) - (8-20) would not be valid. 
Approximate but less accurate solutions for this and other 
cases are described by Alexiades aod Solomon (3]. 

C. THE QUASI-STATIC APPROXIMATION 

To obtain rough estimates of melting and freezing processes 
quickly, in cases where healLTansfer takes place in only one 
phase, il is assumed thai effects of sensible heat are negli­
gible relali ve to those of latent heat (Sle ~ 0). This is a 
significant simplification, since the energy equation lhen 
becomes independent of time. and solutions to the steady 
state heat conduction problem are much easier to obtain. At 
the same time, the transient phase-change interface condi­
tion [such as Eq. (8-5)) is retained, allowing the estimation 
of the transient interface position and velocity. This is hence 
a quasi-static approximation, and its usc is shown below. 
The simplification allows solution of freezing problems in 
more complicated geometries. Some solutions for the 
cylindrical geometry are presented below. More details can 
be found in refs. f3), [22J, [33], f [66], [179 J, and [2481· 

It IS important to emphasize that these are jusl approxima­
lions, without full information on the effecl of specific 
problem conditions on the magnitude of the error incurred 
when using lhem. lo facl, in some cases, especially Wilh a 
convective boundary condition, they may produce very 
wrong results. It is lhus necessary 10 examine the physical 
viabi lity of the results, such as overall energy balances, 
when using these approximations. 

It is assumed here that the problems are one-dimensional, 
and lhat the material is initially al the freezing temperalUre 
T1 

1.	 Examples of the Quasi--5tatic Approximation for a 
Slab 

Given a semi-infinite liquid on which a lime-dependent 
temperature To(t) < Tr is imposed at x = 0, (Fig. 8-2), the 
above-described quasi-SIalic approximation yields the 
solution for the position of the phase-change front and of 
the temperature distribution in the solid as 

I ]1/2 
X(t)= 2~f[To(t)-Tf]dl [orc2:0, Eq.(8-21) 

[ phls 

respecli vel y. .. 
The heat flux released during freezing, q(x,t), can' easily be 
determined from the temperature distribution in the liquid 
[Eq. (8-22)J. viz. 

Eq. (8-23) 

This approximate solution is exact when Sres ~ 0, and it 
otherwise overestimates the values of both XU) and TCx.I). 
While the errors depend on the specific problem, they are 
confined 10 about 10% in the above-described case 
(Alexiades and Solomon [3]). 

For the same freezing problem bUl with the boundary 
condition of an imposed time-dependent negative beat 
flux (cooling) -qo(t), 

_ks(dTs ) =qo(l) for c>O, Eq. (8-24) 
dx 0.1 

the quasi-static approximate solution is 

( 

X(I) =-'-Iqo(t)dt for t.>O, Eg. (8-25) 
phls 

o 

T,(x,t) = Tf + qo (..!lJL I-.t) in 0 ::; x $ X(t) for t > O. 
ks	 phls 

Eq. (8-26) 

Note thaI both his and qo must be entered into the equations 
as negative values. 

2.	 Examples of the Quasi-Static Approximation for 
Cylinder 

h is assumed in these examples that the cylinders are very 
long and that the problems are axisymmetric. Just as in the 
slab case, the energy equatlon is reduced by the approxima­
tion (0 its steady state form. 

Consider the outward-directed freezing of a hollow 
cylinder of liquid with internal radius T, and Ouler radius To 

(Fig. 8-5) due to a low temperature imposed at the internal 
radius ri, 

r.(r;.I}=TO(I)<Tf forl>O. Eg. (8-27) 

The solution is 
o 
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In[rl R(t)]
T,(x,t) =Tf - [Tf - To(t) ] [ ()] Eg. (8-28)

In Ii I R t 

in Ii :5 r :5 R(t) for t > 0, 

and the transient position of the freezing front, R(t), can be 
calculated from the transcendental equation 

2R(t)2 1n R(t) = R(t)2 -'-? + 4ks I[I JO{t) - T ]dt.f
'i phis 

o 

Eg. (8-29) 

Phase-change 
interface 

Figure 8-5. Outward Freezing in a Hollow Cylinder 
Conltlinmg Liquid Initially at the Freezing TemperaJure 
(TJ), Subjected at us Inner Radius (rJ to a TemperaJure 
To<Tf 

If the freezing for the same case occurs due to the imposi­
tion of a negative heat flux qo at rj, 

_ks(dT,) = qo(t) > 0 for t> O. &1. (8-30) 
dr V 

the solution is 

qo (t )rj r
T ()	 Eq. (8-31) r,t =Tf ---In-­

S k R(t)s 

inrj :5: r:5:R(t) ror\>O, 

, ]112 
Ret) = 1/ + 2 .....2.-f qQ (l)dt for I > 0, Eq. (8-32) 

[ phis 
o 

lower temperature TaCt), with a heat transfer coefficient 

h at I), the heat flux boundary condition there is 

_ks(dTs ) =h[Ta(t)-~(Ii,t)]>O fort>O, Eq.(8-33) 
dr ';" 

and the solution is 

In[r / R( t)] 
T r t =T - [T -T r ]s( ,) f f a() In[r; I R(r)]-kJ hr; 

in r, ::; r::; R(I) for I> 0,	 Eg. (8-34) 

with R(t) calculated from the transcendent.al equation 

Eg. (8-35) 

The solutions for inward freezing of a cylinder, where 
cooling is applied at the outer radius To, are the same as the 
above-described ones for the outward-fre.,:zing <:)'linder, if 
the replacements r. ~ roo qo~ -qo, and h ---t-11 

are made. If such a cylinder is not hollow then rj :0 0 is used. 

D. ESTIMATION OF FREEZING TlME 

There are a number of approximate formulas for estimating 
the freezing and melting times of different materials having 
a variety of shapes. 

1. Freezing Time of Foodstuff 

The American Society of Heating, Refrigerating, and Ajr­
Conditioning Engineers (ASHRAE) provides a number of 
approximations for estimating the freezing and thawing 
times of foods (ASHRAE (4]), For example, if it can be 
assumed that the freezing or thawing occur at a single 
temperature, the time to freeze or !haw, If' for a body that 
has shape parameters [P and R (described below) and 
thermal conductivity k, initially at the fusion temperature Tr. 
and which is exchanging heat via heat transfer coefficient 

II with an ambient at the constant temperature Ta, can be 
approximated by Plank's equation 

Eq. (8-36) 

where qo(t) and his must be entered as negalive values.	 where d is the diameter of the body if it is a cylinder or a 
sphere, or the thickness when it is an infinite slab, and If tJle freezing for the same case occurs due to the j mposi­
where the shape coefficients [P and R for a number of bodytion of a convective heat Dux to a fluid at the transient 
fonns are given in Table 8-1 below. 
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Table 8·1. . 

Shape Factors for Eq. (8-36), ASHRAE [4] 

Fonns !Y	 R 

Slab	 1/2 1/8 

Cylinder 114 1116 

Sphere 1/6 1/24 

Shape coefficients for other body forms are also available. 
To use Eq. (8-37) for freezing, k and p should be the values 
for the food in its frozen state. 

If the initial temperature (T;) of the material 10 be frozen is 
higher than Tr and the surface temperature To is given (or 
NSi ~ 00), the following simple formula for estimating the 

s 
freezing lime If of an inrmitely-long cylinder of diameter d 
and radius ro was proposed: 

N Fo,.[ = (0.14 + 0.085Yo )+ (0. 252 - O. 0025 Yo )hl.d. 

Eq. (8-37) 

where 

N Fo,! 

T-T 
Dimensionless TemperulUre,-'_f_. 

Tf -~ 

[n fact, freezing or melting of food typically takes place 
over a range of temperatures, and approximate Plank-type 
fonnulas have been developed for various specific food­
stuffs and shapes to represent reality more closely than Eq. 
(8-36) (Cleland et 0([167], ASHRAE [4]). 

EXAMPLE 

Using Plank's Equation (8-36) for estimating 
freezing time estimate the time needed to freeze a 
fish, the shape of which can be approximated by a 
cylinder 0.5 m long having a diameter of 0.1 m. The 
fish is initially al its freezing temperature, and during 
the freezing process it is surrounded by air at Ta = ­
25 "C. with the cooling performed with a convective 
heat transfer coefficient h = 68 W/m 2K. For the fish, 
Tr =-1 ·C, !lSi = 200 kJlk.g, Ps =992 kg/m 3, and ks = 
1.35 W/m K. 

Using Table 8-1, the geometric coefficients for the 
cylindrical shape of the fish are [p = )/4 and 
R = 1/16, while d is the cylinder diameter, =0.1 ffi. 
Substituting these values into Eq. (8-36) gives 

If =200000·992 (1/4(0.1) + 1/16(0.1)2 J=6866 s =I. 9h. 
-1-{-25) 68 1.35 

2. Other Approximations for Freezing Time 

Alexiades and Solomon [3) provide an easily-computable 
approximate equation for estimating the time needed to 
freeze a simple-shaped liquid volume initially at the 
freezing temperature Tr. It is assumed that conduction 
occurs in one phase (the solid) only, that the problems are 
axi- and spherically-symmetric for cylindrical and spherical 
bodies, respectively, and that (he freezing process for 
differently shaped bodies can be characterized by a single 
geometric parameter, r, in the body domain 0 S; r S; L, 
using a shape factor, w, defined by 

LA
w=--1. Eq. (8-38) 

V 

where A is the surface area across which the heal is re­
moved from the body, and V is (he body volume, to account 
for the specific body shape, viz. 

o for a slab insulated at one end 

ro	 = I for a cylinder (Eq. (8-39) 

2 for a sphere. 

o $; ro ~ 2 always. and ro may be assigned appropriate 
values for shapes intermediate between the slab, cylinder. 
and sphere. For example. a football-shaped body, some­
where between a cylinder and sphere. may be assigned 
W = 1,5, and a short cylinder with a large diameter-to-height 
ratio may have W = 0.5. 

For the case where the temperature To < Tr is imposed on 
the boundary at 1=0, t.he time required for complete 
freezing, 1m can be estimated by the equation 

Eq. (8-40) 

claimed 10 be valid with an accuracy within 10% for 

O~Nsles~4. 

Validating by comparison 10 the results of an experimen­
tally-verified two-dimensional numerical model of freezing 
of lake-shore water (with a mildly-sloped adiabatic lake 
bottom) initially at the freezing temperature, Dilley and 
Lior [170] have shown that freezing progress can be 
estimated well by the following simple equations. 

For a constant heat flux qo from the top surface to the 
ambient, (he relationship between the depth of freezing X(t) 

and time can be expressed as 

Eq. (8-41) 
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with an error < 0.02% for the first 100 hours. 

For convective cooling at the surface by air at temperature 

Ta and with a convective beat transfer coefficient h , the 

relationship between the depth of freezing XU) and time c-. 
be expressed as 

Eq. (842) 

where 

.	 . _ hX(r)
BLOt number for the solid, = -k­

s 

-2h Nsu 
Dimensionless time parameter, - • ( 

k,Pscs ' 

valid for small values of NStes (the quasi-static approxima­
tion). 

When the top surface is subject to a combination of 
constant aDd of a convective heat flux so that the total 
heat flux, qtol' there is 

Eq. (8-43) 

Eg. (8-43) is applicable also for this case, if NI is expressed 
by 

Eq. (8-44) 

In the lake-freezing simulation, this expression was found 
to represent the data well up to the time when the ice depth 
became 2 m. 

If freezing started when the ice layer already had a thick­
ness Xi (at time (i), the approximate solution becomes 

1 

N8I,(t)=-I+[1+Bi;'X +2Bis•x, +2Nr(r)p, Eq.(8-45)
1 

where Nl is defined by Eq. (8-44). 

When the top surface is subjected 10 a combination of 
constant and of a convective heat flux, where the air 
temperature varies linearly with time as 

T,,(t) = Ta •1 +ml, Eq. (8-46) 

where 

m the time-variation constant of the temperature Ta, 

Ta.i the initial air temperature, 

the lotal heat flux there, qlOl' is 

Eq. (8-47) 

The approximate expression relating X(t) to time is slill Eq. 
(8-42), but with Nl defined as 

DI. PREDICTIVE EQUAnONS 
Ji'OR FREEZING WITH FLOW 

Freezing may occur when a liquid flows through a cooled 
conduit or along a cooled wall where the conduit/wall 
temperature (Tw) is below the freezing temperature of the 
liquid (Tw < Tr, Fig. 8-6), The heat balance at the phase 
change interface can be expressed as 

] (aT,) CJR(x,1) 
q[x, R(X,f)	 + k, -a =Pshfs a ' Eq. (8-49) 

r [::c.R(x.rJ] r 

where the fIrst and second terms on the left-hand side of the 
equation account for tbe heat flow from the flowing liquid 
and the frozen solid, respectively, to the phase-change 
interface, and the teon on the right-hand side expresses the 
rate of latent heat release due to the increase in the frozen 
layer thickness. The first tenn in Eq. (8-49), i.e. the heat 
transfer from the flowing liquid. can be expressed as 

q[ x. R(x, I)] = ii[ I;; (x, r) - Tf ] Eq. (8-50) 

for convection from a liquid at temperature Tc(x,t) with a 

convective heat transfer coefficient b . 

ql~.R(X.I») 
Liquid 

--+-	 I 
Dow. 

I: 

WalI.Tv.' 

_), 

Figure 8-6.	 Freezing DUring Liquid Fww Over a Cold 
Wall 

Freezing occurs when the the term on the right-hand side of 
Eq. (8-49) is negative. happening if at least one of the tenns 
on the left hand side of the equation is negative and larger 
in its absolute value than the other. Obviously. freezing can 
thus occur if the interface is cooled on both sides (when 
T, < T and thus q < 0, and also Tw < T/and thus the f 
gradient in the conduction leon is negative). It can. how­
ever, occur even when the flowing fluid temperature is 
higher than T if the cooling rate through the fro7.-en layer isf 
high enough. or when the tube wall temperature is higher 
than T/f the cooling rate q into the flowing fluid (when T, 
< T ) IS large enough. f 
Since lhe flow boundary and cross section keep varying 
during phase-change, the nature of the flow. including its 
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velocity, as we)) as the consequent effects on heat transfer, 
also vary. For example, inward freezing in a cooled tube 
would progressively diminish the flow cross section and 
increase the flow pressure drop (Fig. 8-7). If, as often found 
in practice, the given flow head is constant, freeZing would 
result in a gradual decrease of the flow rate. Figure 8-8 also 
shows the experimentally-observed fact that some re­
melting of the frozen layer occurs at the ex.it from the 
partially-frozen region, due to the flow expansion there. 
Some references on the effects of freezing on flow, pressure 
drop, and conditions leading to complete flow stoppage in 
conduits due to freezing, are cited in Subsection 1. D. above. 

1+--------L,-----~-

FilJUre 8-7. A Freezing During Liquid Flow in a Tube 

Solidilicalion zone --------i"Il.u_._ 
I 

~._.~~. ~. • ,. -'--.:' .--;:::i 

decreasing hi, and stops when the convective heat transfer 
at the interlace is equal to the conducti ve one in the ice 
layer. The flow thus becomes laminar again. wlUch brings 
anolller such freezing-melting cycle about, generates 
another ice band downstream of llle first one, and so on. In 
addition to such changes in the interface shape. dendritic 
growth of the solid phase-especially prominent when the 
liquid is sUbcooled-wili create interface roughness On a 
smaller scale. 

Even when the above-described interface shape variations 
are not taken into account, no analytical solutions for the 
complete flow-accompanied melting/freezing problem arc 
available. Many numerical, experimenlal and approximate 
results have, however, been reponed in the literature and 
listed in the above mentioned reviews (especially see 
citations (79)-[ 152] in Subsection I. C.). One useful 
solution is shown here. for the case of a fluid at the radially­
average entrance temperature Tc > Tr flowing along a flat 
plate, or in a tube of jnlemal radius r" which are 
convectively-cooled on their exterior surface by a fluid at 
temperature Ta < Tr with a convective heat transfer coeffi­

cient 11 0 (Fig. 8-9). Neglecting heat conduction in the axial 
direction, an approximate collocation-type transient 
solution. which accounts for the motion of the phase change 
interface and for the heat conduction in the frozen layer was 
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geometry index, n = 0 for flow along a flat 
wall, n = 1 for flow in a cylindrical tube 

Bi Biot number for internal heat transfer to the 

phase-change interface, = h;r; / kg,dimen­

sionless 

dimensionless length parameter, 

= 

q*[R*(x*, 't)]	 dimensionless heat flux from lhe liquid 
stream to the interface, 

= q[R(x,t)]r;!(p.hL,-CZs) 

q[R(x,t)] heat flux from the liquid stream to lhe 

interface, =q:r;.(x,r)-T/]. W 1m2
. 

T 

Phase­
change
 

interface
 

~ 
Liquid coolant 

flow h (T - T o • w )T
• 

Figure 8-9. Sl«:tch of the Phase-Change Problem ofa 
Flowing Liquid 011 a Cooled Pkmar Wall or Imide a 
Cooled Tube, with NotalUJIIs for Stephan's [l41] Solution 
[Eq. (8-51) 

In this solution, the internal heat flux tenn q{R(x,t)J must be 
specified by the user, since the solution here does not 
include consideration of the flow momentwn equations. 
Representative constant values of q may be used for rough 
assessment. 

Equation (8-52) can be solved by numerical methods, most 
casi Iy by using one of the availabIe ordinary di fferem ial 
equation solution soft ware programs. Once R*(x*, "[) is thus 
determined, all necessary information about this now­
freezing problem becomes available. 

IV. SOME METHODS FOR
 
SIMPLIFYING SOLUTION
 

A.	 THE INTEGRAL METHOD, WITH SAMPLE 
SOLUTION FOR FREEZING OF A SLAB 

A simple approximate technique for solving melting and 
freezing problems is the heat balance integral method 
(Goodman (l81]), which was found to give good results in 
many cases. The advantage of this melhod is that it reduces 
the second-order partial differential equations describing lhe 
problem to ordinary differential equations that are much 
easier to solve. This is accomplished by guessing a tempera­
ture distribution shape inside the phase-change media, but 
making them satisfy the boundary conditions. These 
temperature distributions are then substituted into the partial 
differential energy equations in lhe liquid and solid, which 
are then integrated over lhe spatial parameter(s) (here just x) 
in the respective liquid and solid domains. This results in 
ordinary differential equations having time (t) as the 
independent variable. The disadvantage of the method is 
clearly the uncertainty in the temperature distribution wilhin 
the media. This technique is introduced here by applying it 
to a useful case, and the reader can thus also learn to apply 
it to other cases. 

Consider, as shown in Fig. 8-10, a liquid initially at an 
above-freezing temperature (Ti > Tr) confined in a space 
o ~ x $ L, with the surface at x = 0 subjected for time 1 > 0 
to a below-freezing temperature To < h and the surface at x 
=L is perfectly insulated, «(JTl(Jxkl = O. Freezing thus 
starts at x =0, and lhe freezing front, as shown in Fig. 8-9, 
is moving rightward. This problem has no exact solution, 
and is thus a good example for lhe application of the 
integral method described in lhis section. 

LiqUid 

Insul;>.LCd 
surface 

Frtoz.ing 
Ftonl 

[0 (O.l) t <T, / 
T(x.o) =T, > T, 

X(l) 

-' 
Figure 8-10. Sketch for the Problem of Freezing ofa 
Liquid Slab Initially aJ an Above-Freezing Temperature 

In the derivation and discussion, the following dimension­
less parameters are used: 
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T- -To
8

j 
s_J__, wherej=s, t, or!, Eq. (8-52)

T; -To 

Eq. (8-53) 

and the problem is re-sketched in tenns of these dimension­
less parameters in Fig. 8-1 L For the example at hand, the 
partial differential equations describing the problem are, for 
the solid 

Eq. (8-54) 

with the boundary condition 

eA0, NFO,) =0 for NFo, > 0, Eq. (8-55) 

for the liquid 

with the boundary condition 

ae,
- =Oat X= I, for NFo >0, Eg. (8-57) aX ' 

and the initial condition 

e,=linO<x<tforNFo, =0, Eg. (8-58) 

and at the phase-change interface 

Eg. (8-59) 

ass k( (lOt his cJ;(NFo,) Eg. (8-60) 
ax -k" ax =cs(1i- T,,) dN Fo, 

at X=: S( N Fa,), for N Fa, > O. 

The next step, as explained above, is to choose temperature 
distributions in the two phases. Obviously, the closer the 
chosen distributions are to the actual (but unknown) ones, 
the better the solution would be. A reasonable guess 
(although other ones can be tried) in the solid phase is the 
exact solution obtained for freezing a semi-infinite liquid 
initially at an above-freezing temperature, shown in Eq. (B­
)1), which is here, in its dimensionless form, 

erf( )X 

eAX~NFO,) = :~, for N > 0, Eg. (8-61)po, 

f 

where A. is a parameter yet to be delermined. The reader can 
easily prove thaI lhis is indeed the solution of Eqs. (8-55), 
(8-56). 

Solid LiqUId 

a, <J... N.o,) 

.a\ 
, Insulated 

rurface 
Phase--<:bange 
<merface 

/ 

ThennaJ "boundmy layer 

o S(N",) 

Figure 8-11. Sketch for the Energy Integral Method 
Solution jar Freezing ofa Liquid Slab Initially at an 
Above-Freezing Temperature, with Dimensionless 
Variables 

It is also assumed that the position of the phase change 
interface is defined by an expression similar to Eq. (8-13), 

Eq. (8-62) 

The value of A. as well as the temperature distribution in the 
liquid phase are now deteJ1Tlined by the integral method, as 
follows. A thermal "boundary layer". b(NFo.) is defined at 
an x-location where the liquid temperature is still at its 
initial value (the cooling effect has not penetrated to that 
location yet. See Fig. 8-10.), and the heat flux is 0, viz. 

Eq. (8-63) 

and 

Eq. (B-64) 

respectively. Note that a solution is valid only if o(NFn):s; 
I. Now the differential energy equation for the liquid, Eq. 
(8-57), is integrated in the liquid phase domain from c,(NFo) 

to o(NFo), and the boundary conditions represented by Eqs. 
(8-58), (8-64) and (8-65). giving the expression 

Eq. (8-65) 
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This is the energy-integral equation for this problem. An 
appropriate temperature distribution must be chosen for 
completing the integration. For example, the polynomial 

distribution 

St(x,NFO,) =1-(I-e/)(~=~J" Eq. (8-66) 

where 1/ ~ 2 is the power of the polynomial, satisfies the 
boundary conditions, Eqs. (8-58), (8-63) and (8-64). It is 
also assumed that O(NFa ) is related to NFo through the s s 
relation 

s( N Fo,) = 2~~ N Fa, ' Eg. (8-67) 

with the parameter Pto be determined. 

The temperature distribution (Eg. (8-66)] is substituted into 
the energy integral equation (8-65), which is integrated 
using Eq. (8-67) to yield 

p_A.=Il+I[_A+ A.2+~at].
2 1/ + I as Eq. (8-68) 

Next, the temperature distributions in the solid and liquid, 
Eqs. (8-61) and (8-66), respectively, are introduced into the 
interfacial condition Eqs. (8-59) and (8-60), to yield the 
following transcendental equation for the unknown param­
eter A 

where 

Ii + I ( 2 2" JZI\=---Y+Y+--' Eg. (8-70)n..f;. Ii + I 

112 

Y=A( ~; ) Eq.(8-71) 

er -I ~ Tf - T, 
Eq. (8-72)af Tf - To 

Solution of Eg. (8-69) manually, or easily done by one of 
many soflware packages available for solving nonlinear 
algebraic equations, yields the val ue of A. This and Eq. 
(8·68) yield the value of ~, and thus the transient position 
of the freezing front, S(NFo), can be calculated from Eq.

5 

(8-62), and the temperature distributions in the solid and 
liquid can be calculaled from Eqs. (8-6J) and (8-66), 
respect ive Iy. 

Inspection of Eq. (8-62) also indicates Ihat lhe slab would 
be completely frozen when the dimensionless time reaches 

the valueNFo =1I(4A2), and [with Eq. (8-67)] that the 
s 

validity of this particular integral solution is confined to 
dimensioruess limes for which 0 ~ I, corresponding to 

~ 1/(4~2).N Fos 

Many integral solutions yield good results, with errors 
within a few percent. The accuracy, as mentioned above, 
depends on the closeness of the chosen temperature 
distributions to the real ones. Experience from previous 
successful solutions or experimental results naturally 
improves this choice. Additional information about this 
method can be found in refs. [l81], [51]. and [210]. 

B. THE ENTHALPY METHOD 

It is noteworthy that one of the biggest di fficul ties in 
numerical solution techniques for such problems is the need 
to track the location of the phase-change interface continu­
ously during the solution process, so that the interfacial 
conditions could be applied there. One popular technique 
that alleviates this di fficu lty is the enthal py method (re fs. 
[3], [72], (154], [1723 174), [179J, [190J, [228), [240], 
[259] and [260]), in which a single panial differential 
equation, using the material enthalpy instead of the tem­
perature, is used 10 represent the entire domain, including 
both phases and the interface. Based on the energy equa­
tion, just as Eqs. (8-55) and (8-57), the one-dimensional 
mehing problem is thus described by 

all a1 11 . 
p- = k-- In X ~ 0, for r > 0, Eq. (8·73)at ax1 

where the temperature-enthalpy relationship is expressed by 

II 
h ~cTf (solid) 

c 

T= TI cTr < 11 < cTt + hls (i nterface) Eq. (8-74) 

h-hl5 Ii ~ cr/ + Ills (liquid) 
c 

The numerical computation scheme is rather straightfor­
ward: knowing the temperature, enthalpy and thus from Eq. 
(8-74) the phase of a cell at time step j, the enthalpy at lime 
step (j + 1) is com puted from the discreti zed version of Eq. 
(8-73), and then Eq. (8-74) is used to determine the tem­
perature and phase at .that new lime. If a computational cell 
i is in the mushy zone, the liquid fraction is simply hi I hsi ' 

Care must be exercised in the use of the enthalpy method 
when the phase change occurs over a very narrow range of 
temperatures. Oscillating non-realistic solutions were 
obtai ned in such cases, bu1 several modi ficalions (see above 
references) to the numerical formulation were found to be 
reaso nably successful. 
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V. APPLICATIONS BIBLIOGRAPHY 

An extensive-yet by no means complete-bibliography 
identifying papers and books that treat freezing in the main 
areas in which it takes place, is presented below. The 
classification is by application, and the internal order is 
alphabetical by author. 

A. CASTING, MOLDING, SINTERING 

Freezing (solidification) is a key component in casting. molding. 
and production of solid shapes from powders by processes such as 
sintering and combustion synthesis. The materials include metals, 
polymers, glass, ceramics, and superconductors. Flow of the 
mollen material. the course of its solidification (including volume 
changes due to phase transition, and internal streSs crcalion), and 
the evolving surface and interior quality, are all of significant 
industrial importance. In production of parts From powders, the 
conditions necessary for bonding of the particles by melting and 
resolidifcation are of importance. Such diverse processes as 
spinning and wire-making are included. Much anention has lately 
been focused on the manufacturing of materials for superconduc­
tors. 

Abouta1ebi, M. R.; Hasan. M .., Guthrie. R.I.L. lun 1994. Thermal� 
modelling and stress analysis in the conlinuous casting of� 
arbitrary sections. Steel Research vol. 65. pp. 225-233.� 

Akiyoshi, R., Nishio. S. and Tanas3wa, I. 1992. An allempllO� 
produce particles of amorphous materials using steam� 
explosion. In Heal and Mass Transfer in Materials Process­�
ing, ed. I. Tanasawa and N. Lior, pp. 330-343. Hemisphere,� 
New York.� 

Assar, A. M.; Al-Nimr. M. A. 1994. Fabrication of metal matrix� 
composite by infiltration process - part I: modeling of� 
hydrodynamic and thermal behaviour. 1. Composite Materi.� 
a1s, vol. 28, pp. 1480-1490.� 

Beckett, P.M. and Hobson. N. 1980. The effect of shrinkage on the 
rate of solidification of a cylindrical ingot. Int. J. Heal Mass 
Transfer, Vol. 23, pp. 433-436. 

Bennett, T,; Poulikakos. D. 1994. Heat transfer aspects of splat­
quench solidification: modelling and experiment. 1. Malerials 
Science, vol. 29. pp. 2025-2039. 

Bose, A. Technology and commercial status of powdcr-mjection 
molding. 10M. vol. 47, pp. 26-30 

Bushko, Wit C., Stokes. Vijay K. Solidification of 
Ihermoviscoelastic melts. Part I: Fonnulation of model 
problem. Polymer Engng Sci., vol. 35, 1995, pp. 351-364 

Bushko, Wit C., Stokes, Yijay K. Solidification of 
thennoviscoelastic melLS. Part II: Effects of processing 
conditions on shrinkage and residual stresses. Polymer Engng 
Sci., vol. 35, 1995. pp. 365-383 

Clyne, T.W. 1984. Numerical treatment of rapid solidification. 
Metall.. Trans., vol. 15B, pp. 369-381. 

Cole. G.S. and Bolling. G.F, 1965. The importance of natural 
convection in casting. Trans. Melallurgical Soc.-AlME, vol. 
233, pp. 1568-1572. 

Cole, G.S. and Bolling, G.F. 1966. Augmented natural convection 
and equiaxed grain su'ucture in castings. Trans. Metallurgical 
Soc.-MME, vol. 233, PP. 1568-1572. 

Coupard, D., Girot, F., Quenissct, 1.M. Engulfment/pushing 
phenomena of a fibrous reinforcement at a planar solidlJiquid 

interface: comparison of the model with experiments. J. 
Materials Synth, Processing, vol. 3,1995, pp. 203-2l1 

Coupard, D., Girol, F., Quenisser, I.M. Model for predicting the 
engulfment or rejection of short fibers by a growing plane 
solidification fronl. 1. Materials Synthesis and Processing, 
vol. 3. 1995, pp. 191-201 

DiLellio, I.A., Young, G.W. Asymptotic model of {he mold region 
in a cOnlinuous steel caster. Metallurg. Materials Trans. B, 
vol. 26, 1995, pp. 1225-1241 

Dogan. C. and Saritas, S. Metal powder production by centrifugal 
atomization. [m. J. Powder Metallurgy. vol. 30, pp. 419-427 

Edwards, M,F., Suvanaphen, P.K. and Wilkinson, W.L. 1979. 
Heatlransfer in blow molding operations. Polym. Engng. 
Sci.. vol. 19; pp. 910-916. 

Gau, C. and Viskanta, R. 1984. Melting and solidification of a 
metal system in a rectangular cavity. Int. 1. Heat Mass 
Transfer, vol. 27, p. 113. 

Gilolle, P., Huynh, L.Y., Etay, 1., H3mar, R. Shape of the free 
surfaces of the jet in mold casting numerical modeling and 
experiments. 1. Engng Materials and Techno!.. vol. 117, pp. 
82-85 

Grill, A., Sorimachi. K. and Brimacombe, 1, )976. Heat flow, gap 
formation and breakouts in the continuous casling of steel 
slabs. Melall. Trans. B, vol. 7B, pp. 177-l89. 

Gupta. S.c. and Lahiri. A.K. 1979. Heal conduction wilh a phase 
change in a cylindrical mold. Int. J. Eng. Sci., vol. 17, pp. 
401-407. 

Heggs. P.I., Houghton. 1.M.. Ingham, D.B. 1995. Application of 
the enthalpy method to the blow moulding of polymers. 
Plastics, Rubber and Composites Processing and Appl., vol. 
23, pp. 203-210 

Hieber, C.A. 1987. Injeclion and Compression Molding Funda­
mentals.. A. J. Isayev. ed.• Marcel Dekker. New York. 

1acobson, L. A. and McK iIIrick, J. 1994. Rapid sol idification 
processing. Materials Sci. Engng R. vol. II, pp. 355-408. 

Khan. M.A.. Rohatgi. P. K. Numerical solution to the solidi fica­�
tion of aluminum in thc presence of various Iibres. J.� 
Materials Sci., vol. 30,1995, pp. 371 1-3719� 

King, A.G.: Keswani. S.T. 1994. Adiabatic moulding of ceramics. 
Am. Ceramic Soc. Bull.. vol.73, pp. 96·100 

Kroeger. P.G. 1970. A heat transfer analysis of solidification of 
pure metals in continuous casting process. Proe. 4th [nt. Heat 
Tr. Conf.. vol. I, paper Cu 2.7. 

Ku rosaki, Y. and Satoh, J. 1992. Visualization of flow and 
solidification of polymer melt in the injection molding 
process. In Heat and Mass TransFer in Materials Processing, 
I. Tanasawa and N. Lior, eds., pp. 315-329. Hemisphere, New 
York. N.Y. 

Mangels, 1. A. 1994. Low-pressure injection moulding. Am. 
Ceramic Soc. Bull., vo1.73. pp. 37-41. 

Mauch. F. and laclde, J. 1994. 111ermoviscoel,lslie theory of 
freezing of stress and strain in a symmetrically cooled infinite 
glass plale.. J. Non-Crystalline Solids. vol. 170. pp. 73-86. 

Massey, l.D. and Sheridan, A.T. 1971. Theoretical predictions of 
earliest rolling limes and solidification times of ingots, 1. Iron 
Steel [nst., Yol. 209, pp. 111-35\. 

McDonald, R.J. and Hunt, 1.D. 1970. Convective fluid motion 
within the interdendritic liquid of a casting. Trans TMS­
AIM E. vol. I. pp. 1787-1788. 
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MonOleilh, B.G. and Piwonka, T.S. 1970. An investigation of heat 
flow in unidirectional solidification of vacuum cast airfoils. J. 
Vacuum Sci. Tech., vol. 7, pp. S126. 

Nishio. S., [namura. S. and Nagai, N. 1994. Solidified-shell 
formation process during inunersion process of a cooled solid 
surface. Trans. Japan Soc. Mech. Engrs B. vol. 60. pp. 4165­
4170 

Niyama. E.• Anzai. K. 1995. Solidification velocity and tempera­
lure gradient in infinitely thick alloy castings. Materials 
Trans.• JIM, vol. 36. pp. 61-64 

Ohnaka. J. 1985. Melt spinning into a liquid cooling medium. 1nL 
J. Rapid Solidification, vol. I, pp. 219-238. 

Ohnaka. I. 1988. Wi res: Rapid solidi fication. in Encycl. Material s 
Sci. Engng. Suppl. vol. L R.W. Calm, ed.• pp. 584-587.. 
Pergamon Press. 

Ohnaka, I. and Shimaoka, M. 1992. Heatlransfer in rotaling liqoid 
spinning process. In 

Heat and Mass Transfer in Matl:rials Processing. I. Tanasawa and 
N. Lior, eds.. pp. 315-329. Hemisphere. New York. N.Y. 

O'Malley. R.I.; Karabin. M.E.; Smelser, R.E. 1994. Thc roll 
cast ing process: Numerical and el>perimelllal resolts. 1. 
Materials Process. Manuf. Sci.. vol .3. pp. 59-72. 

Papathanasiou. T.D. Modeling of injection mold filling: effect of 
undercooling on polymer crystallization. Chern. Eng. Sci .. 
vol. 50, pp. 3433-3442 

Patel, P.O. and Boley. B.A. 1969. Solidification problems with 
space and time varying boundary conditions and imperfect 
mold contact. Int. J. Eng. Sci.. vol. 7. pp. 1041- 1066. 

PehJke. R.D., Kin, M.l.. Marrone. R.E.. and Cook. 0.1. 1973. 
Numerical simulation of casting solidification. CFS Cast 
Metals Research 1.. vol. 9. pp, 49-55. 

Pehlkc, Robert D.S 1994. Strategies and structures for computer­
aided design of castings, Foundry Manag. Techno!., vol. \22. 
pp. 26-28.. 

Prasso, D.C.. Evans, I.W.. Wilson, LJ. 1995. Heal transport and 
solidification in the electromagnetic casting of aluminum 
alloys: Part l. EI>perimental measurements on a pilot-scale 
caster. Metallurg. Materials Trans. B, vol. 26. pp. 1243-1251 

Prasso, D.C.. Evans. J. W.. Wilson, 1.]. 1995. Heat transpon and 
solidification in the electromagnetic casting of aluminum 
alloys: Part II. Devclopment of a mathematical model and 
comparison with experimental results. Metallurgical and 
Materials Trans. B, vol. 26, 1995. pp. 1281-1288 

Richmond, O. and Ticn, R.H. 1971. Theory of thermal stresses and 
air· gap formation during the early stages of solidification in a 
rectangular mold. J. Mech. Phys. Solids. vol. 19. pp. 273-284, 

Saito. A.. Okawa. S.. Kaneko, K. and Kaneko. H. 1994. Simula­
tion of continuous-casting process (Reconsideration of heat 
balance and improvement of efficiency in continuous-casting 
process). Heat Transfer - Japanese Research, vol. 23, pp. 35­
.51. 

Sai tOh. T. S.; Sato, M. 1994. Two-di menSlonal solidi flcation 
analysis of the venical continuous casting system. J. 
Materials Process. Manur. Sci._ vol. 3, pp. 17-31. 

Savage. J. 1962. A theory of heat transfer and gap formation in 
continuous casting moulds. J. (ron Steel Inst.. pp. 41-48. 

Sfeir. A. A. and Clumpner. J. A. 1977. Continuous casting or 
cylindrical ingols. J. Heat Transfcr. vol. 99. pp. 29-34. 

Shivkumar. S" Yao. X.. Makhlouf. M. Polymer-melt interactions 
during casting formation in the lost foam process, Scripta 

Metallurgica et Materialia, vol. 33. 1995, pp. 39-46 

Siegel, R. 1978. Analysis of solidification interface shape during� 
continuous casting of a slab. Int. J. Heal Mass Transfer, vol.� 
21. pp. 1421·1430. 

Siegel, R. 1978. Shape of lwo-dimensional solidificalJon interface 
during directional solidification by continuous casting. 1. 
Heat Transfer, vol. 100, pp. 3-10. 

Siegel. R. 1983. Cauchy method for SOlidification interface shape 
during conlinuous casting. Trans. , 1. Heat Transfer. vol. 105, 
pp. 667-671. 

Siegel, R. 1984. Solidi fication interface shape for cont inuous 
casting in an offset model-two analytical methods, J. Heat 
Transfer. vol. 106. pp. 237-240. 

Sri vatsan, T.S., SUdarshan. T.S., Lavernia, EJ. Processi ng of 
discontinuously-reinforced metal matrix composites by rapid 
solidification. Progr. Materials Sci.. vol. 39. \995. pp. 
317-409 

Szekely, 1. and Dinovo, S. T. 1974. Thermal criteria for lUndish 
nozzle or taphole blockage. Metall. Trans.. vol. 5, pp. 747­
754. 

Szekely, l. and Stanek. V. 1970. On the heat transfer and liquid 
mixing in the continuous casting of steel. Metallurgical 
Trans.. vol. I, pp.119 .. 

Thomas. B.G. 1995. rssues in thermal-mechanical modeling of 
casting processes. [SI] 1m.• vol. 35. pp. 737-743 

Upadhya, G.K., Das. S.. Chandra. U., Paul. AJ. 1995. Modeling 
the investment casting process: a novel approach for view 
factor calculations and defect prediction. Appl. Math. Model.. 
vo1. 19, pp. 354-362 

Yamanaka. A.. Nakajima. K.. Okamura. K. 1995. Critical strain 
for internal crack formation in continuous C<lsting. 
Ironmaking and Steelmaking. voL 22. pp. 508-5 J2 

Yao. L. S. 1984. Natural convection effol1.s in the continuous 
casting of horizontal cylinder. Int. J. Heat Mass Transfer. vol. 
27. p.697. 

Zhang, Y.• Stangle. G. C. 1995. Micromechanistic model of 
microstructure development during the combustion synthesis 
process. J. Matcrials Res., vol. 10. pp. 962-980 

Zhang. Y.-F., Liu. W. K.. Wang. H.-P. 1995. Cast rilling simula­
tions of Ihin-w<llled cavities. Computer Methods Appl. Mcch. 
and Engng. vol. 128. pp. 199-230 

B.� MULTI-COMPONENT SYSTEMS, 
FREEZE-SEPARATION, AND CRYSTAL-GROWTH 

The bibliography in this section primarily focuses on freezing of 
multi component system. but crystal growth also includc.' pure 
crystals. As compared with lhe freezing of single ':'lmplJllcnt 
systems, multi-componenl system freezing is Jccomp<lnied by 
change of composition as discussed in section 5XX.I. a phenom­
enon of great sigOlficance in (he formation ollhe s\1Hd m,ucnal. 
The analysis and prediction of the process are thus also m;ldc more 
complex, in that the species diffusion process and (he elfe'l of lh.: 
concentration on the freezing point and other propcnics. must be 
considered. 

One of the most prominent applications is <llloy-m;lkillg. ;lIld lht: 
last several decades have secn large and lllc(e~si ng i11 vcli VC IllCIH 

with crystal growth. primarily for the electronic, and optical 
industries. Crystals are typically grown by melting (he feedstock 
and lelling It solidify in the form of a cryStal. CI)'sta} may btl 
made of either pure or multi-component matenJb. but even when 
pure crystal s are made. much resea fch has been done on the effect 
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of impurities introduced during the manufacturing process. This in 
effect renders even the pure crystal 10 be considered as a multi­
component system. Crystal growth is accomplished by a variety of 
processes. including Czochralski. Bridgman. Roat-ZOne, and thin 
film deposition. 

The change of composition of multi-component systems during 
freezing is used in various freeze-separation processes, in which 
components are separated for some useful purpose. One example 
is the process of freeze-desalination. in which saline water is 
frozen. thereby separating the water from the salt. The latter 
migrates to the ice crystal surface, from which it is washed by 
fresh water. The ice is made of pure water, which can then be 
used. Another well-known process is freeze-drying. in which 
water is separated from a solid. such as coffee. 
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