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Greek Symbols Subscripts
o thermal diffusivity, m%/s ¢] at the surface (x=0)
B thermal “boundary layer” growth constant a ambient {fluid surrounding the freezing object}
) thermal “boundary layer” c coolant
Av,.  (specific volume of the solid phase) - {specific f fusion {melting or freezing)
volume of the liquid phase), mkg i inner; or initial {at (=0)

= £ liquid
LS = [— s phase-change from liguid to solid

&y o outer
A freezing rate parameter, dimensionless s solid
[n =pJP, w at wall
£ dimensioniess position of the freezing front, =X/L
o density, kg/m?
8 dimensionless temperature, Eq. (8-31)
X concentration, kg/kg; or dimensionless distance x/L
w shape factor [Eq. (8-38)] -
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is given in Subsection V, “Applications Bibliography”
below under the specific topics in which freezing plays an
important role. In addition to the identification of past work
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identify various applications in which freezing plays a role,
and the journals that typically cover the field. While
encompassing sources from many countries, practically all
of the references listed here were selected from the archival
refereed literature published in English. Many pertinent
publications on this topic also exist in other languages.
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D. INTRODUCTION, APPLICATIONS, AND BASIC
PHYSICAL CONCEPTS

Freezing occurs naturally, such as with environmental ice in
the atmosphere (hail, icing on aircraft), on water bodies and
ground regions at the earth’s surface, and in the magma at
the envelope of the molten earth core. It is also a part of
many technological processes, such as preservation of
foodstuffs, refrigeration and air-conditioning, snow and ice
making, manufacturing (such as casting, molding, sintering,
combustion synthesis, coating and electro-deposition,
soldering, welding, high energy beam cutting and forming,
crystal growth, electro-discharge machining, printing),
organ preservation and cryosurgery, and thermal energy
storage using solid/liquid phase-changing materials. A
bibliography for these applications, with a brief introduc-
tion, is given in Subsection V, “Applicalions Bibliography.”
Freezing is often accompanied by meliing, and the thermo-
dynamics as well as transport principles-——and thus the
mathematical treatment—of the two processes are very
similar. Specific discussion of melting is given in Section
507.9 of this Databook.

In simple thermodynamic systems (i.e., without external
fields, surface tension, etc.) of a pure material, freezing
occurs ai certain combinalions of lemperature and pressure.
Since pressure Llypically has a relatively smaller influence,
only the freezing temperature is often used (o identify this
phase transition.

It is noteworthy thal many liquids can be cooled 10 tempera-
tures significantly below the freezing temperature without
solidification taking place. This phenomencn is known as
supercooling. Water, for example, is known to reach
temperatures of about -40 C without freezing, and silicates
and polymers can sustain supercooling levels of hundreds of
degrees. To initiate freezing, it is necessary to form or
itmroduce a solid-phase nucleus into the liquid. Once this
nucleus is introduced, freezing proceeds rapidly. Further
information can be found in Alexiades and Solomon [1] -
[3], Knight {40], Perepezko and Uttomark [53], and
Pounder [55].

The conditions for freezing are strongly dependent on the
concentration when the material contains more than a single
species. Furthermore, freezing 1s also influenced by external
effects, such as electric and magnetic fields, in more
complex thermodynamic syslems.

The equilibrium thermodynamic sysiem parameters during
phase lransition can be calculated from the knowledge that
the partial molar Gibbs free energies (chemical potentials)
of each component in the two phases must be equal (cf.
Alexiades and Solomon [3], Huligren et af [35], Kurz and
Fisher [41}], Lior [45], and Poulikakos [54]). One imponant
result of using this principle for stmple single-component
systems is the Clapeyron equation relating the lemperature

{T) and pressure {P) during the transition from the liquid to
the solid phase, viz

4P _ By

AT~ Thv, Eq. (8-1)

where hy, is the enthalpy difference between phases (= /i -
B¢ < 0, the latent heat of freczing), and Avy, 1s the specific
velume difference between the phases (= v, - v; ). Examina-
uen of Eq. (8-1) shows that increasing the pressure will
result in an increase of the freezing temperature if Av,, <0
(i.e., when the specific volume of the liquid is higher than
that of the solid, which is a property of tin, for example),
but will resull in a decrease of the freezing temperature
when Avy, > 0 (for water, for example). The latter case
explains why ice may melt under the pressure of a skate
blade.

In some malerials, called glassy, the phase change between
the liquid and solid occurs with a gradual transition of the
physical propenies, from those of one phase to those of the
other. When the liquid phase flows during the process, the
flow is strongly affected because the viscosity increases
greatly as the liquid changes to solid. Other matenals, such
as pure metals and ice, and eutectic alloys, have a definite
line of demarcation between the liquid 2nd the solid, and
the transition 1s abrupt. This situation is easier (0 analyze
and is therefore more rigorously addressed in the literalure.

To illustrate the above-described gradual (ransition, most
distinctly observed in mixiures, consider the equilibrium
phase diagram for a binary mixture (or alloy) composed of
species a and b, shown in Fig. 8-1. Phase diagrams, or
equations describing them, become increasingly compli-
cated as the number of components increases). 7 18 the
concentration of species b in the mixiure, ¢ denoles the
liguid, s the solid, s, a solid with a latiice structure of
species a in its solid phase but containing some melecules
of species & in that laitice, and s, a solid with a lallice
structure of species b in its solid phase but containing some
molecules of species a in thai lauice. “Liquidus” denoles
the boundary above which the mixiure is just liquid, and
“solidus” is the boundary separating the final solid mixture
of species a and b from the solid-liquid mixiure zones and
from the other zones of solid s, and solid sy,

For illustration, assume that a liquid mixture is at point |,
characterized by concentration ¥, and temperature T, {Fig.
8-1), and is cooled (descending along the dashed line) while
maintaining the concentration constanl. When the tempera-
ture drops below the liquidus line, solidificaton starts,
creating a mixture of liquid and of solid s, Such a 1wo-
phase mixture is called the mushy zone. At point 2 in that
mushy zone, for example, the solid phase (s,) portion
contains a concentration Y5 of component b, and the
liquid phase portion contains a concentration ¥ of
component & The ratio of the mass of the solid s, to that of
the liquid is determined by the lever rule, and is
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{(X2.¢ - X2 X2 - Xas,) at point 2. Further cooling to below
the solidus line, say to point 3, results in a solid mixture (or
alloy) of s, and sy, containing concentrations X35 and X3,
of species b, respectively. The ratio of the mass of the solid
55 to that of sy is again determined by the lever rule, and is

(Xa.s, - XY ( X3~ X3.s,) AL point 3.

T + ]
I Liquidus

0 X X 1

Figure 8-1. A Liguid-Solid Phase Diagram of a Binary
Mixiure

A unique sitvation occurs if the initial concentration of the
liquid is ¥, upon constant concentration cooling, the liquid
forms the solid mixture s, + s, having the same concentra-
tion ¥, and without the formation of a two-phase zone. ¥,
is called the eutectic concentration, and the resulting solid
mixture (or alloy) is called a eutectic.

It is obvious from the above that the concentration distribu-
tion changes among the phases, which accompany the
freezing process (Fig. 8-1), are an important factor in the
composition of alloys, and are the basis for freeze-separa-
tion processes.

The presence of a two-phase mixture zone with ternpera-
ture-dependent concentration and phase-proportion obvi-
ously complicates heat transfer analysis, and requires the
simultaneous solution of both the heat and mass transfer
equations. Furthermore, the liquid usually does not solidify
on a simple planar surface between the phases, Crystals of
the solid phase are formed at some preferred locations in the
liquid, or on colder solid surfaces immersed in the liguid,
and as freezing progresses the crystals grow in the form of
intricately-shaped fingers, called dendrites. This compli-
cates the geometry significantly and makes mathematical
modeling of the process very difficult. An intreduction to
these phenomena and further references are available in
Chalmers [13], Colucci-Mizenko er al [20], Flemings {27},
Kurz and Fisher [41], Murray er af [49], Poulikakos, {54],
Trivedi and Kurz [65], Gilpin [98]-[100], Prescott er af
[124] and Glicksman er af and Hayashi and Kunimine (both
cited in Subsection V. B.).

Flow of the liguid phase often has an important role in the

inception of—and during—melting and freezing {cf.
Cheung and Epstein [17], Yao and Prusa (72] acd refer-
ences [79]-(152]). The flow may be forced, such as in the
freezing of a liquid flowing through or across a cooled pipe,
and/or may be due to natural convection that arises when-
ever there are density gradients in the liquid, here gencrated
by temperature and possibly concentration gradients. It is
noteworthy that the change in phase usually affects the
original flow, such as when the liquid flowing in a cocled
pipe gradually freezes, and the frozen solid thus reduces the
flow passage, or when the evolving dendritic structure
gradually changes the geometry of the solid surfaces that
are in contact with the liquid {(c¢f. Cheng and Wong [85],
Cho and Ozisik [88], Epstein and Cheung (91, 92], Epstein
and Hauzer [93], Gilpin [101,102], Hirala and Hanaoka
[106], Hirata and Ishihara [107]), Hwang and Tsai [107].
Kikuchi er af [112], Kuzay and Epstein [115], Lee and
Hwang [116], Madejski [119], Sampson and Gibson [129,
130}, Seki er al [135], Thomason ef al [144], Weigand er al
[147], Zerkle and Sunderland {152]). Under such circum-
stances, strong coupling may exist between the heat transfer
and fluid mechanics, and also with mass transfer when more
than a single species is present, and the process must be
moedeled by an appropriaie sef of continuity, momentum,
energy, mass conservation, and state equations, which need
to be solved simulianeously.

E. PREDICTIVE METHODS

The mathematical description of the freezing process is
characterized by non-linear partial differential equations,
which have analytical (closed-form) solutions for only a
few simplified cases. As explained above, the problem
becomes even less tractable when flow accompanies the
process, or when more than a single species is presens. A
very large amount of work has been done in developing
solution methods for the freezing problem (sometimes also
called the Stefan problem, after the seminal paper by Stefan
[62]), published both as monographs and papers, and
included in che list of references to this Section (Alexiades
and Solomor [3], Bankoff [6], Chadam and Rasmussen
[$2], Cheng and Seki [16], Crank [22], Fasano and
Primicerio [26]. Hill [33], Ozisik [51], Tanasawa and Lior
{64}, Yao and Prusa [72], and references [152] - [273], with
emphasis on the reviews by Fox [175]), Friedman [178],
Fukusako and Seki [179], Meirmanov [209]. Ockendon and
Hodgkins [219], Rubinshtein [233], and Wilson et al [266] .
Generically, solutions are obtained either by 1) linearizing
the original equations (e.g., perturbation methods) where
appropriate, and solving these lingar equaltions, or 2)
simplifying the original equalions by neglecting terms, such
as the neglection of thermal capacity in the “quasi-static
method™ described in Subsection 1V below, or 3) using the
“integral method,” which satisfies cnergy conservation over
the entire body of inierest, as well as the boundary condi-
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tions, but is only approximately correct locally inside the
body (Subsection fV. A. below), or 4) employing a numeri-
cal method.

Many numerical methods have been successfully employed
in the sclution of freezing problems, both of the finite
difference and element types, and many well-tested
software programs exist that include solutions for that
purpose. A significant difficulty in the formulation of the
numerical methods is the fact that the liquid-solid interface
moves and perhaps changes shape as freezing progresses
(making this a “moving boundary” or “free boundary”
probiem). This requires continuous monitoring of the
interface position during the solution sequence, and
adjustment of the numerical model cell or element proper-
ties w0 those of the particular phase present in them at the
time-step being considered (cf. Alexiades and Solomen {3],
Crank [22], Dilley and Lior [171], Fasano and Priiicerio
[26], Fox [175], Friedman [178), Furzeland [180], Gupta
and Kumar [185], Hsu et af [189], Hyman [192], Kim et af
(197], Meyer [212, 213], Mori and Araki [218], Gckendon
and Hodgkiss [219], Rubinsky and Shitzer [234], Saunders
[239], Siegel et al [245], Tsai and Rubinsky [255],
Udaykumar and Shyy [256], Vick and Nelson [2583, Wilson
et al [266], Yoo and Rubinsky [268], Yu ef af [269],
Zabaras and Mukherjee [27C], Zhang er af [273]). Several
formulations of the original equations were developed to
simplify their numerical solution. One of them is the
popular “enthalpy method” discussed in more detail in
Subsection IV .B. below.

The predictive equations provided below are all for materi-
als whose behavior can be characterized as being pure. This
would also apply to multi-component material where
changes of the freezing temperature and of the composition
during the freezing process can be ignored. General
solutions for cases where these can not be ignored are much
more difficult to obtain, and the readers are referred 10 the
literature; some of the key citations are provided in refer-
ences [3], [27], [41], [77], [265] and Subsection V.B.

Furthermore, the solutions presented here by closed-form
equations are onlty for simple geomelries, since no such
solutions are available for complex geometries. Simplified
expressions, however, are presented for freezing times also
in arbitrary geometries.

I1. PREDICTIVE EQUATIONS FOR
FREEZING WITHOUT FLOW

A. ONE-DIMENSIONAL FREEZING WITHOUT
DENSITY CHANGE

Examination of the simplified one-dimensional case
prevides some important insights into the phenomena,
identifies the key parameters, and allows analytical solu-
tions and thus qualitative predictive capability for at leas(

this class of problems. In this Section we deal with cases in
which the densities of both phases are the same, and 1n
which the freezing liquid does not flow, thus also ignoring,
for simplification, the effects of bucyancy-driven convec-
tion that accompanies the freezing process when a tempera-
ture gradient exists in the liquid phase. As stated in Subsec-
tion LE., the effects of natural convection may sometimes
be significant, and information about this topic can be found
in the references quoted in that Section. Freezing of non-
opaque media may also include internal radiative heat
ransfer, which is ignored in the equations presented below.
Information about such preblems is contained in references
(14] and [31].

The solutions presented below can be found in many books
and reviews that deal with melting and freezing (cf. refs. [3],
(6], [22]. (331, [411, (45], [72], and [1791, [209], (233]) and in
texibooks dealing with heat conduction (cf. [51] and [54]).

1. Solutions for Materials that are Initially at the
Freezing Temperature

If the liquid to be frozen is initially at the freezing tempera-
ture throughout its extent, as shown in Fig. 8-2, heat
transfer occurs in the solid phase only. This somewhat
simplifies the solution and is presented first.

T Solid Liquid
T, =T,=T,
Phase-change
interface
To /
0 X Q) ®

Figure 8-2. Freeting of a Semi-infinite Liguid Initially at
the Fusion Temperature. Heat conduciion rakes place
consequently in one of the phases only.

Consider a liquid of infinite extent is 1o the right {x > 0) of
the infinite surface at x = 0 (i.e., semi-infinile). described in
Fig. 8-2, initially at the freezing temperature 7. For time

¢ > 0 the temperature of the surface (at x = 0) is lowered (o
To < T1, and the solid consequently starts to freeze there. In
this case the temperature in the liquid remains constant,

T; =Ty so the temperature distribution needs 10 be calcu-
lated only in the solid phase. [t is assumed that the liquid
rernains motionless and in place. The initial condition in the
solid is

T(x,0)=T, in x>0, a =0, Eq. (8-2)
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the boundary condition is )
T.(0,t)=T1; for t>0, Eq. (8-3)

and the liquid-solid interfacial temperature and heat flux
continuity conditions, respectively, are

T[X(0)] =T} for t>0,

aT, dx(r
- s[a_:) =psh£s ( )
X [X(f)] df

The analytical solution of this problem yields the tempera-
ture distribution in the solid as

Eq. (8-4)

for t>0, Eq.(8-5)

for r>0, Eq. (8-6)

erl{ al ]
?}(I,I)=T0+(T!—To)i

erf &7

where erf stands for the error function (described and
tabulated in mathematics handbocks), and A’ is the solution
of the equation

-2 NS:
Aet erf(h)= =L Eq. (8-7)
=T
with
Nsie, being the Stefan Number, here defined for the solid as
e (T, - T,
N, EM, Eq. (8-8)
[} "2&

recalling that the latent heat of freezing, kg, must be entered
into the equations as a negative value. Equation {8-7) can be
solved to find the value of A’ for the magnitude of Nsiepr
which is calculated for the problem at hand by using Eq.
(B-8). The solution of Eq. (8-7), yielding the values of A" as
a function of Ng,,, for O £ Ng, <5, is given in Fig, 8-3.

1.2

1.0

0.8+
)bf

0.6

0.4 4

0.2

00—

2
Nsie,
Figure 8-3. The Root A of Eq. (8-7)

T T T

-
3 4 5

The interface position{which also is the freezing front
progress} is defined by Eq. (8-9)

12

X(1y =21 ot} Eq. (8-9)

EXAMPLE

The temperature of the vertical surface of a large
volume of liquid paraffin used for heat storage. initially
at the freezing temperature, 7; = Ty = 60 "C. is suddenly
lowered to 30 *C. Any motion in the melt may be
neglected. How long would it take for the paraffin to
solidify to a depth of 0.1 m? Given properties: o4 =
(1.ONI07 m2s, ps = pr = 814 kg/m?, iy = -241 K)/kg,
¢ = 2.14 kI/kg °C. To find the required time we use Eq.
{8-9), in which the value of A needs to be determined.
A" is calculated from Eq. (8-7} or determined from Fig.
8-3, which requires knowledge of Mg, . From Eqg. (8-8)

N _{(2.14K1 7 kg °C)(30°C - 60 °C)
S -241.2K / kg

=0.266.

The sclution of Eq. (8-7) as a function of Ng,, is given
in Fig. 8-3, yielding A" = 0.4. Using Eq. (8-9), the time
of interest is calculated by

C_xol (0.1m)?
an Fo, 40.4)2[(1.09)107 m? /5]

=(1.43)10°s =39.8h.

2. Solutions for Materials that are Initially not at the
Freezing Temperature

If, initially, the liquid 1o be frozen is above the freezing
lemperalure, conductive heat transfer takes place in both
phases. Consider a semi-infinite liquid initially at a
temperature 7; higher than the freezing temperature T, (Fig.
8-4). At time ¢ = 0 at the liquid surface temperature at x =0
is suddenly lowered to a temperature 7 < T, and main-
tained at that temperature for ¢ > ). Consequently, the liquid
starts 1o freeze at x = 0, and the freezing interface (separat-
ing in Fig. 8-4 the solid to its left from the liquid on its
right) located at the position x = X(r) moves gradually to the
right {in the positive x direction).

T Solid Ligud
T, =T,
as x —» =0
Fhasg-change
imerface
To ./
0 XA ®

Figure 8-4. Freezing of a Semi-;’&ﬁnfﬁe Liquid Initially at
an Above-freezing Temperature. Heat conduction takes
place in both phases.
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The analytical sofution of this problem yields the tempera-
ture distributions in the Jiquid and solié phases, respec-

tively, as
erfe a
) 2foi,t

erfc( msfa,)

Eq. (8-10)

v.er‘f[—x ]
2ot
Ts(x,t)=TD+[Tr—T0)——er}A—s‘ Eq. (8-11)

where erfc is the complementary error function; A is a
constant, obtained from the solution of the equation
e ke la, T-T;

L. Mn

erffh kYo, T, -T, erfc(l o, /0&,_«) - Ne, ‘

2 e-(a,fa, Ja2

Eq. (8-12)
where Ny, is the Stefan number defined by Eq. (8-8).

Solutions of Bq. (B-12) are available for some specific cases
in several of the references (cf. [3] and [51]), and can, in
general, be obtained relalively easily by a variety of
commonly-used software packages used for the solution of
nonlinear algebraic equations.

The transient position of the freezing interface is
X(e)=2x{o0)"%, Eq. (8-13)

where A is the solution of Eq. (8-12), and thus the expres-
sion for the rate of freezing, 1.e. the velocity of the motion
of the solid-liquid interface, is

ax(r) _ a2

. (8-14
ar s Eq. (8-14)

B, ONE-DIMENSIONAL FREEZING WITH
DENSITY CHANGE

For most materials the density of the liquid and solid phases
is somewhat different, usually by up to about 10% and in
some cases up to 30%. Usually the density of the liquid
phase is smaller than that of the solid one, causing volume
expansion upon melting and shrinkage upon freezing. This
phenomenon causes, for example, a manufacturing problem
in that metals and plastic materials filling a mold in their
liquid phase shrink when solidified, forming voids in the
solid and a poorly-conducting gas layer between the mold
(or container) wall. Water is one of the materials in which
the density of the liquid phase is higher than that of the
solid one, and thus ice floats on water, and pipes tend 10
burst when water confined in them freezes. If the densities

of the liquid and solid phases differ, motion of the phase-
change interface is not only due to the phase change
process, but alsa due to the associated volume (density)
change.

A reasonably good analytical solution for small (~ +10%)
solid-liquid density differences is available (Alexiades and
Solomon {31) for the semi-infinite slab at x 2 0, initially
solid at 7; > Ty, frozen by imposing a constant terperature
To < Trat the surface x = 0 (Fig. 8-4). [tis assumed that
Ps> Ps Ce .\ Cs Ky, ke, hyg, and T are constants and positive.
The freeze front X(t) starts at x = X(0)~=~0 and advances to
the right. Buoyancy-driven convection is ignored, but the
valume expansion of the solid upon freezing is considered,
in that it pushes the entire liquid volume rightward (Fig. 8-
4 without friction, at uniform speed u(1) without motion
inside the liquid itself. The temperature distributions are, in
the solid and liquid phases

X
er{[Q ar]
T(x0) =T+ {1 - T} — = Eq. (8-15)

in 0 £x<X(t) for 1 >0,

)erfc[ 24%5 -(1 —u)ﬂm]

T (e,)=T,-(T; - T,

) M erfc(liﬂ;ﬂ)
inx2 X(n for>10. Eq. (8-16)
The location of the freezing front is

x(r) =227 (e 1)"?, Eq. (8-17)

and the speed of the liquid body moticn due to the expan-

sion is
v(e)=(1=p)A"Jo, 7t Eq. (8-18)
In Egs. (8-15) - (B-18) 1™ is the root of the equation

_ -7

Eq. (8-19)

which can, for the specific problem parameters, be solved
numerically or by using one of the many software packages
for selving nonlinear algebraic equations. The remaining
parameters are defined as

_ol®-n) el -7)
Slc'_‘ = h{ SI’:‘{ h! '
3 £
A - Eq. (8-20)
o P’
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with kg taking a negative value in this freezing problem.

Because of the approximate nature of this analytical
solution it is expected that Eq. {(8-17) slightly overesumates
the melt front position. If py < p,, freezing would cause the
solid to shrink, moving the liquid leftward, in a direction
opposite to thai of the freezing interface, and the solution
represented by Eqs. (8-15) - (8-20) would not be valid.
Approximate but less accurate solutions for this and other
cases are described by Alexiades and Solomon [3].

C. THE QUASI-STATIC APPROXIMATION

To obtain rough estimaltes of melting and freezing processes
quickly, in cases where heal transfer takes place in only cne
phase, it is assumed thal effects of sensible heai are negli-
gible relative to those of latent heat (Ste — 0). This is a
significant simplification, since the energy equation then
becomes independent of lime, and solutions to the steady
state heat conduction problem are much casier to obtain. At
the same time, the transient phase-change intecface condi-
tion [such as Eqg. (8-5}] is retained, allowing the estimation
of the transient interface position and velocity. This is hence
a quasi-static approximation, and its use is shown below.
The simplification allows solution of freezing problems in
more complicated geometries. Some solutions for the
cylindrical geomelry are presented below. More details can
be found in refs. (3], [22], [33]. [166], [179], and [248].

It 15 important 1o emphasize that these are just approxima-
tions, without full information on the effect of specific
problem conditions on the magnitude of the error incurred
when using them. [n fact, in some cases, especially with a
convective boundary condition, they may produce very
wrong results, It is thus necessary (0 examine the physical
viability of the results, such as overall energy balances,
when using these approximations.

1t is assumed here that the problems are ene-dimensional,
and that the material is initially at the freezing temperalure
7

1. Examples of the Quasi-Static Approximation for a
Slab

Given a semi-infinite liquid on which a tine-dependent
temperature Ty(t} < Ty is imposed at x = 0, (Fig. 8-2), the
above-described quasi-static approximation vields the
solution for the position of the phase-change front and of
the temperature distribution in the solid as

12

X{1) = ZEJ[TO ~TyJor| forezo0, Eq.(8-20)

(00} =To(1)+ [T, - To(:)]%r) in0<x<X(r) fore20,

Eq. (8-22)
respectively.
-» .
The heat flux released during freezing, gix.7), can easily be

determined from the temperature distribution in the liguid
[Eg. {8-22)], viz.

Ty =Ty(1)
X(n

This approximate solution is exact when Ste; — G, and it
otherwise overestimates the values of both X(r) and T(x. ).
While the errors depend on the specific problem, they are
confined to about 10% in the above-described case
(Alexiades and Solomon [3]).

For the same freezing problem bul with the boundary
condifion of an imposed time-dependent negative heat
flux (cooling) -gg(f),

glx.t)=k, Eq. (8-23)

ar,
_;\( ] =qo(r) for 1>0,  Eq.(8-24)
dx 0.

the quasi-static approximate solution is

ELJ )di for £>0,  Eq. (8-25)
ph
Q

T{x,1)=T, z [pq:’ r—,r} ind £x<X(1)fore>0.
£

Eq. (8-26)

Note that both /14 and gy must be entered into the equations
as negative values,

2. Examples of the Quasi-Static Approximation for
Cylinder

It is assumed in these examples that the cylinders are very

long and that the problems are axisymmetric. Just as in the

slab case, the energy equaucn is reduced by the approxima-

tion 10 its steady siate form.

Consider the outward-directed freezing of a hollow
cylinder of liquid with imernal radius r, and culer radius r,
(Fig. 8-5) due (o a low temperature imposed at the interpal

radius ry ,
7;(;;_;):76(:)(7} for i >0Q. Eq. (8-27)

The solution is
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In[r/ R(1)]

SRV Bgo(8-28
In[r, / R(7)] Fa. 528

T(x.0)=T; [T, - T(1)]

inr<r<R()fore>0,

and the transient position of the freezing front, R(¢), can be
calculated from the transcendental equation

!

2R(1)? 1nM =R} -+ 44, J[To(r)— Tf]dr.
fi ph{s
0
Eq. (8-29)
Phase-change
interface

Figure 8-5. Outward Freezing in a Hollow Cylinder
Containing Liguid Initially at the Freedng Temperature
(Ty), Subjected at its Inner Radius (ry) to a Temperature
Ta-ﬂTf

If the freezing for the same case occurs due to the imposi-
tion of a negative heat flux gq at ry,

_ks(%f_s_) =go(1) >0 fors>0. Eq. (8-30)
r H.r

the solution is

Ts(]'I[)=T]- —M]n;

kg R(Y) Eq. (8-31)

ing SrSR{) fori>»0,

' 142

J.qo (s)de| fore>0, Eq.(8-32)
o

i

R(N=|r?+2

£43

where go(t) and Az must be entered as negative values.

If the freezing for the same case occurs due to the imposi-
tion of a convective heat flux to a fluid at the transient

lower temperature T,(f}, with a heat transfer coefficient
h at 1, the heat flux boundary condition there is

i, [i_TJ =K[T,()-T,(.1)]> 0 fors>0, Eq.(8-33)
Fie

and the solution is

In|r 7 R(1)]
In[# / R(1)| -k / b,

T(r0) =T, - [T, - T,(1)]

inr, gr <R fore>0,

Eq. (8-34)

with R(1) calculated from the transcendental equation

i

2R(1) In @ = [1 - —:—‘—J[R(r)z —r? ] -Ii’i'“r, - T,(1)]de.
i 5 0

Eq. {(8-35)
The solutions for inward freezing of a cylinder, where
cooling is applied at the outer radius r,, are the same as the
above-described ones for the outward-freezing cylinder, if
the replacements r, = ry, gog— —gp, and k — -k

are made, If such a cylinder is not hollow then r; = 0 is used.
D. ESTIMATION OF FREEZING TIME

There are a number of approximate formulas for estimating
the freezing and melting times of different materials having
a variety of shapes.

1. Freezing Time of Foodstuff

The American Society of Heating, Refrigerating, and Air-
Conditioning Engineers (ASHRAE) provides a number of
appraximations for estimaung the freezing and thawing
times of foods (ASHRAE [4]). For example, if it can be
assumed that the freezing or thawing occur at a single
temperature, the time to freeze or thaw, #, for a body that
has shape paramelters P and R (described below) and
thermal conductivity &, initially at the fusion temperature T7,
and which is exchanging heat via heat rransfer coc{licient

# with an ambient at the constant temperature 75, can be
approximated by Plank’s equation

f |?} - Ta| n ok Eq. (8-36)
where d is the diameter of the body if it is a cylinder or a
sphere, or the thickness when it is an infinite slab, and
where the shape coefficients & and R for a number of body
forms are given in Table 8-1 below.
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Tahle 8-1, -
Shape Factors for Eq. (8-36), ASHRAE {4]
Forms & R
Slab 1/2 1/8
Cylinder 1/4 1/16
Sphere 1/6 1/24

Shape coefficients for other body forms are also available.
To use Eq. (8-37) for freezing, k and p should be the values
for the food in its frozen state.

If the initial temperature (7}) of the matenal 10 be frozen is
higher than 7; and the surface temperature Ty is given {or
Npg; — o}, the following simple formula for estimating the
freezing time #; of an infinitely-long cylinder of diameter 4
and radius rp was proposed:

Neo; =(0.14+0.085%,)+(0.252 - 0.0025 ¥, Jhid.

Eq. (8-37)
where
) oy

N,y Fourier number, = —
o

. . T.-T;

¥y Dimensionless Temperature, .
TJr -7,

[n fact, freezing or melting of food typically 1akes place
over a range of temperatures, and approximate Plank-type
formulas have been developed for various specific food-
stuffs and shapes 10 represent reality more closely than Eq.
(8-36) (Cleland er al {167], ASHRAE [4]).

EXAMPLE

Using Plank’s Equation (8-36) for estimating
freezing time estimate the time needed 1o freeze a
fish, the shape of which can be approximated by a
cylinder 0.5 m long having a diameter of 0.1 m. The
fish is initially at its freezing temperature, and during
the freezing process it is surrounded by airat T, = -
25 °C, with the cooling performed with a convective
heat transfer coefficient # = 68 W/m2K. For the fish,
Tr=-1°C, hg =200 k)/kg, ps =992 kg/m?, and & =
1.35 W/m K,

Using Table 8-1, the geometric coefficients for the
cylindrical shape of the fish are &%= )/4 and

R = 1/16, while d is the cylinder diameter, = 0. 1m.
Substituting these vajues into Eq. (8-36) gives

_ 200000-992{1/4(0.1) 1/16(0.1)’

= = 6866 s = L9h.
7 -2 | 68 1.35 ] )

2. Other Approximations for Freezing Time

Alexiades and Solomon [3] provide an easily-computable
approximate equation for estimating the ume needed to
freeze a simple-shaped liquid volume injtially at the
freezing temperature 7y [t is assumed that conduction
occurs in one phase (the solid) only, that the problems are
axi- and spherically-symmetric for ¢ylindrical and spherical
bodies, respectively, and that the freezing process for
differently shaped bodies can be characierized by a single
geometric parameter, r, in the body demain 0= r €L,
using a shape factor, ©, defined by

LA

w=—-1

14
where A s the surface area across which the heat is re-
moved from the body, and V is the body volume, 10 account
for the specific body shape, viz.

Eq. (8-38)

0 for aslab insulated al one end

@ = 1 foracylinder (Eq. (8-39)

2 forasphere.

0 £ w = 2 always. and @ may be assigned appropriale
values for shapes intermediate between the siab, cylinder,
and sphere. For example, a football-shaped body, some-
where between a cylinder and sphere, may be assigned

w = 1.5, and a short cylinder with a large diameier-to-height
ratio may have w=0.5.

For the case where the temperature 75 < T is imposed on
the boundary at ¢ = , the 1ime required for complete
freezing, , can be estimated by the equation

5 0.7
t; = ———————(1+{0.25+ 017" "IN, |.
/ 20, (1 + W)V, [ ( ) S”']
Eq. (8-40)
claimed 10 be valid with an accuracy within 10% for

0 Ng, =4.

Validaling by comparison to the results of an experiinen-
tally-venfied two-dimensional numerical model of freezing
of lake-shore water (with a mildly-sloped adiabatic lake
bottom) inifially at the freezing temperature, Dilley and
Lior [170] have shown (hat freezing progress can be
estimated well by the following simple equations.

For a constant heat flux ¢4 from the top surface 10 the
ambient, the relationship between the depth of freezing X(1)
and time can be expressed as

3 s
o | 2 5[ 49 |2 _
p.hy ) 20, 6lph, ) 2

Eq. (8-41)

X({) = q_(]! -
psh!’s
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with an error < 0.02% for the first 100 hours.
For convective cooling at the surface by air at temperature

T, and with a convective heat wansfer coefficient £ | the

relationship between the depth of freezing X(#) and time can
be expressed as

1
Np, ()= N,(1) -2 NZ(e). Eq. (8-42)
where
. . hx()
NB,-S Biot number for the solid, = 3
¥
T2
. . . _ h NS!:,
M Dimensionless time parameter, = z
SpSCS

valid for small values of Ng,  (the quasi-static approxima-
tion).
When the top surface is subject to a combination of
constant and of a convective heat flux so that the total
heat flux, g,,,, there is

9 (0,1)=a+ [T, -T(0.1)],  Eq.(8-43)
Eq. (8-43) is applicable also for this case, if M, is expressed
by

Eq. (8-44)

In the lake-freezing simulation, this expression was found
to represent the data well up to the time when the ice depth
became 2 m.

If freezing started when the ice layer already had a thick-
ness X; (at time #;), the approximate solution becomes

1
Ng, ()= -1+ 1+ Bily +2Bi, x +2N,()[2, Eq.(8-45)

where W, is defined by Eq. (8-44).

When the top surface is subjected to a combination of
constant and of a convective heat flux, where the air
temperature varies linearly with fime as

T()=T,, +nu, Eq. (8-46)
where
m the time-variation constant of the temperature T,
Tai the initial air temperature,
the total heat fiux there, g,,,, is
9ur{0.0)=R[T,(1)=T(0.)] +gp.  Eq.(8-47)

The approximaie expression relating X(t) to time is still Eq.
(8-42}, but with ¥, defined as

k [(qo+f?2;_,--]r+ﬂr2]. Eq. (8-48)
ks Fal 3 2

Nr(T)=

IIL PREDICTIVE EQUATIONS
FOR FREEZING WITH FLOW

Freezing may occur when a liquid flows through a cooled
conduit or along a cooled wall where the conduit/wall
temperature (7,,) is below the freezing temperature of the
ligquid (T, < T¢, Fig. 8-6). The heat balance at the phase
change interface can be expressed as

97,

J AR(x.1)
ar [x.R(x.r)]

5 Ea (8-49)

=Pshy

q[x, R(x,r)] + ks[
where the first and second terms on the lefi-hand side of the
equation account for the heat flow from the flowing liquid
and the frozen solid, respectively, to the phase-change
interface, and the term on the right-hand side expresses the
rate of latent heat release due (o the increase in the frozen
layer thickness. The first term in Eq. (8-49), i.e. the heat
transfer from the flowing liquid, can be expressed as

g[x R(x.0)]) = [T, (x,0)- T,] Eq. (8-50)
for convection from a liquid at temperature T (x,7) with a

convective heat transfer coefficient h .

N qlx.Rix)]

Liquid

—>
ﬁo{. ]_.iquild TR DR
T Sl Ureseh e
Wall, Ty
—

Figure 8-6. Freezing During Liquid Flow Over a Cold

Wall

Freezing occurs when the the term on the right-hand side of
Eq. (8-49) is negative, happening if at least one of the terms
on the left hand side of the equation is negative and larger
in its absolute value than the other. Obviously, freezing can
thus occur if the interface is cooled on both sides (when

T, < Tf and thus g < 0,and also T, < Tfand thus the
gradient in the conduction term is negative). It can, how-
ever, occur even when the flowing fluid temperature is
higher than T, if the cooling rate through the frozen layer is
high enough, or when the tube wall temperature 1s higher
than 7,if the cooling rate g into the flowing fluid (when T,
< Tf) i1s large enough.

Since the flow boundary and cross seclion keep varying
during phase-change, the nature of the flow. including its
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velocity, as well as the consequent effects on heat transfer,
also vary. For example, inward freezing in a cooted tube
would progressively diminish the flow cross section and
increase the flow pressure drop (Fig. 8-7). If, as often found
in practice, the given flow head is constant, freczing would
result in a gradual decrease of the flow rate. Figure 8-8 also
shows the experimentally-observed fact that some re-
melting of the frozen layer occurs at the exit from the
partially-frozen region, due to the flow expansion there.
Some references on the effects of freezing on flow, pressure
drop, and conditions leading to complete flow stoppage in

conduits due to freezing, are ciled in Subsection 1. D. above.

Tube wall a1 F |

emp. By, < F Teztn layes
) I gl o
Liquid | s B R R T AR T
flow, (o e 2
% sorsan -

4
L

Figure 8-7. A Freezing During Liquid Flow in a Tube

Solidificalion zone

decreasing % ;, and stops when the convective heat transfer
at the interface is equal to the conductive one in the ice
Jayer. The flow thus becomes laminar again, which brings
another such freezing-melting cycle about, generates
another ice band downstream of the first cne, and so on. In
addition to such changes n the interface shape, dendriiic
growth of the solid phase—especially prominent when the
liquid is subcooled-—will create interface roughness oo a
smaller scale. -

Even when the above-described interface shape variations
are not taken into account, no analytical solutions for the
complete flow-accompanied melting/freezing problem are
available. Many numerical, experimenial and approximaie
results have, however, been reported in the literature and
listed in the above mentioned reviews (especially see
citations [79])-[152] in Subsection I. C.). One useful
solution is shown here, for the ¢ase of a finid at the radially-
average enirance temperature T, > 7 flowing along a flat
plate, or in a tube of intemmal radius r,, which are
convectively-cooled on their exterior surface by a fluid at
temperature T, < Tf with a convectlive heat transfer coeffi-

cient (Fig. 8-9). Neglecting heat conduction in the axial
direction, an approximate collocation-type transicnt

solution, which accounts for the motion of the phase change
interface and for the heat conduction in the frozen layer was
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wall, n = 1 for flow in a cylindrical tabe SIMPLIFYING SOLUTION

Bi Biot number for internat heat transfer to the
phase-change interface, = f;r: / k,, dimen-
sionless

1 dimensionless length parameter,
R*(x*1)
aX
I

g*[R*(x* 1)1 dimensionless heat flux from the liquid

streamn to the mterface,

= g[R(x.0]rif (psh )
heat flux from the liguid stream to the

interface, = E[Tc(x, 1) - Tf], W/ m?.

q(R(x,0)]

Phose-
change
interface

Liquid coolant
flow (T, =T ) -

Figure 8-9. Sketch of the Phase-Change Problem of a
Flowing Liquid on a Cooled Planar Wall or Inside a
Cooled Tube, with Notations for Stephan's {141] Solution
[Eq. (8-51)

In this solution, the internal heat flux term ¢{R{x,f)] must be
specified by the user, since the solution here does not
include consideration of the flow momentum equations.
Representative constant vaiuves of ¢ may be used for rough
assessment.

Equation {8-52) can be solved by numerical methods, most
easily by using one of the available ordinary differential
equation solution software programs. Once R¥*(x*, 1) is thus
determined, all necessary information about this flow-
freezing problem becomes available.

A. THE INTEGRAL METHOD, WITH SAMPLE
SOLUTION FOR FREEZING OF A SLAB

A simple approximate technique for solving melting and
freezing problems is the heat balance integral method
(Goodman {181]), which was found to give good results in
many cases. The advantage of this method is that it reduces
the second-order partial differential equations describing the
problerm to ordinary differenual equaticos that are much
easier to solve. This is accomplished by guessing a tempera-
ture distribution shape inside the phase-change media, but
making them satisfy the boundary conditions. These
temperature distributions are then substituted into the partial
differential energy equations in the liquid and solid, which
are ther integrated over the spaual parameter(s) (here just x)
in the respective liquid and solid domains. This results in
ordinary differential equations having time (r) as the
independent variable. The disadvantage of the method is
clearly the uncertainty in the temperawce distribution within
the media. This technique is introduced here by applying it
to a useful case, and the reader can thus also learn to apply
il to other cases.

Consider, as shown in Fig. 8-10, a [iquid initially at an
above-freezing temperature (7; > Ty) confined in a space

0 £x< L, with the surface at x = 0 subjected for ime ¢ > 0
10 a below-freezing temperature Ty < T, and the surface at x
= L is perfectly insulated, (8T ¢/dx); , = Q. Freezing thus
starts at x = 0, and the freezing front, as shown in Fig. 8-9,
is moving rightward. This problem has no exact solution,
and is thus a good example for the application of the
integral method described in this section.

NN N

Sobid Liquid
Lnsulated
|~ surface
—
Freezing
From
ro {00y (Tr
Txo)=T,>T,
0 X -

Figure 8-10. Sketch for the Problem of Freezing of a
Liquid Slab Initially at an Above-Freezing Temperature

In the derivation and discussion, the following dimension-
less parameters are used:
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T, =T
J 0 T
0= — where =5, £, or f, Eq. (8-52)
X X a.l
=—, E=—, N, =—2%, . (8-
3 7 Fo, =2 Eq. (8-53)

and the problem is re-sketched in terms of these dimension-
less parameters in Fig. 8-11. For the example at hand, the
partial differential equations describing the problem are, for
the solid

30,(x. N5, ) 2%

in 0 <y <&(1), for Ng, >0,

N, - oy’
Eq. (8-34)
with the boundary condition
GJ(O,NFO,]=Ofor Npo, >0, Eg. (8-55)

for the liquid
aes (x' NFo ) 826
L= Lin 0 <y <&(e), for N, >0,
™ St n0< <80 for
Eq. {8-56)
with the boundary condition
J6
—i =0at X =1, for Ng, >0, Eq. (8-57)
and the initial condition
8, =lin0<y <lfor Ng, =0, Eq. (8-58)
and at the phase-change interface
O,[&(0). Nr, | =0, [E(). Np, | =8, Eq. (8-59)
B k98 _ by (N, ) Eq. (8-60)

The next step, as explained above, is to choose temperature
distributions in the two phases. Obviously, the closer the
¢hosen distributions are 1o the actual (but unknown) ones,
the better the solution would be, A reasonable guess
(although other ones can be tried) in the solid phase is the
exact solution obtained for freczing a semi-infinite liguid
initiatly at an above-freezing temperature, shown in Eq. (8-
11), which is here, in its dimensionless form,

erf X
B,t[x‘NFo,] 2 NFG: for N >0 ErC] 8 61)
= Lior s (B~
o, etk e

where A is a parameter yet 10 be determined. The reader can
easily prove that this is indeed the solution of Eqs. (8-55),
(8-56).

Solid

Liquwd

Insuwlared
Phase-change .,!n/‘u-fme
interface
B;=0
B0
Theemal “boundary layer™
0 £ (V) boox

Figure §8-11. Sketch for the Energy Integral Method
Solution for Freezing of a Liguid Slab Initially at an
Abgve-Freezing Temperature, with Dimensionless
Variables

[t is also assumed that the positicn of the phase change
interface is defined by an expression similar to Eq. (8-13),

E(Npo, | = 20N, - Eq. (8-62)

The value of A as well as the temperature distribution in the
liquid phase are now determined by the integral method, as
follows. A thermal “boundary layer” S(Npos) is defined at
an x-location where the liquid temperature is stll at its
initial value (the cooling effect has not penetrated to that
location yet. See Fig. 8-10.), and the heat flux is 0, viz.

9,[5(:\!,:0, ) NFO,]= 1,

[%JB(N&‘) =0

respectively. Note that a solution is valid only if 8(Ng,) <
1. Now the differential energy equation for the liquid, Eq.
(8-57), is integrated in the liquid phase domain from &(Nr, )
0 S(NFO), and the boundary conditions represented by Eqgs.
{8-58), (8-64) and {8-65), giving the expression

ﬁ[ﬁﬁg] S ds
% U Sy, ) as[%%] o
E', NFo,

Eq. (8-63)

ang

Eq. (8-64)

de"(NF"s ) =

Tw I 6N
Fo, Fo,

8o, )
dFD Ief[X(NFo, ) N, ]dx Eq. (8-65)
" &(wn,)

GENIUM PUBLISHING



Section 507.8
Page 22
August 1996*

VAPORIZATION/PHASE CHANGE
FREEZING
SOME METHODS FOR SIMPLIFYING SOLUTION

Heat
Transfer
Division

This is the energy-integral eguation for this problem. An
appropriate temperature distribution must be chosen for
completing the integration. For example, the polynomial
distribution

e,,(x,NFos]=1-(1-e,)[2%7é]‘ Eq. (8-66)

where n 2 2 is the power of the polynomial, satisfies the
boundary conditions, Eqs. (8-58), (8-63) and (8-64). It is
also assumed that S(M, Fog) is related to Ng,_through the

relation
8( Ny, } = 28N,

with the parameter 3 to be determined.

The temperature distribution {Eq. (8-66)] is substituted into
the energy integral equation {(8-65), which is integrated
using Eq. (§8-67) to yield

Eq. (8-67)

R 2n o

S ALY U WA SO it 2y )
B 2 [ n+l o Eq. (8-68)
Next, the temperature distributions in the solid and liquid,
Eqgs. (8-61) and (8-66), respectively, are introduced into the
interfacial condition Eqgs. (8-59) and (8-60), (o yield the
following transcendental equation for the unknown param-
eter A

2 2
edl kt [as J” ef -1 ML\“\/}E

!
crf(k)-,-;: o, 0, z, Cs(Tf —’I;)), Eq. (8-69)

O:E n

where

z s+l . f 2, 2n
n_nﬁ b Y n4+ + Eq(S-?O)

Eq. (8-71)
ol Lk Eq. (8-72)
8, T,-T q-

Solution of Eq. (8-69} manually, or easily done by one of
many software packages available for solving nonlinear
algebraic equations, yields the value of A. This and Eq.
(8-68) yield the value of B, and thus the transient position
of the freezing front, E;(NFOIJ, can be calculated from Eq.
(8-62), and the temperature distributions in the solid and
liquid can be calculaied from Eqgs. (8-61) and (8-66),
respectively,

Inspection of Eq. (8-62) also indicates that the slab would
be completely frozen when the dimensionless time reaches

the value NFﬂs = 1/(422), and [with Eq. (8-67)] that the
validity of this particular integral solution is confined to
dimensionless times for which & £ 1, corresponding to
Nro, < 1/(4B%).

Many integral solutions vield good results, with errors
within a few percent. The accuracy, as mentioned above,
depends on the closeness of the chosen temperature
distributions to the real ones. Experience from previous
successful selutions or experimental resulis naturally
improves this choice. Additional information about this
method can be found in refs. [181), [51]. and {210].

B. THE ENTHALPY METHOD

It is noteworthy that one of the biggest difficuities in
numerical solution techniques for such problems is the need
to track the location of the phase-change interface continu-
cusly during the solution process, so that the interfacial
conditions could be applied there. One popular lechnique
that alleviates this difficulty is the enthalpy method (refs.
[31, [72], (154], [1723 174), (179], [ 1904, [228], {240],
[259] and [260]), in which a single partial differential
equation, using the material enthalpy instead of the tem-
perature, 1s used 1o represent the entire domain, including
both phases and the interface. Based on the energy equa-
tion, just as Egs. (8-35) and {(8-57), the one-dimensional
meliling problem is thus described by

dh 9%h

p—=k-§-i~inx20, forr >0,

= - Eq. (8-73)

where the temperature-enthalpy relationship is expressed by

ﬁ h = cT/ {solid)
C
T= T, cly <h<cT, +h, (nierface) Eq. (8-74)
=} L
% h2 Ty + by (liquid)

The numerical computation scheme is rather straightfor-
ward: knowing the temperature, enthalpy and thus from Eq.
(8-74) the phase of a cell al lime siep j, the enthalpy at lime
step (j+1} is computed from the discretized version of Eq.
(8-73), and then Eq. (8-74} is used to determine the tem-
perature and phase at that new time. If a computational cell
1is in the mushy zone, the liquid fraction is simply h; / hg,.

Care must be exercised in the use of the enthalpy method
when the phase change occurs over a very narrow range of
temperatures. Oscillating non-realistic solutions were
obtained in such cases, but several modifications (see above
references) to the numerical formulation were found 1o be
reasonably successful.
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V. APPLICATIONS BIBLIOGRAPHY

An extensive—yet by no means complete—Dbibliography
identifying papers and books that treat freezing in the main
areas in which it takes place, is presented below. The
classification is by application, and the internal order is
alphabetical by author.

A. CASTING, MOLDING, SINTERING

Freezing (solidification} is a key component in casling, molding,
and production of solid shapes from powders by processes such as
sintering and combustion synthesis. The materials include metals,
polymers, glass, ceramics, and superconductors. Flow of the
molten material, the course of its solidification (including volurne
changes due (o phase transition, and internal siress creation), and
the evolving surface and interior quality, are all of significant
indusirial importance. In production of parls from powders, the
conditions necessary for bonding of the particles by melting and
resolidifcation are of importance. Such diverse processes as
spinning and wire-making are included. Much attention has lately
been focused on the manufacturing of materials lor superconduc-
tors.

Aboutalebi, M. R.; Hasan, M.; Guthre, R.LL, Jun 1994, Thermal
modelling and stress analysis in the continuous casting of
arbitrary sections. Steel Research vol. 65, pp. 225-233.

Akiyoshi, R., Nishio, 5. and Tanasawa, 1. 1992. An attempi to
produce particles of amorphous materials using stcam
explosion. [n Heat and Mass Transfer in Materials Process-
ing, ed. I. Tanasawa and N. Lior, pp. 330-343. Hemisphere,
New York.

Assar, A. M., Al-Nimr, M. A. 1994, Fabricalion of metal matrix
composite by infiltration process - part 1: modeling of
hydrodynamic and thermal behaviour. I. Composite Materi-
als, vol. 28, pp. 1480-1490.

Beckelt, P.M. and Hobson, N, 1980. The effect of shrinkage on the
ratc of sohidification of a cylindrical ingot. Int. J. Heat Mass
Transfer, Vol. 23, pp. 433-436.

Benned, T.; Poulikakos, D. 1994, Heat transfer aspects of splat-
quench solidification: modelling and experiment. J. Materials
Science, vol. 29, pp. 2025-2039.

Bose, A. Technology and commercial siatus of powder-mjection
molding. JOM, vol. 47, pp. 26-30

Bushko, Wil C., Stokes, Vijay K. Solidification of
thermoviscoelastic melts. Part I: Formulation of model
problem. Polymer Engng Sci.. vol. 35, 1995, pp. 351-364

Bushko, Wit C., Stokes, Vijay K. Solidification of
thermoviscoelastic melts, Pant 11: Effects of processing
conditions on shrinkage and residual siresses. Polymer Engng
Sci., vol. 35, 1995, pp. 365-383

Clyne, T.W. 1984. Numerical treaument of rapid solidification.
Metall.. Trans., vol. 15B, pp. 369-381.

Cole, G.S8. and Bolling, G.F. 1965, The imporiance of natural
convection in casting. Trans. Metallurgical Soc.-AIME, vol.
233, pp. 15681572,

Cole, G.S. and Bolling, G.F. 1966. Augmented nalural convection
and equiaxed grain siructure in castings. Trans. Metallurgical
Soc.-AIME, vol. 233, pp. 1568-1572.

Coupard, D., Girot, F., Quenissct, .M. Engulfment/pushing
phenomena of a fibrous reinforcement al a planar solid/liquid

interface: comparison of the model with experiments. J.
Materials Synth. Processing, vot. 3,1995, pp. 203-211

Coupard, D., Girot, F., Quenisset, .M. Model for predicting the
engulfment or rejection of short fibers by a growiog plane
solidification front. J. Materials Synthesis and Processing,
vol. 3, 1995, pp. 191-201

DiLellio, LA, Young, G.W. Asympiotic model of the mold region
in a continuous steel caster. Metallurg. Materials Trans. B,
vol. 26, 1995, pp. 1225-1241

Dogan, C. and Saritas, S. Metal powder production by centrifugal
atomizasion. Int. J. Powder Metallurgy , vol. 30, pp. 419-427

Edwards, M.F., Suvanaphen, P.K. and Wilkinson, W.L. 1979.
Heat transfer in blow molding operations. Polym. Engng.
Sci., vol. 19; pp. 910-916.

Gau, C. and Viskanta, R, 1984. Meliing and solidification of a
metal system in a rectangular cavity. Int. J. Heal Mass
Transfer, vol. 27, p. 113.

Gilotte, P., Huynh, L.V, Eway, J., Hamar, R. Shape of the free
surfaces of the jet in mold casting numerical modeling and
experiments. J. Engng Materials and Technol., vol. 117, pp.
82-85

Gnill, A.. Sorimachi, K. and Brimacombe, J. 1976. Heat flow, gap
formation and breakouts in the continuous casting of sleel
slabs. Mezall. Trans. B, vol. 78, pp. 177-189.

Gupta. $.C. and Lahiri, A.K. 1979. Heat conduction with a phase
change in a ¢ylindrical mold. 1nu. J. Eng. Sci., vol. 17, pp.
401-407.

Heggs. P.J., Houghton. J.M.. Ingham, D.B. 1995. Application of
the enthalpy method 1o the blow moulding of polymers.
Plastics, Rubber and Composites Processing and Appl., vol.
23, pp. 203-210

Hieber, C.A. 1987. Injecsion and Compression Molding Funda-
mentals., A, I Isayev, ed., Marcel Dekker, New York.

Jacobson, L. A. and McKittrick, J. 1994, Rapid solidification
processing. Materials Sci. Engng R, vol. 11, pp. 355-408.

Khan, M. A, Rohatgi. P.K. Numerical solution to the solidifica-
tion of aluminum in the presence of various fibres. J.
Maerials Sci., vol. 30, 1993, pp. 3711-3719

King, A.G.; Keswani, 5.T. 1994, Adiabatic moulding of ceramics.
Am. Ceramic Soc. Bull., vol.73, pp. 96-100

Kroeger, P.G. 1970, A heat 1ransfer analysis of solidificaiion of
pure metals in continuous casting process. Proc. 4th [nt. Heat
Tr. Conti., vol. 1, paper Cu 2.7.

Kurosaki, Y. and Saich, I. 1992. Visualization of Nlow and
solidification of polymer melt in the injection molding
process. [n Heat and Mass Transfer in Materials Processing,
[. Tanasawa and N. Lior, eds., pp. 313-329. Hemisphere, New
York, N.Y,

Mangels, J. A. 1994, Low-pressure injection moulding. Am.
Ceramic Soc. Bull,, vol.73, pp. 37-41.

Mauch, F. and Jackle, J. 1994. Thermoviscoelasuc theory of
freezing of stress and strain in a symmetrically cooled infinite
glass plate.. 3. Non-Crystailine Solids. vol. 170, pp. 73-86.

Massey, §.DD. and Sheridan, A.T. 1971. Theoretical predictions of
earliest rolling times and solidification times of ingots, J. Iron
Steel [nst., Vol. 209, pp. 111-351.

MeDonald, R.J. and Hunt, 1.D. 1970. Convective fluid motion
within the interdendritic liquid of a casting. Trans 'TMS-
AIME, vol. |, pp. 1787-1788.
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Monoteith, B.G. and Piwonka, T.S. 1970. An investigation of heat
flow in unidirectional solidification of vacuum cast airfoils. J.
Vacuum Sci. Tech,, vol. 7, pp. $126.

Nishio, 8., Inamura, S. and Nagai, N. 1994, Solidified-shell
formation process during immersion process of a cooled solid
surface. Trans. Japan Soc. Mech. Engrs B, vol. 60, pp. 4163-
4170

Niyama, E., Anzai, K. 1993. Solidification velocity and tempera-
ture gradient in infinitely thick alloy castings. Materials
Trans., JIM, vol. 36, pp. 61-64

OChnaka, 1. 1985. Melt spinning im¢ a liquid cooling medivm. Tnt.
1. Rapid Solidification, vol. I, pp. 219-238.

Ohinaka, 1. 1988. Wires: Rapid solidification. In Encycl. Materials
Sci. Engng, Suppl. vol. 1, RW. Cahn, ed., pp. 584-587.,
Pergamon Press.

Ohnaka, I. and Shimacka, M. 1992, Heal transfer in rotaling liquid
spinning process. In

Heat and Mass Transfer in Materials Processing, I. Tanasawa and
N. Lior, eds., pp. 315-329. Hemisphere, New York, N.Y.

O'Malley, R.J.; Karabin, M.E.; Smelser, R.E. 1994, The rol!
casting process: Numerical and experimental results, J.
Materials Process. Manuf. Sci.. vol .3. pp. 59-72.

Papathanasiou, T.D. Modeling of injection meld filling: effect of
undercooling on pelymer crystallization. Chem. Eng. Sci..
vol. 50, pp. 3433-3442

Patel, P.D. and Boley, B.A. 1969. Sclidification problems with
space and time varying boundary conditions and imperfect
mold contact. Int. J. Eng. Sci., vol. 7. pp. 1041-1066.

Pehlke, R.D., Kirt, M.J., Marrone, R.E., and Cook, D.J. 1973,
Numerical simulation of casting seolidification. CFS Casl
Metals Research J., vol. 9, pp. 49-55.

Pehlke, Robert D.S 1994, Sirategies and structures for computer-
aided design of castings. Foundry Manag. Technol., vol. 122,
pp. 26-28..

Prasso, D.C., Evans, I.W., Wilson, I.J. 1995, Heat transport and
solidification in the ¢lectromagnetic casting of aluminum
alloys: Part [. Experimental measurements on a pilot-s¢ale
caster, Metallurg. Materials Trans. B, vol. 26, pp. 1243-1251

Prasso, D.C., Evans, J.W., Wilson, LJ. 1995. Heat transport and
solidification in be ¢lectromagnetic casting of aluminum
alloys: Part [1. Devclopment of a mathematical model and
comparison with experimental results, Metallurgical and
Malerials Trans. B, vol. 26, 1995, pp. 1281-1288

Richmond, O. and Ticr, R.H. 1971. Theory of thermal stresses and
air-gap formation during the early stages of solidification in a
rectangular mold. J. Mech. Phys. Solids, vol. IS, pp. 273-284,

Saito, A., Okawa, S.. Kaneko, K. and Kaneko, H. 1994. Simuta-
tion of continuous-casting process (Reconsideration of heat
balance and improvement of efficiency in continuous-casling
process). Heal Transler - Japanese Research, vol. 23, pp. 35-
Sl

Saitoh, T.8.; Sato, M. 1994, Two-dimensional solidification
analysis of the vertical continuous casting system. J.
Marerials Process, Manuf. Sci.. vol. 3, pp. 17-31.

Savage. J. 1962. A theory of heat transfer and gap formation in
continuous casting moulds. J. [ron Steel Tnst., pp. 41-48.

Sfeir, A. A. and Clumpner, J. A. 1977. Conlinuous casting of
cylindrical ingots. I. Heal Transfer. vol. 99, pp. 29-34.
Shivkumar, ., Yao, X., Makhlouf, M. Polymer-melt interactions

during casting formauon in the lost foam process. Scripta

Metallurgica et Materialia, vol. 33, 1995, pp. 3946

Siegel, R. 1978. Analysis of solidification interface shape during
continuous casting of a slab. Int. J. Heat Mass Transfer, vol.
21, pp. 1421-1430.

Siegel, R. 1978. Shape of two-dimensional solidification interface
during directional solidification by continugus casting. I.
Heat Transfer, vol. 100, pp. 3-10.

Siegel. R. 1983. Cauchy method for solidification interface shape
during continugus casting, Trans. , J. Heat Transfer, vol. 103,
pp- 667-671.

Siegel, R. 1984. Solidification inierface shape for continuous
casting in an offset model-two analytical methods, J. Heat
Transfer, vol. 106. pp. 237-240.

Srivatsan, T.S., Sudarshan, T.S., Lavernia, E.J. Processing of
discontinuously-reinforced metal mairix composites by rapid
solidification. Progr. Materials Sci.. vol. 39, 1995, pp.
317-409

Szekely, J. and Dinovo, §. T. 1974. Thermal criteria for rundish
nozzle or laphole blockage. Metall. Trans.. vol. 5, pp. 747-
754.

Szekely, J. and Stanek, V. 1970. On the heat wransfer and liquid
mixing in the continuous casting of steel. Metatlurgical
Trans., vol. 1, pp.119..

Thomas, B.G. 1995. [ssues in thermal-mechanical medeling of
casting processes. [S1J Ini., vol. 35, pp. 737-743

Upadhya, G.K., Das, §., Chandra, U., Paul, A.J. 1995, Modeling
the invesiment casting process: a novel approach for view
factor calculations and defect prediction. Appl. Math. Madel.,
vol. 19, pp. 354-362

Yamanaka, A.. Nakajima, K., Okamura. K. 1995, Critical strain
for internal crack formation in continuous casting.
Tronmaking and Steelmaking, vol. 22, pp. 508-512

Yao, L. 8. 1984, Natvral conveciion efforts in the conlinuous
casting of horizantal cylinder. Int. J. Heat Mass Transfer, vol.
27, p. 697,

Zhang, Y., Siangle, G. C. 1995, Micromechanistic model of
microstructure development during the combustion synthesis
process. J. Materials Res., vol. 10, pp. 962-980

Zhang, Y.-F,, Liv, W. K., Wang, H.-P. 1995. Cast Nlling simula-
tions of thin-walled cavities. Computer Methods Appl. Mech.
and Engng. vol. 128, pp. 199-230

B. MULTI-COMPONENT SYSTEMS,
FREEZE-SEPARATION, AND CRYSTAL-GROWTH

The bibliography in this section primarily focuses on freezing of
multi component system, but crystal growth also includes pure
crystals. As compared with the freezing of singic component
systems, multi-componeni system freezing is accompanied by
change of composition as discussed in section 5XX.1, a phcnom-
enon of great significance in the formation ot Liwe solid muatenal.
The analysis and prediction of the process are thus also made more
complex, in that the species diffusion process and the effect of the
concentration on he freezing peint and other propertics, musl be
considered.

One of the most prominent applications is alloy-muaking, and the
last several decades have seen large and increasing involvement
with crystal growth, primarily for the elecironics and optical
industries. Crystals are typically grown by melting the feedstock
and lewing it solidify in the form of a crysial. Crystals may be
made of either pure or multi-component materials. bul even when
pure crystals are made. much rescarch has been done on the effect

GENIUM PUBLISHING



Heat
Transfer
Division

VAPCORIZATION/PHASE CHANGE
FREEZING
APPLICATIONS BIBLIOGRAPHY

Section 507.8
Page 25
August 1996*

of impurities introduced during the manufacturing process. This in
effect renders even the pure crystal 1o be considered as a multi-
component system. Crystal growth is accomplished by a variety of
processes, including Czachralski, Bridgman, Floal-Zone, and thin
film deposition.

The change of composition of multi-component sysiems during
freezing is used in various freeze-separation processes, in which
components are separated for some vseful purpose. One example
is the process of frecze-desalination, in which saline water is
frozen, thereby separating the water from the salt. The latter
migrates (o the ice crystal surface, from which it is washed by
fresh water. The ice is made of pure water, which can then be
used. Another well-known process is freeze-drying. in which
water is separated from a solid, such as coffee.

Abrams, M. and Viskania, B. 1974. The effects of radiative heat
transfer upon the melting and solidification of semi-
transparent crystats. J. Heat Transfer, vol. 96, p. 184.

Adomato, P. M. and Brown, R, A. 1987. The effect of ampoule on
convection and segregation during vertical Bridgman growth
of dilute and nondiluie binary alloys. J. Crystal Growth, vol.
80, p. 155.

Alexiades, V. 1983. Rapid freezing of dilute alloys. IMA J. Appl.
Math., vol. 30, pp. 67-69.

Alexiades, V. and Cannon, J. 1980. Free boundary problems in
solidification of alloys. SIAM I. Math Analysis, vol. L}, pp.
254-264.

Alexiades, V., Wilson, D.G. and Solomon. A. D. 1985. Macro-
scopic global modeling of hinary alloy solidification
processes. Quart. Appl. Math., vol. 43, pp. 143-158.

Anderson, D.M.; Davis, S.H. 1994, Fluid flow, heat transfer, and
solidification near tri-junctions. J. Crystal Growth, vol. 142,
pp. 245-252.

Anestiev, L, 1994, On 1he solute redistribution ai thermally
activated phase transition processes. 1L Applications. J.
Crystal Growth, vol. 140, pp. 175-181.

Apanovich, Yu.V. 1984, Analysis of heat and mass processes in
growing crystals by the zone-melting method. J. Appl. Mech.
Tech. Phys., vol. 25, pp. 443-446.

Aziz, M.J. 1982. Mode! for solute redistribution duting rapid
solidification. J. Appl. Phys., vol. 53. pp. }158-1168.

Beckermann, C. and Viskanta, R. 1988. Double-diffusive
conveetion during dendritic solidification of a binary mixiure,
Physico Chem. Hydro., vol. 10, pp. 195-213.

Bennon, W.D. and Incropera, F.P. 1987. The evolution of
macrosegregation in statically cast binary ingots. Metall.
Trans. B, vol. 18B, pp. 611-616.

Bennon, W.D. and Incropera, F.P. 1987, A continuum model for
momentum heat and species transport in binary solid-liquid
phase change systems - I. Model formulation; 1. Application
to solidification in a rectangular cavity. Inl. J. Heal Mass
Transfer, vol. 30, pp. 2161-2170, 2171-2187.

Bennon, W.D. and Incropera, F.P. 1988. Numerical analysis of
binary solid-liquid phase change using a coniinuous model.
Num. Heat Transfer, vel. 13, pp. 277-296.

Bennon, W.D. and Incropera, F.P. 1988, Numerical simulation of
binary solidification in a vertical channel with thermal and
solutal mixed convection. Int. J. Heat Mass Transfer, vol. 31,
pp. 2147-2160.

Bennon, W.D. and Incropera, F.P. [989. An experimental
investigation of binary solidification in a venical channel

with thermal and solutal mixed convection. J. Heal Transfer,
vol. 111, pp. 706-712.

Bewlay, B.P., Lipsitt, H.A., Jackson, M.R., Reeder, W.J., Sutliff,
J.A. 1995, Solidification processing of high temperature
intermetallic euteclic-based alloys. Materials Sci. Engng A,
vol. A192-19 p1 2, pp. 534-543

Bhihe, C.X.; Mataga, P.A.; Huichinson, J.W.; Rajendran, S.;
Kalejs, J.P. 1994, Residual stresses in crystal growth. J.
Crystal Growth v 137, pp. 86-90

Boley, B.A. 1978. Time-dependent solidification of binary
mixtures. Int. J. Heat Mass Transfer. vol. 21, pp. 824-826.

Bourret, E. D, Derby, J. J., and Brown, R. A, 1985. One-
dimensional modeling of transients in directional solidifica-
tion of nondilute blurry alloys. J. Crystal Growth, vol. 71, p.
587.

Braga, S.L.. and Viskanta, R. 1990. Solidification of a binary
solution on a cold isothermal surface. Int. I. Heat Mass
Transfer, vol. 33, pp. 745-754.

Brice, ). C. 1973. The Growth of Crystals from Liquids. North-
Holland, New York.

Brice, J. C. and Whiffin, P. A. C. 1977. Changes in fluid flow
during Czochralski growth. J. Crystal Growth, vol. 38, p. 2435,

Brown, R, A. 1987. Convection and solidification in melt crystal
growth. In Advanced Crystal Growth, P. Dryburgh, ed., p. 41.
Prentice Hall, Mew York.

Brown, R. A. 1988. Theory of transport processes in single crystal
growth from the melt. A.L.Ch..E. )., vol. 34, pp. 8881.

Brown, R. A, Kinney, T.A_, Sackinger. P. A., and Bornside, D. E.
1989. Toward an integrated analysis of Czochralski growih. J.
Crystal Growth, vol. 97, pp. 99-115.

Brown, R. A., Ramprasad, M., and Bennett, M. ). 1987. Numerical
analysis of solidification microstructure. In Supercomputer
Rescarch in Chemistry and Chemical Engineering, D. G.
Truhlar, K. Jensen, eds., Am. Chem. Soc. Symp. Ser.,
Washington, D. C.

Brown, R.A. 1992, Perspectives on integraled modeling of
transporl processes in semiconductor crystal growih. [n Heat
and Mass Transfer in Materials Processing, ed. 1. Tanasawa
and N, Lior, pp. 137-153. Hemisphere. New York.

Camel, D. and Favier 1.J. 1984, Thermal convection and longitudi-
nal macrosegregation in horizontal Bridgman crystal growth.
1. Crder of magnitude analysis. J. Crystal Growth, vol. 67, pp.
42-56.

Camel, D.. and Favier, ). J. 1986. Scaling analysis of conveciive
solute ransport and segregation in Bridgman crysial growth
from the doped melt, J, Physique, vol. 47, p. 1001

Cao, W.Z and Poulikakos, D. 1990. Solidification of an alloy in a
cavity cooled through its top surface. Int. J. Heat Mass
Transfer, vol. 33, pp. 427-434,

Carey, V. P. and Gebhart, B. 1982. Transport near a vertical ice
surface meliing in saline water: Some numerical calculations.
J. Fluid Mech.. vol. 117, pp. 379-402.

Carruthers, J. R. and A. F. Witt, A. F. 1975, Transicnt scgregation
effects in Czochralski growth. In Crystal Growth and
Characierization, R. Ueda, J. B., J. B. Mullen, eds., North-
Holland, Amsterdam.

Carruthers, J. R. 1977, Thermal convection instabilities relevant to
crysial growth from liquids. [n Preparation and Properties of
Solid State Malerials, 3, W. R. Wilcox, R. A. Lefever, eds.,
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Cartwright, R. A., Hurle, D. T. )., Series, R. W., and Szekely, J.
1987. The influence of crucible rotation on the effective
distribution coefficient in Czochralski and magnetic
Czochralski growth. J. Crystal Growth, vol. 82, p. 32.
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