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C. REFERENCES

There always was an intense (nterest in predicung melting
phenomena as related to such applications as food preserva-
tion, climate and its control, navigation, and materials
processing, expanding with time into new areas such as
power generation and medicine. Increasingly rigorous
quantitative predictions started in the 19th century, and the
number of published papers is in the tens of thousands. The
main books and reviews on the topic, representative key
general papers, as well as some of the references on
appropriate thermophysical and transpont properties, are
listed as citaticens [1]-[191] below. A further rather exten-
sive, yet not complete, list of references is given in subsec-
tion [V below under the specific topics in which melting
plays an important roie. In addidon to the identification of
past work on specific topics, this extensive list of references
also helps identify various applications in which melung
plays a role, and the journals which typically cover the
field. While encompassing sources from many countries,
practically all of the references listed here were selected
frorn the archival refereed literature published in English.
Many pertinent publications on this topic also exist in other
languages.
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foods. Ch. 29 in Fundamentals. ASHRAE, Atlanta, GA.

4. Bankoff,5.G. 1964. Heat conduclionor diffusion withchange
of phase. Adv. Chem. Eng., vol. 5, p. 75.

5. Bareiss, M. and Beer, H. 1984, An analytical solution of the
heat transfer process during melting of an unfixed solid phase
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Transfer, vol. 27, p. 739,

6. Bernard. C.. Gobin, D.. and Martinez, F. 1985. Mcliing in
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. Chan, §. H., Cho, D. H. and Kocamustafaogullar. G. 1983.
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vol. 26, pp. 621-633.

. Cheng, K. C. and Seki, N. eds. 1991, Freezing and Melting

Hear Transfer in Engincering. Hemisphere, Washinglon. D.C.

. Cheuang, F.B. and Epstein, M. 1984. Solidification and Meli-

ing in Fluid Flow. [nAdv. in Transport Processes Vol. 3. ed.
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. Cooper. A.R. 1985, Analysis of the continuous meliing of

glass. J. Non-Crystalline Sol.. vol. 73, pp. 463-475.
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University Press (Clarendon), London and New York.
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Wirme Stoffibertragung. vol. 20, p. 311.

. Dong, Z.F..Chen, 2.Q.. Wang, Q.J. and Ebadian. M.A. 1991.

Experimental and analytical study of contact melting 1n a
reclangular cavity. J. Thermophysics Heat Transfer. vol. 5, pp.
347-354,

. Egolf, P. W. and Manz, H. 1994. Theory and modeting of

phase change materials with and without mushy regivns. Iot.
J. Heat Mass Transfer, vol. 37, pp. 2917-2924.

. Fang, Z.-H. and Chen, L.-R. 1994. Sirplified treatment 0

calcufate the meling temperature of melals under 3 gh
pressure. J. Physics Condensed Mater, vol. 6, pp. 6937-694.

. Fasano, A. and Primicerio, M.. eds. 1981, Free Boundary

Problems: Theory and Applications, Pitman, London.

. Frenken. J.W M. and van Pinxieren, H.M. 20 1994, Surface

melting: dry. slippery, wet and faceted surfaces. Surface Sci.,
vol. 307-09. pt B, pp. 728-734.

Friedman, A. and Boley. B.A. 1970, Stresses and deforma-
uons in melting plates. J. Spacecraft Rockets. vol. 7. p. 324

33, Fukusako, S. and Yamada, M. 1993, Recent advances in

rescarch on water-freezing and ice-melting problems. Exp.
Thermal Flud Sci., vol. 6, pp. 90-105.

. Ghatee. M.H.. Boushehri. A. An analytical equation of state

for molten alkali metwals. [t J. Thermophysics. vol.16.
pp.1429-1438.

Gilpin.R. R., Roberison. R. B.. and Singh. B. 1977. Radiative
heating 1nice. J. Heat Transfer, vol. 99, pp. 227-232.
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Heat Transfer, vol. 117, pp. 803-805.

Hultgren, R., Orr, R., Anderson, D. and Kelley, K. 1963.
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Alloys. Wiley, New York.

Hwang, G.J. 1992, Transport phcnomena in melting and
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Mass Transfer in Materials Processing, ed. 1. Tanasawa and
N. Lior, pp. 247-264. Hemisphere, New York.

lida, T. and Guthrie, R.LL. 1988, The Physical Properties of
Ligquid Metals, Clarendon Press, Oxford.
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Lam, N. Q. and Okamoto, P. R. 1994. Unified approach lo
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4]-46,
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ductivity of solid and liquid phases at the phase transition. Int.
1. Thermophysics, vol. 16, 1995, pp. 567-576.

. Landau, H. G. 1950. Heat conduction in a melting solid. Q.

Appl. Math., vol. &, pp. 81-94.
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. Mitchell, A. 1994, Recent developments in specialty melting

processes. Materials Technel., vol. 9 pp. 201-206,
Moallemi, M. K. and Viskanta, R. 1986. Analysis of close-
contact melting heat uansfer. [ J. Heat Mass Transfer, vol.
29. pp. 855-867.

Ozisik, M.N. 1980. Heat Conduction, Wiley, New Yark, N.Y.

Pfann, W.G. 1966. Zone Melting. 2nd ed., Wiley, New York.

Poulikakos, D. 1994, Conduction Heat Transfer. Prentice-
Hall, Englewood Cliffs. N.J.

Pounder, E.R. 1903. Physics of fce. Pergamon Press, Oxford.
Prusa, J. and Yao, L. 5. 1985. Effects of density change and
sub-cooling on the melung of a solid around a horizontal
heated ¢ylinder. J. Fluid Mech., vol. 155, pp. 193.

Rawers, I.; Frisk. K.: Feichtinger, H.; Satir-Kolorz, A. 1994,
Thermodynamics of high-pressure melting. J. Phase Equilib-
ria. vol. 15, pp. 465-468.

Rieger, H.. Projahn, U., Bareiss. M., and Beer, H. 1983. Hear
transfer during melting inside a horizontal wbe. J. Heat Trans-
fer, vol. 105, pp. 226-234.

Satamatin, A.N.,Fomin. S.A., Chistyakov, V.K. and Chugunov,
V. A. 1984, Mathemnatical descripuion and calcutation of con-
tact melting. J. Engng Phys.. vol. 47. pp. 1071-1077.
Sekerka. R.F. 1984, Morphological and hydredynamic insta-
bilities during phase transformation. Physica D, vol. 12D, pp.
212-214.

Shamsundar, N. and Sparow, E. M. 1976. Effect of density
change on multidimensional conduction phase change. J. Heat
Transfer, vol. 98, pp. 5350-357.

. Sparrow, E. M.and Geiger, G. T. 1 986. Melting inahorizontal

tube with the solid either constrained or {ree to fall under
gravity. [nt. J. Heat Mass Transfer, vol. 29, p. 1007.
Sparrow, E. M., Gurntcheff, G. A., and Mynum, T. A. 1986,
Correlation of melting results for both pure substances and
impure substances. J. Heat Transfer, vol. 108, p. 649.
Sparrow, E. M., Ramnadhyani, $.. and Patankar, S. V. 1978.
Effect of subcooling on cylindrical meling. J. Heat Transfer,
vol 100, p. 395.

Springer. G. S. 1969. The effects of axial heat conduction on
the freezing or metting of cylinders. int. J. Heat Mass Transfer,
vol. 12, pp. 521-524.

. Stefan,J. 1891. Ueberdie theoricdereisbildung. insbesondere

ueber die cisbildung im potarmeere. Ann. Phys. Chem., M.3.
vol. 42, pp. 269-286.

Tanasawa, [. and Lior, N. ed. 1992. Hear and Mass Transfer
in Materials Processing. Hemisphere, New York, N.Y.
Tkachev, A, G. 1953. Problems of Heat Transfer dunng a
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169-178, translated from 2 publicatnon of the State Power
Press, Moscow,
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part of mary technological processes. such as thawing fol-
lowing freeze-preservation of foodstuffs, snow and ice re-
moval, manufacturing (such as in casting, molding, sinter-
ing, combustion synthesis, coating and electro-deposition.
soldering, welding, high energy beam cutting and forming,
crystat growth, electro-discharge machining, prinung),
thawing of cryo-preserved or cryosurgically treated organs,
and thermal energy storage using solid/liquid phase-chang-
ing materials. A bibliography for these applications, with a
brief intreduction, is given in Subsection IV.

Melting is often accompanied by freezing, and the thermo-
dynamics as well as wansport principles of the two pro-
cesses are very similar. Their mathematical treatment is
therefore also similar. Specific discussion of freezing is
given in Section 507.8 of the Databook.

In simple thermodynamic systems (i.e.. without external
fields, surface tension, etc.) of a pure malterial, melting of a
solid occurs at certain combinations of temperature and
pressure. Since pressure typically has a relatively smaller
influence, only the melling {or “fusion™) temperature is
often used to identify this phase uransition.

The conditions for melting are suwongly dependent on the
concentration when the material conlains more than a single
species. Furthermore, melting is also sensitive 10 exlernal
effects, such as electric and magnetic fields. tn more
complex thermodynamic systems.

The equilibrium thermodynamic system parameters during
phase mansition can be calculated from the knowiedge that
the partial molar Gibbs free energies (chemical potentials)
of each component in the two phases must be equal (cf.
Alexiades and Solomon [ 1], Hultgren ef at {37], Kechin
[40}], Lior [46], Poulikakos [54])). One tmportant result of
using this principle for simple single-component systems is
the Clapeyron equation relating the temperature (T) and
pressure (P) during the transition from the solid to the liquid

phase, viz.

E‘E_ hs(
aT ~ Thvy, Eq. (9-1)

where A, is the enthalpy difference between the phases (=
hy - by > 0, the atent heat of melting) and Avggis the
specific volume difference between the phases (= v, - vg).
Examination of Eq. {9-1) shows that increasing the pressure
will result in an rise of the melung temperature if Avg, >0
(i.e., when the specific volume of the Liquid is higher than
that of the solid, which is a propenty of tin, for example),
but will resull in a decrease of the meliing (emperature
when Avg, < O {for waier, for example). The lauer case
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explains why ice may melt under the pressure of a skate
blade.

In some materials, called glassy, the phase change between
the solid and liquid occurs with a gradual fransition of the
physical properties, from those of one phase (0 those of the
other. When the liquid phase flows during the process, the
flow is strongly affected because the viscosity decreases
greatty as the solid changes to liquid. Other materials, such
as pure metals and ice, and eutectic alloys, have a definjte
line of demarcation between the liquid and the solid. the
transition being abrupt. This situation is easier 10 analyze
and 15 therefore more rigorously addressed 1a the literature.

To illustrate the above-described gradual transition, most
distinctly observed in mixtures, consider the equilibrium
phase diagram for a binary mixture {or alloy) composed of
species a and &, shown n Fig. 9-1. Phase diagrams, or
equations describing them, become increasingly compli-
cated as the number of components increases. x is the
concentration of species b in the mixture, £ denotes the
tiquid, s the solid, s, 2 solid with a lattice structure of
species ¢ in its solid phase but containing some molecules
of species & in that lattice, and s, a solid with a lattice
structure of species & in its solid phase but containing some
molecules of species a in that lattice. “Liquidus” denotes
the boundary above which the mixiure is just liquid, and
“solidus” is the boundary separating the final solid mixture
of species a and b from the solid-liquid mixture zones and
from the other zones of solid s, and solid s,.

Liquidus

i Liquid /

g :

.7

Solidus

tl §,+S;

4] X e

Figure 9-1. A Liguid-Soiid Phase Diagram of a Binary
Mixture

For illustration (Fig. 9-1), assume that a solid mixtuce or
alloy of components s, and s, containing concentrations
(X1.5, and X 5) Of species b, respectively is at point | and
thus at temperature T, (Fig. 9-1). The above concentrations
are those identified by the intersections of the horzontal
dot-dash line passing 1hrough point |, with the left and right
wings of the solidus line, respectively. The rauo of the mass
of the solid s, 1o that of s, 13 determined by the lever ride,

and is (x5, - X1 ¥(X1 - X1.,) a1 point 1. This solid is then
healed, ascending along the dashed line corresponding to
x). When the temperature rises above the solidus line,
melting stasts, creating a mixture of liquid and of solid s,.
Such a two-phase mixture is calied the mushy zone. At point
2 in that mushy zene, for example, the solid phase (s,)
portion contains a concentration x;, 5, of component b, and
the liquid phase portion coatains a concentration x5 , of
component b. The ratio of the mass of the solid s, 1o that of
the liqui¢ can again be determined by the lever rule, and is
(X2e.- X2)/(X2 - X2, 5,) at point 2. Further heating to above
the tiquidus line, say to poiat 3, results in a liquid mixture
having concentration x).

A unique situation occurs for heating along the line of
concentration ¥,: the liquid formed has the same concentra-
tion as that of the sohid mixture of 5, + s, and a two-phase
(mushy) zone is not formed during the melting process. x, is
called the eutectic concentration, and the solid mixture (or
alloy) having that concentration is called a eutectic.

It is obvious from the above that the concentration distribu-
ton changes among the phases, which accompany the
melting process (Fig. 9-1), are an important factor in the
composition of alloys, and are the basis for freeze-separa-
tion processes.

The presence of a two-phase mixiure zone with tempera-
wre-dependent concentration and phase-proportion obvi-
ously complicates heat ransfer analysis, and requires the
simuttaneous solution of both the heat and mass transfer
equations. Furthermore, the solid usuaily does not melt on a
simple planar surface between the phases. This complhicates
the mathematical modeling of the process significantly.
Further references to melting of multi-component systems
are provided in Subsection IV.B.

Flow of the liquid phase ofien has an important role during
melting (¢f. Cheung and Epstein [13], Viskanta [69], Yao
and Prusa (74], and references (76] - (106]). The flow may
be forced, associated with the removal of the melt, and/or
may be due 10 natural convection that arises whenever there
are density gradients in the liquid. here generated by
temperature and possibly concentration gradients. Under
such circumslances, strong coupling may exist between the
heat transfer and fuid mechanics, and also with mass
transfer when more than a single species is present. and the
process must be modeled by an appropriate set of continu-
ily. momentum, energy, mass conservation, and state
equations, which need 10 be solved simultaneously.

£. PREDICTIVE METHODS

The mathematical description of the melting process is
characterized by non-lincar partial differential equations,
which have analyucal {closed-form) solutions for only a
few simplified cases. As explained above, the problem
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becomes even less tractable when flow accompanies the
process, or when more than a single species is present. A
very large amount of work has been done in developing
solution methods for the melting problem (sometimes also
called the Stefan problem, after the seminal paper by Stefan
(64)), published both as monographs and papers, and
included in the list of references to this Section (Alexiades
and Solomon [1], Bankoff (4], Chadam and Rasmussen
[10], Cheng and Seki [12], Crank {15), Fasano and
Primjcerio [20], Hill {32}, Ozisik [50), Tanasawa and Lior
[65), Yao and Prusa (74], and references {107] - (191], with
emphasis on the reviews by Friedman (129], Fukusako and
Seki [130], Meirmanov [153], Ockendon and Hodgkins
(162], Rubinshtein (168], and Wilson er af (189]. Generi-
cally, sclutions are obtained elther by (1) linearizing the
original equations {&.g., perturbation methods) where
appropriate, and solving these linear equations, or (2)
simplifying the original equations by neglecting terms, such
as the neglection of thertnal capacity in the “quasi-static
method” described in Subsection IIL below, or (3) using the
“integral method.,” which satisfies energy conservation over
the entire body of interest, as well as the boundary condi-
tions, but is only approximately correct locally inside the
body (in Subsection 01 A. below), or {4) employing a
numerical method.

Many numerical methods have been successfully employed
in the solution of melting problems, both of the finite
difference and element types, and many well-tested
software programs exist that include solutions for that
purpose. A significant difficulty in the formulation of the
numerical methods is the fact that the liquid-solid inierface
moves and perhaps changes shape as melting progresses
(making this a “moving boundary™ or “free boundary”
problem). This requires continuous monitoring of the
interface position during the solution sequence, and
adjustment of the numerical model cell or element proper-
ties to those of the particular phase present in them at the
time-step being considered. Several formutations of the
original equations were developed to simplify their numeni-
cal solution. One of them is the popular “enthalpy method™
discussed in more detail in Subsection 1B, below.

The predictive equations provided below are all for materi-
als whose behavior can be chracterized as being pure. This
would also apply to multi-component material where
changes of the melting temperature and of the composition
during the meltng process can be ignored. General solu-
tions for cases where these can not be ignored are much
more difficult to obtain, and the readers are referred 1o the
literature; some of the key citations are provided in the
general reviews [1], [12], (28], {37], and [65]. and are listed
under the Multi-Component Systems and Crystals heading
of Subsection [V.B.

Furthermore, the sclutions presented here by closed-form
equations are only for simple geometries, since no such

solutions are available for complex geometries. Simplified
expressions, hawever, are peesented for meltng tmes also

In arbitrary geomelries.

II. PREDICTIVE EQUATIONS FOR MELTING

A. ONE-DIMENSIONAL MELTING OF PURE
MATERIALS WITHOUT DENSITY CHANGE

Examination of the simplified one-dimensional case
provides some importiant insights into the phenomena,
identifies the key parameters, and allows analyucal solu-
uons and thus qualitative predictive capability for at least
this class of problems. In this Section we deal with cases in
which the densities of both phases is the same, and in which
the melt does not flow, thus also ignoring, for simplifica-
tion, the effects of bucyancy-driven convection which
accompanies the melung process when a (emperature
gradient exists in the liquid phase. As stated in Subsection
L.D., the effects of natural convection may sometmes be
significant, and informadion about this topic can be found
under the references quoted in that Subsection. Melting of
non-opaque solids may also include internal radiative heat
transfer, which is ignored in the equations presented below.
Information about such problems is contained in references
[111, [16], [25), [31). and [74]). The solutions presented
below can be found in many books and reviews thas deal
with metting and freezing (cf. refs. [1], [4], (15], [32], (46],
{74]. [130], {153], and [168] and in texibgoks dealing with
heat conduction (cf. (50], and (52]).

1. Solutions for Materials that are Initially at the
Melting Temperature

If the solid to be melied is initiaily at the melting tempera-
ture throughout its extent, as shown in Fig. 9-2, heat
wansfer occurs in the liguid phase only. This somewhat
simplifies the solution and is presented first.

Consider a solid of infinite extentAo the right (x > 0} of the
infinite surface at x = 0 {i.e., semi-infinile), described in

Fig. 9-2, initially at the fusion temperature 7. For time ¢ > 0
the temperature of the surface (at x = 0) is raised to Tp > Ty
and the solid consequently starts to melt there. In this case
the temperature in the solid remains constan(, 7, = T, so the
temperature distribution needs to be calculated only in the
liquid phase. It is assumed that the liquid formed by meliting
remains motionless and in place, with the initial condition

T(x0)=7;inx>0ats=0, Eq. (9-2)
the boundary condition is
' T,(0.1) = Tq for 1> 0, Eq. (9-3)

and the liquid-solid interfacial temperature and heat flux
continuily conditions
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r
T Liquid 3 Solid EXAMPLE
d The temperature of the vertical surface of a large
; ; ii:':;:a““ volwme of solid paraffin wax used for heat storage,
To ' initially at the fusion temperature, T; = Ty =28"C, is
T,(x9 3/ suddealy raised 10 58°C. Any motion in the melt may
-5 be neglected. How long would it take for the paraffin to
solidify to a depth of 0.1 m? Given properties: o=
(LOMNIOT m¥s, ps = pe = 814 kg/m?, b,y =241 kl/kg, ¢,
_ T.=T=T, =2.14 kI/kg'C. To find the required time we use Eq.
T, {9-9), in which the value of X’ needs to be determined.
] A’ is calculated from Eq. (3-7), which requires the
: knowledge of Ns,,,. From Eq. (9-8)
(214K /kg°C)(58°C -28°C) _ 0.266
0 X () X Ster 241.2 kI / kg ST
Figure 9-2. Melting of a semi-infinite liquid initially ai ] L L.
the fusion temperature. Heat conduction takes place Thc.soluuon of Eq (9-7) as a function of Ng,4is given
consequently in the liquid phase only. in Fig. 9-3, yielding A =~ 0.4. Using Eq. (9-9). the time
of interest is calculated by
L[X(0)] =T, for e >0, Ee. 09 | [x@] (0.1m)? _ s
(= e a0 el o0 mE =(1.43)i0°s =39.8h.
_[&} I G . : (-)[(-) mSJ
ox i) PR TR B 09
1.2
The analytical soiution of this problem yields the tempeca-
ture distribution in the liquid as 1.0
[ x ] 0.5-
erf| A
2ot 0.6 -
?}(x,r):?})—(?a—?})—, for t>0, Eq.(9-6)
. e'ﬂ J
0.4
where erf stands for the error function (described and 0.2
tabulated in mathematical handbooks), and A* is the '
solution of the equation 0.0 — . I r ! —_—
0 ! 3 4 5

el o _ Ny
re crf(k):ﬁ, Eq. (9-7)
with Ny, being the Srefan Number, here defined for the
liquid as
«(%-7)

NS::, = :

hs{ Eq (9'8)

Equation (9-7) can be solved to find the value of A" for the
magnitude of Ng,,, which is calculated for the problem at
hand by using Eq. (9-8). The solution of Eq. (9-7), yielding
the values of X" as a function of Ns,,. for 0 € Ng,, <5, is
given in Fig. 9-3.

The interface position {which is also the melting front
progress) is defined by

X(r) =20 (e e)' 2. Eq. (9-9)

2
NSlc s
Figure 9-3. The Root X of Eq. (9-7)

2. Solutions for Materials that are Initially not at the
Melting Temperature

a. Slab geometry

If, iniially. the solid to be melted is below the melting
temperature, conducuve heat transfer takes place in both
phases, Consider a semi-infinite solid iniually at a tempera-
ture 7; lower than the melting temperatwre 7, (Fig. 3-4). At
time f = 0 at the solid surface temperature at x = 01is
suddenly raised (0 a temperature Ty > T and maintained at
that temperature for ¢ > 0. Consequently, the solid starts o
melt at x = 0, and the melting interface (separating in Fig.
9-4 the liquid to its left from the solid on its right} focated at
the position x = X{r) moves gradually to the right {in the
posilive x direction),
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T Liquid Solid ax{r) _ Ao/2mi2, Eq. (9-14)
dr
T

1 Phase-change H i
3 interface 38 X —3 oo
0 X x

Figure 9-4. Melting of a semi-infinite solid initially ot a below-
melting temperature. Heat conduction takes place in both
phases.

The analytical solution of this problem yields the tempera-
ture distributions in the solid and liquid phases, respec-

tively, as
erfc| —=
2ot

ne0 =T -1 o e

Eq.(9-10)

and

erf[—x ]

2o Eq. (9-11)
erfA

where erfc is the complementary error function, X is a

constant, obtained from the sclution of the equation

e"“ﬁ_ﬁ\{a—j T~5 ) _ s
effhA kYo, | -7, erfc(l a,/as) Ns:ql

Eq. (9-12)

T(x0) =Ty~ (% -T;)

where Ng,,, is the Stefan number defined by Eq. {9-8).

Solutions of Eq. {$-12) are available for some specific cases
in several of the references {cf. {1], [50], and ¢an, in
general, be obtained relatively easily by a variety of
commonly-used software packages used for the solution of
nonlinear algebraic equations.

The transient position of the melting interface is

X(r):ﬂ{afr]m, Eq. (9-13)

where N is the solution of Eq. (9-12), and thus the expres-
sion for the rate of melting, i.e. the velocity of the mation of
the solid-liquid interface, is

b. Cylinder

Very few exact solutions exist for melting of bodies that are
shaped differently than slabs. This is an available exact
solution for the somewhat practical problem of the melting
of an axially-symmetric cylinder due to z line heat source in
the center (Fig. 9-5), say an ¢lectric wire or heat-carrying
pipe inside an insulator). It should be noted that nartural
convecton of melt was found to have an important role in
such problems (cf. Yao and Prusa {74]}, and the solution
shown can only be used for rough evaluauon. Other phase-
change problems in non-planar geometries are solved by
approximate and numerical methods {Alexiades and
Solomon (1), Cheung and Epstein [13], Yao and Prusa [74],

_, Phase-change
nterface

Line heal
source q°

Figure 9-5. Owtward Melting of an Initially Solid Cylinder at
Temperature T, < T, Having a Line Heat Source of Intensity ¢
(Wim) Along its Axis

Caldwelt and Chiu [115], Gupta and Kurnar [134], Kemn
and Wells [143), Kim and Ro [145], Lazaridis (146}, Li
{149], Meyer [156-158]. Rabin and Korin [164], Raw and
Schneider [167], and Shamsundar and Sparrow [173]).

For an infinite cylinder having constant properties, initially
solid at Ty < Ty, with a line heat source of intensity

q' (W/m) at r=0, the initial conditions are

R(0)=0. T(r.0)=T, < T}. Eq. (9-15)
and the far-field boundary condition is
lim 7(ra}=7;.
F— oo Eq (9'16)

The heat oansfer energy balance at the line heat source is
expressed by

lim l:_znrkt E)’F+rr)} =g >0Q.
r

r—0

Eq. (9-17)
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The analytical solution of this problem (by similarity) gives
the position of the outward-moving melt front as

Eq. (9-18)

and the lemperature diswributions in the liquid and solid
phases as,

r 2
= 2 gl - |- g2
?}(r‘r)_T‘F+4ru'c{ [Et[ 4(151‘} EI( A )] Eq. (9-19)

inO<r<R(t) fort>0,

R(e).= 20" )%,

Ei(-r? 1 4a,1)

ﬂ(r-f)=To+(Tf—To)m

Eq. (9-20)
in R(2)Sr for1>0,
respectively, where Ei is a function defined by
Ei(x)sJ‘e ds, x>0, Eq. (9-21)
5

X

and where A” is the rooc of the transcendental equation

=L 20{;!(:,

_g.’_e-lﬂz + k"(T’(_TO)
47 Bi(-2" 2o,/ at,) Eq. (9-22)

=2 2ah,,p.

Solutions of Eq. (9-22) can, in general, be obtained rela-
tively easily by a variety of commonly-used software
packages for the solution of nondinear algebraic equations.

B. ONE-DIMENSIONAL MELTING WITH
DENSITY CHANGE

For most materials the density of the liquid and solid phases
is somewhat different, usually by up to about 10% and in
some cases up t¢ 30%. Usually the density of the liquid
phase is smaller than thai of the solid one, causing volume
expansion upon melting and shrinkage upon freezing. Solid
metals and plastic materials that are confined would
increase their volume during melting and may thus burst
their enclosure. Water is one of the materials in which the
density of the ligquid phase is higher than that of 1he solid
one, and thus the volume of the water is smaller than that of
the ice from which it was formed by melung. If the densi-
ties of the liguid and solid phases differ, motion of the
phase-change interface is not only due to the phase change
process, but also due to the associated volume {density)
change.

A reasonably good analytical solution for small (~ £10%)
solid-liquid density differences is available (Alexiades and
Solomon [ 1]} for the semi-infinite slab at x 2 0, initally
solid at T; < T}, melted by imposing a constant temperature
Tp > Ty at the surface x = 0. It is assumed that p; < pg, ¢4, €5,
k¢, ks, by, and Ty are constants and positive. The melt front
X(u) starts at X(0)-=~0 and advances (o the right (Fig. 3-4).
Buoyancy-driven convection is ignored, but the liquid
volume expansion upor meltng is considered, in that it
pushes the entire solid body also rightward without friction,
at uniform speed u(t) without motion in the liquid itself.
The temperature distributions are, in the liquid and solid
phases

X
2 jot

e

Eq. (9-23)

erf

T(x1)=T -(T; -

mo<x <X fort>0,

X
—_ I —_ Kll{l
21/(1,.: (1-) } Eq.

erfc[
T(x0)=Ty+(T, - 1)

erfe(uxA™)
{9-24}
in X()£x for 0.
The location of the meliing front is
X(e) = 20"(ec 1), Eq. {9-25)

and the speed of the solid body motion due to the expansion

is
w(t)={1-pAJor, /1. Eq. (9-26)
In Egs. (9-23) - (9-26) X"*" is the root of the equation
N
— - j:? = wf; .
(uKkﬂr)e(ukJ\ } cl’fC(].l.Kl”'}
Eq. (9-27)

which can, for the specific problem parameters, be solved
numerically or by using one of the many sofiware packages
for solving nonlinear algebraic equations. The remaining
parameters are defined as

ch(rﬁ_T/) Ecs[Tf”Tl)
Siey h“ Sie, h“
k= =l Eq. (9-28)
&, £,

Because of the approximate nature of this analytical
solution 1t is expected that Eq. (9-25) slightly overestimates
the position of the melt froat. If p, > p,. melung will cause
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the volume of formed Liquid 10 become smaller than the
volume formerly occupied by the solid, and may thus move
the melting solid leftward. in a direction opposite to that of
the melting interface. and the solution represented by Fgs.
(9-15) - (9-20) would not be valid. Approximate, but less
accurate solutions for this and other cases are described by
Aldexiades and Solomon [1} and Prusa and Yao {54}, and
additional resuits are given by Shamsundar and Sparrow [59].

C. THE QUASI-STATIC APPROXIMATION

To obtain rough estimates of meltng processes quickly, in
cases where heat transfer takes place in only one phase, it is
assumed that effects of sensible heat are negligible relative
10 those of latent heat (N, — 0). This is a significant
simplification, since the energy equation then becomes
independent of time, and solutions to the steady-state heat
conduciion problem are much easier (o obtain. At the same
time, the transient phase-change interface condiuon [such as
Eq. (9-5)] is retained, allowing the estimation of the
rransient interface posiuon and velocity. This is hence a
guasi-static approximation, and its use is shown below. The
simplification allows solution of melting problems in more
complicated geometries. Serne solutions for the ¢ylindrical
geomelry are presented below. More details can be found 1n
refs. (1}, (151 [32], (117], £13C], and (177].

[t is important to emphasize that these are just approxima-
tions, without full information on the effect of specific
problem conditions on the magnitude of the error incurred
when using them. In fact, in some cases, especially with a
convective boundary condition, they may produce very
wrong resulis. It is thus necessary to examine the physical
viability of the results, such as overall energy balances,
when using these approximations.

It is assumed here that the problems are one-dimensional, and
that the matenial is initially at the freezing temperature 77,

1. Examples of the Quasi-Static Approximation for
Melting of a Slab

Given a seri-infinite solid (Fig. 9-2), on which a rime-

dependen: temperature Tp(t) > Ty is imposed at x =0, the

above-described quasi-static approximation yields the

solution for the positon of the phase-change front and of

the temperature distibution in the liquid, respectively, as

112

k
X(1) = 2;:‘1_(_,“?6{!)_?} ]d! fortz20, Eq.(9-29)
£
0

T(x0) = To(0) - [Tp{)=T; ] == Eq.(9-30)

X{1)
nO0£xsX({yfortz0.

The heat flux needed for meliing, g{x, ¢), can easily be
determined from the temperature disuibution in the liguid
(Eq. (9-23)).

This approximate solution is equal to the exact one when
N, — 0, and it otherwise overestimates the values of both
X(£) and T{x, £). While the errors depend on the specific
problem, they are confined to about 10% in the
above-described case {Alexiades and Solomon [1}.)

For the same melting problem but with the boundary
condition of an imposed time-dependent heat fiux g4(¢),

d7,
—k [ - ]o,, =qo(r) for 1>0, Eq. (9-31)
the quasi-static approximate solution is
X{r) = —-;J‘qo(r)dr fors>Q, Eq. (9-32)
0
Eg. {8-33)

T(x.e)=T,+ p {pqho r—x]
t

in0<£x £X) for1>0.

For the same case if the boundary condition is a convec-
tive heat flux from an ambient fluid at the ransient
temperature 7,(¢), characterized by a heat tansfer
coefficient h,

d7, -
—-k ( . ]0.{ = h[Ta(I) - Te(O.r)] forr20.  Egq. (9-34)

the quasi-static approximate solution is

12

x(;):-%— h-_—f +2—J.[T (- T,]dr Eq. (9-35)
Jort 20,
-[X(r) x}
T,(x.1) = Ty (e) +[ T, (2) ]W Eq. (9-36)

in0<x < X(t)fore>Q,

2. Examples of the Quasi-Static Approximation for
Melting of a Cylinder

It 15 assumed in these examples that the ¢ylinders are very

long and that the problems are axisymmetric, Just as in the

Cartesian coordinate case, the energy equation is recuced

by the approximation 10 its steady~state form.

Consider the outward-directed melting of a hollow
cylinder with internal radius r; and outer radius r, (Fig. 9-6)
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due to a temperature imposed at the internal radius r;, i.e.

T(r)=To(r)>T; fort>0, Eq. (9-37)
The solution is
In{r/ R(1)]
T(r)=1; +[76(f]‘Tf]1n[¢;R(,)} Eq. (9-38)

inr £r Rt} fore>0,

and the transient position of the phase front, R(r), can be
calculated from the ranscendental-integral equation

!
Rt 4k
2R InL = R0 -5+ —(JA[T;)(E}—T[]dL Eq. (9-39)
i Phy
0

If the meldng for the same case occurs due to the imposi-
tion of a heat flux gy atry,

—k‘f[dd_?] =qq{t}>0 fort>0. Eq. (9-40)
.t
the solution is
n(:,:):rf_Mln; Eq. (9-41)
k, R(z)
inrsrERifore>0,
, 172
R()=| + 2 g, (1)de fort>0. Eq.(9-42)
phs{

If the melting for the same case occurs due to the imposi-
tion of a convective heat fiux from a fluid af the transient
temperature T, (), with a heat transfer coefficient h, at
n

_k{ET_fJ = B[7,() = T(r.1)] >0 for (>0 Eq.(9-43)

".
The sotution is

In[r/ R(5)]
rd R(O)} =k, 1 hr

Tf(-"'f)=?} +[T"{!)_T'r]ln[ Eq. (9-44)

innErsRMaie>0,

with R(r) calculated from the transcendental-integral
equaton

2R(1)* lnﬁ(_f—) =

)
2k, 2 21, 4%
[ —E_r,} [R(.r) - ]+I)-h—“—'[[1"q(r)-]'} ]d:, Eq. (9-45)
0
The solutions for inward melting of a cylinder, where
heating is applied at the outer radius r,, are the same as the
above-described ones for the outward-melting cylinder, if
the replacements r; — r,, go — ~qg. and b — - h are made. If
such a cylinder is not hollow then ry = 0 is used.

D. ESTIMATION OF MELTING TIME

There are a number of approximate formulas for estimating
the freezing and melting times of different materials having
a variety of shapes. A brief introduction wili be given here;
other formulas, proposed by Alexiades and Solomaon, [i],
all applicable equally well to both freezing and melting
times, can be found in Subsection [1.D. of “Freezing” 507.8.

1. Melting Time of Foodstuff

The American Society of Heating, Refrigerating, and Air-
Conditioning Engineers (ASHRAE) provides a number of
approximations for estimating the freezing and thawing
times of foods (ASHRAE. (3]). For example, if it can be
assumed that the freezing or thawing occur at a single
temperature, the time to freeze or thaw, 1, for a body that
has shape parameters $and R (described below) and
thermal conductivity &, initially at the fusion temperature 77,
and which is exchanging heat via heat transfer coefficient h
with an ambient at the constant temperature T, can be
approximated by Plank’s equation

hep (4 Rd’)
T, -1, h £ J

¢ = ‘ Eq. (9-46)

where d is the diameter of the body if it is a cylinder or a
sphere, or the thickness when it is an infinite slab, and
where the shape coefficients P and R for a number of body
forms are given in Table 9-1 below.

Table 9-1
Shape factors for Eq. (9-46) from ASHRAE {3]
Forms F R
Slab 112 1/8
Cylinder I/d 1116
Sphere 1/6 1£24

Shape ceefficients for other body forms are also available.
To use Eq. {9-46) lor melting. & and p should be the values
for the food in its thawed state,
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In fact, freezing or melting of food typically takes place
over a range of temperatures, and approximate Plank-type
formuias have been developed for various specific food-
stuffs and shapes (o represent reality more closely than Eq.
(9-46) (ASHRAE (3], Cleland er af [118], Rubiolo [170],
Tarnawski [178)], and some of the references cited under
Subsection I'V.F. “Medical Applications and Food Preserva-

tion.”

EXAMPLE

USING PLANK’S EQUATION (9-46)
FOR ESTIMATING MELTING TIME

Estimate the time needed to thaw a fish. the shape of
which can be approximated by a cylinder 0.5 m long
having a diarneter of 0.1 m. The fish is iniually at its
freezing temperature, and during the thawing process it
is surrounded by air at T, = 23°C, with the heating
performed with a convective heat transfer coefficient h
= 68 W/m?K. For the fish, Ty = -1"C, Ay = 200 ki/kg, p,
=992 kg/m?, and &, = 1.35 W/m K.

Using Table 9-1, the geometric coefficients for the
cylindrical shape of the fish are = 1/4 and R = 1/16,
while d 1s the cylinder diameter, = 0.1m. Substituting
these values into Eq. (5-46) gives

| 200000 992 1;r4(o.1)+1w5(o.1)2
I f-1-23 68 1.35

J=68665= I.9h.

2. Other Approximations for Melting Time

As stated above, the freezing chapter in the Databook,
507.8, Subsection IL.D., shows a number of easily-comput-
able approximate equations for estimating the time needed
10 freeze or melt a simple-shaped liquid velume initially at
the the freezing terperature 7.

Validating by comparison to the results of an experimen-
tally-verified two-dimensional numerical model of melting
of lake-shore water (with a mildly-sloped adiabatic lake
bottom) initially at the freezing temperature, Dilley and
Lior (t21] have shown that for a constant lreat flux g,
from the ambient to the top surface of the ice, with rela-
tively negligible heat fluxes in the water under the ice, the
relationship between the depth of melting X{r) and ume is
hnear, viz.

X(1) = 20,

Eq. (9-47)
pshsf

with an error within only a few percent for the first 40
hours.

III. SOME METHODS FOR
SIMPLIFYING SOLUTION

A. THE INTEGRAL METHOD, WITH SAMPLE
SOLUTION FOR MELTING OF A SLAB

A simple approximate technique for solving melting and
freezing problems is the hear balance integral method
(Goodman [ 132]), which was found to give good results in
many cases. The advantage of this method is that it reduces
the second-order pardal differential equations, describing
the problem to ordinary differential equations which are
much easier to solve. This is accomplished by guessing a
temperature distribution shape inside the phase-change
media, but making it sausfy the boundary conditions. These
termperature distributions are then substituted into the partial
differential energy equations in the liquid and selid. which
are then integrated over the spatial parameter(s) (here just x)
in the respective liquid and solid domains. This results in
ordinary differential equations having time () as the
independent variable. The disadvantage of the method is
clearly the uncertainty in the temperature disuibution within
the media. This technique is introduced here by applying it
to a useful case, and the reader can thus also learn o apply
it to other cases.

Revisiting the above-analyzed melting case of a semi-
infinite solid (desenbed in Fig. 9-2), the equations describ-
ing this problem are the heat conduclion equation

o (x.1) _ &, asz(f,:) Eq. (9-48)
or ax*
in0 < x< X)), for >0,
with the initial condition
T(x.t)=T, inx>0, atr=0, Eq. (9-49)
the boundary coadition
- T{0)=T, fort>0, Eq. (9-50)

and the liquid-solid imerfacial temperature and heat flux
conlnuity conditions

T[X()]=T, fore>0.

aT, dXx{t
‘kz[_f] =phy, d’( )
[x)]

Eq. (9-51)

for > 0.

ox ; Eg. {9-52)
Equation (9-48) represents heat balance (energy conserva-
ten}, and itis now integrated with respect to x over the
entire iquid-phase domain, 0 € x £X{¢). in combination
with the initial and boundary conditions (Egs. (9-49) - (9-
52}], to obtain
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identical for Ny, up to about 0.5, with the integral solution
L d 0 overestimating the value of 8 by only about 4% when Ng,,,
—_— J‘T(x. 1)dx = T, X(x) = 2.8, An even better agreement is obtained if the tempera-
o, di 0 ture distribution is estimated as a third, instead of second,
Eq. (9-53) degree polynomial.
__Phy dX(s) 0T Many integral solutions yield good results, with errors
(0,0).
k, dr  dx within a few percent. The accuracy, as mentioned above,

This equation has two unknowns, T(x, 1) and X(r). To solve
it, some temperature profile is guessed, made (o satisfy the
boundary conditions, and substituted into the equation.
Integrating the left-hand side of the equation with this
temperature distribution, and taking the derivative of the
distribution on the right side of the equation, reduces the
original nonlinear partial differential equation system
composed of Egs. (9-48)-{9-52) o one ordinary differential
equation in which the only unknown is then X(r), and the
independent variable 1s £. This equation is thus much easier
to solve, but at the same time the adequacy of the solution
depends on the quality of the chosen temperature distribu-
tion. Experience from previous successful solutions or
experimental results naturally improves the choice of this
temperature distribution,

Say that a quadratic polynomial is chosen as the tempera-
wire distribution,

T(x.0) = b +by[x = X(0)] + 555 - X()].  Eq.(9-54)

The coefficients &y, &2, and &4 of this polynomial are
calculated from the boundary conditions, and thus

h 2
by =T, b,:cs;([[—(]+2N5,q) }
4

bX+(% - T;) Eq. (9-55)

bq I D
- X

Substitution of the polynomial {Eqgs. (9-54), (9-55)] into Eq.
(9-53), results in the ordinary differential equation

(X _ 6ct,(1- [T+ Ny, 12+N, /2]

dr S+l Nge 12+ Ng, 12

Eq. (9-56)

which, using the initial condition Eq. (2-49), gives the
solution

X(1y=28(cp)", Eq. (9-57)
where
142
=i+ N, 124N, 12
§=+3 ad Stec ]
S+ 1+ Ng,, 124N, 12 Eq. (9-58)

Companison of the integrat solunon [Eq. (9-57}) with the
exact one (Eq. (9-9)] has shown that they arc nearly

depends on the closeness of the chosen temperature
distributions to the real ones. Experience from previous
successful solutions or experimental results naturally
improves this choice. Additonal information about this
method can be found in refs. [132], [50), [108], (154].

B. THE ENTHALPY METHOD

It is noteworthy that one of the biggest difficuliies in
numerical solution techaigques for such problems is the need
to track the tocaton of the phase-change interface continu-
ously during the solution process, so that the interfacial
conditions can be applied there. One popular technique that
alleviates this difficulty is the enthalpy merthod (refs. [1],
(74]. (109], (t24-125], {130}, £140], [173], and [183-184],
in which a single partial differential equation, using the
material enthalpy instead of the temperature, is used 10
represent the entire domain, including both phases and the
interface. Based on the energy equation, the one-dimen-
signal melting problem is thus described by
o _, 3k

p—=k— inx20Q, fort>0,
x

ar

where the lemperature-enthalpy relationship is expressed by

Eq. (9-59)

P e b <cT, (solid)
<
=T, for Ty <h<cT + ey (interface)
h-h .
for hz ch + b, (liquid)
¢ Eq. (9-60)

The numerical computation scheme is rather straightfor-
ward: knowing the temperature, enthalpy and thus from Eq.
{9-60) the phase of a cell at ime step j, the enthalpy at time
step (3+1) is computed from the discretized version of Eq.
(9-59), and then Eq. {9-60) is used 1o determine the tem-
perature and phase at that new time. If a computational cell
{ is in the mushy zone, the liquid fraction is simply b; / A,

Care must be exercised in the use of the enthalpy methed
when the phase change occurs over a very narrow range of
termperalures. Oscillating non-realistc solutions were
obtained in such cases, but several modifications to the
numerical formulaton were found to be reasonably success-
ful el [1), [109]. [124-125), and (183-184]).
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IV. APPLICATIONS BIBLIOGRAPHY

An extensive—yet by no means complete—bibliography
identifying papers and bocks that ireat melting in the main
areas in which it takes place. is preseated below. The
classification is by applicauon, and the internal order is
alphabetical by author.

A. CASTING, MOLDING, SINTERING

Melting is a key process-component in casiing, molding,
and production of solid shapes from powders by processes
such as sintering and combustion synthesis. The matenals
include metals, polymers, glass, ceramics, and superconduc-
tors. Flow of the molien matgrial, the course of iis solidifi-
cation (including volume changes due to phase transition,
and internal stress creation), and the evolving surface and
interior quality, are all of significant industrial impoctance.
In production of parts from powders, the conditions
necessary for bonding of the particles by melting and
resolidifcation are of importance. Such diverse processes as
glass-making, spinning and wire-making are inciuded.
Much attention has lately been focused on the manufacior-
ing of materials for superconductors.
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Processing intermetallic composites by self-propagating,
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Bose. A. Technology and comrmercial status of powder-injection
motding. JOM, vol. 47, pp. 26-30.

Chiruvella,R. V.;Jaluria, Y .; Abib, A H. 1995. Numerical simulation
of fluid flow and heat transfer in a single-screw exiruder
with different dies. Pelymer Engng Sci., vol. 35, pp.
261-273.

Dupret, F. and Dheur, L. 1992. Modeling and numerical simulation
of heat transter during the filling stage of injection mold-
ing. In Heat and Mass Transferin Macerials Processing, .
Tanasawa and N. Lior, eds., pp. 583-599. Hemisphere,
New York, N.Y.

Gau, C. and Viskanta, R. 1984. Melling and solidification of a metal
system in a rectangular cavity. mt. §. Heat Mass Transfer,
vol. 27, p. 113.

Gau, C. and Viskanla, R. 1986. Melting and solidificanon of a pure
metal on a vertical wall. J. Heat Transfer, vol. 108, p. 174,

Gelder, D. and Guy, A. C. 1975, Current problems in the glass
industry. Moving Boundary Problems in Heat Flow and
Diffusion. (3. R. Ockendeon and W.R. Hodgkins, eds.)
Qxford Univ. Press (Clarendony, London and New York.

Gupta, G 5.; Sundararajan, T.; Chakraboni. N. 1995, [nduction
smelling process part | mathematical formulation.
Ironmaking and Stectmaking vol. 22, pp. 137-147.

Hieber, C.A. 1987. Injection and Compression Molding Fundamen-
tals., A, L lsayev, ed., Marcel Delder, New York.

Lian, Sh.-Sh. and Chueh, Sh.-Ch. 1995. Making of new alloys with
plasma meliing furmace. International J. Materials & Prod-
uct Technology, vol. 10, pp. 587-595.

Lindt. 1.T. 19835, Mathematical modeling of melting of polymers in
a single-screw extruder: a critical review. Polymer Engng
Sci., vol. 25, pp. 585-588.

MNemec, L. 1994, Analysis and modeling of glass melung. Ceramics
- Silikaty vol. 38 pp. 45-58.

Noskav, A.S., Nekrasov, A.V., Zhuchkov, V.[., Zav'yalov, AL and
Rabinovich, A V. 1992, Mathematical mode! for the meli-
ing of a picce of a ferrous alloy during circulatory motion
of the liguid metal in the [adle. Melis, vol. &, pp. 425-432.

Pampuch, R.. Raczka. M. and Lis. J. 1995. Role of liguid phase in
solid combustion synihesis of TU/38iC/2. Int. ). Materials
& Product Technology vol. 10. pp. 316-324.

Peifer. W. A. 1965, Leviation melting, a survey of the state of art. J.
Mer., vol. 17, p. 487,

Pervadchuk. V.P.. Trufanova, N.M_, and Yankov, V.1. 1984, Math-
ematical mode! of the melting of polymer matenials in
extruders. Investigation of the form of the interface and of
melt velocity profiles. Fibre Chem., vol. 16, pp. 358-361.

Pervadchuk, V.P., Trufanova, N.M., and Yankov, V.[. 1984. Math-
ematical medel of the melting of polymer matedals in
extruders. Pressure distribution along (he length of the
extruder screw. Fibre Chem., vel. 16. pp. 362-365.

Pervadchuk. V.P., Trufanova, N.M.. and Yankov, V.1, 1985, Math-
ematical model and numerical analysis of heat-transfer
processes associated with the melting of polymers in
plasticating extruders. J. Engng. Phys., vol. 48, pp. 60-64,

Rauwendaal, C. 1989. Improved analytical meltng theory. Adv.
Polymer Technol., vol. 9. pp. 331-336.

Rauwendaal, C. 1991/2. Melting theory [or temperature-dependent
fluids. exaci analytical solution for power-law (luids. Adv.
Polymer Technol,, vol. 11, pp. 19-25.

Rekhson, S.M., Rekhson, M., Ducroux, J.-P., and Tarakanov, S.
1995. Heat wansfer effects in glass processing. Ceramic
Engng Sci. Proc.. vol. 16, pp. 19-37.

Roychowdhury, A.P. and Scinivasan, J. 1994, Modeling of radiation
heat transfer in foreheater units in glass melting. Waerme-
und Stoffucbertragung, vol. 30, pp. 71-75.

Sun, C. and Song, L. 1995. Three dimensional mathematical model
of a floar glass tank furnace. Glass Technotogy vol. 36, pp.
213-216.

Ungan. A. and Viskania, R. 1987. Three-dimensional numerical
modeliag of circulation and heat ransfer in a glass melting
tank: Parz 1. Mathematical formulation. Glastechnische
Berichte. vol. 60, pp. 71-78.

Viskania, R. 1994. Review of three-dimensional mathematical mod-
eling of glass melting. I. Non-Crysialline Solids, vol. 177
pt 1. pp. 347-362.

Volkov, A.E., Shalimov. A.G. and Lakionov. A. V. 1995, Method
for continucus clectroslag melting of non compact materi-
als. int, J. Materals & Product Techool., vol. 10. pp.
541544
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Whittemore, O.J. 1994, Energy usage in firing ceramics and melting
glass. Ceramic Engng Sci. Proc. vol. 15, pp. 180-185.

Zhang, Y., Stangle, G. C. 1995, Micromechanistic model of micro-
structure development during the combustion synthesis
process. J. Materials Res., vol. 10, pp. 962-980.

Zhang, Y. and Stangle, G. C. Jul 1995. Micromechanistic model of
the combined combustion synthesis-densification process.
J. Materials Res., vol. 10, pp. 1828-1845,

Zhukov, A.A., Majumdar, J., Dutta, and Manna, I. 1995. Induction
smelting process part 1 mathematical formulation. J. Ma-
terials Sci. Lett., vol. 14, pp. 828-829.

B. MULTI-COMPONENT SYSTEMS AND
CRYSTAL-GROWTH

The bibliography in this section primanly focuses on
melting of multi-component systems, but ¢rystal growth
also inciudes pure crystals. As compared with the melting
of single component systems, multi-component system
melting is accompanied by a change of composition as
discussed in Subsection [, a phenomenon of great signifi-
cance in the formation of the liquid material. The analysis
and prediction of the process are thus also made more
complex in that the species diffusion process and the effect
of the concentration on the melting point and other proper-
ties must be considered.

One of the most prominent applications is alloy-making,
and the last several decades have seen large and increasing
involverment with crystal growth, primarily for the eleciron-
ics and optical industries. Crystals are typically grown by
meiting the feedstock and lenting it solidify in the form of a
crystal. Crystals may be made of either pure or multi-
component materiafs, but even when pure crystals are made,
.much research has been done on the effect of impurities
introduced during the manufacturing process. This in effect
renders even the pure crystal to be considered as a multi-
component system. Crystal growth is accomplished by a
variety of processes, including Czochraiski, Bridgman,
Float-Zone, and thin film depesition. A more extensive list
of references on these subjects can be found in the Hand-
book chapter 507.8, “Freezing.”
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C. WELDING, SOLDERING, AND LASER,
ELECTRON-BEAM, AND ELECTRO-
DISCHARGE PROCESSING

The bibliography in this section 1s related 10 processes
associated with melting that are used for joining, cutting,
shaping and property-modification of solids. Among other
applications, laser energy is used for cutting and surface
propeny modification, a melting process followed by
solidification. [n the electro-discharge machining process.
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D. COATING, AND VAPCR AND SPRAY
DEPOSITION

The bibliography in ths section is of various coaling
processes in which a solid is meled, and the iiquid is then
deposiled on a surtace at a temperature below the [reezing
potni, oo which 1t re-solidifies 1o form a coaling. The
process can also be continued 10 build up desired shapes.
Some of the processes covered in the bibliography include
plasma and thermal spray deposition, vapor deposiuion,
dipping in a melt, and coaung by liquid films.

Apelian, D.. Paliwal. M . Smuth, R.W. and Schulling, W.F. 1983
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freezing 10 small paruicles. Surf. Sci.. vol, 341, pp.10-30.
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E. ABLATION AND SUBLIMATION

Melung sometimes occurs with ablanon. a process in which
the molien. or otherwise-separated material. is conuinuousty
removed (rom the solid substrate by aerodynamic shear
forces. Ablation is ol imponance in applications such as
atmospheric re-entry space vehicles, angd in ceriain manu-
facturing process. When heated, some solid materials
change phase direcily into vapor. without going through the
liquid phase. This process is called sublimation. and is
mathematically treated in 2 manner sinular to that of
melting of solids with continuous removal ol the melt,
replacing the Iatent heat of meliing with that of sublimation.
A biblrography of publications dealing with ablauon and
sublimauon s given beiow,

Arar. N, and Karashima, K.-I. 1979. Transicat thermal response of
ablating bodies. AlAA )., vol. 17, pp. 191-195,

Biot, M.A. and Agrawal, H.C. 1964. Variational analysis of ablation
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Chung. B. T. F., Chang, T. Y.. Hsia0, I. 5., and Chang, C. T. 1983.
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pp. 301.

Park, C.. Lundell. ). H., Green. M 1., Winovich. W, and Covington.
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F. MEDICAL APPLICATIONS AND FOOD
PRESERVATION

The bebliography in this section covers biological applica-
tions of meltnyg, such as those used 11 medicine and i food
proservandin The anedeal applicatons melode the Huasanyg

process following organ preservation. preservation of tssue
cultures. cryosurgery. and freezing damage (0 live tissue.
such as in frost-bite.

Food preservation by [reezing, an ancient praclice. st
auracts much R&D attention, tn attempts 1o shorten
freczing times, reduce energy consumption, prolong the lile
of foods, and minimize damage to their nuintionat vaiue.
taste. odor and appearance. The thawing phase, which takes
place when the food ts to be used. is important both in the
time it lakes. and in the wav t affects foed quality.
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G. NUCLEAR POWER SAFETY

Melting plays a role in several areas related 0 nuclear
power plant safety and operation. The primary one 15 the
risk of the reactor core melidown upon failure of the
cooling system to himit the temperature nse. such as the
accident at the Three Mile Island reactor. Melting, and the
subsequent solidification due 10 cooling, have been the
subject of numerous publications, some of which are listed
in the bibliography in thus section. Further, interaction of
the molten metal with coolant will aiso cause vapor
explosions and chemical reactions that may generate laree
quantiies of gas, some of which {such as hydrogen) are
explosive.

Liquid-metal cooled reactors use coolants, such as potas-
sium, sodium, and their alloys, which are solid at room
temperature or somewhat above it. A number of publica-
tions on this topic are available. (MISSING?) and thus need
to be melted for operation. Another nuclear application
employing melting is vitrification of nuclear wasie for
longer term storage.

Arakeri, V.H., Cauon, [. and Kastenberg, W.E. 1978. An expenmen-
al siudy of the molien metal/waler thermal inleraction
under free and forced conditions. Nucl. S¢i. Engng. vol. §6.
pp. 153-166.

Chen, W.C.. [shii. ]. and Groimes, M.A. [976. Simple heat conduc-
tion model with phase change for reactor fue! pin. Mucl.
Sci. Engng. vol. 60, pp. 452-460.

Chun, M H.. Gasser R.D , Kazimi, M.5., Ginsberg. T.. and Jones, Jr_.
0. C. Oct. 5-8, 1976. Proc. Intl. Mig. On Fast Reactor
Saferv and Related Physics, Vol [V, pp. 1808-1818 Conl.
No. 761001, Chicago. [llinois.

Duijvestijn, G.. Reichlin, K.; Rosel, R. 1995. Computalion of flows
in experimental simulations of reacior core melling. Com-
puters and Siructures, vol. 56, pp. 239-247

Eck. G. and Werle, H. 1984. Expenmental studies of pengtration of
a hot liquid pool into a melting miscible substrate. Nucl.
Technol., vol. 64, pp. 275.

Epstein, M. 1973. Heat conduction in the UO,-cladding composite
body with simultaneous solidificauon and melung, Nucl.
Sci. Engng.. vol. 51, pp. 84-87.

Epstein, M.. 1994, Nawral convecuon model of molien pool penetra-
ucn imo a melting miscible substrate. Nuclear Engng
Design, vol. 152, pp. 319-330.

Gasser, R. D and Kazimi, M. §. 1977, Swdy of post-accidem moken
fuel downward stireaming through the axial shield struc-
ture in the liquid-metal fast breeder reactor Nuclear Tech-
nofogy. vol. 33, p. 248,

Golingscu, R. P.: Kazmim, M. §. 1994, Probabilistic anaiysis of
divertor plate hifeame in Tokamak reactors. Fusion Technol.,
vol. 26 p1 2, pp. 512-316

Komen, E.M.) and Koning. H. 1994. Analysis of loss-of-coalani and
Inss-of-Aow accidents in the ficst wall cooling svstem of
NETATER. | Fusion Encrgy, vol 13, pp 9-2¢

Ladirac, C.; Boen. R.; Jouan. A.. Moncouvoux. JP 1995 French
nuclear waste vunfication: stale of the art and fulure
developments. Ceramic Engng Science Prac., voi. 16. pp
-4

Lahoud, A. and Boley. B.A. 1975 Some cons:deranons on the
melting of reactor fuel plaes and reds. Nucl. Engng snd
Design, vol. 32. pp. 1-19.

Lyons. M.F . Nelson, R.C.. Pashos. T J. and Weidenbaum. B. 1963,
U O fuel rod operation with gross central meliing. Trans.
Am. Nucl. Soc., vol. 6. pp. 133-156.

Munz. R J.; Chen. G.Q. 1995 Virification of simulated medium-and
high-leve! Canadian nuclear waste in a conlinuous trans-
lerred arc plasma melier. §. nst Muclear Matenals Man-
agement, vol 24, pp. 52-38.

Olander. D.R. 1994 Maerials chemistry and transport modeling foc
severe acawdeat analyses in hghi-waler reactors |
External cladding oxidation. Nuclear Engng Design. vot
148, pp. 253-27

Olander. D.R 1994 Matenais chemastry and transpont medeling lor
severe accident analyses in hght-water reactors. 11 Gap
processes and heat celease. Nuciear Engng Design. vol.
148, pp 273.292.

Pashos, T J and Lyons, M.F. 1962, LO, performance with 3 molten
cenural core. Trans. Am. Nucl. Soc., vol. 3, pp. 462.

Tong, L.S. 1968, Core cooling in a hypothencal loss of coolani
accident: estimatc of heal transfer in core melidown. Nuct
Engng Design.. voi. &, pp. 369.

Traugee. D.B.; Rubwn. A M ; Beckjord, E. 1994, Three Mile [slund -
new findings 13 years after the sccident. Nuclear Safety,
vol 35 pp. 236-259.

Tromm, Walter. Alsmever, Hans, Transient experiments with ther-
mile melts for a core cucher concept based on water
addwion from below. Nuclear Technol., vol. 111, 1995, pp
J41-350.

von der Hardt, P.; Jones, A, V_; Lecomte, C.: Taucgrain. A, 1994
MNuclear safety research ihe Phebus FP severe accident
experimenial program. MNuclear Safety. vol 35, pp. 187
205

Wolf, J.R.; Akers, D.W_; Neimark, L.A. 1994. Relocanon of molien
material to the TMI-2 lower head. Nuclear Safety. vol. 33,
pp. 259279

H. THERMAL ENERGY STORAGE

Siorage of heat in a material by melung, and subsequent
release of the heat by re-freezing the malerial allows a Lurge
amount of heat 10 be stored 1n a relatively-small mass of
malerial and al a theoretically constanl temperature (that of
fusion). An issuc that has received much attention is the
way (0 exchange with such a phase-change storage material
at a high rate and low investment in heat transfer equip-
ment. A very broad range of materials has been considered
and used, including water, inorganic salts, hydrocarbans.
polymers. and metals.
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terization of alkanes and paraffin wixes for applicadon as
phase change energy storage medium. Num, Heat Transfer
A, vol, 25, pp. 191-208.

Bathelt, A. G.. Viskanta, R.. and Letdenfrost, W. 1979 Latent heat-
of-fusion energy swrage: Experiments on heat transfer
from cylinders during melung. J. Heat Transfer. vol. 101,
pp. 453-458.

Betzel, T. and Beer. H. 1988. Solidification and melting heat iransfer
to an untfixed phase change material (PCM) encapsulated
ina honzontal concentric annulus. Wirme Stoffubertragung,
vol, 22, pp. 335-344,

Charach, C..Conti. M. Bellecci, C.. Thermodynamicsof phase-change
storage in senes with a heatengine. J. Soiar Energy Engng.
vol. 117, pp. 336-41.

Choi, J.-C.; Kim, 5.-D. 1995, Heat trapsier 1n a latent heat-siorage
system using MgCU/2-6H#20 at the melung point. En-
ergy, vol. 20. pp. 13-25.
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Press, Cambridge, MA.
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Hiwte, D.C. and Smith, T R. 1994. Contral strategies and energy
consumption for ice slorage systems using heat recovery
and cold air distribution. ASHRAE Trans. vol. 100, pp.
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Prasad. A. and Singh. 5.P. 1994, Conduction-controlled phase-
change energy storage with radiative heat addwion. .
Energy Resources Technol., vol. 116 pp. 218-223.
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