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Introduction eter which, if large enougtas is the case for thin enough rings or

{ates), permits the construction of an asymptotic series solution.

Quenching is one of t_he most crmc_al operations in the he n interesting feature here is that the inverse problem is reduced
treatment of many metallic parts, affecting internal structure, bo Q n infinite sequence of direct initial value problems, analogous

mechanical properties and the shape of the product. In the cas??(f)? he analytical solution of Burggré®], although obtained by a

steel alloys, one desirable aim is to be able to convert austenlted erent approach. For smaller values of the Fourier number, a

martensite, while limiting the formation of pearlite and bainite : : i
through appropriately rapid cooling of the quenched part. T%émencal approach is necessary and this is done through a novel

: ; . ; application of the function specification method using future time
cooling rate is determined by ensuring that the temperature duri ps, coupled with the Keller Box method for a nonlinear heat
the (;oollnghprrc])cesslgever extceedfs any;/_vhe;e In :jhe -pa& thehteéa%ation, a related linear sensitivity equation and a further varia-
perature which would cause transiormation 1o undesirable phagg ;) equation. Good agreement with the heat transfer coefficient
at that location. The transformation temperatures can be foun t would be required to achieve a desired cooling curve is ob-
applicable cooling-transformation phase change diagrams for

! X i . o fhed in the thin plate case, and the numerical scheme developed
a_llloy in question. Practically, th's. quds to _the prescription Of_ lows an estimate of the validity of the asymptotic method as the
time-dependent temperature profile in the interior of the consi

o : ) X > plate thickness is increased.
ered geometry, an objective being to find the magnitude and timerq equivalent problem for the ring is found, however, to have

dependence of the surface cooling convective heat transfer cogfysiderably more possibilities: amongst these is the fact that un-
ficient which would bring this curve about; this amounts to thgq,a| cooling at its inner and outer surface can lead to a change in
formulation of an inverse heat conduction probl@MCP). Inthe  qition of the maximum temperature point, and thence to a more
last decade or so, gas quenching has been gradually and inCrgasicate mathematical formulation for the inverse problem. Con-

ingly developed, for environmental, quality and economical re@uquently, this problem is deferred to later work. For the case of a
sons to replace the trad_ltlonal quenc_hlng in Ilqwds. This Procedsin ring, however, asymptotic analytic progress is again possible
imposes new computational and fluid dynamics challenges wighg under symmetrical heating conditions, the heat transfer coef-

which Faxelaboratoriet at the Royal Institute of Technologicient required is found to differ from that for a thin plate only at
(KTH) has been involved for the past several ydafs[1]). This Fo3).

paper presents an approach to the solution of some basic inverse .
heat conduction problems related to the process. Reference cik@rmulation

tions to past work related to this subject are given below in the cqnsider the cooling of a steel plate of thickness itially at

body of the paper. . ) __ auniform temperatur@, . At time t>0, the outer surfaces of the
Quenched part geometries of a plate and of a ring, as in Fig8ate atx=-+L are subjected to cooling by means of a time-

1(a) and 1b) respectively, with temperature-dependent thermglenendent heat transfer coefficiér{t). Throughout the process,

conductivity, are considered. Analytical and numerical approach@s gmbient temperatur@, is assumed to be constant. One-
are adopted for the plate. Nondimensionalisation of the governiggnensjonal heat conduction in the plate is then given by
equations gives the Fourier numb@o) as a controlling param-

T aT 4 KT aT 1
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Fig. 2 CCT diagram for SAE 52100 steel

centration can be maximized simply by ensuring that the hottest
point of the plate follows a cooling curve lying below the pearlite
and bainite ‘noses,’” which can be seen in Fig. 2. In quenching

flow of impinging practice, conventionally using liquid quenchants, the cooling rate
is constant and determined by the highest temperature profile
gas quenchant slope dictated by the transformation diagram. Since it is more

difficult to attain high cooling rates when using gas as quenchant,
the cooling rate can be reduced during the process to achieve just
the needed one. Furthermore, it is evident that this strategy would
(b) offer a better way of controlling the final composition than, for
instance, cooling at a constant rate, as is given in continuous cool-
ing transformation(CCT) diagrams such as Fig. 2. We proceed
therefore by requesting

thermal conductivityk are assumed to be functions of tempera- T=Ty(1) atx=0, ®)
ture. Assuming symmetry abow=0, we have the boundary \yhere, for G<t<t;, wheret; denotes the finishing time for

Fig. 1 Schematic of the problem for:  (a) a plate; (b) a ring.

conditions quenching, the profil@,(t) lies below the curves for phase trans-
oT formation to bainite and pearlite; for the case of a plate, it is at
X =0 atx=0, (2) once clear that, in the absence of heat evolved during phase trans-
formation, the maximum temperature will always be found at
aT x=0.
k Frine h(T-T,) atx=L, ) Nondimensionalising with
and the initial condition X= X = t 9= T
L’ te’ T’
T=T, att=0. (4)

. . . we have, for 6=X=<1 and Os7=1,
In direct problems,h(t) and T.,, are prescribed, enabling the

straightforward determination of the temperature at any location - ~ d

within the plate. However, of greater interest here is the inverse Cp(0) or (;X(k( 0) ﬂ)- (6)
problem, where a certain temperature profileneaning a -

temperature-time curyes desired at a location within the plate,wherek andc, denote, respectively, the dimensionless thermal
and an appropriata(t) must be found to satisfy this constraint.conductivity and specific heat capacity, given by

Typically, inverse heat conduction problems of this type have K c
been motivated by the need to determine surface heat transfer k= —, '(;p:_p_
coefficients from experimental measurements taken in the interior (k] [Cp]

of a given body; consequently, the associated literature contajggre [k] and[c,] denote characteristic values for these quantities,
numerous contributions which deal with treating the effects @ind are also used in the definition of the Fourier number, Fo,
experimental uncertaintisee[3] for a comprehensive recent re-through

view). Here, on the other hand, the focus is on being able to cool

the plate in such a way as to convert austenite to martensite, [K]ts

whilst limiting the formation of bainite and pearlite, all that at Fo= p[cp]LZ'
cooling rates which vary with the progress of the phase transfqr- . . . -

mation in a way that tends to minimize distortion of the part an(gquatlon(@ is then subject to the boundary conditions

gas fan power consumption. At the simplest level, this involves EY

coupling information derived from a metal phase transformation a_X:O' 0=206,(7) at X=0, @
TTT-diagram(time-temperature-transformatipwith the solution

to the heat equation. For example, it is clear that martensite camhere 6,,=T,,/T;, and the initial condition
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+gv=1 atr=0. (8) 1 Tp(0) | - ) o

As usual in the inverse formulation, E@) is useda posteriorito 01(X,7)= E k(6,) Ou()X (19)
deter_mine t_he requireq heat t_ran_sfer coefficient, which in terms of w
the dimensionless variables is given by "c‘f)( 6,) | . (0, K'(6,) ny

(K[ a6 020X, 1) = —E = | Byt 2y E 2 B | X

h=—-=|k0)— / (6-6.) ©) 24K%(6,,) Co(Ow)  k(6y)

L IX et

wheref,,=T.,/T;. where dots denote differentiation with respectrtd’hese are es-
sentially the solutions obtained by Burggt&, although for this

Asymptotic Analysis for Fo> 1: Plates paper we also evaluate using the Maple symbolic manipula-

. ) tion packagé4]. The subsequent expression is extremely lengthy,
_ For sufficiently large values of the Fourier number, correspondyq \we do not present it here. Using these, we can arrive at the
ing to thin plates, an asymptotic series solution is pOSSIb|§ppropriate asymptotic expansion for the heat transfer coefficient,

Writing which turns out to be of the form
O(X,7)= 0p(X,7)+Fo 16,(X,7)+Fo 260,(X,7)+O(Fo ) [k]Fo
— —1 —2 —3
Eq. (6), at O(F), is reduced to = thotFohyFFo “hy+O(Fo =)}
J % a6y 0 10 where
7x | k(0o) = | = (10) _ :
o ColOw)ba
subject to i p— (21)
(7—00:0 0o=0,(7) at X=0 (11) -%2(6,) . 6y K'(6,)
ax T o w h1:~P—W 0,,+ 2:’_0‘”,~ w
— ¢
At O(Fo™ 1), we have Ek(6w) (O 0-) o0 K(6,)
260 20~ 2[R0y 222 4+ g (6,) 220 12 3 |w 22
Cp( o)g—ﬁ ( o)ﬁ 1 (o)ﬁ (12) _(HW——Ow) O (22)
subject to The expression foh, is also lengthy and not presented here.
36, Issues that are of some interest here are whether the solution
X =0, 6,=0 atX=0 (13) generated in this way is stable and whether the asymptotic series
is convergent. As for stability, it is well-knowfe.g.,[8]) that the
whilst at O(Fo ™ 2), method is unstable, since arbitrarily small change8,jrcan lead
to large errors irh. From a practical point of view, as our com-
T.(6, )‘9_‘91+ 0.5 (6 )(9_90: i(~k(0 )‘7_‘92+ 0 "R'(a )‘9_01 parison of analytical and numerical results will show, the impact
PO g TR0 g T X xR 0N X of this on the quality of the method or solution decreases as Fo

increases. As for convergence, some guidelines can be obtained

~ 1 d0q f ; ; ; .
10K (04 = 67" (o) | 222 or the linear IHCP using the Stefan solution f@rwhich can be
oK' (o) 5 1K' 0)] 8X) written as
(14) - di 0 X2i
_j w
subject to 9(X,T)=;) Fo IW(T)(ZT)!' (23)

‘9_02 =0. 6,=0 atX=0 (15) This suggests that the solution should be convergent for all values
axX 72 of Fo, provided thatd,, is infinitely differentiable. For the non-

linear IHCP, however, there cannot be any corresponding state-
ment, and the issue can only be resolved, in general numerically,
on a case-by-case basis for differeq.

At O(Fo 9),

~ a6, _, 96, _, 1., 46y
Cp(bo) O +61C,(6o) Oy +1 02C(60) + 5 61C,(6o) 9

3
_ 7 K(6o) ‘7_03+|~(,(90) 9016) ET(”(QO) I 91)) Asymptotic Analysis for Fo> 1: Rings
X X X 6 X We consider an analogous formulation for a quenched ring,
P ~ 1. 96, assumed to be one-dimensioitab axial variation. Consider the
+ X {k’(eo) 03+ K"(6p) 6165+ gk”’(ﬂo)ﬂﬂa—x) cooling of a steel ring of thicknessL?2 initially at a uniform
temperatureT; . At time t>0, the outer and the inner surfaces of
(16) the ring, taken to be at=r.*L respectively, are subjected to
subject to cooling characterized by a time-dependent heat transfer coeffi-
cient h(t). One-dimensional heat conduction in the ring is then
905 given by
—— =0, 6;=0 atX=0 a7)
X aT 14 aT
Here, primes denote differentiation with respecito Peo(T) 5 = ?a_T(?k(T) ar | (24)

From these, it becomes clear that we have obtained from the

original inverse formulation a sequence of direct problems for thbéga'n' we'requwe that the maximum .te.mperature‘should not ex-
terms in the asymptotic expansion. In particular, we arrive at ceec_iT\,_v(t), hovyever, u_nllke _the _plate, itis not posslble to sp_ecn‘y
’ a priori where in the ring this will be, since there is no available

Oo(X,7)=0(7) (18) symmetry condition; furthermore, it is possible that the location of
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this point with maximum temperature is a function of time. Takinghe general form for the solution fat; will be
the heat transfer coefficients on the inner and outer surfaces to be

h_(t) andh_(t) respectively, we have Tp(Ow)

- 1 . _ -
al(R,T)_E( )aW(T)R2+A1(7)R+Bl(T) (35)

aT [%
k—==Th.(t)(T-T.) att=r.*L (25) _ v _
oar Equation(34) can be used to obtain

Nondimensionalising fort and T as before, but now withR (ho_(7)— g (7))( Gy~ 6..)

=Tr/L, Egs.(24) and(25) become, respectively, A(7)=
90 B 2k(6w)
Cpl(0) ar Foﬁ IR ( Rk(0) ﬁ) (26) which implies that, regardless of the form Bf(7), the location
and of the maximum temperature is to be found at
(K ) 90 o & (ho (D=ho.(1)(6,=6.)
T ( )ﬁ_‘*' +(7)( ) at R= c— ( ) Zép(aw)ew
whereR.=r./L. Furthermore, this point will move outwards lif, _(7)>hg, (7),
The thin ring limit does, however, permit some analyticainwards otherwise. Conversely, and analogous to @4), we
progress. WritingR.=¢ ~*(<1), and introducing have the result that the ring cools with the profilg 7) at leading
1 order provided that
R=R- - .
—2C,(6,,) 06,
3 ’ ho.(7)+ho-(7) = — 5= == (36)
we have for—1<R<1, wo T
90 . 5 20 Also, to ensure that the temperature at the hottest point of the ring
o s )
Ty(0) — = _ —~([1+8R]k( 0) _~) (28) should not exceed,,(7), we require
It 1+eR R iR B0m) (ho—(7) =g (7)%( 0y~ 6..)°
1\7)= — ) s
and 8K( ew)cp( Ow) O

[K]\~ 96 - Note that in the case whem,_(7)=hg(7), the thin plate solu-
T k() —=%h.(7)(6—0,) atR==x1 (29)  tion for 6, is recovered, as is the expression figrin Eq. (21).
IR At O(Fo ?), settinge = yFo !, wherey is anO(1) constant,
This time, we have two small parameters, Eand ¢, and the We have
form of the asymptotic series will depend on their relative mag-
nitudes. Typically(see physical parameters belpwo 1~e¢, al- Tyl O)
though this feature only turns out to affect the solution at
O(Fo ?), as shown below.

46, ~ d0,, 40y,
R+ 0.8(Oy) —
ar X ar e T

At O(Fd), we have _7 (~k( 0,) ‘9_02+X§‘9_01 +0,K'(6,) a_al)
9 ("k(a )6’00) 0 (30) JR JR JR JR
— o) —— |~
R R _ 37)
subject to subject to
~ 30, A 96,
[k]|~ ~ d6 = K(6y)| —— — | +K'(8,) 0,—
(T k() —=0 atR==x1 (31) (6w) R O 0. R (6) 0y IR
Equation(30) now requires thak(6,)d6,/JR is a function ofr, =%hy.(6y—0.) atR==x1 (38)

but Eq.(31) implies that the only possibility i86/9R=0. This, e omit the remaining details here, except to comment that an
combined with the requirement that the temperature should NQuation forh,_(7) andh,. (7) analogous to Eq(36) can be

exceed?,(7), gives as before expected. Instead, we derive a solution based on the assumption
B o thath_(7)=h, (7). At O(Fd”) andO(Fo 1), the solutions fo®,
Bo(R,7) = 0u(7) (32) and 6, respectively, are the same as for the plate, but from Eq.
Next, atO(Fo 1), we have (37) we see that), will have an antisymmetric component due to
ring curvature. Proceeding as before, we have
~(e)‘99° J ”k(a)‘901+a~k'(9)'90° (33)
Cpllp) —=— o) —— TbU1 o) —— 2 T K
P R R R gz(ﬁ,T)_M(bw+2|L0W)_2k (QW)]B‘?V)“}QA
subject to 24K2( 6,,) ColOw)  k(6y)
~ a8 - B0 O) Oy -
K(0p) 2= Fho(n)(do—0.) atR=+1 (34 — LR R A7) R+ Byl (39)
IR 6k(6w)
where hy.. is the first term in the asymptotic series for., From Eq.(38), we have
through )
_ XCp(0y) Oy
[K]Fo™* - i Aglr)= (40)
ht: L {hOt"’FO hlt‘l’o(FO )} 2T((0W)
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with B,(7) being chosen to ensure théj(R,7) is everywhere which in turn requires knowledge about the sensitivity coeffi-

negative. Finally, we arrive at cients, i.e., the functiod6/Jp.
» B _ Defining 0:=96/9p and Q:=dQ/Jp, we obtain the governing
ho=e Co ) +< ) ColOw)  K'(6y) equation forg by differentiating Eqs(42) and(43) with respect to
== T i
6K(6,) (64— 6. Cl00) K(6a) 1o obtain

3 -2 45
B m) 9@] (41) v “
. 70 J

~ 0
indicating that although the temperature is affected by the curva- | T;(6) — +T,(0) 0—) =Fo—(
ture at this order, the heat transfer coefficient is not. ar ar 2

k(0)Q+K'(0)6Q) (46)
This is subject to the boundary conditions

Numerical Solution 0=0 at X=0

In what follows, the analytical solutions presented above are 0=1 at X=1
used to test our numerical scheme for the solution of the inverse
problem. Furthermore, the availability of both analytical and nu&nd the initial condition
merical methods provides an estimate of the range of validity of ~
the asymptotic series. 0=0 at 7=17y_4 (48)
. Numerous algorithms can be found in the Ilterat.u‘re fpr the NORYis constitutes a linear direct problem férandQ which needs
linear IHCP. Amongst these are the function specification meth%i be solved at every time step; this is in contrast to the linear

([jg_], spa_ce-rr|1arg_hi_n% tecltqr?iqu@Hand thos%basled on the_ inftinitelHCP for which the sensitivity coefficients can be determined
imensional adjoint methofi7]. Here, we develop a variant on once and for all with just ona priori computation.

existing methods, in that we implement the function specification Now writing
method[9] by means of the Keller Box schemi&0] and Newton
iteration, a combination which, in spite of its versatility for the r ~
solution of nonlinear parabolic direct problems, appears not to <p:=2 (Bom—1+1—Ow(Tm—1+1)) om—1+1 (49)
have been used at all for inverse problems of this type. In fact, the =1

method proves to be particularly suitable for handling the resulf, requiree=0, for which an iterative loop foB is required.

ing sensitivity equations, as well as for updating the latest Surfaﬁ%noting byv the iteration index fo, we update using New-
heat flux iterate, as shown below. In addition, it is not necessary{Q}, iteration according to '

employ quasi-linearization of the temperature-dependent proper-

ties, as has been done in some numerical sch¢m&s,17; this do
- . . . . (v+1)— pv) _ -

feature is desirable, since it ensures that the scheme remains B B ¢ B

second-order accurate in both time and space variables, which

becomes of increasing importance if the thermal properties vampere

strongly with temperature. Thus, our treatment of the direct prob- '

] for T=<7t<7h_1.r (47)

lem is accurate as it can be without going to higher-order5_<P
schemes, and accuracy is only limited by the nature of the inversgg |
algorithm, which is known to be unstable if too small time steps

are used9]; for details regarding numerical uncertainty, thereford;0r the linear IHCP, the sensitivity coefficients are independent of
we refer to[9]. In what follows, we consider plate solutions,, so thatde/dB would already be available, singehas already
where the location of the maximum temperature is known; sollreen solved for. For the nonlinear IHCP, this is not the case, and

~ r

900 m—1+1 ~
= (60,m71+l_6w(7'm71+|)) — +E ag,m—l-H
1 B =1

tions for rings are postponed for future work. additional variational equations for

Writing Eq. (6) as the two first-order equations ~ ~

96 0 ad Q 9

Q= (42) B T aB
have to be solved. Differentiating Eq&l5)—(48) with respect to

202 —Fo x(0)0) (a3 Paves
P ar ax( (0)Q o

and introducing a rectangular mesh with grid points at Q= X (50)

(7§)j=0,...mand (X))i=o,.. . N, WhereM andN are the number of

points in 7 and X respectively, the function specification method Y 20 P

proceeds as follows. Assuming thaandQ have been determined Tpl0) — +T/(0) — | =Fo— (k(0)O+K'(6)6Q)+q

for 0<r<r,,_;, where I=m=<M, we temporarily assume that gr P T X

Qn =g for r future time steps £, 1<7<7y,_1.,), and solve (51)
the direct problem fofr=7,,..,7h_1+,, With the boundary con- \here

ditions Qy =8 and Qox=pB (k=m,..,m—1+r). Next it is re-

quired to minimize the functional d S (VTSR OV F? o ~ 90 ~y 00
— . ’ +Kk” _ ’ -/ .
r a=Fo— (2K (6)6Q+K"(6)6°Q) — 281(0) b ——T4(0) 6%~
. _ 2
S";l (Bom-1417 6wl Tm-1.1)) (44) subject to the boundary conditions
with respect tog; this requiressS/9B=0, i.e., O=0 at X=0
. for r =<7<7,_ (52)
Er (0 Bu y omrt_ Q=0 atx=1 T
— - Tm— -5 =
e oMt P me L p and the initial condition
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Fig. 3 Cooling curve used in this study 10000
------ 1-term
8000 " 2-term ;
N | B 3-term
0=0 at 7=1_ 1 (53) ~§ 6000+ — numerical 4
This also constitutes a linear direct problem fband © which ‘s
needs to be solved at every time step. = 4000

Finally in this section, we note the computational budget fc =
this method in order to advance one time step, relative to tl = 2000
budget for a one-step advance for the nonlinear direct proble <
With the convergence criterion at théh time step for Eqs(42)
and (43) taken to be 0

N (]8T — M| 10T Y — QW) <1070 ) . . . . .
|61 W LIQHT=QiD 2000, T 55 m m <
the number of Newton iteration,q,,; Was typically found to be Time, t [s]
3—-4. However, a one time-step advance for the nonlinear invel b
problem requires (b)
1) Egs. (42) and (43) to be solved over time steps KN peut 4
operationy x 10
2) Egs.(45) and (46) to be solved over time steps(r opera-
tions);
3) Egs.(50) and(51) to be solved over time steps(r opera-
tions): I 3-term
4) steps 1-3 to be repeated until convergencesfts obtained - —— numerical
(rNyadNpewit 2) operations. o

Here, one “operation” is denoted to mean the solution df ( g 47
+1) linear equations, either those arising from the linearisation
step 1, or those in steps 2 and 3. In summary, the total budget re

is found to be é 2
=
INyad Npewrt 2) 0
Nnewt
so that, withN,,, also typically 3—4, approximatelyréas many -2 ' ' ' y '
operations are required to solve the inverse problem as are 0 10 20, 30 40 50
quired to solve the direct problem. For the majority of compute Time, t [s]
tions carried out here, we todd =201,N=100, andr =4; with (©

these specifications, a solution was obtained within several sec-

onds on a 500 MHz Compagq Alphaserver with 3GB RAM. Addifig. 4 The required convective heat transfer coefficient, h(1),
tional computations foN =200 were also carried out to test foras calculated by the analytical method using 1, 2, and 3 series

grid independence in respect of the space variaileo differ- expansion terms, and by a numerical method: (a) Fo™1=0.02;
ence was observed between resultsNet 100 andN=200, and (b) Fo~!=0.1; and (¢) Fo~'=0.2.

subsequently only the coarser mesh was used. Of considerably

greater significance is the total future timar, whereAr is the

mesh spacing in time; here, a uniform mesh was used throughaugrical uncertainty for all the runs ©(10™4).

so thatA r=1/(M —1). The results of investigations of this com- As for numerical validation of the scheme, this is provided in
bined effect are given in the next section. Additionally, since thtne next section through comparison with truncations of the
numerical scheme is second-order accurate, we have that the asymptotic series. In addition, the code was checked against the
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Fig. 5 Selected quantities as numerically computed for 3, 4, and 5 future time steps in the model (Fo~1=0.07): (a) the con-

vective heat transfer coefficient,  h(t), at x=L; (b) the temperature, T,(t), at x=0; (c) the surface temperature at x=L; and (d)
the surface heat flux at x=L.

test case of a triangular heat flux given[B] (e.g., see p. 169 constant cooling curve and thus allow slowest cooling rates

and excellent agreement was found, although for the sake of bréwhich is industrially desirable both to minimize cooling cost and

ity we do not present the results here. product distortioly after that, more rapid cooling is used to avoid
the 1 percent bainite “nose.” Using Eq&1) and(22), we have

Results P
The analytical and numerical considerations given above are ho=
implemented for the quenching of SAE 52100 steel. The physical Ou 0-
properties used are: 1 M92 342
- w w

K(T)=kotkiT, cy(T)=Co 69 MR k0 (0000 | M T a0y (Ga02)

so that{k]=ko, [cp]=Co,, and then It is instructive to discuss the behavior of the solution in terms of
&( 0)=1+p0, T(0)=1 the value of Fo . This is done in Figs. @—c), which compare

the heat transfer coefficients for the asymptotic analytical solution

where u=Kk;T;/ky. We takeT;=860 C, Ti=20C, t;=505s,Co and the numerical solution for F4=0.02, 0.1, and 0.2, respec-
=635Jkg ' C !, ko=15.0Wm ' C !, k;=0.0142Wm*C 2, tively.
p=7810 kgm 3. As for geometrical parameters, the computations In Fig. 4(a), good agreement is obtained between the results of
are based around the quenching of a ring with inner radius 0.02f# numerical method and the one and two-term expansions of the
m and outer radius 0.034 m. Consequently, we hawe).003 m analytical method. At gradient discontinuities Bf(t), the ana-
andr,=0.031 m, and so Fo'~0.07,e~0.1. Thus, although we lytical method gives discontinuities in(t), whereas the numeri-
present only solutions for a plate, they should constitute good fisdl scheme smoothes these out. Note here the interpretations of
approximations to a ring of the same thickness. the solution behavior at each of these three discontinuities. For the

Results are presented for the cooling curve shown in Fig. st two, the behavior is similar, with a moderately rapid increase
which has been constructed in such a way that it approaches thia the heat transfer coefficient profile being necessary to attain the
percent pearlite “nose” more closely than would a conventionalesired temperature profile; at the third, however, an initially
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@ Fig. 7 Comparison of the numerically computed convective
6000 ¢ heat transfer coefficient with constant (“linear” ) and
-------- =5 temperature-dependent  (“nonlinear” ) thermal conductivity
—_—r=6 1= =
50001 - (Fo 0.07,r=4)

— 4000 . .
i unsmooth boundary conditions; as a consequence, the asymptotic
< 3000l series may provide a useful, and often very accurate, approxima-

£ tion to the full numerical solution, provided enough terms are

= calculated. For this case, the numerical instability mentioned in

: 2000¢ Fig. 4(b) appears to be even more severe fer4, with oscilla-

N tions occurring at all three gradient discontinuitiesTg{t). How-

= 10001 ever, as shown below, the way to alleviate these appears to be to

increase the value of
0 ————— We give also some results for a plate for which Ee 0.07.
' Fig. 5(a) demonstrates the effect of the number of future time
-1000 . . s ' »  steps used,, on the heat transfer coefficient; the effect appears to
0 10 20 30 40 50 be noticeable only at the gradient discontinuitie§ gtt), but we
Time [s] notice here that increasingfrom 3 to 5 removes the unphysical
(b) oscillation att= 33 s. Figure &) gives a comparison of the speci-

fied temperaturd,(t), with that actually computed numerically
Fig. 6 The convective heat transfer coefficient, ~ h(t), at x=L  0r r=3,4,5. Note here that whilst the numerical scheme copes
for Fo~'=0.07 with: (a) Ar=1/100, r=3, 4, 5; and (b) Ar Well with the first two gradient discontinuities, it copes less well
=1/300, r=5, 6, 7. with the third, with the functiona8in Eq. (44) being minimized

in such a way that the computed temperature undershoots the

desired profile(cf. Fig. 3, although the extent of the undershoot

decreases with increasedrig. 5 gives the temperature profile at
negative value, corresponding to heating, is required. Note alg@ quenched surface, and a comparison of Figs) &nd 5c)
that the peak prior to this discontinuity is not due to the discontindicates the extent to which plate is a lumped body. Figl) 5
nuity itself, but simply as a consequence of the fact thatis shows the heat flux at the quenched surface; here, as in (@g. 5

decreasing whilst,, is constantcf. Eq. (21)). the higher values of appear to confer increased stability on the
Increasing Fo? further to Fo 1=0.1, Fig. 4b) shows that, for solution at the gradient discontinuities B,(t).
the final part of the quenching curve, an oscillationhift) ap- Figures 6a) and @b), in tandem with Fig. &), explore the

pears in order to maintain the desired temperature of 200°C; thismbined effect off A7 on the solution for Fol=0.07. As is

we interpret as an instability in our numerical scheme which arisesident, all perform in qualitatively similar fashion, but perhaps

as Fo'lis increased, in combination with the sudden jump in ththe most interesting quantitative conclusion concerns the stability

gradient ofT,,(t). Prior to this, we see that the three truncatedf the scheme nedr=33 s. In particular, the common feature we

asymptotic series agree well with the numerical solution until 2fnd is that the non-physical oscillations i{(t) there can be re-

s, but then the one-term series severely underpredicts the requimeal’ed provided thatA 7 exceeds a certain critical value: in Fig.

heat transfer coefficient; the two-term series performs signifi{a), this value is in the rang40.02,0.02% for Fig. 6(a),

cantly better, and the three-term series better still, but it appe&®s033,0.04; for Fig. 6(b) [0.02,0.0233

that more terms in the asymptotic expansion would be necessaryinally, Fig. 7 compares the results of a nonlinear computation,

to provide even better agreement. using Eq.(54), with those of a linear one where the thermal con-
In Fig. 4(c) for Fo 1=0.2, it becomes even clearer that furthedluctivity is taken to be

terms in the asymptotic expansion must be added, although as in K(T)=Ko+k, T

Fig. 4(b) the trend appears to be in the right direction. An impor- 07 ey

tant mathematical point here is that since the asymptotic solutiafereT,,=530°C, the average of the start and end temperatures.

is composed of analytical solutions to ordinary differential equas is apparent, for this particular case, the linear formulation leads

tions, it is free of the oscillations that a numerical solution to & an underestimate in the heat transfer coefficient required to

partial differential equations may possess due, for example, dbtain the desired quenching conditions.
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equations were nondimensionalised and the Fourier nuiimr

was identified as a key controlling dimensionless paramet®jomenclature

Asymptotic series could be constructed using this parameter, and T
these were found on the whole to compare well with results from co(T)
a numerical scheme that was also implemented. The nature of the~

Co(0)
cooling temperature profile used, a piecewise linear function of
time, indicates some of the features of inverse problems with un- [c,]
smooth boundary conditions: whilst both methods agree well on ,‘:’O

smooth portions of the cooling profile, difficulties were encoun-
tered with the numerical scheme at gradient discontinuities, al-
though not necessarily so. Associated with this is the number gﬁ ). o1
future time steps;, that were required. Where the cooling curve is _(t)
smooth,r =3 was sufficient; otherwise, as many as 5 or 6 were

h(t)

necessary to stabilize the solution after a gradient discontinuith;..);—o .

and our experiences show that higher values of'F@orrespond- k(T)
ing to thicker geometries, lead to greater difficulties in this re-
spect. As for the asymptotic series, it proved advisable to use a Kk(6)
symbolic manipulator to compute its terms, since the algebra be-
comes exceedingly lengthy after just a couple of terms. However, (k]
a two-term series appeared to be sufficient for predicting the heat L
transfer coefficient to within a couple of percent for Fo as high as
10 for the cooling curves used here.

This work is our first attempt to couple heat transfer to the
control of phase transformations in quenching in an inverse way,
i.e., by predicting the convective heat transfer coefficient that
would be necessary to produce a quenched product with a desired
composition, and which follows the progress of the phase trans-
formation in a way which tends to optimize the procésse, for
instance, [13] for another example, although not related to
quenching. The plate/ring quenching analogy provided here was
useful for sufficiently large values of the Fourier number, although
solutions were presented mainly for the plate. Finally, we should
note the advantages of the twin analytical/numerical approach pre-
sented here. In particular, nondimensionalisation identifies the
magnitudes of key controlling parameters, and thence possibly
simple closed-form series solutions that would not have been evi-
dent from the original formulation. These solutions can then serve
as a quantitative check against numerical algorithms for the IHCP;
in fact, to the authors’ knowledge, this may well be the first time
that this has been done. In particular, we note how the approaches
complement each other as Fois increasedcf. Figs. 4a—c): the
numerical approach gives the desired solution, although this can TW(t)
prove unreliable as a singularity in the boundary conditions is T,
reached; at this point, the analytical solution can provide a guide
as to how the desired solution should behave. In addition, the fact
that we have implemented the versatile and efficient Keller Box
scheme within an inverse problem setting indicates that it should
be possible to incorporate, in an expedient way, more of the physi-
cal features associated with gas quenching, such as phase trans-
formations and distortion.

Naturally, a full treatment of a coupled inverse/optimization
problem of this sort in gas quenching would involve the inverse 6,,(7)
prediction of the optimal time-dependent heat transfer coefficien{d;)i-o,1.

Nnewt

N

<
2

- P g =|OQLO a

Ao aam

m ™ X x

>l

in three dimensions for arbitrary complex geometries, with all 0.
physical phenomena modeled in the numerical simulation. Never- P
theless, the validation of computer codes for such calculations T
would require benchmark comparisons in simple geometries, such ¢

X

as those presented here. Finally, the algorithm presented would be
useful in practice in reducing computational time for inverse prob-

lems involving simpler geometries, where there is no need to uReferences
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