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erate solutions. Comparison of the results proves favorable, and suggests that fo
inverse problem asymptotic methods provide an attractive alternative to solely nume
ones. @DOI: 10.1115/1.1517271#

Keywords: Inverse Heat Transfer Solutions, Gas Quenching, Heat Treatment, M
Phase Transformation, Transient Heat Conduction
e

s
t
t

a

f
s

h

e

t

or
on.
ced
ous

r, a
ovel
e

eat
ria-
ient
ob-
oped
the

ve
un-
e in
ore
n-

of a
ible
oef-
at

e-
,
e-
Introduction
Quenching is one of the most critical operations in the h

treatment of many metallic parts, affecting internal structure, b
mechanical properties and the shape of the product. In the ca
steel alloys, one desirable aim is to be able to convert austeni
martensite, while limiting the formation of pearlite and baini
through appropriately rapid cooling of the quenched part. T
cooling rate is determined by ensuring that the temperature du
the cooling process never exceeds anywhere in the part the
perature which would cause transformation to undesirable ph
at that location. The transformation temperatures can be foun
applicable cooling-transformation phase change diagrams for
alloy in question. Practically, this leads to the prescription o
time-dependent temperature profile in the interior of the con
ered geometry, an objective being to find the magnitude and t
dependence of the surface cooling convective heat transfer c
ficient which would bring this curve about; this amounts to t
formulation of an inverse heat conduction problem~IHCP!. In the
last decade or so, gas quenching has been gradually and inc
ingly developed, for environmental, quality and economical r
sons to replace the traditional quenching in liquids. This proc
imposes new computational and fluid dynamics challenges w
which FaxénLaboratoriet at the Royal Institute of Technolog
~KTH! has been involved for the past several years~cf. @1#!. This
paper presents an approach to the solution of some basic inv
heat conduction problems related to the process. Reference
tions to past work related to this subject are given below in
body of the paper.

Quenched part geometries of a plate and of a ring, as in F
1~a! and 1~b! respectively, with temperature-dependent therm
conductivity, are considered. Analytical and numerical approac
are adopted for the plate. Nondimensionalisation of the govern
equations gives the Fourier number~Fo! as a controlling param-
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eter which, if large enough~as is the case for thin enough rings
plates!, permits the construction of an asymptotic series soluti
An interesting feature here is that the inverse problem is redu
to an infinite sequence of direct initial value problems, analog
to the analytical solution of Burggraf@2#, although obtained by a
different approach. For smaller values of the Fourier numbe
numerical approach is necessary and this is done through a n
application of the function specification method using future tim
steps, coupled with the Keller Box method for a nonlinear h
equation, a related linear sensitivity equation and a further va
tional equation. Good agreement with the heat transfer coeffic
that would be required to achieve a desired cooling curve is
tained in the thin plate case, and the numerical scheme devel
allows an estimate of the validity of the asymptotic method as
plate thickness is increased.

The equivalent problem for the ring is found, however, to ha
considerably more possibilities; amongst these is the fact that
equal cooling at its inner and outer surface can lead to a chang
position of the maximum temperature point, and thence to a m
intricate mathematical formulation for the inverse problem. Co
sequently, this problem is deferred to later work. For the case
thin ring, however, asymptotic analytic progress is again poss
and, under symmetrical heating conditions, the heat transfer c
ficient required is found to differ from that for a thin plate only
O(Fo23).

Formulation
Consider the cooling of a steel plate of thickness 2L, initially at

a uniform temperatureTi . At time t.0, the outer surfaces of the
plate at x56L are subjected to cooling by means of a tim
dependent heat transfer coefficienth(t). Throughout the process
the ambient temperatureT, is assumed to be constant. On
dimensional heat conduction in the plate is then given by

rcp~T!
]T

]t
5

]

]x S k~T!
]T

]x D , (1)

where, most generally, the specific heat capacitycp and the
1;
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Fo,
thermal conductivityk are assumed to be functions of tempe
ture. Assuming symmetry aboutx50, we have the boundary
conditions

]T

]x
50 at x50, (2)

k
]T

]x
52h~T2T`! at x5L, (3)

and the initial condition

T5Ti at t50. (4)

In direct problems,h(t) and T`, are prescribed, enabling th
straightforward determination of the temperature at any loca
within the plate. However, of greater interest here is the inve
problem, where a certain temperature profile~meaning a
temperature-time curve! is desired at a location within the plate
and an appropriateh(t) must be found to satisfy this constrain
Typically, inverse heat conduction problems of this type ha
been motivated by the need to determine surface heat tran
coefficients from experimental measurements taken in the inte
of a given body; consequently, the associated literature cont
numerous contributions which deal with treating the effects
experimental uncertainty~see@3# for a comprehensive recent re
view!. Here, on the other hand, the focus is on being able to c
the plate in such a way as to convert austenite to marten
whilst limiting the formation of bainite and pearlite, all that
cooling rates which vary with the progress of the phase trans
mation in a way that tends to minimize distortion of the part a
gas fan power consumption. At the simplest level, this involv
coupling information derived from a metal phase transformat
TTT-diagram~time-temperature-transformation! with the solution
to the heat equation. For example, it is clear that martensite

Fig. 1 Schematic of the problem for: „a… a plate; „b… a ring.
2 Õ Vol. 125, FEBRUARY 2003
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centration can be maximized simply by ensuring that the hot
point of the plate follows a cooling curve lying below the pearli
and bainite ‘noses,’ which can be seen in Fig. 2. In quench
practice, conventionally using liquid quenchants, the cooling r
is constant and determined by the highest temperature pro
slope dictated by the transformation diagram. Since it is m
difficult to attain high cooling rates when using gas as quencha
the cooling rate can be reduced during the process to achieve
the needed one. Furthermore, it is evident that this strategy wo
offer a better way of controlling the final composition than, fo
instance, cooling at a constant rate, as is given in continuous c
ing transformation~CCT! diagrams such as Fig. 2. We procee
therefore by requesting

T5Tw~ t ! at x50, (5)

where, for 0<t<t f , where t f denotes the finishing time for
quenching, the profileTw(t) lies below the curves for phase trans
formation to bainite and pearlite; for the case of a plate, it is
once clear that, in the absence of heat evolved during phase tr
formation, the maximum temperature will always be found
x50.

Nondimensionalising with

X5
x

L
, t5

t

t f
, u5

T

Ti
,

we have, for 0<X<1 and 0<t<1,

c̃p~u!
]u

]t
5Fo

]

]X S k̃~u!
]u

]XD , (6)

where k̃ and c̃p denote, respectively, the dimensionless therm
conductivity and specific heat capacity, given by

k̃5
k

@k#
, c̃p5

cp

@cp#
.

Here,@k# and@cp# denote characteristic values for these quantiti
and are also used in the definition of the Fourier number,
through

Fo5
@k#t f

r@cp#L2 .

Equation~6! is then subject to the boundary conditions

]u

]X
50, u5uw~t! at X50, (7)

whereuw5Tw /Ti , and the initial condition

Fig. 2 CCT diagram for SAE 52100 steel
Transactions of the ASME
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As usual in the inverse formulation, Eq.~3! is useda posteriorito
determine the required heat transfer coefficient, which in term
the dimensionless variables is given by

h52
@k#

L F k̃~u!
]u

]X Y ~u2u`!G
X51

, (9)

whereu`5T` /Ti .

Asymptotic Analysis for Foš 1: Plates
For sufficiently large values of the Fourier number, correspo

ing to thin plates, an asymptotic series solution is possi
Writing

u~X,t!5u0~X,t!1Fo21u1~X,t!1Fo22u2~X,t!1O~Fo23!

Eq. ~6!, at O(Fo0), is reduced to

]

]X S k̃~u0!
]u0

]X D50 (10)

subject to

]u0

]X
50, u05uw~t! at X50 (11)

At O(Fo21), we have

c̃p~u0!
]u0

]t
5

]

]X S k̃~u0!
]u1

]X
1u1k̃8~u0!

]u0

]X D (12)

subject to

]u1

]X
50, u150 at X50 (13)

whilst at O(Fo22),

c̃p~u0!
]u1

]t
1u1c̃p8~u0!

]u0

]t
5

]

]X S k̃~u0!
]u2

]X
1u1k̃8~u0!

]u1

]X

1H u2k̃8~u0!1
1

2
u1

2k̃9~u0!J ]u0

]X D
(14)

subject to

]u2

]X
50, u250 at X50 (15)

At O(Fo23),

c̃p~u0!
]u2

]t
1u1c̃p8~u0!

]u1

]t
1H u2c̃p8~u0!1

1

2
u1

2c̃p9~u0!J ]u0

]t

5
]

]X S k̃~u0!
]u3

]X
1 k̃8~u0!

]~u1u2!

]X
1

1

6
k̃9~u0!

]~u1
3!

]X D
1

]

]X S F k̃8~u0!u31 k̃9~u0!u1u21
1

6
k̃-~u0!u1

3G ]u0

]X D
(16)

subject to

]u3

]X
50, u350 at X50 (17)

Here, primes denote differentiation with respect tou.
From these, it becomes clear that we have obtained from

original inverse formulation a sequence of direct problems for
terms in the asymptotic expansion. In particular, we arrive at

u0~X,t!5uw~t! (18)
Journal of Heat Transfer
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u1~X,t!5
1

2 S c̃p~uw!

k̃~uw!
D u̇w~t!X2 (19)

u2~X,t!5
c̃p

2~uw!

24k̃2~uw!
S üw12H c̃p8~uw!

c̃p~uw!
22

k̃8~uw!

k̃~uw!
J u̇w

2 D X4

(20)

where dots denote differentiation with respect tot. These are es-
sentially the solutions obtained by Burggraf@2#, although for this
paper we also evaluatedu3 using the Maple symbolic manipula
tion package@4#. The subsequent expression is extremely lengt
and we do not present it here. Using these, we can arrive at
appropriate asymptotic expansion for the heat transfer coeffici
which turns out to be of the form

h5
@k#Fo21

L
$h01Fo21h11Fo22h21O~Fo23!%

where

h052
c̃p~uw!u̇w

uw2u`
(21)

h15
2 c̃p

2~uw!

6k̃~uw!~uw2u`!
F üw1S 2

c̃p8~uw!

c̃p~uw!
2

k̃8~uw!

k̃~uw!

2
3

~uw2u`!
D u̇w

2 G (22)

The expression forh2 is also lengthy and not presented here.
Issues that are of some interest here are whether the solu

generated in this way is stable and whether the asymptotic se
is convergent. As for stability, it is well-known~e.g.,@8#! that the
method is unstable, since arbitrarily small changes inuw can lead
to large errors inh. From a practical point of view, as our com
parison of analytical and numerical results will show, the imp
of this on the quality of the method or solution decreases as
increases. As for convergence, some guidelines can be obta
for the linear IHCP using the Stefan solution foru, which can be
written as

u~X,t!5(
i 50

`

Fo2 i
diuw

dt i ~t!
X2i

~2i !!
. (23)

This suggests that the solution should be convergent for all va
of Fo, provided thatuw is infinitely differentiable. For the non-
linear IHCP, however, there cannot be any corresponding st
ment, and the issue can only be resolved, in general numeric
on a case-by-case basis for differentuw .

Asymptotic Analysis for Foš 1: Rings
We consider an analogous formulation for a quenched ri

assumed to be one-dimensional~no axial variation!. Consider the
cooling of a steel ring of thickness 2L, initially at a uniform
temperatureTi . At time t.0, the outer and the inner surfaces
the ring, taken to be atr̄ 5r c6L respectively, are subjected t
cooling characterized by a time-dependent heat transfer co
cient h(t). One-dimensional heat conduction in the ring is th
given by

rcp~T!
]T

]t
5

1

r̄

]

] r̄ S r̄ k~T!
]T

] r̄ D (24)

Again, we require that the maximum temperature should not
ceedTw(t); however, unlike the plate, it is not possible to spec
a priori where in the ring this will be, since there is no availab
symmetry condition; furthermore, it is possible that the location
FEBRUARY 2003, Vol. 125 Õ 3
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this point with maximum temperature is a function of time. Taki
the heat transfer coefficients on the inner and outer surfaces
h2(t) andh1(t) respectively, we have

k
]T

] r̄
57h6~ t !~T2T`! at r̄ 5r c6L (25)

Nondimensionalising fort and T as before, but now withR
5 r̄ /L, Eqs.~24! and ~25! become, respectively,

c̃p~u!
]u

]t
5Fo

1

R

]

]R S Rk̃~u!
]u

]RD (26)

and

S @k#

L D k̃~u!
]u

]R
57h6~t!~u2u`! at R5Rc61 (27)

whereRc5r c /L.
The thin ring limit does, however, permit some analytic

progress. WritingRc5«21(!1), and introducing

R̃5R2
1

«

we have for21<R̃<1,

c̃p~u!
]u

]t
5

Fo

11«R̃

]

]R̃
S @11«R̃# k̃~u!

]u

]R̃
D (28)

and

S @k#

L
D k̃~u!

]u

]R̃
57h6~t!~u2u`! at R̃561 (29)

This time, we have two small parameters, Fo21 and «, and the
form of the asymptotic series will depend on their relative ma
nitudes. Typically~see physical parameters below!, Fo21;«, al-
though this feature only turns out to affect the solution
O(Fo22), as shown below.

At O(Fo0), we have

]

]R̃
S k̃~u0!

]u0

]R̃
D 50 (30)

subject to

S @k#

L
D k̃~u0!

]u0

]R̃
50 at R̃561 (31)

Equation~30! now requires thatk̃(u0)]u0 /]R̃ is a function oft,
but Eq.~31! implies that the only possibility is]u0 /]R̃50. This,
combined with the requirement that the temperature should
exceeduw(t), gives as before

u0~R̃,t!5uw~t! (32)

Next, atO(Fo21), we have

c̃p~u0!
]u0

]t
5

]

]R̃
S k̃~u0!

]u1

]R̃
1u1k̃8~u0!

]u0

]R̃
D (33)

subject to

k̃~u0!
]u1

]R̃
57h06~t!~u02u`! at R̃561 (34)

where h06 is the first term in the asymptotic series forh6 ,
through

h65
@k#Fo21

L
$h061Fo21h161O~Fo22!%
4 Õ Vol. 125, FEBRUARY 2003
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The general form for the solution foru1 will be

u1~R̃,t!5
1

2 S c̃p~uw!

k̃~uw!
D u̇w~t!R̃21A1~t!R̃1B1~t! (35)

Equation~34! can be used to obtain

A1~t!5
~h02~t!2h01~t!!~uw2u`!

2k̃~uw!

which implies that, regardless of the form ofB1(t), the location
of the maximum temperature is to be found at

R̃52
~h02~t!2h01~t!!~uw2u`!

2c̃p~uw!u̇w

Furthermore, this point will move outwards ifh02(t).h01(t),
inwards otherwise. Conversely, and analogous to Eq.~21!, we
have the result that the ring cools with the profileuw(t) at leading
order provided that

h01~t!1h02~t!5
22c̃p~uw!u̇w

~uw2u`!
(36)

Also, to ensure that the temperature at the hottest point of the
should not exceeduw(t), we require

B1~t!5
~h02~t!2h01~t!!2~uw2u`!2

8k̃~uw!c̃p~uw!u̇w

Note that in the case whenh02(t)5h01(t), the thin plate solu-
tion for u1 is recovered, as is the expression forh0 in Eq. ~21!.

At O(Fo22), setting«5xFo21, wherex is anO(1) constant,
we have

S c̃p~uw!S ]u1

]t
1xR̃

]uw

]t
D 1u1c̃p8~uw!

]uw

]t
D

5
]

]R̃
S k̃~uw!F ]u2

]R̃
1xR̃

]u1

]R̃
G1u1k̃8~uw!

]u1

]R̃
D

(37)

subject to

k̃~uw!S ]u2

]R̃
2

u1

uw2u`

]u1

]R̃
D 1 k̃8~uw!u1

]u1

]R̃

57h16~uw2u`! at R̃561 (38)

We omit the remaining details here, except to comment that
equation forh12(t) and h11(t) analogous to Eq.~36! can be
expected. Instead, we derive a solution based on the assum
thath2(t)5h1(t). At O(Fo0) andO(Fo21), the solutions foru0
andu1 , respectively, are the same as for the plate, but from
~37! we see thatu2 will have an antisymmetric component due
ring curvature. Proceeding as before, we have

u2~R̃,t!5
c̃p

2~uw!

24k̃2~uw!
S üw12H c̃p8~uw!

c̃p~uw!
22

k̃8~uw!

k̃~uw!
J u̇w

2 D R̃4

2
x c̃p~uw!u̇w

6k̃~uw!
R̃31A2~t!R̃1B2~t! (39)

From Eq.~38!, we have

A2~t!5
x c̃p~uw!u̇w

2k̃~uw!
(40)
Transactions of the ASME
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with B2(t) being chosen to ensure thatu2(R̃,t) is everywhere
negative. Finally, we arrive at

h15
2 c̃p

2~uw!

6k̃~uw!~uw2u`!
F üw1S 2

c̃p8~uw!

c̃p~uw!
2

k̃8~uw!

k̃~uw!

2
3

~uw2u`!
D u̇w

2 G (41)

indicating that although the temperature is affected by the cu
ture at this order, the heat transfer coefficient is not.

Numerical Solution
In what follows, the analytical solutions presented above

used to test our numerical scheme for the solution of the inve
problem. Furthermore, the availability of both analytical and n
merical methods provides an estimate of the range of validity
the asymptotic series.

Numerous algorithms can be found in the literature for the n
linear IHCP. Amongst these are the function specification met
@9#, space-marching techniques@6# and those based on the infinit
dimensional adjoint method@7#. Here, we develop a variant o
existing methods, in that we implement the function specificat
method@9# by means of the Keller Box scheme@10# and Newton
iteration, a combination which, in spite of its versatility for th
solution of nonlinear parabolic direct problems, appears no
have been used at all for inverse problems of this type. In fact,
method proves to be particularly suitable for handling the res
ing sensitivity equations, as well as for updating the latest surf
heat flux iterate, as shown below. In addition, it is not necessar
employ quasi-linearization of the temperature-dependent pro
ties, as has been done in some numerical schemes@5,11,12#; this
feature is desirable, since it ensures that the scheme rem
second-order accurate in both time and space variables, w
becomes of increasing importance if the thermal properties v
strongly with temperature. Thus, our treatment of the direct pr
lem is accurate as it can be without going to higher-or
schemes, and accuracy is only limited by the nature of the inv
algorithm, which is known to be unstable if too small time ste
are used@9#; for details regarding numerical uncertainty, therefo
we refer to @9#. In what follows, we consider plate solution
where the location of the maximum temperature is known; so
tions for rings are postponed for future work.

Writing Eq. ~6! as the two first-order equations

Q5
]u

]X
(42)

c̃p~u!
]u

]t
5Fo

]

]X
~ k̃~u!Q! (43)

and introducing a rectangular mesh with grid points
(t j ) j 50, . . . ,M and (Xi) i 50, . . . ,N , whereM andN are the number of
points in t and X respectively, the function specification metho
proceeds as follows. Assuming thatu andQ have been determine
for 0<t<tm21 , where 1<m<M , we temporarily assume tha
QN,k5b for r future time steps (tm21<t<tm211r), and solve
the direct problem fort5tm ,..,tm211r , with the boundary con-
ditions QN,k5b and Q0,k5b (k5m,..,m211r ). Next it is re-
quired to minimize the functional

Sª(
l 51

r

~u0,m211 l2uw~tm211 l !!2 (44)

with respect tob; this requires]S/]b50, i.e.,

(
l 51

r

~u0,m211 l2uw~tm211 l !!
]u0,m211 l

]b
50
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which in turn requires knowledge about the sensitivity coe
cients, i.e., the function]u/]b.

Defining ũª]u/]b and Q̃ª]Q/]b, we obtain the governing
equation forũ by differentiating Eqs.~42! and~43! with respect to
b to obtain

Q̃5
]ũ

]X
(45)

S c̃p~u!
]ũ

]t
1 c̃p8~u!ũ

]u

]t
D 5Fo

]

]X
~ k̃~u!Q̃1 k̃8~u!ũQ! (46)

This is subject to the boundary conditions

Q̃50 at X50

Q̃51 at X51J for tm<t<tm211r (47)

and the initial condition

ũ50 at t5tm21 (48)

This constitutes a linear direct problem forũ andQ̃ which needs
to be solved at every time step; this is in contrast to the lin
IHCP for which the sensitivity coefficients can be determin
once and for all with just onea priori computation.

Now writing

wª(
l 51

r

~u0,m211 l2uw~tm211 l !!ũ0,m211 l (49)

we requirew50, for which an iterative loop forb is required.
Denoting byv the iteration index forb, we updateb using New-
ton iteration according to

b~v11!5b~v !2wY ]s

]b

where

]w

]b
5(

l 51

r

~u0,m211 l2uw~tm211 l !!
]ũ0,m211 l

]b
1(

l 51

r

ũ0,m211 l
2

For the linear IHCP, the sensitivity coefficients are independen
b, so that]w/]b would already be available, sinceũ has already
been solved for. For the nonlinear IHCP, this is not the case,
additional variational equations for

ûª
]ũ

]b
, Q̂ª

]Q̃

]b

have to be solved. Differentiating Eqs.~45!–~48! with respect to
b gives

Q̂5
]û

]X
(50)

S c̃p~u!
]û

]t
1 c̃p8~u!û

]u

]t
D 5Fo

]

]X
~ k̃~u!Q̂1 k̃8~u!ûQ!1q

(51)

where

q5Fo
]

]X
~2k̃8~u!ũQ̃1 k̃9~u!ũ2Q!22c̃p8~u!ũ

]ũ

]t
2 c̃p9~u!ũ2

]u

]t

subject to the boundary conditions

Q̂50 at X50

Q̂50 at X51J for tm<t<tm211r (52)

and the initial condition
FEBRUARY 2003, Vol. 125 Õ 5
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û50 at t5tm21 (53)

This also constitutes a linear direct problem forû and Q̂ which
needs to be solved at every time step.

Finally in this section, we note the computational budget
this method in order to advance one time step, relative to
budget for a one-step advance for the nonlinear direct probl
With the convergence criterion at thej th time step for Eqs.~42!
and ~43! taken to be

maxi 50, . . . ,N ~ uu i , j
~n11!2u i , j

~n!u,uQi , j
~n11!2Qi , j

~n!u!,1029

the number of Newton iterationsNnewt was typically found to be
3–4. However, a one time-step advance for the nonlinear inve
problem requires

1! Eqs. ~42! and ~43! to be solved overr time steps (rNnewt
operations!;

2! Eqs. ~45! and ~46! to be solved overr time steps~r opera-
tions!;

3! Eqs. ~50! and ~51! to be solved overr time steps~r opera-
tions!;

4! steps 1–3 to be repeated until convergence forb is obtained
(rNvar(Nnewt12) operations.

Here, one ‘‘operation’’ is denoted to mean the solution of (M
11) linear equations, either those arising from the linearisation
step 1, or those in steps 2 and 3. In summary, the total budget
is found to be

rNvar~Nnewt12!

Nnewt

so that, withNvar also typically 3–4, approximately 6r as many
operations are required to solve the inverse problem as are
quired to solve the direct problem. For the majority of compu
tions carried out here, we tookM5201,N5100, andr 54; with
these specifications, a solution was obtained within several
onds on a 500 MHz Compaq Alphaserver with 3GB RAM. Add
tional computations forN5200 were also carried out to test fo
grid independence in respect of the space variable,X; no differ-
ence was observed between results forN5100 andN5200, and
subsequently only the coarser mesh was used. Of consider
greater significance is the total future timerDt, whereDt is the
mesh spacing in time; here, a uniform mesh was used through
so thatDt51/(M21). The results of investigations of this com
bined effect are given in the next section. Additionally, since t
numerical scheme is second-order accurate, we have that the

Fig. 3 Cooling curve used in this study
6 Õ Vol. 125, FEBRUARY 2003
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merical uncertainty for all the runs isO(1024).
As for numerical validation of the scheme, this is provided in

the next section through comparison with truncations of the
asymptotic series. In addition, the code was checked against the

Fig. 4 The required convective heat transfer coefficient, h „t …,
as calculated by the analytical method using 1, 2, and 3 series
expansion terms, and by a numerical method: „a… FoÀ1Ä0.02;
„b… FoÀ1Ä0.1; and „c… FoÀ1Ä0.2.
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Fig. 5 Selected quantities as numerically computed for 3, 4, and 5 future time steps in the model „FoÀ1Ä0.07…: „a… the con-
vective heat transfer coefficient, h „t …, at xÄL ; „b… the temperature, Tw„t …, at xÄ0; „c… the surface temperature at xÄL ; and „d…
the surface heat flux at xÄL .
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test case of a triangular heat flux given in@9# ~e.g., see p. 169!,
and excellent agreement was found, although for the sake of b
ity we do not present the results here.

Results
The analytical and numerical considerations given above

implemented for the quenching of SAE 52100 steel. The phys
properties used are:

k~T!5k01k1T, cp~T!5c0 (54)

so that@k#5k0 , @cp#5c0, , and then

k̃~u!511mu, c̃p~u!51

wherem5k1Ti /k0 . We takeTi5860 C, Ti520 C, t f550 s, c0

5635 Jkg21 C21, k0515.0 Wm21 C21, k150.0142 Wm21 C22,
r57810 kgm23. As for geometrical parameters, the computatio
are based around the quenching of a ring with inner radius 0.
m and outer radius 0.034 m. Consequently, we haveL50.003 m
and r c50.031 m, and so Fo21'0.07,«'0.1. Thus, although we
present only solutions for a plate, they should constitute good
approximations to a ring of the same thickness.

Results are presented for the cooling curve shown in Fig
which has been constructed in such a way that it approaches
percent pearlite ‘‘nose’’ more closely than would a conventio
Journal of Heat Transfer
rev-

are
cal

ns
028

rst

3,
he 1
al

constant cooling curve and thus allow slowest cooling ra
~which is industrially desirable both to minimize cooling cost a
product distortion!; after that, more rapid cooling is used to avo
the 1 percent bainite ‘‘nose.’’ Using Eqs.~21! and ~22!, we have

h05
2 u̇

uw2u`

h15
21

6~11muw!~uw2u`!
F üw2

mu̇w
2

~11muw!
2

3u̇w
2

~uw2u`!
G

It is instructive to discuss the behavior of the solution in terms
the value of Fo21. This is done in Figs. 4~a–c!, which compare
the heat transfer coefficients for the asymptotic analytical solu
and the numerical solution for Fo2150.02, 0.1, and 0.2, respec
tively.

In Fig. 4~a!, good agreement is obtained between the result
the numerical method and the one and two-term expansions o
analytical method. At gradient discontinuities ofTw(t), the ana-
lytical method gives discontinuities inh(t), whereas the numeri-
cal scheme smoothes these out. Note here the interpretation
the solution behavior at each of these three discontinuities. Fo
first two, the behavior is similar, with a moderately rapid increa
in the heat transfer coefficient profile being necessary to attain
desired temperature profile; at the third, however, an initia
FEBRUARY 2003, Vol. 125 Õ 7



e

u

e

totic
ma-
re
in

e to

e
to

l
i-

es
ll

the
t

t

e

ps
ility
e

.

on,
n-

res.
ads

to
negative value, corresponding to heating, is required. Note a
that the peak prior to this discontinuity is not due to the discon
nuity itself, but simply as a consequence of the fact thatuw is
decreasing whilstu̇w is constant~cf. Eq. ~21!!.

Increasing Fo21 further to Fo2150.1, Fig. 4~b! shows that, for
the final part of the quenching curve, an oscillation inh(t) ap-
pears in order to maintain the desired temperature of 200°C;
we interpret as an instability in our numerical scheme which ari
as Fo21 is increased, in combination with the sudden jump in t
gradient ofTw(t). Prior to this, we see that the three truncat
asymptotic series agree well with the numerical solution until
s, but then the one-term series severely underpredicts the req
heat transfer coefficient; the two-term series performs sign
cantly better, and the three-term series better still, but it appe
that more terms in the asymptotic expansion would be neces
to provide even better agreement.

In Fig. 4~c! for Fo2150.2, it becomes even clearer that furth
terms in the asymptotic expansion must be added, although a
Fig. 4~b! the trend appears to be in the right direction. An impo
tant mathematical point here is that since the asymptotic solu
is composed of analytical solutions to ordinary differential equ
tions, it is free of the oscillations that a numerical solution to
partial differential equations may possess due, for example

Fig. 6 The convective heat transfer coefficient, h „t …, at xÄL
for Fo À1Ä0.07 with: „a… DtÄ1Õ100, rÄ3, 4, 5; and „b… Dt
Ä1Õ300, rÄ5, 6, 7.
8 Õ Vol. 125, FEBRUARY 2003
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unsmooth boundary conditions; as a consequence, the asymp
series may provide a useful, and often very accurate, approxi
tion to the full numerical solution, provided enough terms a
calculated. For this case, the numerical instability mentioned
Fig. 4~b! appears to be even more severe forr 54, with oscilla-
tions occurring at all three gradient discontinuities ofTw(t). How-
ever, as shown below, the way to alleviate these appears to b
increase the value ofr.

We give also some results for a plate for which Fo2150.07.
Fig. 5~a! demonstrates the effect of the number of future tim
steps used,r, on the heat transfer coefficient; the effect appears
be noticeable only at the gradient discontinuities ofTw(t), but we
notice here that increasingr from 3 to 5 removes the unphysica
oscillation att533 s. Figure 5~b! gives a comparison of the spec
fied temperatureTw(t), with that actually computed numerically
for r 53,4,5. Note here that whilst the numerical scheme cop
well with the first two gradient discontinuities, it copes less we
with the third, with the functionalS in Eq. ~44! being minimized
in such a way that the computed temperature undershoots
desired profile~cf. Fig. 3!, although the extent of the undershoo
decreases with increasedr. Fig. 5c gives the temperature profile a
the quenched surface, and a comparison of Figs. 5~b! and 5~c!
indicates the extent to which plate is a lumped body. Fig. 5~d!
shows the heat flux at the quenched surface; here, as in Fig. 5~a!,
the higher values ofr appear to confer increased stability on th
solution at the gradient discontinuities ofTw(t).

Figures 6~a! and 6~b!, in tandem with Fig. 5~a!, explore the
combined effect ofrDt on the solution for Fo2150.07. As is
evident, all perform in qualitatively similar fashion, but perha
the most interesting quantitative conclusion concerns the stab
of the scheme neart533 s. In particular, the common feature w
find is that the non-physical oscillations inh(t) there can be re-
moved provided thatrDt exceeds a certain critical value: in Fig
5~a!, this value is in the range@0.02,0.025#; for Fig. 6~a!,
@0.033,0.04#; for Fig. 6~b! @0.02,0.0233#.

Finally, Fig. 7 compares the results of a nonlinear computati
using Eq.~54!, with those of a linear one where the thermal co
ductivity is taken to be

k~T![k01k1Tav

whereTav5530°C, the average of the start and end temperatu
As is apparent, for this particular case, the linear formulation le
to an underestimate in the heat transfer coefficient required
obtain the desired quenching conditions.

Fig. 7 Comparison of the numerically computed convective
heat transfer coefficient with constant „‘‘linear’’ … and
temperature-dependent „‘‘nonlinear’’ … thermal conductivity
„FoÀ1Ä0.07,rÄ4…
Transactions of the ASME
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Conclusions

This paper has considered a one-dimensional nonlinear inv
heat conduction problem in the industrial process of quench
using both analytical and numerical methods. The govern
equations were nondimensionalised and the Fourier number~Fo!
was identified as a key controlling dimensionless parame
Asymptotic series could be constructed using this parameter,
these were found on the whole to compare well with results fr
a numerical scheme that was also implemented. The nature o
cooling temperature profile used, a piecewise linear function
time, indicates some of the features of inverse problems with
smooth boundary conditions: whilst both methods agree well
smooth portions of the cooling profile, difficulties were encou
tered with the numerical scheme at gradient discontinuities,
though not necessarily so. Associated with this is the numbe
future time steps,r, that were required. Where the cooling curve
smooth,r 53 was sufficient; otherwise, as many as 5 or 6 we
necessary to stabilize the solution after a gradient discontin
and our experiences show that higher values of Fo21, correspond-
ing to thicker geometries, lead to greater difficulties in this
spect. As for the asymptotic series, it proved advisable to us
symbolic manipulator to compute its terms, since the algebra
comes exceedingly lengthy after just a couple of terms. Howe
a two-term series appeared to be sufficient for predicting the
transfer coefficient to within a couple of percent for Fo as high
10 for the cooling curves used here.

This work is our first attempt to couple heat transfer to t
control of phase transformations in quenching in an inverse w
i.e., by predicting the convective heat transfer coefficient t
would be necessary to produce a quenched product with a de
composition, and which follows the progress of the phase tra
formation in a way which tends to optimize the process~see, for
instance, @13# for another example, although not related
quenching!. The plate/ring quenching analogy provided here w
useful for sufficiently large values of the Fourier number, althou
solutions were presented mainly for the plate. Finally, we sho
note the advantages of the twin analytical/numerical approach
sented here. In particular, nondimensionalisation identifies
magnitudes of key controlling parameters, and thence poss
simple closed-form series solutions that would not have been
dent from the original formulation. These solutions can then se
as a quantitative check against numerical algorithms for the IH
in fact, to the authors’ knowledge, this may well be the first tim
that this has been done. In particular, we note how the approa
complement each other as Fo21 is increased~cf. Figs. 4~a–c!: the
numerical approach gives the desired solution, although this
prove unreliable as a singularity in the boundary conditions
reached; at this point, the analytical solution can provide a gu
as to how the desired solution should behave. In addition, the
that we have implemented the versatile and efficient Keller B
scheme within an inverse problem setting indicates that it sho
be possible to incorporate, in an expedient way, more of the ph
cal features associated with gas quenching, such as phase
formations and distortion.

Naturally, a full treatment of a coupled inverse/optimizati
problem of this sort in gas quenching would involve the inve
prediction of the optimal time-dependent heat transfer coefficie
in three dimensions for arbitrary complex geometries, with
physical phenomena modeled in the numerical simulation. Ne
theless, the validation of computer codes for such calculati
would require benchmark comparisons in simple geometries, s
as those presented here. Finally, the algorithm presented wou
useful in practice in reducing computational time for inverse pr
lems involving simpler geometries, where there is no need to
the full multidimensional functionality typically provided in ven
dor software.
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Nomenclature

cp(T) 5 temperature-dependent specific heat capacity,
Jkg21K21

c̃p(u) 5 dimensionless temperature-dependent dimensio
less specific heat capacity

@cp# 5 specific heat capacity scale, Jkg21K21

Fo 5 Fourier number
h(t) 5 time-dependent heat transfer coefficient,

Wm22K21

(hi) i 50,1,.. 5 terms in the asymptotic expansion forh(t)
h6(t) 5 time-dependent heat transfer coefficient on inne

and outer ring surfaces, Wm22K21

(hi 6) i 50,1,.5 terms in the asymptotic expansion forh6(t)
k(T) 5 temperature-dependent thermal conductivity,

Wm21K21

k̃(u) 5 dimensionless temperature-dependent dimensio
less thermal conductivity

@k# 5 thermal conductivity scale, Wm21K21

L 5 plate/ring half thickness, m
M 5 number of points for discretisation int
N 5 number of points for discretisation inX

Nnewt 5 number of Newton iterations for Eqs.~42! and
~43!

Nvar 5 number of times that the variational equations
~50! and ~51! are solved

q 5 source term in Eq.~51!
Q 5 ]u/]X
Q̃ 5 ]Q/]b
Q̂ 5 ]Q̃/]b
r̄ 5 radial coordinate~ring!, m
R 5 dimensionless radial coordinate~ring!
R̃ 5 scaled dimensionless radial coordinate~ring!
r c 5 average ring radius, m
Rc 5 dimensionless average ring radius

r 5 number of future time steps used for the function
specification method

S 5 functional defined in Eq.~44!
t 5 time, s

T 5 temperature, K
t f 5 quenching end time, seconds
Ti 5 initial uniform temperature, K

Tw(t) 5 time-dependent desired quenching temperature,
T` 5 ambient temperature, K

x 5 normal coordinate~plate!, m
X 5 dimensionless normal coordinate~plate!
b 5 guess for]u/]X at quenched surface
« 5 reciprocal of the dimensionless average ring ra-

dius (Rc
21)

u 5 dimensionless temperature
ũ 5 ]u/]b
û 5 ]ũ/]b

uw(t) 5 dimensionless desired quenching temperature
(u i) i 50,1,. 5 terms in the asymptotic expansion foru

u` 5 dimensionless ambient temperature
r 5 density, kgm23

t 5 dimensionless time
w 5 functional defined in Eq.~49!
x 5 O(1) constant~«Fo!
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