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Abstract—The three-dimensional velocity and temperature ficlds,and in turn the average Nussclt number and
representative streaklines were computed by a finite-difference method for a cellular element with a length-to-
height ratio of 7 and several postulated width-to-height ratios near unity in a rectangular enclosure heated
from below, perfectly insulated on the lateral surfaces, and inclined about the long dimension. Calculations
were carried out for Ra = 4000, Pr = 10and asingle grid spacing (non-uniformin the longdimension)for cells
with dragless lateral boundaries and for those with one dragless and one rigid. Computations such as these
have previously been utilized to develop a simple, theoretically based method for the prediction of Nu in
horizontalenclosures of arbitrary aspect ratios. Further calculations are necessary to support suchamethod of
prediction for inclined enclosures and to define its limits of applicability.

NOMENCLATURE

arbitrary function

acceleration due to gravity [m s™2]
distance between heated and cooled
surfaces [m]

thermal conductivity [Wm™! K~1]
width of cell [m]

l dimensionless width of cell, L/H

Nu  average Nusselt number, gH/k(T, —T7)
Pr Prandtl number, v/a

q average heat flux density [W m~2]
Ra  Rayleigh number, gf(T, — T)H3/av
T temperature [K]

T.. temperature of cold surface [K]

Ti temperature of hot surface [K]
t

u

U

A4

v

|4

e~

~ =

time [s]
velocity component in x-direction [ms™1]
dimensionless velocity component in
x-direction, uH/a
velocity vector [m s~ 1]
velocity component in y-direction [m s™1]
dimensionless velocity component in
y-direction, vH/x
w velocity component in z-direction [m s~ 1]
W  dimensionless velocity component in
z-direction, wH/x
coordinate in shorter horizontal dimension
of enclosure [m]
dimensionless coordinate in x-direction,
x/H
transformed dimensionless coordinate in x-
direction [see equation (9)]
coordinate in longer horizontal dimension
of enclosure [m]
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Y dimensionless coordinate in y-direction,
y/H

z distance from cold plate [m]

VA dimensionless coordinate in z-direction,
z/H

Greek symbols

a thermal diffusivity [m? s~ ']

Ji] volumetric coefficient of expansion with
temperature [K ']

0 angle of inclination of heated surface from

horizontal [rad]

v kinematic viscosity [m?s~!]

T dimensionless time, ta/H?

(1) dimensionless temperature,
QT-T,—T)2AT,—-T)

] dimensionless vector potential [defined by

equation (5)]

v; i-component of dimensionless vector
potential

Q dimensionless vorticity vector [defined by
equation (4)]

Q; i-component of dimensionless vorticity
vector

Subscripts

c center of cell (X = 3.5, Y =0.5,,Z = 0.5)
i index; x, yand z

1. INTRODUCTION

NATURAL convection in inclined rectangular en-
closures of low aspect ratio, with heating from below, is
of practical interest in a number of applications
including solar collectors and double glazed windows.
This behavior has, therefore, received extensive study
experimentally. However, as indicated below, theor-
etical results are quite limited in scope.
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As observed by Ozoe et al. [1] for air and silicone oil
and by Qertel {2] for nitrogen and silicone oil, at the
Rayleigh number of this investigation (4000), the stable
flow pattern for low angles of inclination about the
longer dimension as an axis is a series of stationary rolls
with their axes in the upslope, as shown in Fig. 1. As
shown photographically by Ozoe et al. [3], each of
theserollsisconfined to arectangular volume, hereafter
designated as a cell, whose dimensions do not change
with inclination, i.e. each fluid particle remains within
the cell. It is this observation that makes possible the
model and calculations presented herein.

At some critical angle, a transition occurs from these
multiple cells to a single circulation up the heated and
down the cooled surface. According to the theory of
Hart [4] and the experiments of Hollands and Konicek
[5],thecriticalanglefor Ra = 4000and a nearly infinite
layer of fluid is 651/180 rad. As discussed by Clever and
Busse [6], Ruth er al. [7], Oertel [2] and others,
transitions to unstable (turbulent) convection may also
occur as a complex function of Ra, Pr, inclination and
the aspect ratios.

Ozoe et al. [1, 8-117 and Arnold et al. [12] have
shown experimentally, and Ozoe et al. [10, 11, 13]
theoretically, that for channels (finite in 2-dim.) and
boxes (finite in 3-dim.) the Nusselt number goes
through a minimum, then a maximum, and finally
decreases to unity, as the angle of inclination about the
longer horizontal dimension as an axis is increased
from O to = rad. The inclinations for the minimum and
maximumin the Nusselt number were found by Ozoe et
al. [1] to be independent of the Rayleigh number and
the major aspect ratio over the range of their
experiments (for which Ra cos 0 always exceeded the
critical Rayleigh number for no inclination) but to be a
strongfunction of the minor aspect ratio. The minimum
in the Nusselt number was found from photographs [3]
and computations [10, 13, 14] to be associated with the
transition from a series of rolls with their long
dimension in the upslope to a single circulation with its
axis parallel to the longer dimension. The rolls in the
series (before transition) were each found to be
composed of two symmetrical half-rolls. Fluid particles
are restricted to one of these half-rolls. As the

F1G. 1. Sketch of roll cells in an inclined enclosure.
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inclination increases the half-rolls become more and
more distorted, and the curved plane of separation of
their particle-paths becomesincreasingly oblique to the
axis of the cell. Transition occurs when this plane of
separation crosses the diagonal plane of the cell. The
maximum in the Nusselt number appears to occur
when the upper edge of the enclosure passes above the
diagonally opposite lower edge (the axis of inclination),
thus providing the greatest vertical path for the fluid.
Ayyaswamy and Catton [15] showed that the solution
of Gill [16] for the boundary layer regime of a vertical
channel (0 = n/2 rad) could be adapted for an inclined
channel in the single-roll regime. Catton et al. [17]
subsequently used the Galerkin method to derive an
approximate solution for this same regime. Ozoe
et al. [8, 9] developed finite-difference solutions
for the single-roll regime of inclined 1 x o x 1 and
2 x oo x 1 channels.

The fluid motionis 3-dim. in the multiple-roll regime
of inclined channels and for all conditions in boxes,
thereby severely handicapping theoretical analysis.
Three-dimensional solutions for inclined enclosures,
prior to-this paper, are apparently restricted to the
finite-difference solutions of Ozoe et al. fora 1 x 0o x 1
channel[13],a2 x oo x 1 rectangular channel[14],and
alx2x1box[10, 117. Oertel [2] has noted that the
influence of those surfaces which produce three-
dimensionality in a horizontal enclosure dies away
within a distance approximately equal to the height of
theenclosure. Therefore, theerrorin the overall Nusselt
number due to the neglect of three-dimensionality
decreases as the two aspect ratios increase. However, he
further indicates that effect of three-dimensionality is
more pervasive with inclination.

This paper presents thefirst detailed study of the fluid
motion within along cellular region (herein called a cell)
in the multiple-roll regime of a finite enclosure inclined
about its longer dimension. Results were obtained by
the finite-difference solution of a 3-dim. model for the
velocity and temperature fields. The rate of heat
transfer was in turn computed from the latter. The
calculations were restricted by reasons of economy to
the representative conditions of Ra = 4000, Pr = 10,
and a cell length-to-height ratio of 7. Cells with both
free-free and rigid-free lateral boundaries were
considered, corresponding to central and edge cells,
respectively, in a finite enclosure. The only significant
idealization in the model is the postulate of a fixed,
known cell width.

The results of this basic study are presumed to be
applicable to finite-enclosures insofar as this mode of
circulation prevails and insofar as the width of the role
cells can be postulated. Ozoe et al. [18] have recently
utilized corresponding results for a horizontal
enclosure to predict the overall Nusselt number
without empiricism other than for interpolation. A
similar general method of prediction for enclosures
inclined about their long dimension as an axis will
require lengthy computations for additional Rayleigh
numbers, Prandtl numbers, aspect ratios and grid sizes.
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In addition, the range of conditions in which the
postulated mode of circulation occurs must be defined
experimentally. The simplicity and utility of such a
method of prediction would appear to justify this
additional work, despite its high cost.

2. CELL WIDTH

The applicability of the calculations in this paper to
enclosures depends on the advance postulate of a
known cell width for each Rayleigh number, Prandtl
number and pair of aspect ratios. The state of
knowledge on this subject will therefore first be
examined.

The width-to-height ratio of the roll cells in an
infinite layer of low-Prandtl-number fluid, confined
between rigid, horizontal, isothermal surfaces and
heated from below is known to increase from unity as
the Rayleigh number increases above its critical value.
Koschmieder [19] provides a thorough discussion of
these data. However, Dubois and Bergé [20] recently
showed experimentally that for a large-Prandtl-
number fluid the cell width remains equal to the height
for Rayleigh numbers up to ten times the critical value.
All early theoretical analyses based on 2-dim. models
[19] predicted a decrease in cell width with Rayleigh
number. Eventually, however, Lipps and Somerville
[21], using a 3-dim. transient model, obtained cell
widths in agreement with the experimental obser-
vations, and hence concluded that the increase in roll-
cell width is a 3-dimensional, transient process even
though the steady motion is 2-dim.

Oecrtel [11] carried out a theoretical and experi-
mental study of cell width for rectangular boxes.
Because of the lateral confinement, a change in cell
width requires a change in the number of roll cells and
hence is an essentially discrete process. He observed
experimentally that for nitrogen (Pr = 0.7) the number
ofroll cells in a 4 x 10 x 1 box changed from 10 to 9 at
Ra = 2300, to 8 at 5650 and to 7 at 8900. Transition to
turbulence then began at Ra = 11300. On the other
hand, forsilicone oil (Pr = 1780), the number remained
at 10 up to Ra = 12000. This result was generally
confirmed by his finite-difference calculations, al-
though that formulation, because of an artificially
imposed symmetry, permitted only an even number of
roll cells. He concluded from experiments with both
nitrogen gas and silicone oil that the same general
behavior occurs in inclined boxes, but did not provide
quantitative evidence.

The computed and experimental streaklines of
Oecrtelindicate that the two cells adjacent to the lateral
walls are somewhat narrower than the eight
intermediate ones, which are essentially uniform in
width. However, Samuels and Churchill [22], using 2-
dim. finite-difference calculations found that the cells
adjacent to the walls were slightly wider than the
central one in a 3 x 0o x 1 channel.

Ozoeet al.[3],ina photographicstudy of roll cells in
glycerol (Pr = 3000)at Ra = 12000ina2 x 12 x 1 box,
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found that the number of cells remained constant at 12
up to the angle of transition at about 7z/180 rad. The
width of the bounding cells, which may have been
influenced by the finite conductivity of the side walls,
did not differ significantly from the intermediate ones,
and was in some cases greater and in others less.

From the above results, it is concluded that the cell
width-to-height ratio in a finite enclosure should be
nearly unity for the conditions of thisstudy (Ra = 4000,
Pr=10 and a length-to-height ratio of 7).
Furthermore, this ratio would not be expected to
change significantly for other Rayleigh numbers from
the critical value up to at least 12000, for larger Pr,and
for other length-to-height ratios. This ratio might
increase stepwise with Ra for smaller Pr. Therefore, the
basic calculations were carried out for a ratio of cell
width-to-height ratio of unity, but test calculations
were carried out for a range of cell width-to-height
ratios to determine the sensitivity of the circulation and
the Nusselt number to this ratio.

For the multiple-celt regime the division of the
circulation into two rigid-free cells and a number of
identical free—free cells is physically justifiable insofar
as the correct width-to-height ratios of these two types
of cell can be specified. For the single circulation which
occurs at large inclinations, such a division has no
physical counterpart. However, this procedure is
justifiable mathematically insofar as the effect of the
drag of the lateral boundaries is confined to a distance
of less than one height unit from the wall.

3. MATHEMATICAL MODEL AND PROCEDURE

The 3-dim. model, finite-difference approximation,
and process of solution previously used by Ozoe et al.
[13] for a 2 x 1 rectangular channel were adapted for
the 7H x L x H cellillustratedin Fig. 2. The final form of
the model in terms of the vector potential and vorticity,
and expressed in dimensionless variables is

Vy=0, ()
cdh
- cos 0
oy
D@ 50 O
= _(Q-V)V = RaPr|=—sin 0+ = cos 0]+ PrveQ
Dz dz ax
cd
it sin 0
dy
(2
and
Do
= 2 3
Dz vie (3
where
0Q=VxV=-VYy (@)
and
V=Vxy. 5)
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FiG. 2. Schematic of cellular region in a rectangular enclosure
withT,atz=0and T,atz=H.

The boundary conditions for the cell with dragless
boundaries at Y = 0 and [, and adiabatic surfaces at
X =0,7are

oy ow
a—Xx='I’y=l//z=Qx=0,Qy=—67,
_v a(D—O tX =07 (6
2= ax X =07
Ay oU oW
Vx=gy =Ve=gy “oy ~ P =R=0
Q, oo
a—Y—a—Y—OatY—O,I, (7)
s , ov
Yy, =—2LQ, = - —
‘px llbY aZ QZ O’QX aZa
au
Qy=—0=7F0. =0,1.
v =57 F05atZ=0,1. (8)

For a cell at the edge of the enclosure the boundary
condition at Y = 0 was replaced with the analog of the
one for X = 0. The lateral walls of the enclosure were
thus also postulated to be adiabatic. '

For the finite-difference approximation a uniform
grid spacing of 0.1 was used in the Y and Z directions,
and 10 equal spaces in

X = 1512771829 In (1+2.60317127X)  (9)

for 0 < X < 3.5, and 10 symmetrically located spaces
for 3.5 € X £ 7.0, as illustrated in Fig. 3.

The derivatives of an arbitrary function of X can be
approximated in terms of X as

(Z) - L 2% LS Eed I @ (78)
0X /), oX 0X ~ 20X X

X
‘ 3 7
00 35

z

T
1 +
1 i =1

F1G. 3. Grid array for finite difference calculations.
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and
CV)—aaW P (9XY?
ax7), " ax ox? TaxT\ox
o R of(Bi) (72)
= 20X ox?
ﬂxﬂnﬂquvﬁaégf(m
(AX)? 0Xx

Alternatively, the derivatives can be approximated by a
Taylor series expansion in terms of X, Y and Z as

(af) _(XI—X1-1>< Jiv1=fi )
ﬁ ,-_ X.'+1'_Xi Xi+l—X|'—l

X=X\ (_fities
+(Xi—Xl'—l)(Xl'+l—X‘—1> (12)

and
(_aZ_f) _ Yirs
aXZ i (Xi+l_Xi)(Xi+l—Xi—l)
2;
(X=X ) (X — X))
iy

. 13
T E X)Xy P

Test calculations with f = X2, X3 and e* revealed
that equations (10) and (11) provide a less accurate
representation than equations (12) and (13). Hence the
latter were used.

The dimensionless temperature and three com-
ponents of the vorticity, vector potential and velocity
were computed from the finite-difference model.
Representative streaklines were in turn calculated from
the velocity field and the average Nusselt number from
the temperature field.

4. RESULTS

4.1. Dependence of circulation and Nusselt number on cell
width

In the multiple-roll regime the cell is aligned with the
shorter horizontal dimension. Thus a dimensionless
cell length (length-to-height ratio) of 7.0 implies an
enclosure with an equal or greater dimensionless width
(width-to-height ratio). Finite-difference calculations
for such a dimensionless width are precluded by the
amount of computation which would be required by
the associated number of grid points. The restriction of
attention to a single cell greatly reduces the
computations, but imposes the arbitrary postulate of a
cell width. The dependence of the fluid motion and heat
transfer on the postulate was therefore first in-
vestigated, and for simplicity, for no inclination.

The average Nusselt number, Nu; the absolute value
of the dimensionless X-component of the vector
potential at the center of the roll, |{,).; and the
volumetric averages of UZ, V2, W? and U4 V2 4+ W?
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are plotted versus the postulated dimensionless cell
width in Fig. 4(a) for drag-free ateral boundaries. The
square of the components of the velocity and their sum
are proportional to the corresponding kinetic energies.
The average Nusselt number and the volumetric
averageofthe total kineticenergy, which is a measure of
the overall strength of the circulation, are seen to have
their maximum value at /=1 The individual
volumetricaverages of ¥2and W2 areseen tocross over
at this point, while U?is negligible for all I, The quantity
[¥xlc which is a measure of the strength of the
circulation for a roll with its axis in the x-direction
peaks at [ 2= 1.25.

Figure 4(b) is the comparable plot for a cell, adjacent
to the side wall of the enclosure, with one rigid and one
dragless lateral boundary. In this case the average
‘Nusselt number peaks at 1z 1.1, the volumetric
average kinetic energy.at ~ 1.2 and [if4|. at ~1.4. The

2.05 55

Nu Y

200 50

1951 0>s""_ 150145
1_9 < L = o <& 0 _ 4‘0
(a) 09 10 11 12 13
{
1.80 6.0
Nu 2 1)
1.75 5.0
170 740
165 Fvr——1-0-—30
(b) 09101 12131415
2

F1G.4. Effect of roll width on Nu ;the volumetric average of U2,
V2, W2and U2+ V24 W2, and ,)..

~@-Nu,~O- 1, ~0- U2+ V24 W3-V~ U, -A- V2,
-[3- W2 (a) Dragless lateral boundaries for cell (free-free).

(b) One dragless and one rigid lateral boundary for cell
(free—rigid).
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volumetric averages of U2 and W? cross over at
1= 1.03, and again U?is negligible for all /.

This test is obviously indecisive, although the
predominance of evidence indicates the most stable
dimension!less cell width is in the range of 1.0 to 1.1,
which is in accord with prior observations and
calculations. The calculations for inclined cells were
therefore limited to I = 1.0 and 1.1.

4.2. Mean Nusselt number across an inclined celt

The computed mean Nusselt numbers for 7x1x1
cells with free—free and rigid—free lateral boundaries are
plotted versus the angle of inclination in Fig. 5. The
Nusselt number is seen to be lower, as expected, for the
rigid—free cell. Just asforthe1 x 1 x land 2 x 1 x 1 cells
previously studied [10, 11, 14], a decrease to a
minimum value (at the point of transition from multiple
roll cells to a single one) followed by an increase to a
maximum value and a decrease to unity is to be
observed as the inclination increases from 0 to = rad.

The minimum and the maximum occur at essentially
the same angles for free—free and the rigid-free lateral
boundaries. The indicated angle of 50x/180 rad for the
minimum is in good agreement with the prediction of
497/180 rad by the empirical correlation of Ozoe et al.
[1]and theindicated maximum angle of ~87x/180rad
with the theoretical prediction of tan™! (7} = 82n/180
rad by Churchill and Ozoe [23].

The average Nusselt numbers calculated for a
dimensionless cell width of 1.1 did not differ
significantly from those calculated for 1.0, as indicated
in Fig. 5 by the solid triangles for a free—rigid cell. Hence
the postulate of a cell width would not be expected to
influence greatly the predictions for a finite enclosure.

4.3. Volumetric-average kinetic energy of aninclined cell

The open symbols in Fig. 6 indicate the variation of
the volumetric-average . kinetic energy and the
contributions of its three components with inclination
for a free-free cell. These values are for I=1.0.
Representative values (solid and half-solid symbolsyare

L L L L DL O L L
2.0 .
Nu [ i
1.5~ n

1 Il H ] 1 1
0 E3 I3 x 2% 5% T
6 3 2 3 6
— B (rad)

F1G. 5. Effect of inclination on average Nusselt number of cell.
—A- free-free boundaries; I = 1, - A— free-rigid boundaries;
I = 1,-0O- free-rigid boundaries; I = 1.1.
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F1G. 6. Effect of inclination on volumetric average of squared
velocities:

free-free, free-rigid, free-rigid,
I=1 I=1 =11
U2+ V24 W2 ~-Vv- -v- -
U? Q- Y X
p? A
w2 -0--

included for a free-rigid cell (with I =1.0 and 1.1,
respectively).

Inclination is seen to produce a rapid increase in U?
from near zero, and a rapid decrease in V2 and W2, For
the free—free boundary condition, V2 is properly zero
beyond the point of transition to a single 2-dim.
circulation path: W? is relatively small beyond this
point but has a finite value owing to the reversal in the
direction of circulation at the ends of the cell. A
noticeable break occursin U2 and in U+ V2 4+ W2 at
the point of transition. The maximum in theselatter two
quantities occurs at the same angle as for Nu. All of
these values are higher for the free-free cell than for the
free-rigidone,andall areslightly higherfor/ = 1.1than
for 1.0 for the free-rigid cell.

4.4. Vector potential at the center of an inclined cell

The three components of the dimensionless vector
potential at the center of the cell (X =3.5, Y = 0.5/,
Z = (0.5) are plotted versus the angle of inclination in
Fig. 7. ¢« and i/, are properly zero at all locations
(although only the value at the center of the cell is
shown) for a free-free cell at inclinations beyond the
point of transition. For the free—rigid cell these two
quantities are zero at the center but have finite values
elsewhere owing to the three-dimensionality imposed
by the drag of the lateral wall.

4.5, Streaklines in an inclined cell

The character of the circulation is more clearly
revealed by the representative streaklines in Figs. 8-18.
Each streakline represents the transient, cyclic motion
of a fluid particle in a steady state flow field. Traces of

Hirovuxt Ozor, Keuchi Fusi, Noas Lior and Stuart W. CHURCHILL
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F1G. 7. Effect of inclination on components of vector potential
at center of cell:

free-free,l =1 free-rigid,! = 1 free-rigid, ! = 1.

Yx -O- -0- -0-
vy -A- -v- -A-
V2 -O- -u- -m-

streaklines are shown for the free-free cell at
inclinations of 0, 207/180, 307/180, and 407/180 rad in
Figs. 8-11, and a perspective view for the same
inclinations plus 907/180 rad in Fig. 12.

The streakline for no inclination reveals a spiral
movement near theends of the cell. This calculation was
stopped after 3000 time-steps with Az =0.002 to
conserve computer time. If the calculation had been
continued, a coaxial return spiral to the initial point
would have been produced. It can be inferred from this
plot that the effect of the drag of the end walls is
essentially confined to one dimensionless length, i.c. all
streaklines in the central region would be nearly 2-dim.
in an x-plane. The circulation is composed of two
antisymmetrical, half rolls in corresponding halves of
the cellitself. It has been confirmed experimentally [ 24]
that all fluid particles are confined to one or the other of
these half cells. For no inclination the plane of
separation of the half cells is the central x-plane.

For inclinations of 20x/180, 30r/180 and 40x/180,
the streaklines are seen in Figs. 9-12 to become
increasingly oblique and complex. The curved plane of
separation of the two half cells gradually approaches
the diagonal plane of the cell. The axis of the roll is
curved but remains in the midplane parallel to the
heated surface at 30n/180 rad. However, for 40r/180
rad, the single streakline which is shown extends over
the length of the cell and the circulation pattern is no
longer a simple roll. For inclinations greater than
507/180rad, the streaklines are 2-dim. ina y-plane. This
pattern is maintained for all higher inclinations, as
illustrated in Fig. 12(e) for 907/180 rad.

Corresponding streaklines for a free-rigid cell with
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FIG. 8. Top view of streaklines for no inclination in a free—free cell with I = 1. A-Starting points (0.1,0.45,0.45)
and (6.9, 0.55,0.55) T = 6, At == 0.002.

F1G. 9. Traces of streaklines for 0 = 207/180 rad in a free-free cell with I = 1. A-Starting point (0.1, 0.8, 0.5)
7= 3,Atr=0.002.

F1G. 10. Traces of streaklines for 0 = 30x/180 rad in a free—free cell with ! = 1. A-Starting points (1.0,0.2,0.5)
and (6.0,0.8,0.5) t = 3, At = 0.002.

Fi1G. 11. Traces of streaklines for 8 = 40r/180 rad in a free—free cell with I = 1. A-Starting point (3.0,0.2, 0.5)
7 =3, At = 0.002.
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F1G. 12. Perspective view of streaklines for vatiousinclinations for a free-frec cell with# = 1. A-Starting points
(0.1, 0.5, 0.5) for 6 = 90n/180 tad, otherwise same as before. Eye point (— 100, 100, ~70). (a) 0 =0 rad.
(b) 0 = 207/180 rad. (c) 0 = 30x/180 rad. (d) 6 = 40x/180 rad. (¢) 0 = 90x/180 rad.

UW\-/\/\@

AV Iy

FIG. 13. Traces of streaklines for no inclination of free-rigid cell with! = 1. A-Starting points(0.1,0.5,0.5)and
(69,0.5,0.5) = 4, At = 0.002.
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F1G. 14. Traces of streaklines for @ = 207/180 rad in free-rigid cell withI = 1. A-Starting points (0.5, 0.8,0.5)
and (5.5,0.2 and 0.5) T = 2, At = 0.02.

'“3"“"' —

”.._é-a____..‘:'.‘:

o

e
:-:Sr.h---- PRt r Y- bt sle e

F1G. 15. Traces of streaklines for 0 = 407/180 rad in free-rigid cell with I = 1. A-Starting points (2.0,0.2,0.5)
and (6.0,0.8,0.5) T = 2, At = 0.002.

FIG. 16. Traces of streaklines for @ = 507/180 rad in free-rigid cell with I = 1. A-Starting points (2.0, 0.2, 0.5)
and (6.0, 0.15, 0.5) T = 4, At = 0.002.

I =1 are illustrated in Figs. 13-18. For no inclination
the circulation is similar to that for the free-free cell
but is slightly eccentric. At 407/180 rad, the particle
paths do not extend as far as for the free—free cell. At
507/180 rad, the illustrated particle path near the free
boundary is nearly 2-dim., but the second particle path
reveals a nearly stagnant region in the central core,
accounting for the minimum in the WNusselt

HMT 26:10-B

number. The circulation is seen to be quasi-2-dim. at
907/180 rad. The nearly stagnant central core is res-
ponsible for the lower Nusselt number relative to the
horizontal case. The same interpretation is applicable
to the free—frec cell.

The streaklines computed for | = 1.1 were not found
to differ significantly from those for I = 1.0, and hence
are not reproduced here.
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FIG. 17. Traces of streaklines for 0 = 90x/180 rad in free—rigid cell with{ = 1. A-Starting points (3.0,0.2,0.5)
and (1.0,0.8,0.5) T = 4,At = 0.02.

F1G. 18. Perspective view of streaklines for various inclinations of free-rigid cell with [ = 1. A-Starting points
are the same as before. Eye point (— 100, 100, —70). (a) # = 0 rad. (b) 0 = 207/180 rad. (c) 0 = 40r/180 rad.
(d) 0 = 507/180 rad. (e) 0 = 90n/180 rad.



Natural convection in an inclined, rectangular enclosure

5. SUMMARY AND CONCLUSIONS

This paper presents the first theoretical results for the
3-dim. fluid motion and for the rate of heat transfer in
the multiple-cell regime of rectangular enclosures of
large but finite dimensions, inclined about the longer
dimension as an axis.

The postulate of aknown, fixed cell width and the use
of a staggered grid in the longer dimension made
solution by finite-differences feasible for this geometry.
The persistence of such fixed, essentially square cells
has previously been confirmed experimentally.

Calculations were carried out for two dragless lateral
boundaries, correspondingto a cellin the central region
of the enclosure, and for one dragless and one rigid
lateral boundary, corresponding to a cell next to one of

.thelateral walls of the enclosure. This division into only
two types of cells is justifiable physically for the
multiple-roll regime, insofar as the effect of the drag of
the lateral walls does not extend beyond one height
unit. This latter postulate has been confirmed
‘experimentally.

The calculations were limited to Ra = 4000 and Pr

“= 10 but are presumed to be quantitatively applicable

for larger Pr and qualitatively for smaller Pr, and for
larger Ra in the laminar regime. However, an unstable
(turbulent) motion may occur for some yet undefined
ranges of Pr and Ra.

The calculations are limited to a single finite grid
spacing but are presumed on the basis of prior
calculations for related behavior to be in only slight
error due to truncation. Empirical extrapolation of the
Nusselt number for this grid spacing to zero grid size
may be possible, but extensive further calculations
would still be necessary.

The strength of the flow pattern is characterized by
plots of the volumetric average kinetic energy and by
the component of the vector potential in the direction of
the long dimension of the cell. The angle of inclination
for transition from the regime of multiple rolls to a
single circulationis clearly identifiable from these plots.

The results of this investigation are applicable for the
theoretical prediction, without any empiricism, of heat
transfer in finite rectangular enclosures, but are
incomplete in that respect, results for other grid-
spacings, cell lengths, Prandtl numbers and Rayleigh
numbers being necessary. In addition experimental
measurements are necessary to define the conditions
under which this type of stable cellular motion occurs.
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ROULEAUX ALLONGES PAR CONVECTION NATURELLE
DANS UNE ENCEINTE INCLINEE ET RECTANGULAIRE

Résumé— Leschamps tridimensionnelsde vitesse et de température, et par suite lenombre de Nusselt moyen et
la ligne de courant sont calculés par une méthode aux différences finies pour une cellule avec un rapport
longueur-hauteur égal & 7 et plusieurs rapports largeur-hauteur proche de I'unité dans une enceinte
rectangulaire chauffée 4 la base, parfaitement isolée sur les faces latérales et inclinée par la grande dimension.
Des calculs sont faits pour Ra = 4000, Pr = 10 et un espacement unique (non uniforme dans la grande
dimension) pour des cellules avec des frontiéres sans trainée et pour d’autres avec une frontiére sans trainée et
'autre rigide. Des calculs tels que ceux-ci ont été précédemment utilisés pour développer une méthode simple
théorique pour la prévision de Nu dans des enceintes horizontales avec des rapports de forme arbitraires.
Drautres calculs sont nécessaires pour appuyer cette méthode dans le cas des enceintes inclinées et pour définir
ses limites d’application.

LANGE WIRBELWALZEN, DIE DURCH NATURLICHE KONVEKTION
IN EINEM GENEIGTEN, RECHTECKIGEN HOHLRAUM ENTSTEHEN

Zusammenfassung—Mit Hilfe eines finiten Differenzen-Verfahrens wurde fiir ein zellenartiges Element das
dreidimensionale Geschwindigkeits- und Temperaturfeld und daraus die mittlere Nusselt-Zahl und
repriisentative Stromlinien berechnet. Flir den rechteckigen Hohlraum werdenein Langen/Hohen-Verhaltnis
von 7und verschiedene Breiten/Hohen-Verhiltnisse nahe 1 angenommen. Der Raum wird von unten beheizt,
istanden Seitenwinden idealisoliert und in Langsrichtung geneigt. Die Berechnungen wurden fiir Ra = 4000
und Pr = 10 mit einem ungleichmaBigen Gitter ausgefihrt, und zwar fiir Zellen mit reibungsfreien seitlichen
Begrenzungen und fiir solche, bei denen die eine zeitliche Begrenzung reibungsfrei und die andere fest ist.
Ahnliche Berechnungen sind bereits verwendet worden, um ein einfaches, theoretisch begriindetes Verfahren
zur Berechnung der Nu-Zahlin waagerechten Hohlriumen mit beliebigen Seitenverhiltnissen zu entwickeln.
Um ein derartiges Berechnungsverfahren auf geneigte Hohlriume anwenden zu kénnen, und die Grenzen
seiner Anwendbarkeit zu bestimmen, sind weitere Berechnungen erforderlich. -

JUTHHHBIE BAJIbI, OBPA3VIOIHECS MPH ECTECTBEHHOM KOHBEKUHH B
HAKJOHHBLIX MPAMOYIOJIbHBIX TMOJOCTAX

Annotauns —KoHe4HO-PA3HOCTHBIM MCTO10M PACCUHTAHBI TPEXMEPHBIC 11018 CKOPOCTH H TEMIIEPATYPBI,
a Takke cpeanee 3padenne uncaa Hycceabra u xapaktepHas CTPyKTypa TeueHHs [L19 sueiikn ¢
OTHOULIEHHEM JTHHBI K BLICOTE, PABHBIM 7, H HCCKOJIBKHMH OTHOLICHHAMH IHPHHDBL K BLICOTE, OH3KHMH
K €IHHHLE, HaXolueiica B HarpesaeMoii CHI3y NPAMOYTO.IbHOI HAKITOHHOI 1010CTH € TENTOH30IHPO-
BaHHBIMH OOKOBLIMH noBepXHOCTAMH. PacueTshl BunoaHsics 1719 3Havennii Re = 4000 u Pr =10 na
oaHoil M TOM ke ceTKe (HEepaBHOMEPHON BIOIb UTHHBI MOJIOCTH) [LI8 fA4€eK CO CBOGOIHBLIMH
6OKOBBLIMI FPAHHLAMH M 718 f4eek ¢ 01noil cBOGOAHON M 01HOIT TBEp10i GOKOBLIMK IPAHHUAMIL.
IMoa1oduble pacuersl yxe IPOH3BOAMINCE PaHee 18 Pa3pabOTKH [IPOCTOTO TEOPSTHYECKOTO METOdd
pacuyeTa 4ncaa Nu B ropH30HTAIBHBIX HOTOCTAX C IPOH3BOILHBIMK OTHOWICHIAMI cTOpOH. Jaabheiiuine
pacyeThl HEODX0aHMBI [L18 0000WeHNA METOJd HE CAYHAil HAKIOHHBIX NOIOCTEH M [ ONpeaecIcHHS
IPAHHLL €70 NPHMEHHMOCTH,





