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constant used in initial data line 
for the turbulent kinetic energy, 
equation (14) 
turbulent empirical constant = 
0.22, equation (3) 
effective sublayer thickness, in 
equation (9) 
exponential constant used in tur­
bulent kinetic energy distribution 
initial data line = 1, equation (14) 
turbulent empirical constant = 
0.38, equation (7) 
skin friction coefficient = 
^Au/Ay)„/V2PUl 
specific heat at constant pressure 
Van Driest damping function, 
equation (9) 
component of gravitational con­
stant in x direction 
thermal conductivity 
Prandtl mixing length 
length of flat plate 
local Nusselt number = 
(-kAT/Ay)wx/[k(Tw-Ta)] 
pressure 
Prandtl number 
turbulent Prandtl number = 0.85 
turbulent kinetic energy/fluid 
density 
Reynolds number 
local Reynolds number based on L 
Pref-^ref^ref/Mref 
local Reynolds number based on x 
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turbulent empirical constant = 
1.7, equation (7) 
temperature 
mean velocity component in 
streamwise x direction 
free-stream velocity 
fluctuating velocity component in x 
direction 
total velocity in y direction, in­
cluding mean and fluctuating 
components 
mean velocity 
fluctuating velocity component in y 
direction 
coordinate along plate in stream-
wise direction 
body force, e.g., buoyancy 
coordinate measured normal to 
plate 
normalized y coordinate, equation 
(10) 
ratio of specific heats = cp/cv 

x/L 
boundary layer thickness 
flat-plate angle of attack with 
respect to the free stream, deg 
empirical constant in turbulent 
flow = 0.41, equation (3) 
dynamic viscosity 
kinematic viscosity 
Patankar-Spalding coordinate in 
direction of flow = x/Z, 
density of fluid 
shear stress 
stream function 
Patankar-Spalding coordinate of 
local stream function \1< normalized 
by yj/e at a specific location £ 

Subscripts 

e = conditions at the boundary layer 
edge (boundary with free stream) 

ref = reference conditions 
t = turbulent component 

w = wall conditions 
wake = turbulent wake conditions 

x = local value measured at x 
co = free-stream conditions 

Superscripts 
= time-averaged value 
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1 Introduction 
As evident from the literature [1-10], the knowledge of tur­

bulent convection over flat plates with an angle of attack is 
limited principally to empirical results of overall heat transfer 
coefficients (possibly in the form of Nusselt numbers or Col-
burn j factors) in some ranges of the Reynolds number. This 
study was motivated in part by the lack of a conclusive method 
to determine heat loss due to wind effects on the exterior of in­
clined solar collectors and photovoltaic panels, as also evident 
from the widespread use of the Jurges correlation (reported in 
[4, 11]), which does not. incorporate any dimensions or fluid 
properties and is thus strictly correct only for the size of plate 
and thermal conditions of Jurges' experiment. The purpose of 
this investigation is to examine the turbulent boundary layer 
flow and corresponding skin friction and convection heat loss 
as a function of free-stream velocity and angle of attack, by 
using a combined analytical/numerical approach. Many such 
approaches exist for the computation of turbulent flow 
[12-21]. The approach taken in this study was to establish and 
solve two models, a zeroth-order one and a first-order one, 
determine their validity by comparison to existing experimen­
tal results and correlations, and compare the effort required 
for their solution. Since it is generally accepted that the zero-
order model is a reasonable approximation, it serves here as a 
base with which the first-order model solution accuracy and 
effort are compared. The most salient elements of the analysis 
and results are summarized below. More details can be found 
in [22]. 

2 Analysis 

Briefly described, the continuity, momentum, and energy 
equations for a two-dimensional, turbulent, steady, time-
averaged compressible boundary-layer flow over a plate with 
arbitrary angle of attack, and including a natural convection 
term, are transformed to the Patankar-Spalding [14] coor­
dinate system. The eddy viscosity is formulated in terms of a 
three-region mixing length Prandtl-Von Karman model which 
incorporated the Van-Driest damping function in the near-
wall viscous sublayer region. 

In the zero-order model, which uses only the partial dif­
ferential equations for the mean velocity field , and no tur­
bulence partial differential equations (i.e., this is the usual 
algebraic mixing length model), the turbulent viscosity p, is ex­
pressed as 

du | 
(1) H,=pP 

dy 
where I is the Prandtl mixing length, and similarly the tur­
bulent thermal conductivity 

du ,, 
/Pr, (2) kt=pPcp 

dy 
In the first-order model the turbulent viscosity is given as 

[13] 

= p(Agl/K)JqV2 (3) M/ = 

where q2 = {u'2 + v'2). Similarly, the turbulent conductivity is 

kl=filcp/Prl (4) 

Pr, was assumed to be constant. Any variations in its value in 
the problem considered here would most likely produce only 
second-order effects. 

The zeroth-order model is the usual algebraic mixing length 
model and the equations would therefore not be reproduced 
here. The equations for the first-order model are 

Momentum: 

— dii du 
P"-^r + pu(oipeve/^e)--— 

d£ dco 

dp 
+ (p«AU[[-~-(l/Rer£f) 

dco v v dco 

+ (Aqpl/K) * J ( p « / * e ) — + [(^/Reref) 

n — f dp du 
+ (Aqpl/K)^fc772][-~-(u/^)-^-

/ du \ 2 — d2u 1~) 
+ ( p / ^ ) ( - ^ - J + (pu/^e)-^-^+X (5) 

where X is the buoyancy force defined as gx ( T - Tm) /T„. 

Energy: 

df df 
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0CO 
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dp 
+ u-£-[(y-l)/y] 

di. 
(6) 

Turbulent Energy [12, 13]: 

pu 
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3£ 
+ (<O/\WP, 

- 9 ( < 7 2 / 2 ) l 

du I2 

= P {Aq/K)l4qW2 [o , u /^) -£-] 

- {pBqK/l){.q2/2f2 + (p2u/J,e) [[(1/Reref) 
dv 

dco 

•M^>(4^7^)] 
d(q2/2) 

»(p«/^) , J+[0VRe r e f) 
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dco 

d2{q2/2Y 
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dco dco v l " Te' dco2 

The mixing length / is defined for three boundary layer 
regions. 

In the viscous sublayer 

l=icyD (8) 

where D is the Van Driest damping function 

7J>=l-exp(-.y + /,4 + ) (9) 

y+ is the normalized y coordinate 

y+ =y{-^Jp~wVvw (10) 
and A + is the effective sublayer thickness which was found to 
be approximately 26 based on experimental results in [13]. 

In the near wall regions, 26<y+ <y^ake 

l = *y (11) 

where K = 0 . 4 1 . 

Journal of Heat Transfer FEBRUARY 1987, Vol. 109/239 

Downloaded 13 Aug 2012 to 158.130.78.155. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



In the wake region, defined by j '>0.26, as suggested in [13] 

7=0.0856 (12) 

The pressure gradient dp/d£, is supplied by the potential 
flow relation for an infinite wedge [3]. The ideal gas state 
equation was used, and the Sutherland model for the 
molecular viscosity [3], and constant thermal conductivity and 
specific heat were assumed. The coefficients used in the tur­
bulent models are defined in the Nomenclature. The boundary 
conditions on the turbulent kinetic energy are that q2/2 is zero 
at the wall and approaches free stream turbulence as y~<x> 

Urn = 1.5(t?~2) (13) 

where, based on results from wind-tunnel experiments, it was 
assumed that u '2 /C/o o=0.01. An initial data line for the 
boundary condition was provided, and the following distribu­
tion was prescribed based upon results reported in [23] 

q2/2 = Aye-B>'1 (14) 

where it was assumed that B = 1, and A was calculated from 
equations (13) and (14). For both models the boundary condi­
tions at the plate are no-slip for the velocity, and arbitrarily 
specified temperature. 

At the boundary layer edge, the initial guess for the stream 
function \j/e, and the normal mass flow (pv)e, needed in equa­
tions (5)-(7), are obtained from an integral solution of the tur­
bulent boundary-layer momentum and energy equations for 
this wedge flow problem. The solution of the integrated equa­
tions is obtained by a fourth-order Runge-Kutta method 
which only took about 1 percent of the total computation 
time. The integral solution insured that a good upper limit to 
the boundary layer thicknesses was predicted initially, thus 
placing the numerical models' velocity and temperature pro­
files in the proper domain. This produced solutions with only 
a small number of iterations, or occasionally with none at all. 
Ue is obtained from the potential flow solution for the wedge 
13]. 

3 Method of Solution 
The momentum, energy, and turbulent kinetic energy equa­

tions (such as equations (5)-(7)) in the first-order model are 
placed in a linearized central finite difference form compatible 
with a tridiagonal matrix inversion solution scheme, implicit 
in the w direction and explicit in the £ direction. 

The conditions required for the stability of the explicit part 
of this numerical scheme were evaluated to be 

A£<(Aco)2 (15) 

The discretization error for the finite difference equations in 
both models is 0[(Au)2]. For the zeroth-order model, well-
behaved results were obtained for A£ <0.005. A further reduc­
tion of 50 percent in A£, to 0.0025, has changed Nux by only 4 
percent. In comparison, the first-order solution scheme was 
significantly more sensitive, requiring A£ steps which were 
smaller by a factor of about a thousand. 

The present technique differs from existing procedures such 
as that described in [13] in that there is no need for a "match­
up" or "join-point" near the wall. In [13], such a point is 
employed between the second and third nodes (normal to the 
wall) to join the near-wall (Couette layer) solution with that 
for the outer region (between the edges of the laminar sublayer 
and the overall turbulent boundary layer). In the present 
analysis, a finer mesh is employed near the wall (for example, 
five-fold finer in the zeroth-order model) to account adequate­
ly for the steep velocity and temperature gradients. 

The velocity and temperature profiles obtained from both 
models were well-behaved distributions. More importantly, 
the turbulent kinetic energy profile was generated numerically 
and also shown to be well behaved. 
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4 Results 
The Range of Variables. Results were obtained for 

Reynolds numbers up to about 3 x 105, and angles of attack 
0 = 0, 30, 45, and 60 deg. A constant air temperature of 20°C 
was assumed. Both models allow the specification of an ar­
bitrary wall temperature, and unless indicated otherwise, a 
constant wall temperature of 100°F (37.8°C) was assumed in 
the cases shown below. 

Zeroth-Qrder Model Results. For 0 = 0 deg, very good 
agreement was observed with the Eckert and Colburn equa­
tions (shown in [3]). The results were found to agree with the 
Jurges values only for L = 2 ft (0.61 m), and over a normalized 
velocity of 0-20. This is due to the fact that Jurges conducted 
his tests at these specific conditions. Substantial disagreement 
with the Jurges correlation was found for other plate lengths 
and velocities. The results were found to be consistent with the 
experimental data reported in the ASHRAE handbook [24] 
and with the JPL test data of [25] (the comparisons are 
presented in [22]). 

Comparisons of the zeroth-order model results with the 
more recent measurements of Sparrow and Tien [1] for plates 
at different angles to the stream (performed by mass transfer 
experiments as an analog to heat transfer) indicate [22] that 
the zeroth-order results show a moderate effect of angle of at­
tack between 30-60 deg with regard to wall heat transfer, 
while the data of [1] show no such effect. In general, it was 
found that in comparison with the first-order model, the 
zeroth-order model overpredicts the friction coefficient by 
about 6-35 percent and the Nusselt number by about 5-17 per­
cent in the analyzed range of parameters. 

The finite difference model results were also shown to com­
pare well with the experimental data of Scesa and Sauer [6] ob­
tained for a step discontinuity in wall temperature (see [22]). 

First-Order Model Results. The first-order model results 
have been used to develop a correlation 

^(ia,*)**-^) (16) 
and 

Nu,=(i;^'')Re^^rf l /' )prl /3 (17) 

1 = 0 ' 

where 0 is in degrees, valid for 0 deg <0<6O deg, and the 
coefficients au, bu, cu, and du are shown in Table 1. Here 
Reref = 6240, evaluated for pref = 0.00234 lbf.s2/ft4, C/ref=l 
ft/s, Lrcf = 1 ft, and /vr = (3.75) 10"7 lbf-s/ft2. 

Figures 1 and 2 show that the results of the first-order tur­
bulence model for cfx and Nux agree better, respectively, with 
the empirical Eckert and Colburn equations than the results of 
the zeroth-order model. In addition to the fact that the addi­
tional equation in the first-order model creates a stronger 
coupling between the constitutive relations, a much finer com­
putational mesh had to be used in the first-order model (as 

Table 1 Coefficients for equations (18) and (19) 

Model 

F i r s t -
Order 

i = 

a l i 

b l i 

c l i 

d l i 

0 

(5.00J10"2 

(2.00J10"1 

(2.90)10~2 

(8.00)10_ 1 

1 

(2.63)10~3 

(2.32)10~3 

(3.09)10~3 

- (5 .01)10" 3 

2 

-(3.89)10~5 

-(5.83)10~5 

-(8.83)10~5 

(1.36)10"4 

3 

(2.22)10 - 7 

(4.81J10"7 

(9.51)10~7 

-(1.28)10~6 
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Fig. 1 Skin friction coefficient versus Reynolds number results ob­
tained from first-order model 
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Fig. 2 Nusselt number versus Reynolds number results obtained from 
first-order model 

described above), and this would produce a solution closer to 
reality, as indeed observed. 

The natural convection effects on Nu were found to be 
negligible in the range of these calculations. This was to be ex­
pected, since the Grashof number in the cases computed is 
smaller than 0.225 Re2, indicating according to [27] that the 
effect of natural convection upon the average heat transfer 
coefficient should be less than 5 percent. 

In attempting to apply the results of this two-dimensional 
analysis to heat transfer from real objects, such as solar collec­
tors, in the natural environment (wind), one must note that 
most real objects introduce appreciable three-dimensional ef­
fects, as well as separation along the edges, and that the nature 
and level of free-stream turbulence have an important effect 
on flow characteristics and heat transfer [8-10]. With that in 
mind, it is obvious that the results obtained in this study must 
be applied with great care, to cases where the geometry and 
free-stream turbulence are similar. Although the existence of 
appreciable three-dimensional effects would require the solu­
tion of a different model, this model could be used with 
realistic values of the free-stream turbulence to give acceptable 
results for cases which allow a two-dimensional approxima­
tion (such as large surfaces, faired or baffled edges). The 
remarkable coincidence between these results and the em­
pirical Eckert and Colburn correlations at zero angle of attack 
(the only angle for which these correlations were developed), 
are noteworthy. 

5 Conclusions 
1 An integral solution, which is relatively easy to obtain, 

provides good data for starting the numerical solution. 
2 Cost-effective zeroth-order and first-order numerical 

solutions have been developed whereby any matching pro­
cedure between the laminar (Couette) sublayer and the outer 
turbulent mixing layer solutions has been eliminated. 

3 The models were proven to be effective in predicting 
local Nusselt numbers for arbitrary wall temperature 
distributions. 

4 The zeroth-order results agree very well, within 10-15 
percent, with the Colburn and Eckert equations (for zero 
angle of attack) as well as several other sources (for nonzero 
angles) of measured skin friction and heat transfer data, while 
the first-order model results came even closer, within 1-2 per­
cent. The first-order numerical model required, however, a 
grid which is about a thousand times finer than that needed 
for the zeroth-order model, and was much more sensitive to 
assumed starting profiles. This, of course, increased computa­
tion difficulty and time significantly. 
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Effect of Flow Oscillations on Axial Energy Transport 
in a Porous Material 

= porosity of porous material 
(fluid volume/unit volume) 

= oscillation frequency 

Subscripts 

R. Siegel1 

Nomenclature 

c, 

A, 

. . . C 4 

CP 
"max 

El> E2 

Fi.Fi 
h 

K 

k 

I 
P 

P 
q 

T 

t 
u 

X 

a 
y 

K 

V-
P 
T • 

= internal surface area of 
porous medium per unit 
volume 

= coefficients defined in equa­
tion (7) 

= specific heat 
= maximum fluid displacement 
= coefficients in equation (13) 
= coefficients in equation (14) 
= internal heat transfer 

coefficient 
= constant of integration in 

equation (6) 
= thermal conductivity (based 

on entire cross-sectional area) 
= thickness of porous layer 
= amplitude of oscillating 

pressure 
= fluid pressure 
= axial energy transport per 

unit cross-sectional area and 
time 

= the part of / that depends 
only on time 

= temperature 
= Darcy velocity of fluid 

(volume flow/entire cross-
sectional area) 

= local coordinate across 
thickness of porous region 

= C1h,„/o} 
= temperature gradient in x 

direction 
= permeability of porous 

material 
= fluid viscosity 
= density 
= time 
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a = amplitude of oscillating 
component 

C = cold reservoir 
/ = fluid 

H = hot reservoir 
m = mean value 
P = particular solution 
s = solid 

Introduction 
It has been shown analytically and experimentally that flow 

oscillations of a fluid within a channel can enhance the axial 
transfer of energy. The transport arises from an axial gradient 
in fluid temperature resulting from having reservoirs at dif­
ferent temperatures at either end of the channel. A few recent 
references on enhanced axial transfer are given by [1-5], and 
these provide bibliography for earlier investigations. 

The axial transport produced by fluid oscillations can be 
two or three orders of magnitude larger than molecular heat 
conduction. This augmentation is in the absence of 
throughflow in the channel. The amplitude of the flow oscilla­
tions is small compared with the channel length, so the 
enhancement is not produced by ordinary convective 
transport. As discussed in [3], the augmentation mechanism is 
involved with the transverse conduction between adjacent 
fluid layers moving relative to each other during the oscilla­
tions. The analyses in [1, 2] were for diffusion of a contami­
nant in oscillating laminar flow; since the channel walls were 
impervious, there was a zero normal derivative in contaminant 
concentration at the walls. The thermal energy equation has 
the same form as that for contaminant concentration; hence 
the analyses in [1, 2] could be extended for laminar energy dif­
fusion in an insulated tube [4]. If the wall is not an insulator, 
energy can be exchanged with the wall during each oscillation. 
This transverse conduction enhances the energy transport in 
the axial direction, as shown in [5] for oscillating laminar flow 
in a channel with conducting walls. 

The present analysis develops relations for axial energy dif­
fusion in a porous medium with oscillating flow. In some 
devices, such as the Sterling engine, there are regenerators 
with oscillating flow. Axial transport in the regenerator pro­
vides an energy loss; hence it is desirable to determine what 
factors can limit this diffusion. A regenerator in the form of a 
porous medium is difficult to model since the flow is con­
tinually disrupted by the irregularities of the porous structure. 
The formulation here will employ an internal heat transfer 
coefficient that couples the fluid and solid temperatures. The 
final result shows how the diffusion depends on the magnitude 
of the heat transfer coefficient and the maximum fluid 
displacement. An assumption sometimes used in porous media 
heat transfer is that the good thermal conduct between fluid 
and solid within the small pores causes the fluid and solid to be 
at the same temperature locally. In this limit the induced axial 
diffusion becomes zero. Thus oscillation-induced losses may 
not be significant if the heat transfer ability within the porous 
structure is sufficiently high. 

Analysis 
The porous region is a plane layer of infinite extent in the y 

and z directions and of finite thickness from x = 0 to /. A reser­
voir of hot fluid at TH is adjacent to the face at x = 0, and a 
reservoir of cold fluid at Tc is adjacent to x = l. There is no 
throughflow in the porous layer, but the fluid is oscillating in 
the x direction with an amplitude that is small compared with 
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