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Abstract—Natural conveétion was computed by finite-difference methods using a laminar model for 2 (wide)
x 1and 1 x 1 enclosures for Rafrom 10° to 10° and Pr = 5.12and 9.17, and a k—¢ turbulent model for a square
enclosure for Rafrom 10!° to 10* ! and Pr = 6.7. The average Nusselt numbers agree well with the correlating
equation of Churchill for experimental and computed values. The computed velocity profile along the heated
wall is in reasonable agreement with prior experimental values except for the thin boundary layer along the
lower part of the wall where a finer grid size than was computationally feasible appears to be necessary. A
detailed sensitivity test for constants of the k—¢ model was also carried out. The velocity profile at the middle
height and the average Nusselt number was in even better agreement with the experimental results when the
turbulent Prandtl number was increased to four and the constant ¢, was decreased by 10%,. A more refined
turbulent model and finer grid divisions appear to be desirable, particularly for larger Ra.

INTRODUCTION

TRANSITIONAL and turbulent convection in rectangular
enclosures heated and cooled on two opposing vertical
walls has a number ofimportant applications, e.g.in the
cases of a passive solar room heated by a Trombe wall
and cooled by a north-facing window, and in the event
of a breakdown of the circulating system in a nuclear
reactor. This behavior has, however, received only
limited attention because of its three-dimensionality,
and the difficulty of numerically simulating the
combination of boundary-layer-like flows near the
heated and cooled walls and a slower gross circulation
elsewhere.

Numerical solutions for the quasi-one-dimensional
laminar, then transitional, and finally turbulent
boundary layer along a vertical heated plate in an
unconfined fluid have been carried out with the k—
model for turbulence by Lin and Churchill [1], Plumb
and Kennedy [2] and Farouk and Giiceri [3]. On the
other hand, Fujii and Fujii [4] solved numerically for
a turbulent boundary layer using the Glushko model.
They carried out a detailed evaluation of their
computed values and found qualitative agreement
between the various turbulent characteristics and the
available experimental data. Fraikin et al. [5]
apparently obtained the first stable solution for
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fundamentally two-dimensional turbulent natural
convection. They studied a square channel with
isothermally heated and cooled vertical walls and linear
temperature profiles along the lower and upper
horizontal boundaries. Their calculations were for air
at Grashof numbers of 107, 5 x 107 and 108, which they
postulated to be in the turbulent regime. Their
maximum computed turbulent viscosity ranged from
four times the molecular viscosity at Gr = 107 to 9.6 at
108, They carried out a sensitivity analysis of the
arbitrary coefficients in the k—& model, but their results
appear to be applicable only to their specific thermal
boundary conditions. Farouk and Giiceri [6] used the
k—& model to compute laminar and turbulent natural
convection in the horizontal concentric annulus
between a heated inner and cooled outer cylinder at
Rayleigh numbers up to 107. They concluded that at
higher Rayleigh numbers a finer grid would be
necessary to simulate the thin boundary layers next to
the walls.

Natural convection in finite rectangular enclosures is
necessarily three-dimensional. The enclosures to be
simulated in this work will, however, be assumed to be
sufficiently deep (in the horizontal direction parallel to
the heated and cooled walls) so that the time-averaged
motion can be approximated as two-dimensional.
Rayleigh numbers and Prandtl numbers for the
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ay, a,, b,, b, parameters in expression for grid
location

¢y, €3, €3, € €, PArameters in k—¢ model

E dimensionless time-averaged rate of

dissipation of turbulent energy

= ¢/(@’Ra;®/LY)

acceleration due to gravity [m/s*]

height of the cross-section of the

enclosure

dimensionless time-averaged turbulent

kinetic energy = k/(@Ra}/3/Ly?

turbulent kinetic energy

= @? 4+ v +w?)/2 [m?/s*]

width of the enclosure [m]

scale of turbulence [m]

overall Nusselt number

. humber of grid in X-direction

number of grid in Y-direction

time-averaged pressure [Pa]

Prandtl number = v/«

Rayleigh number = gf(@, —9)L>/(av)

dimensionless time-averaged

temperature

t time [s]

u component of time-averaged velocity in
x-direction [m/s]

U dimensionless time-averaged velocity in
x-direction = Lu/(eRa}’®)

v component of time-averaged velocity in
y-direction [m/s]

Vv dimensionless time-averaged velocity in
y-direction = Lo/{aRal’®)

X dimensionless vertical coordinate
= xRa}/*/L

xNoome

-

x vertical coordinate [m]

Y dimensionless horizontal coordinate
= yRa}®/L

¥ horizontal coordinate [m].

NOMENCLATURE

Greek symbols
« thermal diffusivity {m?/s]
o, eddy diffusivity for heat transfer [m?/s]
B volumetric coefficient of expansion [K ™ 1]
€ time-averaged rate of dissipation of
turbulent kinetic energy [m?/s%]
{ dimensionless time-averaged vorticity

= (@V/eX)—(0U/aY}
n dummy variable
] temperature [K]
L7}

b =16 +6)/2[K]
K von Karman’s constant ~ 042
H viscosity [Pa+s]
¥ kinematic viscosity = u/p [m?/s]

¥, eddy diffusivity {m/s?]

v¥ dimensionless time-averaged eddy
diffusivity = v/a = ¢, K¥E

¢ dummy variable

p density [kg/m3]

o Prandtl number = v/u

ox  Prandtl number for the turbulent kinetic
energy

o, turbulent Prandtl number = v,/u,

g, Prandt] number for the rate of
dissipation of turbulent energy

1 dimensionless time = Ra¥>at/L?
¥ dimensionless time-averaged stream
function.
Subscripts
0 dimensional reference value
1, 2, 3 empirical constants of turbulent model
c center or central plane value

H height as a reference value
h heated wall
L width as a reference value
1 cooled wall.

computations were chosen to match those of the
available experimental data and thereby expedite
comparisons.
TURBULENT MATHEMATICAL MODEL
The same two-dimensional k—s model for turbulence

as employed by Fraikin et al. [5] and Farouk and
Giceri [6] was utilized in this investigation.

The following four equations represent in dimen-
sionless form the conservation of the time-averaged
vorticity, energy, turbulent kinetic energy and rate of
dissipation of turbulent energy:

DX _ *y2 v L oAl oo s
Dy ~ eV ‘:“(ax ax Taray) VWK
POV _wroU otk oV oT a
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Here the dimensionless time-averaged vorticity is
defined as

_____ 2
C=ax "=V ©)
and the dimensionless time-averaged stream function
as
oy G 4
U=5 V="3% (6)

The dimensionless time-averaged eddy diffusivity is
related to the dimensionless time-averaged turbulent
kinetic energy and the dimensionless time-averaged
rate of dissipation of turbulent energy as follows:
KZ

Vr = Cﬂ ? (7)
The following empirical constants recommended by
Launder and Spalding [7] were used, except for ¢, in
the buoyant term of the E-equation, which was adopted
from Fraikin et al. [4]:

¢, =009, ¢, =144, ¢; =192, ¢,=07, ox=1,
6,=13and o, = 1.

The dimensionless time-averaged variables in the
above equations are defined as

x=2 y=2 u=% v=2
Xo Yo Up Vo
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U
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The system which was studied is sketched in Fig. 1.
The following boundary conditions were used :
(1) Temperature

T=05 at Y=0 8)
T=~—05 at Y= (—L—‘—> Rall? )
H
(2) Velocity and stream function
- 1/3
Y=U=V=0 at X = 0, Ray{ 10
Y =0, (L/HRa{* (11)
{3) Vorticity
av oty 13
C-*-a"f—"a—xlz' at X—O,RQH (12)
ou o2y 13
= W= T at Y =0, Rai/*(L/H) (13)
(4) Turbulent kinetic energy
- 1/3
K=0 at X =0, Rajf (14)
Y = 0, (L/H)Ra}{® (15)

(5) Rate of dissipation of turbulent energy

The time-averaged rate of dissipation of turbulent
energy, & is proportional to k¥%/1 where | is a
characteristic length expressing the scale of the
turbulence. Since k and I both approach zero at the wall,
the boundary condition for ¢ is undefined. However, ¢ is
almost constant near the wall, and it follows from
assuming the length scale to be proportional to the
distance Ay from the wall that

3/41,3/2
¢tk

aty=0,L (16)

KAy
or

Cﬁl4K312
kAY

at ¥ =0, Ral3(L/H)  (17)

Here, x = von Karman constant = 0.42

x=H S#49x =0
On u 6,
Ly g
X
Y SB/9x=0 y=L

F1G. 1. Scheme of the system.
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¥16. 2. Example of grid point distribution for L/H = 2.
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Setting ¢ = k = O on the surfaces, as proposed by Jones
and Launder [8], was also tried, with additional terms
in the k and ¢ equations for a low Reynolds number.
However kand ¢ then either converged to zero at all grid
points or diverged.

GRID SIZE DISTRIBUTION

For the conditions of interest, a boundary layer flow,
in which the velocity changes drastically, occurs near
the surfaces, whereas the fluid is nearly stagnant in the
central region. A fine grid-size is therefore preferable
near the surfaces and a coarse one in the core.
Accordingly, the X and Y locations of the grid were
determined in terms of the equally divided dummy
coordinates £ and n as follows:

Ra}f®

X = L(e‘/”"——l) for 0<éx

X

(13)

1
X =—(14+a,—¢") for iRa}® <& <Ra}®

X

(19
Y= i(e"/”y—l) for 0<n<

L 1/3
y ( 5 H)RaH (20)

1 L L
Y = a_(l +ay__.e’lfb3') fOI' Eﬁ(Rall,l/s) < n < ERa}{/a

y

and
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The resulting grid is illustrated in Fig. 2 for L/H =2
with N, =24, N, =48, a,=39.283, b, = 016516,
a, = 58765, b, = 0.36476.
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COMPUTED RESULTS FOR
LAMINAR REGIME

Test calculations for the laminar regime were carried
out for aspect ratios of L/H = 1 and 2 simply by setting
v} = 0in equations (1) and (2) and dropping equations
(3) and (4).

Casel:LiH=2

This aspect ratio was chosen to simulate a large
room. The first calculations were for Pr = 9.17 with the
sudden imposition of a temperature difference
equivalent to Ra = 10 The grid locations were
calculated for the parametric values in the first line of
Table 1.

The transient response of the overall Nusselt number
and the central value of the dimensionless stream
function are shown in Fig. 3. A rapidly damped
oscillation about the steady state solution can be
observed. Steady state velocity vectors and dimension-
less isotherms are shown in Fig. 4 (a) and (b),
respectively.

Computations were next carried out for Ra = 107
and Pr = 9.17 with the same grid. However, the
maximum computed vertical velocity occurred on the
grid line nearest the heated (and cooled) wall,
suggesting that an even higher velocity might occur
nearer the wall. Therefore, the number of divisions, N,
and N, were increased to 24 and 48, respectively, and
the other grid-size parameters changed as indicated in
the second line of Table 1. This gave the more
reasonable solution illustrated in Fig. 5 by the velocity
vectors, dimensionless temperatures, and streamlines.
Boundary layers near the surfaces and stratification in
the core are more firmly established than for Ra = 108,

Similar computations for Ra = 10® and Pr =9.17
yielded a convergent solution with the dimensionless
isotherms and streamlines shown in Fig. 6. The
standing vortices and tortuous streamlines of Fig. 6
were not observed in the experimental work of Ozoe et
al.[9]in a 160 mm high, 295 mm wide and 189 mm deep
enclosure at the same Rayleigh and Prandtl numbers.
The location of the center of the principal standing
vortex was the same as that of the maximum valuein the
vertical velocity, suggesting that too large a vertical
velocity in comparison to the grid size might have
caused this unrealistic behavior. The maximum cell
Reynolds number at this location was U, AX/Pr
= 5,8(33.58)/9.17 = 21.2 which is much higher than the

Table 1. Coefficients for the calculation of the grid locations

Ra L/H N, N, a, b, a, b,
108 2 20 20 (Equal size in x-direction) 94.311 0.12905
107, 1.52 x 108 2 24 48 5.8765 0.36476 39.283 0.16516
108, 107 1 24 24 5.8765 0.36476 39.283 0.16516
108, 10° 1 24 48 16.699 0.22368 76.031 0.13646
1010
6.3 x 101° 1 24 60 33223 0.17430 94.787 0.12889%

1.09 x 1%
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FiG. 3. Illustration of convergence of transient calculations for
the Nusselt number and dimensionless central stream function
for Ra = 10% and Pr = 9.17.

zero overshoot criterion of 2.0, suggested by Roache
[10]. The value of 21.2 appears to be too large even for
an implicit finite-difference formulation. One method
of reducing the cell Reynolds number would be to use a
smaller grid, but the resulting increase in computation
would be prohibitive. Another remedy would be to use
an upwind formulation. However, the simple upwind
method has a first-order truncation error. Instead of
either of these, the hybrid scheme suggested by
Patankar [11] was utilized. This scheme employs the
upwind method only when the coefficient matrix
becomes negative due to a large value of the velocity in
the convective term. All other points are approximated
by central differences.

The computations with this hybrid scheme
converged successfully for Ra = 1.52x10® and Pr
= 9.17, as illustrated in Fig. 7, producing the velocity
vectors, dimensionless isotherms, and streamlines
shown in Fig. 8.

Evaluation of computed result. The overall Nusselt for
L = 2H (rectangles) is compared with the correlating
equation of Churchill [12] in Fig. 9. The agreement is
good but the computed value falls slightly below the

i

Heated
Cooled

(a)

FIG. 4. Steady state solution for Ra = 10° and Pr = 9.17. (a)
Velocity vectors ; (b) dimensionless isotherms.

HMT 28:1-1
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Heated
Center

(a)

Heated
Cooled

FIG. 5. Steady state solution for Ra = 107 and Pr = 9.17. (a)
Velocity vectors ; (b) dimensioniess isotherms ; (c) streamlines.

correlating equation, probably because the number of
grid points is still insufficient. The mean Nusselt
number predicted by the correlation of Churchill and
Usagi [13] for a heated vertical plate in an unconfined
fluid is also shown in Fig. 9. The deviation from that
curve represents the effect of the horizontal surfaces,
which for this aspect ratio is considerable.

The computed maximum vertical velocity near the

05 04
- 03
02 J
3k —
H 0 F
bl A o —A S
r\ -0.2
53— 54" 0s

(a)

Heated

(b)

FiG. 6. Steady state solution for Ra = 108 and Pr = 9.17. (a)
Dimensionless isotherms ; (b) streamlines.
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Fi1G. 7. Transient response of the dimensionless central stream

function for Ra = 1.52 x 10® and Pr = 9.17 with At = 0.1 to
0.2.

heated wall can be represented by the empirical
expression

U, = 0.269Ral 162 22)

or

U, = 0.269 <1>Rag-495 23)
H

Hishida and Tsuji [14] correlated the maximum

vertical velocity along a heated vertical plate in

unconfined air by

o
Uppax = b(—)Ra,‘z"‘93
X

with b =0.267 for Gr, > 10'°, and b =0.394 for
Gr, < 10°. The exponent of the Rayleigh number
agrees remarkably well. The coefficient would not be
expected to coincide, considering the difference in the
boundary conditions, in Pr, and in the range of Ra.
Ozoe et al. [9] measured the vertical velocity in water
at the mid-depth along the heated wall of a 160 mm high,
295 mm wide and 189 mm deep enclosure for a
temperature difference corresponding to Ra = 1.52
x 10® and Pr = 9.17. Their values are compared in Fig,
10 with those computed herein. The agreement is
excellent with the values measured at the height of
75 mm, but 1s poor with those at 15 mm. These velocity
profiles are not normalized with respect to the peak

24

e g
! £
41 S
(a)
osrt 04 gg o_?
9 [e}] ' B
|\ -~
o o 8
z S
0.1 —\
-02 y
~0.3~——Tor—\/ ~0.5
(b)

FIG. 8. Steady state solution for Ra = 1.52 x 10®and Pr = 9.17
using the hybrid scheme of Patankar [11].(a) Velocity vectors;
(b) dimensionless isotherms; (c) streamlines.

value and the normalized y coordinate (which would
reduce the effect of the finite depth in the experiments
and the finite number of grid - points in the
computations), and thereby constitutes a critical test of
the simulation. The corresponding peak velocities at
various heights are compared in Fig. 11. The curve
representing the computations is higher than the
experimental values at low elevations, in good
agreement at intermediate elevations and lower at high
elevations.

It may be noted in Fig. 10 that only one grid point
falls between the peak velocity and the wall at an

100

Nu

10{ ,

106 107

108 Ra

1 1 ]
109 100 101

FiG. 9. Comparison of the computed overall Nusselt number with correlating equation of Churchill [12] for
L/H =1and 2,

L/H =2 [1 Laminar model
L/H =1 [] Laminar model
O Comparison problem report [15]

Correlating equation

Turbulent model ----- Correlating equation

——— Correlating equation for vertical plate in unconfined fluid [13].
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v (mms™)

y(mm)

FIG. 10. Comparison for Ra = 1.52 x 10® and Pr = 9.17 of the
computed vertical velocities with experimental values in a
160 mm high, 295 mm wide and 189 mm deep enclosure.

t  Measured vertical velocity at x = 15 mm
¥ Measured vertical velocity at x = 75 mm
—QO~ Computed vertical velocity at a height equivalent to
x =158 mm
—- Computed vertical velocity at a height equivalent to
x = 80 mm.

elevation corresponding to 15 mm. The peak velocity
fell right on the first grid point at an elevation of 3.5 mm
(not shown). Thus even 48 horizontal divisions are
insufficient to provide reliable results at this level of
detail.

Casell:L/H=1

Computations were also carried out for the classical
case of a square channel in order to relieve the grid-size
requirement somewhat. These computations were for
Ra = 10%, 107, 108, 10° and Pr = 5.12. The grid size
parameters are shown in lines 3 and 4 of Table 1. The
computed overall Nusselt numbers are shown in Fig. 9
with square symbols. De Vahl Davis and Jones [15]
reported a summary of competitive solutions for a
square channel with the same boundary conditions as
this work for Ra = 10*, 103 and 106. The best value of
the average Nusselt number at Ra = 10° is asserted by
them to be 8.9031+0.09. The agreement of the
computations herein with this value is excellent, and the
maximum velocities for the square channel are well
represented by equations (22) and (23).

Upax (MM §')

[¢f 50 100 160
x {mm)

Fi1G. 11. Comparison of computed peak vertical velocities for
L/H =2, Ra=152x10® and Pr = 9.17 with experimental
values.

Computed
S Range of fluctuation of experimental peak velocities in
160 mm high, 295 mm wide and 189 mm deep enclosure.

The computed velocity profiles for Ra = 10° are
compared in Fig. 12 with the experimental measure-
ments of Ozoe et al. [16] for water at Ra = 1.04 x 10°
and Pr = 5.12. The profiles are similar in shape but the
experimental peak values are higher.

The computed values of the overall Nusselt number
are tabulated in Table 2, together with some of
turbulent results.

COMPUTED RESULTS FOR
TURBULENT REGIME

The boundary layer along a vertical plate in an
unconfined fluid is presumed to begin the transition to
turbulent motion at Gr = 10° [12]. Turbulent motion
of water in an enclosure heated on a vertical wall might
therefore be expected to occur at Ra = 10° Pr.
Accordingly, the k—-¢ model was evoked for Ra > 10'°.

Computations were successfully carried out for a
square channelat Ra = 10'°,6.3 x 10'°and 1.09 x 10!
with Pr = 6.7. The grid-distribution parameters are
shown on line 5 of Table 1. The hybrid finite-difference
scheme was again utilized.

All three cases yielded an oscillating but non-
diverging solution as illustrated in Fig. 13 by the
dimensionless, time-averaged central value of the
stream function for Ra = 6.3 x 10!°. The sinusoidal

Table 2. Summary of the computed cases plotted in Fig, 9

L/H Ra Pr Nu V. N, N, Model
1 106 9.17 9.38 20.4 24 24 laminar
1 107 9.17 18.8 335 24 48 Jaminar
1 108 5.12 31.7 56.0 24 48 laminar
1 10° 5.12 53.5 104.1 24 48 laminar
1 1010 5.12 146.1 * 24 60 o,=1,¢c, =144
1 6.3 x 101 6.7 189 * 24 60 o, =4,c, =129
1 1.09 x 10! 6.7 213 * 24 60 o, =4,c, = 1.296
2 10° 9.17 9.0 19.5 24 48 laminar
2 107 9.17 17.3 343 24 48 laminar
2 1.52x 108 9.17 328 799 24 48 laminar

* Central value of the stream function oscillated.
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vimms™)

Fig. 12. Comparison of the vertical velocity near the heated
vertical wall with experimental measurements in water by

laser-Doppler velocimetry.
Computed condition: Ra = 10°, Pr=5.12,
mm——, x = 105 mm ----, x = 166.8 mm ——.
Experimental condition: Ra = 1.04 x 10%, Pr = 5.12, x = 45
mm [J, x = 105mm A, x = 165 mm Q.

x =432

motion is presumed to correspond to real physical
behavior. Staehle and Hahne [17], using a finite-
difference method, computed transient oscillations,
similar to those in Fig. 13, for rectangular channels
heated and cooled on the opposing sides for a series of
values of Ra less than 10%. They observed that the
dampening of the oscillations decreased as the Rayleigh
number increased, and therefore concluded that such
oscillations would lead to turbulent motion at some
higher value. Despite the oscillations in the time-
averaged value of the central stream function, the time-
averaged values of the velocity vector, the dimension-
less temperature, and the stream function, which are
plotted in Fig. 14 (a), (b) and (c), did not oscillate
significantly near the walls. Apparently the slow, steady
oscillation in the nearly stagnant core is effectively
dampened in the relatively fast moving boundary layer
near the surfaces. Contours of the dimensionless time-
averaged turbulent kinetic energy, rate of dissipation of
turbulent energy, and eddy diffusivity are plotted in Fig.
14 (d), (¢) and (f). The maximum value of the eddy
diffusivity v¥ is 93, which is about 14 times the Prandtl
number. Thus the maximum eddy diffusivityisabout 14
times the molecular kinematic viscosity.

1900
v, | TOO|
1500
L
o 1000

T

FIG. 13. Steady oscillations of the central stream function for
Ra=63x10'° Pr=67and At=1~3.

Hirovuki OZzoE et al.

Cooled

Heated
rrrv v v v VY""
A d d 4 4 & 4 4 da

Cooled

Heaoted

St

(a)

(d)
o 03 }
0.2 10!
A -0 1
(e)
(f)

Q

0
{
555
A LN

Cooled

Heated
& Cooled
@ Heated

; — -04

Heated

Cooled

Heated
Cooled

(c)

FiG. 14. Contour maps for the time-averaged characteristics of

turbulent natural convection at Ra = 6.3 x 10'® and Pr = 6.7

in a square channel. (a) Velocity vectors; (b) dimensionless

isotherms ;(c) streamlines ; (d) turbulent kinetic energy ;(€) rate
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FiG. 15. Contour maps for the computed time-averaged

characteristics of turbulent natural convection at Ra = 1.09

x 10'! and Pr = 6.7 in a square channel. (a) to (f) are the same
as in Fig. 14.
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F1G. 16. Computed results for Ra = 6.3 x 10!° and Pr = 6.7
with standard set of constants in k~¢ model. (a) Profiles of
dimensionless vertical velocity at various heights; (b) profiles
of dimensionless turbulent kinetic energy at various heights.

Curve 1 2 3 4 5
X 323 519 1990(=H/2) 3460 3947

The same characteristics are plotted in Fig. 15 for Ra
= 1.09 x 10!! and Pr = 6.7. Comparison with Fig. 14
indicates that the thickness of the boundary layer has
increased with the Rayleigh number. However, a peak
value near the bottom plate, as reported by Fraikin et
al. [5], does not appear, probably because of the
different boundary conditions.

A more detailed inspection of the computed result
was made as follows. The dimensionless time-averaged
vertical velocities at various heights were plotted in Fig.
16 (a) for Ra=63x10'° and Pr=6.7 vs the
dimensionless normal distances from the surface.
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Curves 1 to 5 represent the development and
dampening of the vertical velocities from the bottom to
the ceiling along the heated wall. Curve 1 at X = 32.3
corresponds to the first grid line from the bottom. The
peak velocity is on the first grid from the vertical heated
surface, suggesting a requirement of more grid points.
The shape of the velocity profile of Curve 2(X = 519)is
similar to that of the laminar boundary layer, as seenin
Fig. 10. The thickness of the boundary layer of curve 3
at X = 1990 (mid height) becomes more than double
that of Curve 2. This appears to indicate a transition to
turbulent flow. At higher levels, as seen in Curves 4 and
5, the upward flow dampens rapidly, with a downward
velocity component outside the boundary layer flow.

In Fig. 16(b), the profiles of the dimensionless
turbulent kinetic energy K are plotted vs the
distance from the heated surface for the same heights as
(a). The significant characteristic of these curves is the
two-peak-profile. Hishida et al. [18] and Miyamoto et
al. [19] measured u’2/u*, where u* is a friction velocity,
for free convection of air along a heated vertical plate in
an unconfined regime and reported a similar two-peak-
profile. Fujii and Fujii [4] computed a similar two-
peak-profile. This two-peak-profile of the turbulent
kineticenergy appears to be one of the characteristics of
turbulent free convection. A detailed observation of the
variation of these profiles with height reveals that the
first peak near the heated plate develops primarily due
to the development of the strong upward velocity. The
first peak is then dampened much more rapidly than the
second peak because of the decreasing upward velocity
against the top plate. The second peak occurs outside
the peak of the vertical velocity of Fig. 16(a). This is due
to the shear stress produced by the stagnant core of fluid
at further distances from the wall.

The computed time-averaged values of the vertical
velocity are compared in Fig. 17 with the experimental
values of Ozoeet al. [16] for Ra = 6.26 x 10*°, Pr = 6.7
and x = 375 mm (mid-height) for water in a 750 mm
high, 750 mm wide and 180 mm deep enclosure. Curve 1
represents the vertical velocity profile at mid-height.
The range of oscillation of the instantaneous
experimental values is indicated by the vertical solid
lines and their time-averaged values by the open circles.
The computed values lie within the range of oscillation
and have the same relative variation as the
experimental ones. The computed values, however, are
higher despite the expectation of agreement with the
experimental time-averaged data as represented by the
open circles. This disagreement might be caused by the
arbitrary choice of some of the constants in the k—¢
model. Therefore, a sensitivity test of these constants
was carried out as follows.

Sensitivity test of the constants in the k — & model

The standard combination of the constants was
given above. Results for various perturbations are
summarized in Table 3. This listing comprises the
overall Nusselt number Nu, the maximum peak vertical
velocity U,,,, the maximum value of the eddy
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Table 3. Sensitivity test of constants in the k-¢ model: Ra = 6.3 x 10'°, Pr = 6.7, square channel

U at Number of
N (X = mid height) negative
Condition Nu U pax v, K ax E ax (Y = 76.14) of Kand E
Standard case 1749 241 91.7 96 185 114
¢ = 173 (+20%) 1342 319 222 237 343 459 7
¢, = 1.152 (—20%) 2108 21 154 98 123 1.1 Jints.
¢, = 0.864 (—40%) 2388 185 206 374 9.1 971 Jints.
¢y = 2.304 (+20%) 227 2 164 28 144 121 Jints.
¢y = 1.536 (—20%) 122 366 24.5 6713 372 7
¢, = 1.152(=20%)
T AMEN L 241 194 210 396 105 105
¢, = 1.584(+10%) )
Ry o e A 244 24 167 439 153 125 2ints.
¢, = 144 (+106%) 1766 246 100 99 683 116 35 negative in K
8 negative in E

6, = 1.56(+20%) 180 24.6 94.1 408 186 116
oy = 1.2(+20%) 172 246 101 433 193 115
c, =144
aZ0s 153 M4 139 779 464 213 6
¢ =144 185 20 55.3 27.7 9.8 50
g =2
= 181 183 458 40 79 282

t
€= L4 176 175 39.5 252 7.00 192

-
G 160 15.6 298 23 529 —033

g
€1 = L152(=20%) 219 170 103 22 729 6.04

'
&1 = 1152(=20%) 208 161 87.1 299 643 459

-
e =2 192(-20%) 181 142 61.1 275 5.17 168

1
o =4
o 296(=10%) 189 165 58.4 28.1 6.54 295
O, =
2 So0s 212 146 98.2 300 572 388
o, =4
¢, = 1.296 178 172 25 25.7 6.75 213
¢y = 1776
diffusivity v¥, the maximum value of the turbulent 25

kinetic energy K, the maximum value of the rate of
dissipation of turbulent energy E and the vertical
velocity at Y = 76.14, where the experimental vertical
velocity becomes almost zero. Comparison with the
experimental results may be described as follows.

The standard combination of the constants gives a
slightly smaller Nusselt number than the correlation by
Churchill [12] and too great a vertical velocity at
middle height, as shown in Fig. 17.

Each constant was changed separately as much as
+10%, +20% or +30%, with the objective of obtaining
better agreement of the velocity profile and the overall
Nusselt number with experimental data.

Increasing the constant ¢, to 1.73 (+20%,) gave too
small a Nusselt number, and resulted in a much greater
vertical velocity and a negative value of the turbulent
kineticenergy K at seven grid points. The occurrence of
anegative value of K is physically impossible, although
the absolute value was within the computational error
of order 10~ 1°to 10~ 13, and can be considered to be an

v {mm s™)

|I||ll

Fig. 17. Comparison of computed and experimental vertical
velocities along the heated wall of a square enclosure for Ra
= 6.26 x 10'°, Pr = 6.3 and x = 37.5 cm. The experimental
box is 750 mm x 750 mm x 180 mm.

y{mm)

Curve 1 2 3 4
o, 1 3 3 4
¢ 1.44 1.44  1.152(—20%) 1.296(—10%)
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indication of an unrealistic combination of the
constants in the model.

Decreasing the constant ¢, to 1.152 (—20%) gave a
higher Nusselt number and a smaller peak velocity but
the thickness of the boundary layer was observed to be
unchanged. Decreasing ¢; by —40%, gave a similar
effect, but more strongly.

Increasing ¢, by +20% produced aimost the same
effect as decreasing ¢, by 20%,. Decreasing ¢, by 20%,
gave a negative value of the turbulent kinetic energy at
seven grid points, and too small a value of the Nusselt
number. Decreasing ¢, also resulted in a strange
velocity profile and thereby is unacceptable.

A value of ¢, = 1.44(+ 106%,), which is equal to c,,
was also tested. This resulted in 35 negative points in K
and 8 negative points in E and hence was judged to be
inappropriate. Apparently, the buoyant term in the E-
equation must not be too large if negative values in K
and E are to be avoided.

Increasing g, or oy by 209, did not change the mode of
flow.

Finally the turbulent Prandtl number ¢, was changed
to 0.5 (—50%,). This resulted in negative values of the
turbulent kinetic energy K at six grid points. On the
other hand, g, = 2 (+ 100%,) lowered the peak vertical
velocity u,,, from 24.1 to 20.

Figure 18 shows the effect of the change of the
turbulent Prandtl number o, on the velocity and
temperature profile at the middle height over the heated
plate. Increasing g, from 0.5 to 10 resulted in a drastic
decrease in the thickness of the velocity and thermal
boundary layers. Let Y be the thickness of a
boundary layer é when the velocity becomes zero, and
the thickness of a temperature boundary layer A when
the temperature becomes zero. Such values are listed in
Table 4. The ratio of these two thicknesses is almost the
same, irrespective of the change of the turbulent
Prandtl number. This characteristic is similar to that of
laminar free convection for which the ratio of the
thickness of the boundary layer is almost the same
irrespective of the molecular Prandtl number.

L L
o 50 100 150 200

Fic. 18. Profiles of dimensionless vertical velocity and
temperature at middle height for various values of the
turbulent Prandtl number o,. Ra = 6.3 x 10'% and Pr = 6.7.
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Table 4. Boundary layer thickness as effected by the turbulent

Prandtl number o,. The value of Y when U and T first became

zero was chosen as the boundary layer thicknesses J and A,
respectively : Ra = 6.3 x 10*%, Pr = 6.7

YatU =0 YatT =0
o, ©® (A) AfS
1 176 65 0.369
3 102 380 0.373
4 96.5 352 0.365
10 70.5 27.8 0.394

The ratio of the two thicknesses is unaffected by the turbulent
Prandtl number.

Increasing o, above the unity appears to provide a
better agreement of the computed vertical velocities
with the experimental ones, probably due to the
resulting thinner thermal boundary layer. This means
that the temperature gradient near the heated wall
becomes steeper. On the other hand, the maximum
eddy diffusivity v} decreases with increasing o, and this
should decrease the turbulent heat flux.

These two contradictory effects appear to give a
slight increase of Nu at o, = 2 and then a decrease for
greater values of ¢, Constant ¢, was then simul-
taneously decreased so that both the velocity and
the Nusselt number approach the experimental data.
Setting ¢, to 1.152 (—20%) and 6, = 1, 2, 3 and 8 was
tested. The combination of ¢, =8 and ¢; = 1.152
appears to give the best agreement of the Nusselt
number and the thickness of the vertical velocity
boundary layer, but too small a peak vertical velocity.
Then, combined changes o,=4 and c, = 1.296
(—10%) and 6,=4 and ¢, =1.008 (—30%) were tried.
The latter combination gave a little smaller peak
velocity. According to Rodi [20], the constants ¢, and
c, are related by

KZ
on/Cu

This equation suggests that the change in ¢, from 1.44
to 1.296 should be accompanied by the same change in
cy, e ¢; =192-0.144 =1776. The result of
computations for this combination of the constants was
found to be less effective and was not adopted. Some
representative cases are plotted in Fig. 17 for the vertical
velocity at mid-height. The combination of ¢, = 4 and
¢, = 1.296appears to offer an appropriate compromise
for the vertical velocity and the overall Nusselt number.
The agreement is not completely satisfactory but is
much better than with the standard combination of the
constants as determined from forced convection.

Figure 19 shows a comparison of the temperature
profile at mid-height with the experimental one. The
combination of 6, = 4 and ¢; = 1.296 (— 10%) appears
to give closer agreement with the experimental time-
averaged values, as represented by open circles, than
the standard set of constants.

¢y =Cy—

(25)
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T (*C)

yi{mm}

Fic. 19. Comparison of computed temperature profiles at
mid-height for various combinations of constants in the k—¢
model with the experimental measurements.

Curve 1 2 3 4 5
o, 1 3 3 4 4
¢y 1.44 1.44 1.152 1.296 1.008

The peak velocities at various heights are compared
with the experimental ones in Fig. 20. Some
representative combinations of constants of the
turbulent Prandtl number o, and ¢, are plotted. The
combination of ¢, = 4 and ¢; = 1.296 (— 10%) again
appears to give the best agreement with the
experimental velocities. The overall Nusselt number for
this combination is included in Fig. 9.

The profiles of the vertical velocity and the turbulent
kineticenergy are shown in Fig. 21 (a}and (b)foro, = 4
ande¢; = 1.296. The peak velocity decreased 40%, below
that for the standard set of constants as used in Fig.
16(a). The two-peak profile of the turbulent kinetic
energy, as seen in Fig. 16(b), is similar to the one for the
standard set. However, the first peak does not develop

U (i 871)

400 600 50

x {mm)

F16.20.Comparison for Ra = 6.26 x 10'%and Pr = 5.12of the
computed peak vertical velocities over the heated vertical wall
of a square enclosure with the experimental oscillating
velocities at the displacement corresponding to the peak
velocity.

Curve 1 2 3 4 5 6 7
d, 1 3 2 3 4 4 8
€y 144 144 1156 1.156 1296 1008 1.156

HiroYuki OzoE et al.

v
(a) a }
Q 100 200
Y
30p~-
20
.4
b
(b) ¢ 100 200
Y

Fi16. 21. Computed vertical velocity profiles, (a) and turbulent
kinetic energy K, (b) at various heights. Ra = 6.3 x 1019,
Pr=1=670,=4andc, =1296(—-10%).

Curve 1 2 3 4 5
X 323 519 1990 3460 3947

as much, probably due to lesser development of the
vertical velocity.

The primary objective of this paper has been to
develop a method of simulation for natural convection
in an enclosure at high Rayleigh numbers. The total
behavior of the convection in an enclosure can be
simulated reasonably well with two-equation model,
but the predictions of the detailed structure of the
turbulent flow are difficult to assess because of the lack
of available experimental data for the turbulent
strength, eddy diffusivity, etc. The simulation of the
details of boundary layer flows was studied by
Plumb and Kennedy [2] using 40 to 80 grid points
within the boundary layer and by Fujii and Fujii [4]
using 200 grid points. When simulating the total
behavior of convection within an enclosure some
disagreement in the velocity and temperature profiles
near the heated wall is unavoidable if only one or two
grid points fall inside the boundary-layer-like flow. In
the work reported herein the simplest model was
employed for the buoyant term in e-equation, The
model proposed by Rodi [20] for a stratified low might
be useful with some modifications, but more detailed
experimental data is essential to evaluate such
alternative models.
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SUMMARY AND CONCLUSIONS

1. Laminar natural convection in rectangular
channels heated and cooled isothermally on the
opposing vertical walls was successfully computed by a
finite-difference method for Ra up to 10° with Pr
=917

2. The accuracy of the calculations for laminar
convection was improved by using the hybrid finite-
difference scheme suggested by Patankar, with an
upwind formulation replacing central differences only
when necessary.

3. The overall Nusselt number for the laminar regime
agreed well with the correlating equation of Churchill,
and the peak velocity with the correlating equation of
Hishida and Tsuji for a vertical plate in an unconfined
fluid.

4. The computed velocity profile near the wall agreed
well with the experimental measurements of Ozoe et al.
at mid-height but was higher for low elevations and
lower for high elevations. These deviations are
undoubtedly due to an insufficient number of grid
points within the boundary layer near the wall.

5. A two-dimensional k—& model was used with a
hybrid finite-difference scheme to compute turbulent
natural convectionin asquare channel for Rafrom 10'°
to 10! with Pr = 6.7.

6. A stable, slow,sinusoidal oscillation was computed
for the central core in the turbulent regime. However
the time-averaged velocity, temperature and turbulent
characteristics were non-oscillatory within the boun-
dary layers.

7. The computed time-averaged turbulent velocity
profile near the heated wall fell within the range of
oscillation of prior measured instantaneous velocities
and agreed qualitatively with their time averages.

8. The computed overall Nusselt numbers for the
turbulent regime are in reasonable agreement with the
correlating equation of Churchill.

9. The constants of the two-equation model were
changed separately and simultaneously to test their
effect. The combination of a turbulent Prandtl
number ¢, = 4and a constant ¢, = 1.296 (—10%) gave
a time-averaged vertical velocity profile, an overall
Nusselt number, and a time-averaged temperature
profile at mid-height in much better agreement with the
experimental measurements than the standard set of
constants for forced convection.

10. The effects of varying the constants in the k—z
model are complicated. Increasing the turbulent
Prandt]l number g, from unity decreases the peak value
of the eddy diffusivity monotonically but the overall
Nusselt number increases only up to o, = 2 and then
decreases.
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CALCUL NUMERIQUE DE LA CONVECTION NATURELLE LAMINAIRE OU
TURBULENTE D’EAU DANS UN CANAL RECTANGULAIRE AVEC DES PAROIS
OPPOSEES VERTICALES A TEMPERATURES DIFFERENTES

Résumé—La convection naturelle est calculée par des méthodes de différences finies utilisant un modéle
laminaire pour des enceintes 2 x 1 et 1 x 1, Ra, variant entre 106 et 10°, des nombres Pr = 5,12 et 9,17, et un
modéle turbulent k— pour une enceinte carrée avec Ra entre 10'% et 10! et Pr = 6,7. Les nombres de Nusselt
moyens s’accordent bien avec I'’équation de Churchill pour les valeurs expérimentales ou calculées. Le profil de
vitesse calculé le long de la paroi est en accord acceptable avec les valeurs expérimentales antérieures, excepté
pour la fine couche limite sur la partie basse de la paroi ol apparait la nécessité d’un maillage plus fin qu’il n’est
possible. On opére un test de sensibilité pour les constantes du modéle k—¢. Le profil de vitesse 4 mi-hauteuret le
nombre de Nusselt moyen sont en meilleur accord avec les résultats expérimentaux lorsque le nombre de
Prandtl turbulent est multiplié par quatre et la constante C, est diminuée de 10%,. Un modéle turbulent plus fin
et un maillage plus réduit apparaissent nécessaires, particuliérement aux grands Ra.

NUMERISCHE BERECHNUNG DER LAMINAREN UND TURBULENTEN NATURLICHEN
KONVEKTION VON WASSER IN RECHTECKIGEN KANALEN

Zusammenfassung—Es wurde die natiirliche Konvektion mit einer Finite-Differenzen-Methode unter
Anwendung eines laminaren Modells fiir 2 (Breite) x 1 und 1 x 1 Querschnitte bei Ra von 10° bis 10° und
Pr = 5,12 und 9,17, sowie eines k~& Turbulenz-Modells fiir quadratische Querschnitte bei Ra von 10° bis 10!!
und Pr = 6,7 berechnet. Die mittlere Nusselt-Zahl stimmt mit der Korrelationsgleichung von Churchill fiir
experimentelle und berechnete Werte gut {iberein. Das berechnete Geschwindigkeitsprofil entlang der
beheizten Wand ist in annehmbarer Ubereinstimmung mit friiheren experimentellen Werten, auBer in der
diinnen Grenzschicht entlang des unteren Teils der Wand, wo eine engere Gitterweite, als bei der Berechnung
moglich, erforderlich scheint. Ein detailierter Sensitivitéts-Test fiir die Konstanten des k—& Modells wurde
ebenfalls durchgefiihrt. Das Geschwindigkeitsprofil in mittlerer Hohe und die mittlere Nusselt-Zahl waren in
noch besserer Ubereinstimmung mit den experimentellen Ergebnissen, wenn die turbulente Prandtl-Zahl auf
vier anstieg und die Konstante C, um 10% abnahm. Ein verfeinertes Turbulenz-Modell und eine engere
Gitterunterteilung erscheint wiinschenswert, insbesondere fiir groBe Ra-Zahlen.

YUCJEHHBIA PACYET JJAMUHAPHOW U TYPBYJIEHTHON ECTECTBEHHOM
KOHBEKIIMY B BOIE B [MPAMOYTOJIbHBIX KAHAJIAX C U30TEPMUYECKH
HATPEBAEMbIMU U OXJTIAXKJAEMBIMH TMPOTUBONOJOXHBIMHU
BEPTUKAJIbBHbBIMH CTEHKAMH

Annoraums— PaccuuThIBaeTCa KOHEUHO-Pa3HOCTHBIMH METOJAMH Ha JJAMHHAPHOH MOJIE/IM ECTECTBEHHA S
KOHBEKIHA B NIOJIOCTAX ¢ pasmepaMH 2 (lunpHHa) x | u 1 x | npu 3Havenusx uucen Ra ot 10° go 10° u
Pr=512u9.17, a c nomMowpio k — ¢ Mogenu TypOyJEHTHOCTH — KOHBEKLIMS B KBAZXPAaTHOH NOJOCTH
npu uuciax Ra ot 10'° go 10'' m Pr=6.7. Cpeaume 3HaueHusa uMcia HyccenbTa xopoiuo
COTJacyloTcsl C IKCNEPUMEHTAIbLHBIMH M PACYETHBIMHM 3HAYEHHAMH, MOJYYEHHBIMH W3 0606LIeHHOH
3aBucuMocTH Yepumnns. PacyeTHblil npodHib CKOPOCTH BIOJb HArpeBacMON CTEHKH YAOBJIETBODH-
TEJILHO COBMAJAET C paHee TNOJYYEHHbIMH JKCNEPHMEHTANbHBIMH 3HAYEHHAMH, 33 HCKIHOYCHHEM
MOrPaHHYHOro CNoA HEeGOMBIUOH TOMUIMHBI BAOJTL OCHOBAHHA CTEHKH, /i KOTOpO# Heobxoaumo
HCTIOJIL30BATL CETKY C Bojlee MeNKHM IIAroM, YTO He YAanoch OCYIUECTBHTL npakTuyeckd. Mccnenmo-
BaHa TAKXKE YCTOHYMBOCTH IIOCTOAHHBIX Mofesn k — £ I1poduibL CKOpPOCTH B CpelHEH YacTH NOJIOCTH
u cpeanue 3HaueHuA uucna HyccenbTa jydille cOBNAJAIH C IKCIEPUMEHTAILHBIMH JAHHBIMH, KOraa
TypGynentHoe yncio IMpanATna Bo3pactano 0 4, a 3HaYEHMA KOHCTaHTH C; cHHxanock Ha 107,.
Heobxoauma Gonee anekpaTHas MoJeb TypOyieHTHOCTH M ceTka ¢ 6oJiee MEJIKUM LUaroM, ocobeHHo
npu 60NbLIHX 3HAYCHMAX YHcna Ra.



