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Abstract-Natural convetition was computed by finite-difference methods using a laminar model for 2 (wide) 
x 1 and 1 x 1 enclosures for Ra from lo6 to lo9 and Pr = 5.12 and 9.17, and a k--E turbulent model for a square 

enclosure for Ra from 10”’ to 10” and Pr = 6.7. The average Nusselt numbers agree well with the correlating 
equation of Churchill for experimental and computed values. The computed velocity profile along the heated 
wall is in reasonable agreement with prior experimental values except for the thin boundary layer along the 
lower part of the wall where a finer grid size than was computationally feasible appears to be necessary. A 
detailed sensitivity test for constants of the k--E model was also carried out. The velocity profile at the middle 
height and the average Nusselt number was in even better agreement with the experimental results when the 
turbulent Prandtl number was increased to four and the constant c1 was decreased by 10%. A more refined 

turbulent model and finer grid divisions appear to be desirable, particularly for larger Ra. 

INTRODUCTION 

TRANSITIONAL and turbulent convection in rectangular 
enclosures heated and cooled on two opposing vertical 
walls has a number ofimportant applications, e.g. in the 
cases of a passive solar room heated by a Trombe wall 
and cooled by a north-facing window, and in the event 
of a breakdown of the circulating system in a nuclear 
reactor. This behavior has, however, received only 
limited attention because of its three-dimensionality, 
and the difficulty of numerically simulating the 
combination of boundary-layer-like flows near the 
heated and cooled walls and a slower gross circulation 
elsewhere. 

Numerical solutions for the quasi-one-dimensional 
laminar, then transitional, and finally turbulent 
boundary layer along a vertical heated plate in an 
unconfined fluid have been carried out with the k--E 

model for turbulence by Lin and Churchill [ 11, Plumb 
and Kennedy [2] and Farouk and Giiceri [3]. On the 
other hand, Fujii and Fujii [4] solved numerically for 
a turbulent boundary layer using the Glushko model. 
They carried out a detailed evaluation of their 
computed values and found qualitative agreement 
between the various turbulent characteristics and the 
available experimental data. Fraikin et al. [S] 
apparently obtained the first stable solution for 

fundamentally two-dimensional turbulent natural 
convection. They studied a square channel with 
isothermally heated and cooled vertical walls and linear 
temperature profiles along the lower and upper 
horizontal boundaries. Their calculations were for air 
at Grashof numbers of lo’, 5 x lo7 and lo*, which they 
postulated to be in the turbulent regime. Their 
maximum computed turbulent viscosity ranged from 
four times the molecular viscosity at Gr = 10’ to 9.6 at 
108. They carried out a sensitivity analysis of the 
arbitrary coefficients in the k-c model, but their results 
appear to be applicable only to their specific thermal 
boundary conditions. Farouk and Giiceri [6] used the 
k-c model to compute laminar and turbulent natural 
convection in the horizontal concentric annulus 
between a heated inner and cooled outer cylinder at 
Rayleigh numbers up to 107. They concluded that at 
higher Rayleigh numbers a finer grid would be 
necessary to simulate the thin boundary layers next to 
the walls. 

Natural convection in finite rectangular enclosures is 
necessarily three-dimensional. The enclosures to be 
simulated in this work will, however, be assumed to be 
sufficiently deep (in the horizontal direction parallel to 
the heated and cooled walls) so that the time-averaged 
motion can be approximated as two-dimensional. 
Rayleigh numbers and Prandtl numbers for the 
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a, uy, b,, b, parameters in expression for grid Greek symbols 
location a thermal diffusivity [m2/s] 

cr, c2, ca, c,,, c, parameters in k-c model % eddy diffusivity for heat transfer [m2/s] 
E dimensionless time-averaged rate of B volumetric coefficient of expansion [K- ‘1 

dissipation of turbulent energy E time-averaged rate of dissipation of 
= s/(x3 Rai13/L4) turbulent kinetic energy [m”/s3] 

9 acceleration due to gravity [m/s’] r dimensionless time-averaged vorticity 
H height of the cross-section of the = (~~/~X)-(~U/~~ 

enclosure rl dummy variable 
K dimensionless time-averaged turbulent e temperature [K] 

kinetic energy = k/((crRa~~3/L)2 8, = (@iI f e,)l;! CKI 
k turbulent kinetic energy K von Karman’s constant N 0.42 

= (U’2+p+Wf2)/2 [m2/sZ] c1 viscosity [Pa * s] 

L width of the enclosure [m] V kinematic viscosity = plr, [mz/s] 

1 scale of turbulence [m] VI eddy diffusivity [m,@] 

NU overall Nusselt number v: dimensionless time-averaged eddy 

N, number of grid in X-direction diffusivity = vJa = c,, KZjE 

NY number of grid in Y-direction 5 dummy variable 

P time-averaged pressure [Pa] P density [kg/m31 

Pr Prandtl number = v/a a Prandti number = v/u 

RaL Rayleigh number = g/S@& - 8,)L3/(ev) CK Prandtl number for the turbulent kinetic 

T dimensionless time-averaged energy 

temperature ot turbulent Prandtl number = V&Z, 

t time [s] “e Prandtl number for the rate of 

u component of time-averaged velocity in dissipation of turbulent energy 

x-direction [m/s] dimensionless time = R@at/Lz 

U dimensionIess time-averaged velocity in ; dimensionl~s time-avera~d stream 

x-direction = Lu/(c~Rn~/~) function. 

u component of time-averaged velocity in 
y-direction [m/s] 

V dimensionless time-averaged velocity in Subscripts 
y-direction = Lq’(c~Ra~~~) 0 dimensional reference value 

X dimensionless vertical coordinate 1, 23 empirical constants of turbulent model 
= xRu;‘~/L center or central plane value 

x vertical coordinate [ml fi height as a reference value 
Y dimensionless horizontal coordinate h heated wall 

= yRi~;‘~,fL L width as a reference value 
Y horizontal coordinate [ml. 1 cooled w&h. 

computations were chosen to match those of the as employed by Fraikin et al. [5] and Farouk and 
available experimental data and thereby expedite Giiceri [6] was utilized in this investigation. 
compa~sons. The following four equations represent in dimen- 

TURBULENT MATHEMATICAL MODEL 
sionless form the conservation of the time-averaged 
vorticity, energy, turbulent kinetic energy and rate of 

The same two-dimensional k-c model for turbulence dissipation of turbulent energy : 
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(3) 

Here the dimensionless time-averaged vorticity is 
defined as 

and the dimensioni~s time-averaged stream function 
as 

(6) 

The dimensionless time-averaged eddy diffusivity is 
related to the dimensionl~s time-averaged turbulent 
kinetic energy and the dimensionless time-averaged 
rate of dissipation of turbulent energy as follows: 

K2 
v:=c - 

pE (7) 

The following empirical constants re~mmend~ by 
Launder and Spaiding [;7 were used, except for c, in 
the buoyant term ofthe E-equation, which was adopted 
from Fraikin et al. [4] : 

c,=o.O9, c,=1.44, c,=1.92, ce=0.7, ox==, 
a, = 1.3 and CY( = 1. 

The dimensionl~s time-averaged variables in the 
above equations are defined as 

X=-fc_, y=li-, u=“, v=4, 
x0 Yo UO 00 

@o=vO=a2&,$t3, 

X0 L 

p. = pa2/xi = (paZ/Lz)Rai’3, 

&o = a3fx3 = a3Raif3/L4, vto = a, 

to = z = L2/(Rai’3a) 

The system which was studied is sketched in Fig. 1. 
The following boundary conditions were used : 
(1) Temperature 

T = 0.5 at Y = 0 (8) 

T = -0.5 at Y = 4 Ra,!,13 
0 

(9) 

(2) Velocity and stream function 

'= ' = '=' at 

X = 0, Rail3 
y=O (&@QRa;j3 1;;; , 

(3) Vorticity 

i 
av a21j ---_-- 
ax ax2 

at X = 0, Rail3 U2) 

at Y = 0, Rag3(L/If) (13) 

(4) Turbulent kinetic energy 

K=O at 
X = 0, Ra,?/’ (14) 
Y = 0, (L/H)Ra~3 (15) 

(5) Rate of dissipation of turbulent energy 
The time-averaged rate of dissipation of turbulent 
energy, E, is proportional to k312/1 where 1 is a 
characteristic length expressing the scale of the 
turbulence. Since k and 1 both approach zero at the wall, 
the boundary condition for E is undefined. However, E is 
almost constant near the wall, and it follows from 
assuming the length scale to be proportional to the 
distance by from the wall that 

,3/4k3’2 
E=L at y=O,L 

KAY 
(16) 

or 

E 
c3t4K3t2 

= -!!---- 
ICAY 

at Y = 0, Ra~3(L/~) (17) 

Here, K = von Karman constant = 0.42 

x= H] aerax=o 
I 

@h 
r, 

xL Y Z y=L 
FIG. 1. Scheme of the system. 
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FIG. 2. Example of grid point distribution for L/H = 2. 

Setting E = k = 0 on the surfaces, as proposed by Jones 
and Launder [S], was also tried, with additions terms 
in the k and E equations for a low Reynolds number. 
However kands theneither converged tozeroat allgrid 
points or diverged. 

GRID SIZE DISTRIBUTION 

For the conditions of interest, a boundary layer flow, 
in which the velocity changes drastically, occurs near 
the surfaces, whereas the fluid is nearly stagnant in the 
central region. A fine grid-size is therefore preferable 
near the surfaces and a coarse one in the core. 
Accordingly, the X and Y locations of the grid were 
determined in terms of the equally divided dummy 
coordinates r and q as follows : 

X=l(e”bx-l) for O<r<y JMr’3 (18) 

a, 

X = L(l +a x -ec’bx) for +RaAf3 < < < Rail3 
a, 

(19) 

Y=i(eV/by-l) for O<q< (20) 
UY 

and 

Y = $(I +ay-eV/by) for &(Rag3) < u < b Rag3 

(21) 

The resulting grid is illustrated in Fig. 2 for L/H = 2 
with N, = 24, N, = 48, a,, = 39.283, by = 0.16516, 
a, = 5.8765, b, = 0.36476. 

COMPUTED RESULTS FOR 

LAMINAR REGIME 

Test calculations for the laminar regime were carried 
out for aspect ratios of L/H = 1 and 2 simply by setting 
v: = 0 in equations (1) and (2) and dropping equations 
(3) and (4). 

CaseZ:L/H=2 
This aspect ratio was chosen to simulate a large 

room. The first calculations were for Pr = 9.17 with the 
sudden imposition of a temperature difference 
equivalent to Ra = 106. The grid locations were 
calculated for the parametric values in the first line of 
Table 1. 

The transient response of the overall Nusselt number 
and the central value of the dimensionless stream 
function are shown in Fig. 3. A rapidly damped 
oscillation about the steady state solution can be 
observed. Steady state velocity vectors and dimension- 
less isotherms are shown in Fig. 4 (a) and (b), 
respectively. 

Computations were next carried out for Ra = 10’ 
and Pr = 9.17 with the same grid. However, the 
maximum computed vertical velocity occurred on the 
grid line nearest the heated (and cooled) wall, 
suggesting that an even higher velocity might occur 
nearer the wall. Therefore, the number of divisions, N, 
and N, were increased to 24 and 48, respectively, and 
the other grid-size parameters changed as indicated in 
the second line of Table 1. This gave the more 
reasonable solution illustrated in Fig. 5 by the velocity 
vectors, dimensionless temperatures, and streamlines. 
Boundary layers near the surfaces and stratification in 
the core are more firmly established than for Ra = 106. 

Similar computations for Ra = IO* and Pr = 9.17 
yielded a convergent solution with the dimensionless 
isotherms and streamlines shown in Fig. 6. The 
standing vortices and tortuous streamlines of Fig. 6 
were not observed in the experimental work of Ozoe et 
al. [9] in a 16Omm high, 295 mm wide and 189 mm deep 
enclosure at the same Rayleigh and Prandtl numbers. 
The location of the center of the principal standing 
vortex was the same as that of the maximum value in the 
vertical velocity, suggesting that too large a vertical 
velocity in comparison to the grid size might have 
caused this unrealistic behavior. The maximum cell 
Reynolds number at this location was U_AX/Pr 
= 5.8(33.58)/9.17 = 21.2whichismuch higher than the 

Table 1. Coefficients for the calculation of the grid locations 

Ra 

lo6 
107, 1.52 x 10s 

106,lO’ 
108,109 

1O’O 
6.3 x 10”’ 

1.09 x 10” 

LfH Nx NF 

2 20 20 
2 24 48 
1 24 i4 
1 24 48 

1 24 60 

ax b, % 6, 

(Equal size in x-direction) 94.311 0.12905 
5.8765 0.36476 39.283 0.16516 
5.8765 0.36476 39.283 0.16516 

16.699 0.22368 76.03 1 0.13646 

33.223 0.17430 94.787 0.12889 
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Nu IO- -30 Yc 

50 
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loo 200 300 
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FIG. 3. Illustration of convergence of transient calculations for 
the Nusselt number and dimensionless central stream function 

for Ra = lo6 and Pr = 9.17. 

zero overshoot criterion of 2.0, suggested by Roache 
[lo]. The value of 21.2 appears to be too large even for 
an implicit finite-difference formulation. One method 
of reducing the cell Reynolds number would be to use a 
smaller grid, but the resulting increase in computation 
would be prohibitive. Another remedy would be to use 
an upwind formulation. However, the simple upwind 
method has a first-order truncation error. Instead of 
either of these, the hybrid scheme suggested by 
Patankar [ 1 l] was utilized. This scheme employs the 
upwind method only when the coefficient matrix 
becomes negative due to a large value of the velocity in 
the convective term. All other points are approximated 
by central differences. 

The computations with this hybrid scheme 
converged successfully for Ra = 1.52 x 10s and Pr 
= 9.17, as illustrated in Fig. 7, producing the velocity 
vectors, dimensionless isotherms, and streamlines 
shown in Fig. 8. 

Eualuation of computed result. The overall Nusselt for 
L = 2H (rectangles) is compared with the correlating 
equation of Churchill [ 121 in Fig. 9. The agreement is 
good but the computed value falls slightly below the 

FIG. 

(a) 

0.5 

B 
0 

+ II: 

z x 
I 0 

-0.5 

(b) (b) 

4. Steady state solution for Ra = lo6 and Pr = 9.17. (a) 
Velocity vectors ; (b) dimensionless isotherms. 

FIG. 6. Steady state solution for Ra = 10’ and Pr = 9.17. (a) 
Dimensionless isotherms; (b) streamlines. 

(a) 

s 8 
v 

-0.5 

(c) 

FIG. 5. Steady state solution for Ra = 10’ and Pr = 9.17. (a) 
Velocity vectors ;(b) dimensionless isotherms ;(c) streamlines. 

correlating equation, probably because the number of 
grid points is still insufficient. The mean Nusselt 
number predicted by the correlation of Churchill and 
Usagi [ 131 for a heated vertical plate in an unconfined 
fluid is also shown in Fig. 9. The deviation from that 
curve represents the effect of the horizontal surfaces, 
which for this aspect ratio is considerable. 

The computed maximum vertical velocity near the 

:: 0 

z 3 

; 0 8 

-05 

(a) 
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FIG. 7. Transient response of the dimensionless central stream 
function for Ra = 1.52 x lo8 and Pr = 9.17 with AT = 0.1 to 

0.2. 

heated wall can be represented by the empirical 
expression 

u max = 0.269R~;‘~’ (22) 

or 

u,,, = 0.269 5 
0 

Ra0,4g5 
H ” 

Hishida and Tsuji [14] correlated the maximum 
vertical velocity along a heated vertical plate in 
unconfined air by 

u max = b 0 5 Ra,0.4g3 
x 

with b = 0.267 for Gr, 2 lOlo, and b = 0.394 for 
Gr, ,< 10’. The exponent of the Rayleigh number 
agrees remarkably well. The coefficient would not be 
expected to coincide, considering the difference in the 
boundary conditions, in Pr, and in the range of Ra. 

Ozoe et al. [9] measured the vertical velocity in water 
at the mid-depth along the heated wall of a 160 mm high, 
295 mm wide and 189 mm deep enclosure for a 
temperature difference corresponding to Ra = 1.52 
x lo* and Pr = 9.17. Their values are compared in Fig. 

10 with those computed herein. The agreement is 
excellent with the values measured at the height of 
75 mm, but is poor with those at 15 mm. These velocity 
profiles are not normalized with respect to the peak 

(b) 

F~~.S.SteadystatesolutionforRa = 1.52 x lO*andPr = 9.17 
using the hybrid scheme of Patankar [l 11. (a) Velocity vectors; 

(b) dimensionless isotherms; (c) streamlines. 

value and the normalized y coordinate (which would 
reduce the effect of the finite depth in the experiments 
and the finite number of grid points in the 
computations), and thereby constitutes a critical test of 

the simulation. The corresponding peak velocities at 
various heights are compared in Fig. 11. The curve 
representing the computations is higher than the 
experimental values at low elevations, in good 
agreement at intermediate elevations and lower at high 
elevations. 

It may be noted in Fig. 10 that only one grid point 
falls between the peak velocity and the wall at an 

I _ 

106 107 108 Ra IO9 10’0 IO” 

FIG. 9. Comparison of the computed overall Nusselt number with correlating equation of Churchill [12] for 
LfH = 1 and 2. 

L/H = 2 0 Laminar model __ Correlating equation 
L/H = 1 IJ Laminar model q Turbulent model ----- Correlating equation 

0 Comparison problem report [15] 
--- Correlating equation for vertical plate in unconfined fluid [13]. 
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r(mm) 

FIG. 10. Comparison for Ra = 1.52 x 10 and Pr = 9.17 of the 
computed vertical velocities with experimental values in a 

160 mm high, 295 mm wide and 189 mm deep enclosure. 
1 Measured vertical velocity at x = 15 mm 
s Measured vertical velocity at x = 75 mm 

-O- Computed vertical velocity at a height equivalent to 
x = 15.8 mm 
-- Computed vertical velocity at a height equivalent to 
x=80mm. 

elevation corresponding to 15 mm. The peak velocity 
fell right on the first grid point at an elevation of 3.5 mm 
(not shown). Thus even 48 horizontal divisions are 
insufficient to provide reliable results at this level of 
detail. 

CaseIZ:L/H=l 
Computations were also carried out for the classical 

case of a square channel in order to relieve the grid-size 
requirement somewhat. These computations were for 
Ra = 106, lo’, lOs, lo9 and Pr = 5.12. The grid size 
parameters are shown in lines 3 and 4 of Table 1. The 
computed overall Nusselt numbers are shown in Fig. 9 
with square symbols. De Vahl Davis and Jones [lS] 
reported a summary of competitive solutions for a 
square channel with the same boundary conditions as 
this work for Ra = 104, 10s and 106. The best value of 
the average Nusselt number at Ra = lo6 is asserted by 
them to be 8.903 f0.09. The agreement of the 
computations herein with this value is excellent, and the 
maximum velocities for the square channel are well 
represented by equations (22) and (23). 

o-o 
x (mm) 

FIG. 11. Comparison of computed peak vertical velocities for 
L/H = 2, Ra = 1.52 x 10s and Pr = 9.17 with experimental 

- Computed 
values. 

8 Range of fluctuation of experimental peak velocities in 
160 mm high, 295 mm wide and 189 mm deep enclosure. 

The computed velocity profiles for Ra = lo9 are 
compared in Fig. 12 with the experimental measure- 
ments of Ozoe et al. [16] for water at Ra = 1.04 x lo9 
and Pr = 5.12. The profiles are similar in shape but the 

experimental peak values are higher. 
The computed values of the overall Nusselt number 

are tabulated in Table 2, together with some of 
turbulent results. 

COMPUTED RESULTS FOR 

TURBULENT REGIME 

The boundary layer along a vertical plate in an 
unconfined fluid is presumed to begin the transition to 
turbulent motion at Gr = lo9 [12]. Turbulent motion 
of water in an enclosure heated on a vertical wall might 
therefore be expected to occur at Ra = lo9 Pr. 
Accordingly, the k-c model was evoked for Ra 2 10”. 

Computations were successfully carried out for a 
squarechannelatRa = 10”,6.3 x 10”and 1.09 x 10” 
with Pr = 6.7. The grid-distribution parameters are 
shown on line 5 of Table 1. The hybrid finite-difference 
scheme was again utilized. 

All three cases yielded an oscillating but non- 
diverging solution as illustrated in Fig. 13 by the 
dimensionless, time-averaged central value of the 
stream function for Ra = 6.3 x 10”. The sinusoidal 

Table 2. Summary of the computed cases plotted in Fig. 9 

LIH Ra Pr Nu 

1 lo6 9.17 9.38 
1 10’ 9.17 18.8 
1 10s 5.12 31.7 
1 ;$ 5.12 53.5 
1 5.12 146.1 
1 6.3 x 10”’ 6.7 189 
1 1.09 x 10” 6.7 213 

2 106 9.17 9.0 
2 10’ 9.17 17.3 
2 1.52 x 10s 9.17 32.8 

*Central value of the stream function oscillated. 

*, 

20.4 
33.5 
56.0 

104.1 
* 
* 
* 

19.5 
34.3 
79.9 

N, NY Model 

24 24 laminar 
24 48 laminar 
24 48 laminar 
24 48 laminar 
24 60 or = l,c, = 1.44 
24 60 0, c1 = 4, = 1.296 
24 60 0, = 4,c, = 1.296 
24 48 laminar 
24 48 laminar 
24 48 laminar 
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'r 

ytmm) 

Fig. 12. Comparison of the vertical velocity near the heated 
vertical wall with experimental measurements in water by 

laser-Doppler velocimetry. 
Computed condition: Ra = log, Pr = 5.12, x = 43.2 
mm-,x = 105 mm----,x = 166.8 mm --. 
Experimental condition: Ra = 1.04 x log, Pr = 5.12, x = 45 
mmlJ,x=105mm~,x=165mmO. 

motion is presumed to correspond to real physical 
behavior. Staehle and Hahne [17], using a finite- 
difference method, computed transient oscillations, 
similar to those in Fig. 13, for rectangular channels 
heated and cooled on the opposing sides for a series of 
values of Ra less than 106. They observed that the 
dampening of the oscillations decreased as the Kayleigh 
number increased, and therefore concluded that such 
oscillations would lead to turbulent motion at some 
higher value. Despite the oscillations in the time- 
averaged value of the central stream function, the time- 
averaged values of the velocity vector, the dimension- 
less temperature, and the stream function, which are 
plotted in Fig. 14 (a), (b) and (c), did not oscillate 
significantly near the walls. Apparently the slow, steady 
oscillation in the nearly stagnant core is effectively 
dampened in the relatively fast moving boundary layer 
near the surfaces. Contours of the dimensionless time- 
averaged turbulent kinetic energy, rate ofdissipation of 
turbulent energy, and eddy diffusivity are plotted in Fig. 
14 (d), (e) and (f). The maximum value of the eddy 
diffusivity v: is 93, which is about 14 times the Prandtl 
number. Thus the maximum eddy diffusivityis about 14 
times the molecular kinematic viscosity. 

FIG. 13. Steady oscillations of the central stream function for 
Ra = 6.3 x lOlo, Pr = 6.1 and As = 1 N 3. 

(d) 

tb) 

FIG. 14. Contour maps for the time-averaged characteristics of 
turbulent natural convection at Ra = 6.3 x 1O”‘and Pr = 6.7 
in a square channel. (a) Velocity vectors; (b) dimensionless 
isotherms ; (c)streamlines ; (d) turbulent kineticenergy ;(e) rate 
of dissipation of turbulent energy; (f) dimensionless eddy 

diffusivity. 

(0) 

0.4 0.3 

0.5 0.2 

P 
0.1 

=B 

:: 

l!!z 

fr 
0 

; -0.1 
"0: 
VI 

-0.2 

-0.3 
-04 

(b) (a) 

(cl (f) 

FIG. 15. Contour maps for the computed time-averaged 
characteristics of turbulent natural convection at Ra = 1.09 
x 10” and Pr = 6.7 in a square channel. (a) to(f) are the same 

as in Fig. 14. 
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(a) 

(b) 

Y 

Y 

FIG. 16. Computed results for Ra = 6.3 x 10”’ and Pr = 6.7 
with standard set of constants in k-~ model. (a) Profiles of 
dimensionless vertical velocity at various heights; (b) profiles 
of dimensionless turbulent kinetic energy at various heights. 

Curve 1 5 
X 32.3 5:9 1990(3=H,Z) 3&l 3947 

The same characteristics are plotted in Fig. 15 for Ra 
= 1.09 x 10” and Pr = 6.7. Comparison with Fig. 14 
indicates that the thickness of the boundary layer has 
increased with the Rayleigh number. However, a peak 
value near the bottom plate, as reported by Fraikin et 
al. [S], does not appear, probably because of the 
different boundary conditions. 

The computed time-averaged values of the vertical 
velocity are compared in Fig. 17 with the experimental 
values of Ozoe et al. [ 161 for Ra = 6.26 x lOi’, Pr = 6.7 
and x = 375 mm (mid-height) for water in a 750 nun 
high, 750 mm wide and 180mm deep enclosure. Curve 1 
represents the vertical velocity profile at mid-height. 
The range of oscillation of the instantaneous 
experimental values is indicated by the vertical solid 
lines and their time-averaged values by the open circles. 
The computed values lie within the range of oscillation 
and have the same relative variation as the 
experimental ones. The computed values, however, are 
higher despite the expectation of agreement with the 
experimental time-averaged data as represented by the 
open circles. This disagreement might be caused by the 
arbitrary choice of some of the constants in the k-s 
model. Therefore, a sensitivity test of these constants 
was carried out as follows. 

Sensitivity test of the constants in the k-E model 
A more detailed inspection of the computed result The standard combination of the constants was 

was made as follows. The dimensionless time-averaged given above. Results for various perturbations are 
vertical velocities at various heights were plotted in Fig. summarized in Table 3. This listing comprises the 
16 (a) for Ra = 6.3 x 10” and Pr = 6.7 vs the overall Nusselt number Nu, the maximum peak vertical 
dimensionless normal distances from the surface. velocity U,,,, the maximum value of the eddy 

Curves 1 to 5 represent the development and 
dampening of the vertical velocities from the bottom to 
the ceiling along the heated wall. Curve 1 at X = 32.3 
corresponds to the first grid line from the bottom. The 
peak velocity is on the first grid from the vertical heated 
surface, suggesting a requirement of more grid points. 
The shape of the velocity prolile of Curve 2 (X = 519) is 
similar to that of the laminar boundary layer, as seen in 
Fig. 10. The thickness of the boundary layer of curve 3 
at X = 1990 (mid height) becomes more than double 
that of Curve 2. This appears to indicate a transition to 
turbulent flow. At higher levels, as seen in Curves 4 and 
5, the upward flow dampens rapidly, with a downward 
velocity component outside the boundary layer flow. 

In Fig. 16(b), the profiles of the dimensionless 
turbulent kinetic energy K are plotted vs the 
distance from the heated surface for the same heights as 
(a). The significant characteristic of these curves is the 
two-peak-profile. Hishida et al. [18] and Miyamoto et 
al. [ 191 measured U-//U*, where u* is a friction velocity, 
for free convection of air along a heated vertical plate in 
an unconfined regime and reported a similar two-peak- 
profile. Fujii and Fujii [4] computed a similar two- 
peak-profile. This two-peak-profile of the turbulent 
kinetic energy appears to be one of the characteristics of 
turbulent free convection. A detailed observation of the 
variation of these profiles with height reveals that the 
first peak near the heated plate develops primarily due 
to the development of the strong upward velocity. The 
first peak is then dampened much more rapidly than the 
second peak because of the decreasing upward velocity 
against the top plate. The second peak occurs outside 
the peak of the vertical velocity of Fig. 16(a). This is due 
to theshearstressproducedbythestagnantcoreoffluid 
at further distances from the wall. 
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Table 3. Sensitivity test of constants in the k-e model : Ra = 6.3 x lOlo, Pr = 6.7, square channel 

Condition 

U at Number of 
(X = mid height) negative 

Nu max u vL, K Ins= E mI4x (Y = 76.14) ofKandE 

Standard case 
cr = 1.73 (+20x) 
cr = 1.152(-20%) 
cr =0.864(-40X) 
cr = 2.304 (+ 20%) 
cr = 1.536 (-20”/,) 
cr = 1.152(-20%) 
c1 = 2.304 (+ 20%) 
cr = 1.584(+ 10%) 
c2 = 2.496 (+ 30%) 
c, = 1.44(+106%) 

cz = 1.56(+20x) 
(iK = 1.2(+20”/,) 
cr = 1.44 
c, = 0.5 
cr = 1.44 
c, = 2 
cr = 1.44 
0, = 3 
cr = 1.44 
0, = 4 
c, = 1.44 
cr,= 10 
c, = 1.152(-20%) 
0, = 2 
c, = 1.152(-20%) 
(r, = 3 
cr = 1.152(-20%) 
(i, = 8 
0, = 4 
c, = 1.296(-10%) 
c, = 4 
cr = 1.008 
cr, = 4 
c, = 1.296 
ct = 1.776 

174.9 24.1 91.7 39.6 
134.2 31.9 22.2 23.7 
210.8 21 154 39.8 
238.8 18.5 206 37.4 
212.7 22 164 42.8 
122 36.6 24.5 67.3 

241 19.4 210 39.6 

18.5 
34.3 
12.3 
9.1 

14.4 
37.2 

11.4 
4.59 

11.1 
9.71 

12.1 

10.5 10.5 

214.4 22.4 167 43.9 

176.6 24.6 100 39.9 

180 24.6 94.1 40.8 
172 24.6 101 43.3 

153 34.4 139 77.9 

185 20 55.3 27.7 

181 18.3 45.8 24.0 

176 17.5 39.5 25.2 

160 15.6 29.8 22.3 

219 17.0 103 32.2 

208 16.1 87.1 29.9 

181 14.2 61.1 27.5 

189 16.5 58.4 28.1 

212 14.6 98.2 30.0 

15.3 12.5 

68.3 11.6 

18.6 11.6 
19.3 11.5 

46.4 21.3 

9.8 5.0 

7.9 2.82 

7.00 1.92 

5.29 -0.33 

7.29 6.04 

6.43 4.59 

5.17 1.68 

6.54 2.95 

5.72 3.88 

178 17.2 42.5 25.7 6.75 2.13 

7 
3 in ts. 
3 in ts. 
3 in t.s. 

7 

2 in t.s. 

35 negative in K 
8 negative in E 

6 

diffusivity v:, the maximum value of the turbulent 
kinetic energy K, the maximum value of the rate of 
dissipation of turbulent energy E and the vertical 
velocity at Y = 76.14, where the experimental vertical 
velocity becomes almost zero. Comparison with the 
experimental results may be described as follows. 

The standard combination of the constants gives a 
slightly smaller Nusselt number than thecorrelation by 
Churchill [12] and too great a vertical velocity at 
middle height, as shown in Fig. 17. 

Each constant was changed separately as much as 
+ lo%, _+ 20% or f 30% with the objective of obtaining 
better agreement of the velocity profile and the overall 
Nusselt number with experimental data. 

Increasing the constant c1 to 1.73 (+20x) gave too 
small a Nusselt number, and resulted in a much greater 
vertical velocity and a negative value of the turbulent 
kinetic energy K at seven grid points. The occurrence of 
a negative value of K is physically impossible, although 
the absolute value was within the computational error 
oforder lo-” to 10-15,and can beconsidered to be an 

y (mm) 

Fig. 17. Comparison of computed and experimental vertical 
velocities along the heated wall of a square enclosure for Ra 
= 6.26 x lOlo, Pr = 6.3 and x = 37.5 cm. The experimental 
box is 750 mm x 750 mm x 180 mm. 

Curve 1 2 3 4 
cl 1 3 3 4 
cl 1.44 1.44 1.152(-200/.) 1.296(-10%) 
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indication of an unrealistic combination of the 
constants in the model. 

Decreasing the constant ci to 1.152 (-20%) gave a 
higher Nusselt number and a smaller peak velocity but 
the thickness of the boundary layer was observed to be 
unchanged. Decreasing cr by -4O%, gave a similar 
effect, but more strongly. 

Increasing c1 by + 20% produced almost the same 
effect as decreasing c1 by 20%. Decreasing c2 by 20% 
gave a negative value of the turbulent kinetic energy at 
seven grid points, and too small a value of the Nusselt 
number. Decreasing c2 also resulted in a strange 
velocity profile and thereby is unacceptable. 

A value of c, = 1.44( + 106x), which is equal to ci, 
was also tested. This resulted in 35 negative points in K 
and 8 negative points in E and hence was judged to be 
inappropriate. Apparently, the buoyant term in the E- 
equation must not be too large if negative values in K 
and E are to be avoided. 

Increasing cE or ok by 20% did not change the mode of 
flow. 

Finally the turbulent Prandtl number cr, was changed 
to 0.5 (- 50%). This resulted in negative values of the 
turbulent kinetic energy K at six grid points. On the 
other hand, cl = 2 (+ 100%) lowered the peak vertical 
velocity u,,, from 24.1 to 20. 

Figure 18 shows the effect of the change of the 
turbulent Prandtl number ct on the velocity and 
temperature profile at the middle height over the heated 
plate. Increasing ct from 0.5 to 10 resulted in a drastic 
decrease in the thickness of the velocity and thermal 
boundary layers. Let Y be the thickness of a 
boundary layer 6 when the velocity becomes zero, and 
the thickness of a temperature boundary layer A when 
the temperature becomes zero. Such values are listed in 
Table 4. The ratio of these two thicknesses is almost the 
same, irrespective of the change of the turbulent 
Prandtl number. This characteristic is similar to that of 
laminar free convection for which the ratio of the 
thickness of the boundary layer is almost the same 
irrespective of the molecular Prandtl number. 

-T 

FIG. 18. Profiles of dimensionless vertical velocity and 
temperature at middle height for various values of the 
turbulent Prandtl number 0,. Ra = 6.3 x 10”’ and Pr = 6.7. 

Table 4. Boundary layer thickness as effected by the turbulent 
Prandtl number q. The value of Y when U and T first became 
zero was chosen as the boundary layer thicknesses S and A, 

respectively : Ra = 6.3 x lo”‘, PY = 6.7 

YatU=O YatT=O 
01 (61 (A) W 

1 176 65 0.369 
3 102 38.0 0.373 
4 96.5 35.2 0.365 

10 70.5 27.8 0.394 

The ratio of the two thicknesses is unaffected by the turbulent 
Prandtl number. 

Increasing o, above the unity appears to provide a 
better agreement of the computed vertical velocities 
with the experimental ones, probably due to the 
resulting thinner thermal boundary layer. This means 
that the temperature gradient near the heated wall 
becomes steeper. On the other hand, the maximum 
eddy diffusivity VT decreases with increasing u,, and this 
should decrease the turbulent heat flux. 

These two contradictory effects appear to give a 
slight increase of Nu at ct = 2 and then a decrease for 
greater values of u,. Constant ci was then simul- 
taneously decreased so that both the velocity and 
the Nusselt number approach the experimental data. 
Setting c1 to 1.152 (-20%) and Q, = 1, 2, 3 and 8 was 
tested. The combination of e, = 8 and cr = 1.152 
appears to give the best agreement of the Nusselt 
number and the thickness of the vertical velocity 
boundary layer, but too small a peak vertical velocity. 
Then, combined changes Q, = 4 and c1 = 1.296 
(- 1VA) and et =4 and c1 = 1.008 (-30%) were tried. 
The latter combination gave a little smaller peak 
velocity. According to Rodi [20], the constants ci and 
c2 are related by 

ci = cz-p 
GEKi. 

(25) 

This equation suggests that the change in ci from 1.44 
to 1.296 should be accompanied by the same change in 

c2, i.e. c2 = 1.92-0.144 = 1.776. The result of 
computations for this combination of the constants was 
found to be less effective and was not adopted. Some 
representative cases are plotted in Fig. 17 for the vertical 
velocity at mid-height. The combination of u, = 4 and 
ci = 1.296 appears to offer an appropriatecompromise 
for the vertical velocity and the overall Nusselt number. 
The agreement is not completely satisfactory but is 
much better than with the standard combination of the 
constants as determined from forced convection. 

Figure 19 shows a comparison of the temperature 
profile at mid-height with the experimental one. The 
combination of (r, = 4 and ci = 1.296 (- 10%) appears 
to give closer agreement with the experimental time- 
averaged values, as represented by open circles, than 
the standard set of constants. 
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20 I I i 
0 5 IO I5 

y(mmi 

FIG. 19. Comparison of computed temperature profiles at 
mid-heist for various combinations of constants in the k-e 
model with the experimental measurements. 

Curve 1 2 3 4 5 
a& 1 3 3 4 4 
c1 1.44 1.44 1.152 1.296 I.008 

The peak velocities at various heights are compared 
with the experimental ones in Fig. 20. Some 
representative combinations of constants of the 
turbulent Prandtl number rr, and et are plotted. The 
combination of (I$ = 4 and c, = 1.296 (- 10%) again 
appears to give the best agr~ment with the 
experimental velocities. The overall Nusselt number for 
this combination is included in Fig. 9. 

The profiles of the vertical velocity and the turbulent 
kinetic energy are shown in Fig. 21 (a) and(b) for G* = 4 
andc, = 1.296.Thepeakvelocitydecreased40%below 
that for the standard set of constants as used in Fig. 
16(a). The two-peak profile of the turbulent kinetic 
energy, as seen in Fig. 16(b), is similar to the one for the 
standard set. However, the first peak does not develop 

I I t 

0 200 400 600 750 

ximm) 

~~~.2~.Compa~sonfor RA = 6.26 x RItDandPr = 5.12ofthe 
computed peak vertical velocities over the heated vertical wail 
of a square enclosure with the experimental oscillating 
velocities at the displacement corresponding to the peak 
velocity. 

Curve 1 2 3 4 5 6 7 
01 1 3 2 3 4 4 8 
Cl 1.44 1.44 1.156 1.156 1.296 1.008 1.156 

x 

Fro. 21. Computed vertical velocity profiles, (a) and turbulent 
kinetic energy K,, (b) at various heights. Rn = 6.3 x lOlo, 
Pr = 6.7, CT, = 4 and c, = 1.296 (- 10%). 

Curve 1 2 3 4 5 
X 32.3 519 1990 3460 3947 

as much, probably due to lesser development of the 
vertical velocity. 

The primary objective of this paper has been to 
develop a method ofsimulation for natural convection 
in an enclosure at high Rayleigh numbers. The total 
behavior of the convection in an enclosure can be 
simulated reasonably well with two-equation model, 
but the predictions of the detailed structure of the 
turbulent flow are difficult to assess because of the lack 
of available experimental data for the turbulent 
strength, eddy diffusivity, etc. The simulation of the 
details of boundary layer Sows was studied by 
Plumb and Kennedy [2] using 40 to 80 grid points 
within the boundary layer and by Fujii and Fujii [4] 
using 200 grid points, When simulating the total 
behavior of convection within an enclosure some 
disagreement in the velocity and temperature profiles 
near the heated wall is unavoidable if only one or two 
grid points fall inside the ~undary-gayer-Luke flow. In 
the work reported herein the simplest model was 
employed for the buoyant term in s-equation. The 
model proposed by Rodi [20] for astratified flow might 
be useful with some modifications, but more detailed 
experimental data is essential to evaluate such 
alternative models. 
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SUMMARY AND CONCLUSIONS 

1. Laminar natural convection in rectangular 
channels heated and cooled isothermally on the 
opposing vertical walls was successfully computed by a 
finite-difference method for Ra up to 10’ with Pr 
= 9.17. 

2. The accuracy of the calculations for laminar 
convection was improved by using the hybrid finite- 
difference scheme suggested by Patankar, with an 
upwind formulation replacing central differences only 
when necessary. 

3. The overall Nusselt number for the laminar regime 
agreed well with the correlating equation of Churchill, 
and the peak velocity with the correlating equation of 
Hishida and Tsuji for a vertical plate in an unconfined 
fluid. 

4. The computed velocity profile near the wall agreed 
well with the experimental measurements of Ozoe et al. 
at mid-height but was higher for low elevations and 
lower for high elevations. These deviations are 
undoubtedly due to an insufficient number of grid 
points within the boundary layer near the wall. 

5. A two-dimensional k-c model was used with a 
hybrid finite-difference scheme to compute turbulent 
natural convection in a square channel for Ra from 10” 
to 10” with Pr = 6 7 . . 

6. A stable, slow, sinusoidal oscillation was computed 
for the central core in the turbulent regime. However 
the time-averaged velocity, temperature and turbulent 
characteristics were non-oscillatory within the boun- 
dary layers. 

7. The computed time-averaged turbulent velocity 
profile near the heated wall fell within the range of 
oscillation of prior measured instantaneous velocities 
and agreed qualitatively with their time averages. 

8. The computed overall Nusselt numbers for the 
turbulent regime are in reasonable agreement with the 
correlating equation of Churchill. 

9. The constants of the two-equation model were 
changed separately and simultaneously to test their 
effect. The combination of a turbulent Prandtl 
number (T, = 4 and a constant c1 = 1.296 (- 10%) gave 
a time-averaged vertical velocity profile, an overall 
Nusselt number, and a time-averaged temperature 
profile at mid-height in much better agreement with the 
experimental measurements than the standard set of 
constants for forced convection. 

10. The effects of varying the constants in the k--E 

model are complicated. Increasing the turbulent 
Prandtl number ot from unity decreases the peak value 
of the eddy diffusivity monotonically but the overall 
Nusselt number increases only up to Q, = 2 and then 
decreases. 
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CALCUL NUMERIQUE DE LA CONVECTION NATURELLE LAMINAIRE OU 
TURBULENTE D’EAU DANS UN CANAL RECTANGULAIRE AVEC DES PAROIS 

OPPOSEES VERTICALES A TEMPERATURES DIFFERENTES 

R&me-La convection naturelle est calculee par des methodes de differences finies utilisant un modele 
laminaire pour des enceintes 2 x 1 et 1 x 1, Ra, variant entre lo6 et log, des nombres Pr = $12 et 9,17, et un 
modele turbulent k-8 pour une enceinte carree avec Ra entre 10”’ et 10” et Pr = 6,7. Les nombres de Nusselt 
moyens s’accordent bien avec l’equation de Churchill pour les valeurs experimentales ou calculees. Le profil de 
vitesse calcule le long de la paroi est en accord acceptable avec les valeurs expirimentales antbrieures, except& 
pour la finecouche limite sur la partie bassede la paroi od apparait la macessite dun maillage plus fin qu’il n’est 
possible. Onopt?reun test desensibilitepourlesconstantesdumodele k--E. Leprofildevitesseami-hauteuret le 
nombre de Nusselt moyen sont en meilleur accord avec les resultats exptrimentaux lorsque le nombre de 
Prandtl turbulent est multiplid par quatreet laconstante Ci est diminuee de 10%. Un modele turbulent plus fin 

etun maillage plus r~duitapparaissentn8cessaires,particuli~rementaux grands Ra. 

NUMERISCHE BERECHNUNG DER LAMINAREN UND TURBULENTEN NATURLICHEN 
KONVEKTION VON WASSER IN RECHTECKIGEN KANALEN 

Zusammenfassung-Es wurde die natiirliche Konvektion mit einer Finite-Differenzen-Methode unter 
Anwendung eines laminaren Modells fiir 2 (Breite) x 1 und 1 x 1 Querschnitte bei Ra von lo6 bis lo9 und 
Pr = 5,12 und 9,17, sowie eines k-E Turbulenz-Modells fiir quadratische Querschnitte bei Ra von 10” bis 10” 
und Pr = 6,7 berechnet. Die mittlere Nusselt-Zahl stimmt mit der Korrelationsgleichung von Churchill fur 
experimentelle und berechnete Werte gut iiberein. Das berechnete Geschwindigkeitsprofil entlang der 
beheizten Wand ist in annehmbarer Ubereinstimmung mit frtiheren experimentellen Werten, a&r in der 
diinnen Grenzschicht entlang des unteren Teils der Wand, wo eine engere Gitterweite, als bei der Berechnung 
moglich, erforderlich scheint. Ein detailierter Sensitivitlts-Test fur die Konstanten des k-e Modells wurde 
ebenfalls durchgefiihrt. Das Geschwindigkeitsprofil in mittlerer HGhe und die mittlere Nusselt-Zahl waren in 
noch besserer Ubereinstimmung mit den experimentellen Ergebnissen, wenn die turbulente Prandtl-Zahl auf 
vier anstieg und die Konstante C, urn lo’/, abnahm. Ein verfeinertes Turbulenz-Model1 und eine engere 

Gitterunterteilung erscheint wiinschenswert, insbesondere fur gro5e Ra-Zahlen. 

qHCJlEHHbIH PAC’IET JlAMHHAPHOti I4 TYP6YJIEHTHOR ECTECTBEHHOH 
KOHBEKIJMM B BOAE B JlPIIMOYl-OJIbHbIX KAHAJIAX C M30TEPMMYECKM 

HAl-PEBAEMLIMM I4 OXJIA)KAAEMbIMM IlPOTMBOllO~O~HblMM 
BEPTMKAJIbHbIMM CTEHKAMM 

~HHOTa~~-~aCC~~TbIBaeTCIlKOHcYHO-pa3HOCTHbIMUMeTOAaM~HanaMHHapHO~ MOneJIH eCTeCTBeHHaR 

KOHBeKuHaIIIIO,,OCT,TXCpa3MepaMH 2 (mHpHHa) X 1 W 1 X 1 upI 3Ha'IeHHaX 'IWen Ra OT l@nO lo9 I, 

Pr= 5.12 H 9.17, a C IIOMOmbIO k-E MOnenH Typ6yneHTHOCTH - KOHBeKUHIl B KBaLIpaTHOii IIOnOCTH 

np~ wcnax Ra OT 10" no 10" R Pr = 6.7. Cpennne ana~enna Yncna HyCCe!IbTa xopomo 

COrnaCyIOTCII C 3KCIIepIIMeHTanbHbiMH W paCVeTHblMH 3Ha'IeHWIMH, IlOny'IeHHbIMH I43 o606uleHHoA 
3aBNCWMOCTA ~ep'I,Inn% PaC'IeTHbIii IIpO@U,b CKOpOCTH BnOJIb HarpeBaeMOfi CTeHKIl YLlOBneTBOpH- 

TenbHO COBIIaJ.IaeT C paHee IIOny'IeHHbIMH 3KCIIepHMeHTanbHbIMH SHa'IeHWRMH, 38 HCKJIIO'IeHWeM 

IIOrpaHWIHOrO CnOfl He6onbmoti TOnmriHbI BnOnb OCHOBaHHII CTeHKH, LIJIII KOTOp0i-i Heo6XOnHMO 

,,C"OnbSOBaTb CeTKy C 6onee MeJIKMM I"arOM, 'IT0 He yL,a,IOCb OCymeCTBI4Tb IIpaKTWIeCKH. kkCJIenO- 

BaHa TaKxe ycrolweocTb nocToaIiHbIx Mo,uem k-c. llpo+fnb CKO~OCTH B cpenHel qacTIi nonocTw 

W CpenHHe 3Ha'IeHHfl wcna HyCCenbTa ny'IIIle COBnWWlH C SKCflCPWMeHTBJIbHbIMH GlHHblMH, KOI-nB 
Typ6yJIeHTHOe 9HCno npaHATnR BospacTano no 4, a 3Ha9eHkia KOHCTaHTbI CI CHWXranOCb Ha lo?,,. 
Heo6xonsMa 6onee aneKaaTHall Monenb Typ6yneHTHOCTH H CeTKa C 6onee MenKIIM uIaroM,oCO6eHHO 

npn 6onbmHx 3Ha9eHWIIx wcna Ra. 


