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Abstract-Focusing on small size-parameter particles, this paper compares several easily- 
computable approximations to the Mie equations, including those by Rayleigh, Penndorf and 
Wiscombe, with only the first term of Mie-coefficient expansion, and the exact solution. A 
symbolic algebra algorithm was also developed using Mathematicatm for solving the exact Mie 
eauations. which k more than an nrder nf mnonitm-l~ chnrtw than in availahlp FnRTR AN -1- _____, .._..___ _1 ---_-- ___-__ -_- _-___ “_ __‘_~ .__.___ “___.._. ...I.. . ..* ..,...._“.I I VS. I I.‘.I. 

algorithm for the same purpose. The comparisons of the approximations and the errors 
incurred are evaluated for a wide range of complex refractive indices (1 .O ,< n < 5.0 and 
0.001 6 k < 50), and for the size-parameter range of 0.0 6 x < 1.0. While the choice of 
approximation depends on the size parameter and the refractive index, the first-term 
approximation is the best in most cases, with considerable reduction of cpu time. As a specific 
example, the extinction and scattering coefficients for soot and TiO, particle suspensions are 
computed as a function of the size-parameter by the above-described approximations, by two 
other available approximations, and by the exact solution. 

1. INTRODUCTION 

The radiation efficiency factors are usually expressed as the Mie coefficients, which consist of the 
Riccati-Bessel functions.’ Although the theoretical formulation was developed long ago, accurate 
and stable algorithms for computing the efficiency factors for arbitrary size parameter and 
refractive indices have become available only relatively recently. 2,3 Despite the great advance in 
computation effectiveness, the formidable Mie equations still pose a significant computation effort, 
especially when used in models where these coefficients vary in space and time. Since computational 
schemes for the solution of problems in which these coefficients are used are typically iterative, the 
effort is compounded greatly. 

This paper focuses on small size parameters and examines several leading approximations to the 
Mie equations, and compares them to the exact solution. A program using the symbolic algebra 
language Mathematica.1 was developed for solving the exact Mie equations. The comparisons of 
the approximations and the errors incurred are evaluated for size parameters up to 1.0 and a wide 
range of complex refractive indices. When the size parameter and complex refractive index of the 
particles are known, the presented results allow an easy choice of an approximation for desired 
error limits. Finally, to provide an example, the extinction and scattering coefficients are computed 
for soot and TiOz particle suspensions. 
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2. APPROXIMATIONS FOR RADIATIVE PROPERTIES OF SMALL 
SIZE-PARAMETER PARTICULATES (X < 1) 

2.1. The radiative properties of a pofydispersed medium 

By assuming single, independent scattering, the spectral radiative properties of a polydispersed 
particulate medium can be obtained from4 

s 

m 
rl (m, N A) = ~r2Q,(m, r, Ah(r) dr, (1) 

0 

where r~ denotes either the extinction (B), the scattering (Q), or the absorption (K) coefficient, Qg 
is the corresponding radiation efficiency factor, m is the complex refractive index of the particles, 
N is the particle number density, 1 is the wavelength, r is particle radius, and n(r) is the particle 
size distribution function. The extinction and scattering efficiency factors, Qa and Qn, derived from 
the Mie theory are an infinite series of a function of the Mie coefficients a,, and b, (cfvan de Hulst’). 

2.2. Approximations for radiative efficiency factors 

Although reliable codes and fast computers are available for computing the efficiency factors (e.g. 
DBMIE by Dave’ and MIEVO by Wiscombe3), it is well known4*5 and confirmed by our past work6 
that the calculation of these Mie coefficients still requires a large computation effort because of the 
need to evaluate many terms composed of complicated functions with complex arguments. 
Determination of the radiative properties could be a significant fraction of the entire computational 
effort when these properties are space and time dependent and when the computation schemes are 
iterative, such as in modeling coal combustion,6r7 atmospheric and oceanic radiation transfer, and 
photocatalytic reactions with small-particle catalyst dispersed in a non-opaque medium. An 
approximation which requires minimal computational effort but is still sufficiently accurate is thus 
highly desirable. Several such approximations are described and compared below, for particle size 
parameters x = zd/,I < 1. 

(2) The Penndorf approximation. For the limiting case of a small size parameter (x -+ 0), the 
general Mie equations can be expanded into a power series in terms of the size parameter. Penndora 
derived the following approximate formulas for small spherical aerosols (r < L) by using the series 
expansion 

&+~+~{7(n2+k2)+4(nz--k’-5)) nkx3 
2 1 

+$ [((n2 + k*)* + n2 - k2 - 2j2 - 36n2k2]x4, 
I 

(2) 

QO=$[{(n’+k2)z+ n* - k2 - 2}* + 36n2k2] 
1 

8nkx3 
I+$-{(n2-kl)‘-4)x2-T 1 1 3 (3) 

where 

z, =(n2+k2)2+4(n2-k2)+4, (4) 

z2 = 4(n* + k*)* + 12(n2 - k2) + 9. (5) 

This approximation was shown to be applicable for small spheres up to x = 0.8 with an error within 
1o%.9 

(2) The Rayleigh limit approximation. The well-known Rayleigh Limit approximation’ consists 
of the leading terms of the above Penndorf approximation, and is valid for the smaller size 
parameters, x G 0.3 with error within 10%. The efficiency factors estimated by the Rayleigh limit 
approximation are 

QK = -4xIm (6) 
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(7) 

and 

Q,=Q,+Qc- (8) 

(3) The small particle approximation (Wiscombe). Considering only the first three Mie equation 
coefficients, a,, b, and a*, Wiscombe” developed for x --+ 0 the approximation 

Q, = 6xRe(B, + 6, + ffi2), (9) 

and 

Qe=6X4(1Li,(*+16,1*+~I~212). (10) 

To avoid the O/O singularity as x -+ 0, the Mie coefficients were scaled as 

aI h 62 
h,, 6,, 4 = - - - x3’X3’ x3’ 

and the scaled coefficients were expanded in terms of the size parameter as follows 

ci, = 2i (m’ - 1) 
1 -_LX2+(4;;;5)x4 

3 D 
7 

(11) 

(12) 

where 

D qm*+z)+(l _~m2)x2_(8m4~3~~~2+350)X4+~i(m2~ ‘)x3( l--&x2), (13) 

and 

6 
(m2 - 1) 

, =ix2------- 

1 + (2mio- 5) x2 

45 1 _ (2mio- 5) x2’ 
(14) 

a2 = ix2(m2- ‘) 1 
1 -&x2 

15 2m2 + 3 _ ‘““f, 7) x2’ 
(15) 

Compared with the exact Mie solutions, this small particle approximation retains an accuracy 
of 6 significant digits up to x = 0.1, and 4-5 digits up to x = 0.2, when ) m I < 2. It loses accuracy, 
however, as Im I increases, and is recommended only when Im Ix < 0.1 .I0 

(4) The first-term approximation. The leading terms in the infinite series defining the efficiency 
factors are particularly dominant when the size parameter is very small, and therefore the 
contributions of higher order terms become negligible. For example, a typical size parameter 
of soot in a coal combustor is x = 0.1, and the first terms contribute up to 99.92 and 99.99% of 
the extinction and scattering efficiency factors, respectively. For such small size parameters one 
thus needs to evaluate only al and b,, which is a special case of the Mie solutions with 
a2 = a3 = . . . = a, = 6, = b, = . . . b, = 0. Although the small particle approximation by Wiscombe 
is based on the same idea (i.e. only a few leading terms, a,, 6, and a,, as considered), it loses 
accuracy because of the expansion in x of the three leading terms [Eqs. (12)-(15)] truncates them. 
To avoid such truncation, we have evaluated an approximation which uses just the first two Mie 
coefficients a, and b,, but in their exact form. 

The efficiency factors can then be written as 

6 
QB =7Wa, + 41, (16) 
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(17) 

where 

and 

P 
a,=?, 

P + 14 

b,=&, 
r + 1s 

p” 1 l*‘- 
( > 

-- x3 sin(mx + m 1 - 1 - ,z ;E;; 
[ ( ‘)‘I cos(mx)sin(x) 

-[ ( m2)x2] 
1 + 1 -L -L sin(mx)cos(x) + 1 -L m cos(mx)cos(x), 

( m2) x 

q- 1 
( > 

i2$ -- sin(mx)cos(x) + m 1 - 1 - _!- -L 
[ ( &I cos(mx)cos(x) 

+[l+(l-&)$] sin(mx - ( m2)x 1 - L m cos(mx)sin(x), 

(‘8) 

(19) 

(2’) 

1 m 
r= l-- ( > - sin(mx + cos(mx)sin(x) - m sin(mx)cos(x), 

m’ x (22) 

s = 
( > 

1 - --$ m sin(mx)cos(x) + cos(mx)cos(x) + m sin(mx) (23) 
X 

2.3. The approximations applied for computing the extinction and scattering coeficients 

As shown in Eq. (1), the efficiency factors are needed for determining the extinction and 
scattering coeficients used in radiative transfer calculations. 

To integrate Eq. (1), the particle size distribution was expressed by the y-distribution formula” 

n(r) = arU e- br, (24) 

where the sizedistribution coefficient a is 

Nba+’ 

a=l-(a+l)’ (25) 

and the exponent b is found from the condition of extremum at the most probable (modal) particle 
size rm, 

b=E 
rln’ 

(26) 

where a is determined from experimental data. 
For the Rayleigh [Eqs. (6) and (7)] and Penndorf [Eqs. (2)-(s)] approximations, closed from 

integration of Eq. (1) was performed, and the dimensionless radiative coefficients obtained are: 
By the Rayleigh approximation : 

2aa IC*=K=- 24nk 1-(u + 4) 
N?CF2 NF2 [(n2 -k2+2)‘+4n2k2j 7’ (27) 

27ra 8 **=d=_-x 
NnP2 NF2 3 (28) 

and 

8* =lc*+o*. (29) 
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By the Penndorf approximation : 

where the constants ci are 

24kn 

” = 4kzn2 + (2 - k2 + n2)” 

+ 6 [7(k2 + n2)* + 4(- 5 - k2 + n’)] 

3 16k2n2+[3+2(-k2+n2)]2 5 [4k2n2 + (2 - k2 + n’)‘]’ 

(1 +k2+n2)2-4n2 +[-2-k2-n2+(k2+n2)2]2-36k2n2 

[4k2n2+(2-k2+n2)2]2 

(1 +k*+n’)‘-4n2 

[(k2+n2)*-4][(1 +k2+n2)2-4n2] 

[4k2n2 + (2 - k2 + n’)‘]’ ’ 

2kn[(l +k2+n2)2-4n2] 

’ 
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(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

Closed form integration of Eq. (I) is not possible for the Wiscombe approximation [Eqs. (9)+15)] 
and for the first-term approximation [Eqs. (16)--(23)], and neither for the exact solution from the 
Mie theory. Numerical integration of Eq. (1) was therefore performed in these cases. 

Beside the four approximations discussed in this study, two other approximate expressions for 
the coefficients, suggested by Tien et alI* and Buckius and Hwang, I3 are also used, and all the results 
are compared to exact solutions obtained from the Mie theory. 

The Tien et al” approximation: 

Q, = 2[ 1 - e-‘p], (38) 

which gives after integration 

where 

and 

G= 
6n 

4n4-8n3+8n2+4n + 1 

(3’9) 

(40) 

P= 
47r(n - l)r 

A * 
(41) 

The Buckius and Hwang13 approximation : 

[&I-‘=&[ 1 +(~)y’+[~]-” (42) 

(43) 
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where 

s 30 

r3n(r) dr 

x,,F=L ’ 
122 O” 

s 

(44) 
r’n(r) dr 

0 

and the dimensionless coefficients are defined as 

J w’n(r) dr 

The same particle size distribution expression [Lqs. (24)-(26)] ’ IS used to obtain the above radiative 
coefficients. 

3. RESULTS AND DISCUSSION 

3.1. The range of investigated parameters and the computational aspects 

The approximate expressions are evaluated for a range of complex refractive indices encompass- 
ing most common materials, 1 .O < n < 5.0 and 0.001 6 k < 50, and for size parameters in the range 
0.0 < x < 1.0, and the results are compared to those obtained from the exact Mie equation 
solutions. It should be noted from the outset that even the exact Mie solution required the 
computation of only a few of the leading terms when the size parameters are as small as those in 
the range investigated in this study, and that the computation time increase with the size parameter. 
Consequently, while the approximations are expressed by only a few lines of FORTRAN code as 
compared to the approx. 1100 lines in a general Mie solution code such as MIEV0,3 we found that 
the cpu (central processing unit) time for computing the efficiency factors using the approximations 
is only up to 4-fold shorter (for x = 1) than that using the MIEVO code. Average over the range 
of 0.05 < x < 1 .O and 8 complex refractive indices, 1.5 < n < 2.61 and 0.01 < k < 0.93, the cpu 
time, depending on the specific approximation, is only 15 to 53% shorter. These are still important 
cpu time savings, and, combined with the two orders of magnitude reduction in code size, make 
the use of the appropriate approximations advisable. 

Using a 486/33 MHz PC, the Mathematicatm program we have developed for solving the Mie 
equations (and which is only a few lines of code long) took 3.46 set cpu time to compute the 
efficiency factors, while the approximations took about 0.05 sec. It is, however, also estimated that 
it consumes about an order of magnitude more cpu time than MIEVO. 

3.2. Comparisons of the suitability of the approximations for the radiative ejiciency factors 

Figures 1 and 2 show the extinction and the scattering efficiency factors obtained from the 
approximations and the Mie solutions for a wide range of refractive indices (n = 1.0, 2.0, 3.0, 5.0, 
and 0.001 < k < 50) and 3 different size parameters (X = 0.1, 0.5, 1 .O). The general trend observed 
is that the deviation between all approximations except the first-term one, and the exact solution, 
increases with n, and it also increases with k for the lower range of k-values considered. As k 
increases further the trend is no longer monotonic and depends on the specific approximation and 
values of x and n. 

For the smallest size parameter, x = 0.1 [Fig. l(a)], all approximations but the Rayleigh limit 
(for which the error is 14.4% at k = 6) yield accurate results for n < 2 and k < 6 (error ~0.8%). 
The first-term approximation is accurate in the entire range of considered variables. The maximal 
error (it occurs at the highest k evaluated here, k = 50), increasing with n, is about 8495% using 
the Rayleigh approximation, it is 678-785% using the Penndorf approximation, 255-294% using 
the Wiscombe approximation, and 0.1% using the first-term approximation, 

For a bigger size parameter x = 0.5 [Fig. l(b)], the three approximations show good agreement 
with the Mie solution up to k = 3 for n < 2.5 (errors < 1.0%). For a larger refractive index, n 2 2.5, 
only the first-term approximation shows excellent results in the entire range of absorptive indices 
examined, having error < 1.2%. The maximal error is about 2427% using the Rayleigh 
approximation, it is 734% to over 1000% using the Penndorf approximation, and 396% to over 
1000% using the Wiscombe approximation. 
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For x = 1.0 [Fig. I(c)], the maximal errors of the Rayleigh Limit and the Penndorf approxi- 
mation are, depending on the magnitude of n, 26 to 182% and 653 to > lOOO%, respectively. The 
Rayleigh approximation is thus acceptable only for approximately 5 < k G 9, and the Penndorf 
approximation is only acceptable for k < - 6 and n z 1.0. The maximal error in the first-term 
approximation is 4.612.0%. The accuracy of the small-particle approximation for n d -2 and 
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Fig. 1. The effect of the absorptive index k on the extinction efficiency factor Q,, as computed by the Mie 
theory (E), and the approximations by Rayleigh (R), Penndorf (P). Wiscombe ( W) and the first term (A ). 

(a) x =O.l; (b) x =0.5; (c) x = 1.0, for n = 1.0, 2.0, 3.0, 5.0. 
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Fig. 2. The effect of the absorptive index k on the scattering efficiency factor Q,,, as computed from the 
Mie theory (E), and from the approximations by Rayleigh (R), Penndorf (P), Wiscombe (W) and the 

first term (A). (a) x = 0.1; (b) x = 0.5; (c) x = 1.0, for n = 1.0, 2.0, 3.0, 5.0. 

k < -3 is comparable to that of the first-term approximation. For n > 2, however, only the 
first-term approximation shows excellent agreement with the Mie solutions. 

Qualitatively similar results are observed for the scattering efficiency factor (Fig. 2). As in the 
case for the extinction efficiency factor, the first-term approximation for the scattering efficiency 
factor is accurate (here within 0.6%) in the full range of refractive indices and size parameters 
investigated. 
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Figures 3 and 4 show the effect of size parameter on the extinction and scattering efficiency 
factors, respectively, as computed by the exact solution and by each of the approximations. 
Generally, both efficiency factors increase with the size parameter, with the exception of the 
oscillatory behavior in the exact solution and in the first-term and small-particle approximations 
which occurs for the combination of the smallest k (k = 0.01) and largest n (n = 5) examined. With 
some local exceptions, the deviation between the exact solution and the approximations rises with 
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Fig. 3. The effect of the size parameter x on the extinction efficiency factor Q,, as computed from the 
Mie theory (E), and from the approximations by Rayleigh (R), Penndorf (P), Wiscombe (W) and the 

first term (A). (a) k = 0.01; (b) k = 1.0; (c) k = 5.0, for n = 1.0, 2.0, 3.0, 5.0. 
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Fig. 4. The effect of the size parameter x on the scattering efficiency factor Q,, as computed from the 
Mie theory (E), and from the approximations by Rayleigh (R), Penndorf (P), Wiscombe (IV), and the 

first term (A). (a) k = 0.01; (b) k = 1.0; (c) k = 5.0, for n = 1.0, 2.0, 3.0, 5.0. 

k and n, but all of the approximations are accurate for x < 0.4. Again with a few exceptions, the 
first-term approximation follows the exact solution values and trends (including the oscillatory 
trend with x at low k and high n) most closely. The small-particle approximation is similarly 
accurate for the smaller range of approximately n G 2, k G 1. 

The absolute percentage error (= I QE - Q AppXI/QE x 100%) in the extinction efficiency factor as 
computed by each of the approximations is plotted in Fig. 5 as a function of k and n, for x = 0.5. 
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Errors over 100% are truncated and therefore not shown in the figures. It is clear that the first-term 
approximation is generally the most accurate, and its error rises up to about 3% at small m. 

To compare more directly the effect of the size parameter on the error incurred when using these 
approximations, a side-by-side presentation is made for m = 1 .O - ik [in Fig. 6(a)] and m = 2.0 - ik 
[in Fig. 6(b)], where k = 0.01, 1.0 and 5.0. Altogether, the first-term approximation incurs the 
smallest errors, which are < 2% in all cases except for m = 1 .O - 0.01 i and m = 1 .O - 1 .Oi where 
the maximal error is of the order of lo%, and for m = 2.0 - l.Oi where it is of the order of 5%. 
The Wiscombe approximation is better than the first-term approximation in these three cases, but 
is much worse in the other cases, reaching errors of about 32% for m = 2.0 - 5.Oi. The Rayleigh 
and Penndorf approximations are better than the first-term approximation only for the lowest ) m (, 
here of the order of 1; for the highest values of ]m 1 they produce errors which reach about 44% 
for the Rayleigh approximation and 52% for the Penndorf approximation, but the latter 
approximation is generally better than the former. 

3.3. Comparisons of the suitability of the approximations for the extinction and scattering coeflcients 

The sensitivity of the dimensionless extinction and scattering coefficients to k and x, as computed 
from the exact Mie solution and the approximations (using for the size distribution the values a = 4 
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Fig. 5. The sensitivity of the absolute percentage error in the extinction efficiency factor to the absorptive 
index k, as computed by (a) the Rayleigh approximation, (b) the three-term (Penndorf) approximation, 
(c) the small particle (Wiscombe) approximation, and (d) the first-term approximation; for n = I .O, 2.0, 

3.0, 4.0, 5.0; x =os. 
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Fig. 6. The sensitivity of the absolute percentage error in the extinction efficiency factor Q, to the size 
parameter x as computed from the approximations by Rayleigh (R), Penndorf (P), Wiscombe ( W) and 

the first term (A). (a) m = 1.0 - ik (b) m = 2.0 - ik, for k = 0.01, 1.0, 5.0. 

and r,,, = 0.03 pm, typical of soot) is presented in Figs. 7-10. For a small size parameter [x = 0.1, 
Fig. 7(a)], the Wiscombe and the first-term approximations are most accurate, up to k = 10 with 
a maximal error of 6.8%. The empirical correlation by Buckius and Hwangr3 produces a large error 
when n = 1 at around k = 1.0, and, as n increases, it gradually approaches the Rayleigh 
approximation. For x = 0.5 [Fig. 7(b)], only the first-term approximation shows a good agreement 
with the exact solution (maximal error is about 4.7%). When n < 2, the Wiscombe approximation 
has an accuracy comparable to the first-term approximation up to k = 3. As pointed out by 
Wiscombe’” and shown in the figures for n 2 3, the approximation, however, loses accuracy as 1 m I 
increases. Figure 7(c) shows the results for x = 1 .O. Except for the case of n = 1, all approximations 
have large errors, including the first-term approximation. This can be explained by the fact that, 
unlike the computation of the efficiency factors at x = 1.0, the radiative coefficients [evaluated by 
integration over a size parameter distribution around the value x = 1, Eq. (l)] include efficiency 
factors for x > 1.0. For such larger values of x the number of terms used in the approximations 
should be increased beyond what is used in the approximations evaluated in this paper. The 
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scattering coefficients are shown in Fig. 8, and the behaviors of the approximations are quite similar 
to those observed for the extinction coefficients. 

The same results are presented in Figs. 9 and 10 as a function of the size parameter. As can be 
seen from the figures, especially for n >, 3 in Figs. 9(a) and 10(a), the first-term approximation shows 
a reasonably good agreement over a wide range of parameters examined here. However, even the 
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Fig. 7. The effect of the absorptive index k on the extinction coefficient j3*, as computed by the Mie theory 
(E). and the approximations by Rayleigh (R), Penndorf (P), Wiscombe (IV), Tien et al (T), Buckius and 

Hwang (B) and the first term (A). (a) x = 0.1; (b) x = 0.5; (c) x = 1.0, for n = 1.0, 2.0, 3.0, 5.0. 
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Fig. 8. The effect of the absorptive index k on the scattering coefficient u*, as computed from the Mie 
theory (E), and from the approximations by Rayleigh (R), Penndorf (P), Wiscombe ( W), Tien et al (T), 
Buckius and Hwang (B) and the first term (A). (a) x = 0.1; (b) x = 0.5; (c) x = 1.0, for n = 1.0, 2.0, 3.0, 

5.0. 

first-term approximation produces a large error as the size parameter approaches 1.0, due to the 
above-discussed reasons. The figures also demonstrate the improvement which the Penndorf 
approximation offers over the Rayleigh approximation as k increases; for small k [Fig. 9(a), 
k = 0.011, the two approximations give almost the same results. 



Simple mathematical expressions for spectral extinction 405 

To facilitate the choice of approximations as a function of the parameters X, k and n, the results 
of the comparisons of the approximations with the exact solution are summarized in Tables 1 and 
2. These tables show, for different values of x and n, the range of k within which each 
approximation produces an error within lo%, which we found is acceptable and reasonable in most 
computations which use these radiative coefficients. 
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Fig. 9. The effect of the size parameter x on the extinction coefficient ,9*, as computed from the Mie theory 
(E), and from the approximations by Rayleigh (R), Penndorf (P), Wiscombe (W), Tien et al (T), Buckius 
and Hwang (8) and the first term (A). (a) k = 0.01; (b) k = 1.0; (c) k = 5.0, for n = 1.0, 2.0, 3.0, 5.0 
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Fig. 10. The effect of the size parameter x on the scattering coefficient 0 * as computed from the Mie theory , 
(E), and from the approximations by Rayleigh (R), Penndorf (P), Wiscombe (IV), Tien et al (T), Buckius 
and Hwang (B) and the first term (A). (a) k = 0.01; (b) k = 1.0; (c) k = 5.0, for n = 1.0. 2.0. 3.0. 5.0. 

3.4. A specific example: the extinction and scattering coeficients for soot and small particles of TiOz 

The accuracy of the coefficients as computed by the approximations was evaluated for two 
technologically-relevant particle suspensions in which the size parameter x =S 1: 

(i) soot particles found in coal combustors (typically d = 0.06,~m, tc = 3,14 
m = 1.98 - 0.93i), and 
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Table 1. The range of k with 10% error in the extinction and scattering 
coefficients (d = 0.06 pm, a = 4). 

n = 1.0 n =2.0 n =3.0 n = 5.0 

Nondimensional extinction coejkients, B * 
.r =o.t R 0.0014.0 0.00-3.0 0.001-2.0 

T NIA OR OR 
B O.OOt-o.1 0.054.5 0.5-3.0 
P 0.001-6.0 o.oaL6.o 0.0060 
w 0.00-10.0 o.OO--10.0 0.001-10.0 
A 0.001-50.0 O.OOlL50.0 0.001-50.0 

x = 0.5 R O.OOLO.1 1 .o--5.0 3.cL7.0 
T N/A OR OR 
B O.OOlLO.05 OR OR 
P 0.001-1.0 0.055-0.1 OR 
w 0.001-3.0 0.5S3.0 3.0 
A 0.001-50.0 0.00-50.0 0.00-50.0 

x = 1.0 R 0.001~.01 OR OR 
T N/A OR OR 
B 0.00-0.01 0.552.0 OR 
P 0.00-0.05 OR OR 
w 0.001-2.0 0.1 OR 
A N/A OR OR 

Nondimensional extinciion coefjicients, u* 
x =O.l R 0.00-50.0 0.001-35.0 0.001-35.0 

T N/A N/A N/A 
B O.OOl4I.l N/A N/A 
P 0.001-50.0 O.OOl--50.0 0.001-50.0 
w 0.001-30.0 0.001-30.0 0.001-30.0 
A 0.001-50.0 0.001 -50.0 0.00-50.0 

0.0014001 

OR 
OR 

0.001~.0 
0.00-10.0 
0.00-50.0 

5.0-9.0 
OR 
OR 

0.001, 1.0 
0.001, 3.0 
0.00-50.0 

OR 
OR 
OR 
OR 
OR 
OR 

0.00-35.0 
N/A 
N/A 

0.00-50.0 
0.00-30.0 
0.00-50.0 

x =0.5 R 0.001 o.os~+. 1 0.05 o.oOLO). I 
T N/A N/A N/A N/A 
B 0.001 0.5 N/A N/A 
P 0.001, 0.1 N/A 0.05 N/A 
w 0.001-7.0 0.001 Xi.0 N/A N/A 
A 0.001-50.0 0.001-50.0 0.001-50.0 0.001-50.0 

x=1.0 R N/A N/A N/A N/A 
T N/A N/A N/A N/A 
B N/A N/A N/A N/A 
P N/A N/A N/A N/A 
W 0.01 N/A N/A N/A 
A 0.001 N/A N/A N/A 

N/A, not applicable; OR, out of range; R, Rayleigh approximation; r, 
Tien et al approximation; B, Buckius and Hwang approximation; 
P, Penndorf approximation; IV, Wiscombe approximation; A, the 
first-term approximation. 

(ii) TiOz particle used as a catalyst in photocatalytic detoxification of contaminated 
water (typically a = 0.03 pm, CL = 2,15 m = 2.57 - 1.28i). 

Dimensionless size distribution curves based on these parameters are shown in Fig. 11. The size 
parameter x was calculated in the wavelength range of 1 pm < A < 10 pm for the soot particles, 
corresponding to combustion chamber conditions, and 0.3 pm < ,I < 0.4 pm for the TiOz particles, 
corresponding to their use as catalysts in the U.V. light spectrum. 

The size-parameter sensitivity of the dimensionless extinction and scattering coefficients thus 
computed for these particles from the exact Mie solution and the approximations is presented in 
Fig. 12. For soot particles [Fig. 12(a)], the first-term approximation is the best overall, giving a 
negligible error for x < -0.4 (as seen in Fig. 11, x < 0.3 for soot in typical combustors), and a 
maximal extinction coefficient error of about -30% for x = 1 .O, with smaller errors ( =G - 2 1%) 
in the scattering coefficient. The Wiscombe approximation also gives negligible errors for x d -0.4, 
but produces unacceptably large errors in the scattering coefficient for x 2 -0.5. The Penndarf 
and Rayleigh approximations produce negligible errors only for x G - 0.1, but produce unaccept- 
ably large errors for x > -0.4 using the Penndorf approximation, and for x 2 -0.5 using the 
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Table 2. The maximum values of x with 10% error in the extinction 
and scatterina coefficients fd = 0.06 urn. a = 4). 

n = 10 n = 2.0 n =3.0 n = 5.0 

/J* u* p* u* fi* u* fl* c* 

k = 1.0 R 0.30 0.14 0.18 0.34 0.12 0.18 0.04 0.12 
T N/A N/A 0.10 N/A 0.00 N/A 0.00 N/A 
B 0.02 0.00 0.08 0.00 0.12 0.00 0.04 0.00 
P 0.68 0.12 0.38 0.18 0.24 0.24 0.12 0.18 
W 1.00 0.66 0.68 0.46 0.44 0.32 0.26 0.18 
A 0.56 0.80 0.66 0.82 0.68 0.84 0.68 0.84 

K = 5.0 R 0.06 0.12 0.06 0.12 0.04 0.12 0.02 0.12 
T N/A N/A 0.00 N/A 0.00 N/A 0.00 N/A 
B 0.06 0.00 0.04 0.00 0.04 0.00 0.02 0.00 
P 0.34 0.24 0.14 0.24 0.14 0.24 0.12 0.24 
W 0.36 0.40 0.34 0.54 0.34 0.42 0.34 0.22 
A 0.78 0.82 0.76 0.82 0.74 0.82 0.74 0.84 

N/A, not applicable; R, Rayleigh approximation; r, Tien et al approxi- 
mation; E, Buckius and Hwang approximation; P. Penndorf 
approximation; IV, Wiscombe approximation; A, the first-term 
approximation. 

Rayleigh approximation. At x = 0.1, a typical average size parameter for soot in a coal combustor, 
the errors for the extinction coefficient are smaller than 4.2% (Rayleigh) and 0.2% (Penndorf), 
respectively. 

For TiO, particles [Fig. 12(b)], the Rayleigh approximation is best for the extinction coefficient 
in the range of 0 < x < 0.44 with a maximal error of 18%. It is also the best, producing errors 
~3.6% in the range of size parameters relevant to an U.V. light photocatalytic process (Fig. 11). 
The error decreases until x reaches 0.66 and then increases again, producing errors within 27%; 
it is less than 58% for that photocatalytic process. It is noteworthy that since the approximation 
error depends on x, and the particle size distribution contributes to the definition of X, the size 
distribution function parameters (a and r,) also affect the error. For example, the first-term 
approximation for TiO, (a = 2) was found to produce larger errors than those obtained for a = 4 
(Figs. 9 and 10). 

I 1 I I 

0.00 0.35 0.70 1.05 1.40 1.75 
x of TiOz 

Fig. Il. Dimensionless size distribution curves of soot (a = 3, d = 0.06 pm, 1 = 2 pm) and TiO, (a = 2, 
d = 0.03 pm, 1 = 0.35 pm) particles. 
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Fig. 12. The effect of the size parameter x on the dimensionless extinction and scattering coefficients, for 
(a) soot particles (d = 0.06 pm, a = 3, m = 1.98 - 0.93i), and (b) TiO, particles (d = 0.03 pm, OL = 2, 
m = 2.57 - 1.28i), as computed by the Mie theory (E), and the approximations by Rayleigh (R), Penndorf 

(P), Wiscombe (W), Tien et al (T), Buckius and Hwang (E) and the first term (A). 

The error of the Buckius and Hwang approximation is negligible only for 0.1 < x < 0.15, but 
increases rapidly to unacceptable levels for other size parameters. For the scattering coefficient, the 
Rayleigh approximation produces errors within 46% for x < 0.32, in which range the first-term 
approximation is second best, producing errors up to 76%. For x > 0.4, the first-term approxi- 
mation is the best, producing errors of up to 50%. The errors decrease till x = 0.7, and errors within 
10% are produced only by the first-term approximation in the very narrow range of 0.6 < x < 0.8. 

CONCLUSIONS 

(1) Detailed information is provided for facilitating selection of a mathematically-simplified 
expression for computing the radiative efficiency factors. 

(2) The approximations require only a few lines of computer code and require less cpu time than 
the full Mie-equations solution code. 

(3) A symbolic algebra code, using Mathematicatm and thus consisting of about two orders of 
magnitude fewer lines of code than available FORTRAN programs, was developed and success- 
fully used for solving the full Mie equations. 

(4) The first-term approximation for the extinction efficiency factor agrees with the Mie solutions 
within 10% in a wide range of the complex refractive index (1.0 < n < 5.0 and 0.01 G k < 50.0) for 
size parameter x < 0.8. For a maximal error of 12%, the valid limit is extended to x = 1.0, with 
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1 .O G n < 5.0 and 1 .O G k G 50.0. For the scattering efficiency factor, the approximation has a much 
wider range of applicability, up to x = 1 .O with a maximal error of 1.2%, for 1.0 < n < 5.0 and 
l.O<k ~50.0. 

(5) The small-particle approximation by Wiscombe ‘O has better accuracy than the first-term 
approximation only for the extinction efficiency factor in the cases of n = 1, k < 1, and n = 2, k = 1 
(for example, the errors at x = 1.0 are 0.2 and 12%, respectively, when m = 1.0 - l.Oi). However, 
it loses accuracy as the size parameter or the complex refractive index increase. 

(6) The advantage of the Penndorf approximation over the Rayleigh approximation is limited 
to a few small seemingly arbitrary regions of the refractive index and size parameter. As 
well-known, both are satisfactory only in the smallest of the size-parameter values examined here. 

(7) The first-term approximation for the extinction coefficient agrees with the Mie solutions 
within 7.3% in the range of 1.0 < n < 5.0 and 0.001 < k < 50.0 for size parameter x < 0.5. For the 
scattering coefficient, the approximation has smaller errors, maximal 1.8%, in the same range. 

(8) The small-particle approximation by Wiscombe has better accuracy than the first-term 
approximation for the limited cases of 1 .O < n G 3.0 and 0.05 < k 6 5.0 for the extinction coefficient 
at x = 0.1. For the scattering coefficient, both approximations have equally accurate results in the 
same range. 

(9) The Penndorf approximation is better than the Rayleigh approximation only in the cases of 
1.0 < n < 5.0 and 0.001 < k < 10.0 when computing the extinction coefficient, and for 2.0 < n < 5.0 
and 8.0 < k < 50.0 when computing the scattering coefficient, for x = 0.1. For other cases, there 
is no substantial advantage of the Penndorf extension over the Rayleigh approximation. 

(10) Amongst the different approximations analyzed here, the first-term approximation is the best 
for computing the radiative coefficients of soot for x < 1.0, incurring a maximal error of -29% 
for soot at x = 1.0. The error is < 10% for x < -0.6. For TiO, particles of x < 0.47, the Rayleigh 
approximation is best (error < 21 O/o>. For x > 0.47, the first-term approximation is best with errors 
smaller than 27%. The Buckius and Hwang approximation gives results for TiO, particle somewhat 
better than those of the first-term solution of approx. 0.75 d x 6 1.0. 
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NOMENCLATURE 

a-Particle size distribution coefficient, dimensionless 
b-Exponent in size distribution function, dimensionless 

a,, b,,-Mie coefficients, dimensionless 
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H- -Hankel function of the second kind 
J--Bessel function of the first kind 
k----Absorptive index, dimensionless 

m--Complex refractive index (= n - i/r), dimensionless 
N--Total number of particles in unit volume (# /m3) 
tr--Refractive index, dimensionless 

Q--Radiation efficiency factor, dimensionless 
r--Radius of a particle (pm) 
F- -Mean radius of particles (pm) 

rm-~ -Modal particle size (pm) 
y’- -Size parameter (.u = rrd/>.), dimensionless 

Greek s~whols 

x--Size distribution parameter 
p---Extinction coefficient (= K + a) (m-‘) 
f--Gamma function 
&Riccati-Bessel function 
ti--Absorbtion coefficient (m-l) 
i--Wavelength (pm) 
cr--Scattering coefficient (m-l) 
$ --Riccati-Bessel function 

SubscripIs 

E---Exact solution from the Mie theory 
APPX--Approximate solution 

/5- -Extinction 
K -Absorption 
cr -Scattering 
i -Spectral 

Suprrscripr 

: -Dimensionless 
--Scaling by .x3 

- ~--.Average 


