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R. A. Gaggioli
Department of Mechanical and Industrial of energy/exergy,
Engineering,

Marquette University,

Milwaukee, WI 53233-2286

Introduction

The traditional set of the equations of change includes the
equations of continuity, motion, and energy (e.g., Hirschfelder
et al., 1954; Bird et al., 1960). With the relevant kinetic and
property relations, this set of differential equations describes
mathematically processes undergone by any fluid, wherein the
energy transfers are associated with momentum, matter and
heat transfers. That is, along with the relevant boundary and/
or initial conditions, they constitute a mathematical model of
the process. Such a model is of the continuum type, valid
provided that the fluid density at each location and time is
large enough for an infinitesimal element to qualify as a simple
system (Gyftopoulos and Beretta, 1991). The validity of the
model also depends upon property relations (and, in turn,
kinetic relations) which must take into account a complete set
of extensive properties which vary independently.

While the aforementioned equations suffice to model (sim-
ulate) the processes, in seeking to develop new, more effective
technology for transports of and interconversions between the
different types of energy, it would be desirable to have explicit
equations for each type. In a form which describes the inter-
conversions among types, these equations would provide val-
uable information for analyzing and, therefore, for managing
and controlling the interconversions. That is the objective of
this paper, wherein the equations of energy and exergy are
decomposed into component equations for kinetic, thermal,
strain, and chemical energy/exergy.

In each of these component energy equations the intercon-
versions are broken down into reversible and irreversible parts.
As shown by the corresponding component equations for ex-

Contributed by the Advanced Energy Systems Division and presented at WAM,
Atlanta, Georgia, December 1-6, 1991, of THE AMERICAN SOCIETY OF ME-
CHANICAL ENGINEERS. Manuscript received by the AES Division, May 5, 199];
revised manuscript received August 26, 1991,

Journal of Energy Resources Technology

properties and their changes are rigorously developed. In the resulting equations,
terms appear which explicitly reveal the interconversions between the different forms
including the breakdown into reversible and irreversible conver-
sions. The equations are valid for chemically reacting or non-reacting inelastic fluids,
with or without diffusion.

ergy, the irreversible parts have quantifiable exergy annihila-
tions associated with them.

Indeed, it is the exergy equations which () show the de-
sirability for controlling the interconversions, (if) pinpoint
quantitatively the resource expenditures associated with irre-
versible conversions, and (ifi) give insight for discovering pros-
pective means for achieving better utilization of the resources
and feedstocks. It is for this reason that the concept of exergy,
which goes back to Gibbs (1875) and Maxwell (1872), has been
receiving ever-increasing interest, with fruitful applications to
numerous energy-conversion and chemical process plants (for
example, see Denbigh, 1956; Mah et al., 1977; Umeda et al.,
1979; Fan and Shieh, 1980; Ishida and Kawamura, 1982;
Moran, 1989; Liu et al., 1983; Tsatsaronis and Winhold, 1985;
Szargut et al., 1988).

Existing applications, however, have been to plants and to
the devices and units thereof. While there has been some overall
analysis of the transport and rate processes within certain de-
vices and units, except for simple viscous dissipations there
has been no explicit evaluations of the interconversions oc-
curring within these processes since, heretofore, the basic re-
lationships for analysis of the interconversions have not been
available,

To determine the expenditure of exergy (of resources) as-
sociated with each interconversion and transport, and hence
the relative need for improvement and/or change, the com-
ponent equations of exergy presented herein will be needed.
In turn, to find the means for achieving the improvements and
changes, the enhanced quantitative understanding provided by
the component equations of both energy and exergy will be
valuable.

The Equation of Energy
One form of the equation of energy is (e.g., Bird et al.,

1960)
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E(E)=—;(v-q)—;(v-[7r-u1)+;Zij(n,--g,-) (1)

In this form, the equation of energy states (Bird et al., 1960)
that, for an element of fluid moving with the mass-average
velocity, the energy changes because of (i) the net transport
of energy by heat conduction and radiation, as well as by
diffusion, (/i) the net mechanical transport of energy via
stresses, and (iii) the net mechanical transfer of energy via
work done on the fluid by body forces. It should be mentioned
that the energy E does not include potential energy; the effects
of gravitational and other body forces are accounted for by
term (iii).

The Equation of Kinetic Energy

By forming the scalar product of the local velocity, », with
the equation of motion, one obtains the equation of kinetic
energy (e.g., Bird, 1957; Bird et al., 1960)

D . 1 1
ot = eV + Z piv=g) )

i

This relation has also been called ‘‘the equation of me-
chanical energy’’ (Bird et al., 1960), a name to be reserved in
this work for another concept to be presented forthwith.

For inelastic fluids (which cannot sustain a shear stress with-
out deformation), de = Tds — Pdv+IpndQ;+vedv and the
normal stress consists of the thermodynamic and viscous (ir-
reversible) parts: 7, = P8 + 7, whereas the shear stress is
strictly viscous: m; = 7,. As will be shown later, when Eq. (2)
is rewritten in the following form (by employing the relations
peVer = Vemey — 7 Vy and n; = j; + pw; Bird et al.,
1960), each conversion and transport term can readily be given
a straightforward and more meaningful interpretation:

D

_ 1 1
Dr K)= 5 (V'[TS'V])Jr; (1:Vv)

L v+ S g -~ S Gre) )
1Y [ P

In this form, the equation of kinetic energy states that, for
an element of fluid moving with the mass-average velocity, the
kinetic energy changes because of (i) the net transport of kinetic
energy via shear stresses, (if) the irreversible conversion of
kinetic energy to internal energy via shear stresses (and thus,
this term is always nonpositive), (iii) the net reversible inter-
conversion with internal energy, (iv) the net transfer of kinetic
energy via the work done on the fluid by body forces, and (v)
the portion of the latter transfer which is irreversibly converted
to internal energy. This interpretation of the right-hand side

of Eq. (3) will be justified later in the paper.

The Equation of Internal Energy for Inelastic Fluids

Following the technique employed by Hirschfelder, Curtiss,
and Bird (1954), by subtracting the equation of kinetic energy
(Eq. (3)) from the equation of energy (Eq. (1)), the resulting
relation is a form of the equation of internal energy:

2((_'])__1 v _1 v .
o (9= p( 7)) p( o[mpev])

1 1 1 )
LA G A A R Z Girg) @

As will be justified later, this form of the equation of internal
energy states that, for an element of fluid moving with the
mass-average velocity, the internal energy changes because of
(/) the net transport of energy by heat conduction and radiation,
as well as by diffusion, (i) the net transport of “‘strain’’ energy
via normal stresses, (iif) the irreversible conversion of kinetic
energy to internal energy via shear stresses, (iv) the net re-
versible interconversion with kinetic energy, and (v) the irre-
versible increase of internal energy via work done on the fluid
by body forces.

A Further Decomposition of Energy

In relation to the equation of energy, the equations of in-
ternal and kinetic energy offer additional insight, by revealing
the interconversions between the ‘‘internal”’ and “‘external”
energy (via the last three terms on the right-hand side of Eq.
(4)). Further decomposition of the internal energy is also re-
vealing. The basic relationship to be employed to achieve this
is (e.g., Obert, 1960; Denbigh, 1966):

U=TS-PV+ Y, u; (5)

There are two other relationships which are important for
this decomposition, inasmuch as they allow the interconver-
sions to be classified. The first, the Gibbs-Duhem relation,
follows from Eq. (5), the definition of the Gibbs function, and
the Gibbs equations (e.g., Denbigh, 1966):

SdT—VdP+ >, Ndu;=0 ()

i
The other important equation relates the volumetric rate of
irreversible entropy production, g, to dissipative conversions

(for inelastic fluids; Hirschfelder et al., 1954; De Groot and
Mazur, 1962):

1
g=7 [—(rs:v»)—(rn:v»)—z_ Uir V(=) — (02 V1)

+ Z NR;+ Z Giegdl (D)

Nomenclature
a = exergy, kJ t = time,s
E = energy, kJ T = temperature, ‘K Jj = mass diffusion flux (with respect
¢ = volumetric rate of entropy pro- U = internal energy, kJ to the mass-average velocity),
duction, kJ/(°K-m?) v = speed, m/s kg/m2-s
G = Gibbs free energy (and chemical V = volume, m’ n = mass diffusion flux (with respect
energy), kJ N = chemical affinity, kJ/gmole to stationary coordinates), kg/
H = enthalpy, kJ @ = mass fraction m2-s
K = Kinetic energy, kJ p = density, kg/m’ g = energy flux, kJ/m%s
N = mole number v = specific volume, m’/gmole v = velocity, m/s
P = pressure, kPa u = chemical potential, kJ/gmole e = thermal energy flux, kJ/m%s
r = chemical species production rate, » = stoichiometric coefficient ¢ = potential per unit mass
gmole/s f = nonconservative body force per ¢ = entropy flux, kJ/°K-m>s
R = reaction rate unit mass, kN/kg x = pressure tensor, kPa
S = entropy, kJ/°K = body force per unit mass, kN/kg 7 = shear stress tensor, kPa
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The six terms on the right-hand side of Eq. (7) indicate
dissipations. The first and second terms are the contributions
due to momentum transfer, the third and sixth terms are due
to diffusion, the fourth term is due to entropy transfer, and
the fifth term is due to chemical reactions.

Further insight is gained by breaking down the internal en-
ergy into parts and subsequently developing equations of change
for the resulting properties. By definition, the internal energy
is mathematically represented by the relation

2
U=E-R= E_VE ®)

For inelastic fluids, the internal energy is given by Eq. (5),

and thus,
2
E=——Pu+ TS+Z,L,9,~ ©

Here, we define each of the four terms on the right-hand
side of Eq. (9) to be a distinct kind of energy: the kinetic energy
(v2/2), the strain energy (— Pu), the thermal energy (7S), and
the chemical energy (G = LuQ:). Therelevant form of the equa-
tion of change for kinetic energy is given by Eq. (3). Equations
of change for thermal, strain, and chemical energy are devel-
oped presently. Such equations contain terms which represent
(i) energy transports, (i) reversible energy interconversions
among the various types of energy (e.g., via the Gibbs-Duhem
relation), and (iii) irreversible conversions with contribute to
the local rate of entropy production (Eq. (7)).

The Equation of Thermal Energy

The equation of kinetic energy was developed by forming a
(dot) product of the fluid momentum with the local velocity
(the potential conjugate with momentum). In a similar fashion,
an equation of thermal energy is developed by multiplying the
equation of entropy (e.g., Eq. (11.1-13) of Hirschfelder et al.,
1954) by the local temperature T (the potential conjugate with
entropy)

DS T Tg
TDt p (Vea)+ ) (10)

With standard relationships for derivatives of products, Eq.

(10) may be rewritten as

DT
Dt

Substitution of Eq. (7) into Eq. (11) results in the desired,
new equation of thermal energy which explicitly shows the

transport of thermal energy and the interconversions between
thermal energy and other kinds of energy:

2(T§)=S‘ —1(v.To)+l(a--\7T)+B an
Dt o o P

D . 1 - DT
B(TS)= —; (V-T0)+SE
1
A CAORICEA DRI L)

+2INRH D Urgdl (12)
J i

This form the equation of thermal energy states that, for
an element of fluid moving with the mass-average velocity, the
thermal energy (7S) changes because of (/) the net transport
of thermal energy via diffusion and heat transfer, (ii) the re-
versible interconversion with strain and/or chemical energy via
the Gibbs-Duhem relation (Eq. (6)), and (ii7) the irreversible
production of thermal energy (@) at the expense of kinetic
energy due to shear stress viscous effects, (b) at the expense
of strain energy due to normal stress viscous effects, (c) at the
expense of chemical energy due to diffusion, (d) at the expense

Journal of Energy Resources Technology

of chemical energy due to reactions, and (e) at the expense of
external sources of energy.

The Equation of Strain Energy

The equation of strain energy is developed by transforming
the overall equation of continuity into a ‘‘volume balance’’
and subsequently multiplying this equation by the potential
conjugate with volume—the pressure P.

The overall equation of continuity (e.g., Eq. (11.1-2) of
Hirschfelder et al., 1954) is

Dv' Dp
———=—=—p(V> 13
Dt D1 o(V +v) 13)

Performing the operation on the left-hand side of Eq. (13)
and rearranging results in an alternative form (a volume bal-
ance)

(14

By multiplying Eq. (14) by the pressure P, and employing
the relation P(Ver)=(V+Py)—(»-VP) = (V e[mpev])
—(ve[V 7)) —(7,: V) and standard relationships for deriv-
atives of products, the resulting relation is the equation of
strain energy

D 1 DP
Dt( Pu) p(V'[‘lrn'V]) v

+1 (u-[V-7r,,])+1 (1,2 Vp) (15)
P o

In this form, the equation of strain energy states that, for
an element of fluid moving with the mass-average velocity, the
strain energy changes because of (?) the net transport of strain
energy via normal stresses, (if) the reversible interconversion
with thermal and/or chemical energy via the Gibbs-Duhem
relation, (/i) the net reversible interconversion with kinetic
energy, and (/v) the irreversible conversion of strain energy to
thermal energy via normal stresses.

The Equation of Chemical Energy

The equation of chemical energy is developed by multiplying
the equation of continuity of the individual species (e.g., Eq.
(11.1-1) of Hirschfelder et al., 1954) by the potential conjugate
with material flow, namely, the chemical potential of the rel-
evant species, y;

Dp; .
WDy = PV ) = pd Vi) +
With standard relationships for derivatives of products, and
by summing over all species /, substituting the overall equation
of continuity (Eq. (13)), and dividing through by the density,
2, Eq. (16) becomes

(16)

D A 1 . D[l,,
= - = ol Q. —=
o ©=-7 Z(v ud,)+Z i Dy

2 S G S ()
i i

The terms on the right-hand side of Eq. (17) are not all
independent inasmuch as (Bird et al., 1960)

Dihi=hitht o +jg=0 (18)
and:
m
r,-=2 V,'jRj (19)

j=1
where j; represents the mass diffusion flux of species i. The
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subscriptj = 1,2, . . . , m(in Eq. (19)) represents independent
chemical reactions, v;; is the stoichiometric coefficient for spe-
cies i in reaction j, and R; is the volume rate of reaction j.
With these relationships, Eq. (17) may be written as

D . 1 , Dy
= — _= P Qi—
o © pZ‘V W.)+Z Dr

1
7 [Z iV (i ) = D x,R,} (20)
i J

: where \;= — Eyyy; is the chemical affinity of reaction j (Pri-
gogine and Defay, 1954). Equation (20) is the desired equation
of chemical energy. This equation states that, for an element
of fluid moving with the mass-average velocity, the chemical
energy changes because of (i) the net transport of chemical
energy by diffusion, (if) the reversible interconversion with
thermal and/or strain energy (via the Gibbs-Duhem relation),
and (iii) the irreversible conversion of chemical energy to ther-
mal energy (@) by diffusion and (b) via chemical reactions.

The Composite Equation of Energy

The equation of kinetic energy (Eq. (3)), the equation of
thermal energy (Eq. (12)), the equation of strain energy (Eq.
(15)), and the equation of chemical energy (Eq. (20)) are the
component equations of energy. As shown presently, the sum
of these four equations is indeed equivalent to the equation
of energy (Eq. (1))

|

_ 1 1
- [-— (Vlres+ 1 (2 90)
p o
CEERRC)
L vemd el S ) 3 Gier)
p n p - i gl p - 1 gl
(iii) (iv) (v)

>

t

1 ~DT 1
+ [ —; (V.Ta)+SFt_; (1::Vv)
(vi) (vii)  (viii)

1 1 .
-2 v Z Ui 7 (ui— )

(ix) (x)
1 1
+- Z NR;+— Z (ii’gi)]
o5 P4
(xi) (xii)

n [ —% (T el v

(xiii) (xiv)
+l (ve[Vom,]) +1 (Tn: Vu)]
14 p

(xv) (xvi)
Dy,

1 .
+ [—; Z (v-w,-)+2 %o

(xvii) (xviii)

1 1
+- z Ui V(pi—pn)) — = E : )\jRi:|
P4 P45
(xix) (xx)

Equation (21) is the equation of energy in which all the
energy interconversions and transports are explicitly shown.
The first set of brackets contains the changes of kinetic energy,
the second set the changes of thermal energy, the third set the
changes of strain energy, and the last set the changes of chem-
ical energy. By (i) canceling all like terms, (i/) employing the

@1
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Gibbs-Duhem relation, (iii) incorporating the relation g = To
+ Luyi, and (iv) employing the relation (for inelastic fluids),
T = T, + 75, BQ. (21) reduces to a familiar form of the equation
of energy (e.g., Eq. (1)).

Along with the Gibbs-Duhem relation (Eq. (6)) and the
expression for the local rate of entropy production (Eq. (7)),
the equation of energy in the form of Eq. (21) allows for the
justification of the previous interpretations of the terms de-
scribing energy transports and interconversions. The following
is a term-by-term interpretation of the twenty terms shown on
the right-hand side of Eq. (21).

There are five energy transport terms. Term (/) represents
the net transport of kinetic energy via shear stresses; term (iv)
the net transport of kinetic energy via the work done on the
fluid by body forces; term (vi) the net transport of thermal
energy via diffusion and heat transfer; term (xiii) the net trans-
port of strain energy via normal stresses, and term (xvii) the
net transport of chemical energy via diffusion.

In addition, there are a number of energy interconversions
which are deemed reversible since the terms representing such
conversions do not appear in the expression for the local rate
of entropy production (Eq. (7)). For example, terms (iii) and
(xv) represent the reversible interconversion between kinetic
and strain energy, these terms being the same but of opposite
sign in the respective equations of change. Terms (vii), (xiv)
and (xviii) signify the reversible interconversions between ther-
mal, strain and chemical energy, inasmuch as these Stokes time
derivative terms are subject to the Gibbs-Duhem relation (Eq.
(6)), rewritten here on a Stokes time derivative basis

=E=0 )

The reversible interconversions of Eq.(22) are dependent on
the property relations of the material.

Finally, there are terms which are justifiably considered as
irreversible conversions of energy inasmuch as these terms also
appear in the equation of entropy production (Eq. (7)). Terms
(i)) and (viii) stand for the irreversible conversion of kinetic
energy to thermal energy via shear stresses. Terms (v) and (xii)
represent the irreversible conversion of gravitational energy
(and that associated with other body forces) to thermal energy
via diffusion. (Term (iv) represents the net mechanical transfer
of energy via work done on the fluid by body forces. The net
effect of terms (fv) and (v) signifies the net transfer of kinetic
energy via the work done on the fluid by body forces (see Eq.
3N

Terms (ix) and (xvi) represent the irreversible conversion of
strain energy to thermal energy via normal stresses. Finally,
terms (x) and (xix) signify irreversible conversion of chemical
energy to thermal energy via diffusion; terms (x7) and (xx) that
due to chemical reactions. ‘

Thus, all the dissipative energy conversions which contribute
to the local rate of entropy production (see Eq. (7)) appear in
Eq. (21), except the term (¢ v 7). This occurs because ¢+ VT
is a degradation of thermal energy but does not change the
amount of thermal energy. Hence, this term would only appear
in an equation of change for thermal exergy.

The Equation of Mechanical Energy

Other equations of change may be developed by simply
forming various combinations of the four component equa-
tions of energy. For example, two such resulting relations
which are worthy of mention are ‘‘the equation of mechanical
energy’’ and ‘‘the equation of thermochemical energy.”’

By adding the equations of kinetic energy (Eq. (3)) and strain

energy (Eq. (15))
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In this form, ‘“‘the equation of mechanical energy’’ states
that, for an element of fluid moving with the mass-average
velocity, the mechanical energy changes because of (§) the net
transport of mechanical energy via stresses, (i) the net trans-
port of mechanical energy via body forces, (iii) the reversible
interconversion with thermochemical energy via the Gibbs-
Duhem relation, (iv) the portion of the transport via stresses
which is irreversibly converted to thermochemical energy, and
(v) the portion of the transport via body forces which is ir-
reversibly converted to thermochemical energy.

The Equation of Thermochemical Energy

By adding the equations of thermal energy (Eq. (12)) and
chemical energy (Eq. (20))

D . ~ D _ 1 1 5
o T8+ 6= (= —;(v-e)—; <v2 Hw)

+8 D—T+ Z 9 - [ —(1:IN)+ (/',--g,-)] (24)

where e = To — TZISy:. In this form, the equation of ther-
mochemical energy (or the equation of enthalpy) states that,
for an element of fluid moving with the mass-average velocity,
the thermochemical energy changes because of (line /) the net
transports of thermochemical energy by: (a) conduction and
radiation and () diffusion, line (i) the reversible intercon-
versions with strain energy via the Gibbs-Duhem relation, and
line (iii) irreversible conversion of mechanical energy to ther-
mal energy.

Exergy

Attention now turns to the component equations of exergy.
These differential equations complement the foregoing set of
component equations of energy by (/) further justifying the
categorization of reversible and irreversible energy conver-
sions, and (ii) revealing quantitatively the amount of irrever-
sibility associated with the various energy transformations.

The Equation of Exergy

The specific exergy is given by the relation (e.g., Moran,
1989; Szargut et al., 1988)

d=R+ 8+ U0+ Pw—T,S- > i (25)
i

where P,, T, and p,, are charactersitics of the reference en-
vironment and, by definition, & = EQ¢, is the potential exergy
of the element and its environment due to the existence of
conservative body forces.

The Stokes derivative of the exergy yields

Di D . ., . D D -
Dt Dt i Fo) = (109

D
o <Z u,-on.») (26)

Given the relation g;= — V¢; + f; (where ¢, represents the
potential on species i per unit matter due to any present con-
servative force fields and f; is the body force on species / per
unit matter due to the existence of nonconservative force fields),
it follows from Eq. (1) that the Stokes derivative of the quantity
U+ K+ may be written as:
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O+R+8)= -2 (Vo)=L (v o[ren)
o o

S

_}) Z (V‘¢J,)+% Z (n,°_f,)+ll) Z ¢,‘"i (27)

Substitution of (i) Eq. (27), (i) the volume balance (Eq.
(14)), (iii) the entropy balance (e.g., Eq. (11.1-13) of Hirsch-
felder et al., 1954), (iv) the equation of entropy production
(Eq. (7)), and (v) the equation of continuity of the individual
species (e.g., Eq. (11.1-1) of Hirschfelder et al., 1954) into
Eq. (26) results in the equation of exergy

Da 1 T, 1 .
=—= of1-=2 —— 2 o(B;—(B.)/;
Dt o (V (l T> E> o - ( v (Bl ( lo)./l)

1 1
—}) (Velr =PRI~ D (esi) s 3 (ef)

o [ — (1 VR = (V)= D (e V)

+ 23 G =25 G V=) = (0o VD + x,-R,-]
i i J

ADT

DP, Dy,
Q,__
+[U Dt Z ! Dt]
1
+_Z¢iri_
P

In this form, the equation of exergy states that, for an
element of fluid moving with the mass-average velocity, the
exergy changes because of (/) the net transport of exergy via
thermal conduction and radiation, (ii) the net transport of
exergy by diffusion, (iii) the net mechanical transport of exergy
from surrounding fluid elements via stresses, (iv) the net trans-
fer of potential exergy by diffusion, (v) the net mechanical
transfer of exergy from remote material via nonconservative
body forces, (vi) the net destruction of exergy associated with
(a) conversion of kinetic energy to thermal energy, (b) con-
version of strain energy to thermal energy, (¢) conversion of
potential exergy to thermal energy, (d) conversion of mechan-
ical energy, transmitted via nonconservative body forces, to
thermal energy, (e) conversion of chemical energy to thermal
energy by diffusion, (f) degradation of thermal energy via the
heat flux, and (g) conversion of chemical energy to thermal
energy by reactions, (vii) any changes of the intensive properties
of the reference environment, and (viii) changes in potential
exergy due to reactions. Although term (ix) could be nonzero
(Gaggioli and El-Sayed, 1989), it is typically zero insofar as
the terms in this summation cancel each other (as long as there
has been no redundancy in the selection of the environmental
components; e.g., the number of selected environmental com-
ponents is equal to the number of elements independently
involved in reactions). Equation (28) generalizes that of Gag-
gioli (1961).
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The Decomposition of Exergy

Just as energy and the energy balance have been decom-
posed, the exergy is presently broken down into its component
parts. By substituting Eq. (5) into Eq. (25), exergy may be
expressed

A=K+ &+(T~T)S~(P-Po)v+ 3 (i~ wi)®  (29)

Following Gaggioli and El-Sayed (1989) the terms on the
right-hand side of Eq. (29) are called the kinetic, potential,
thermal, strain, and chemical exergy, respectively. The equa-
tions of change for these exergy forms are presently derived.
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The Equation of Thermal Exergy
The Stokes derivative of the thermal exergy yields

DS_ (DT,
Dt Dt

Substituting the equations of thermal energy (Eq. (12)) and
entropy (e.g., Eq. (11.1-13) of Hirschfelder et al., 1954) into
this equation results in

D s D _a
o T-T5=p, (15)-1, (30)

D o 1 - DT
= (T-T)S=— (V-To)+S I
+‘l) l:_('rs:vy)_('rn:vy)_z (iiv(ﬂi—l"n))

T, ~ DT,
+ 2R+ 2] U,v-gf)] ~2 (Ve =S,
J i

(€2))

Further substitution of the expression for the volumetric
rate of irreversible entropy production (Eg. (7)) and the relation
gi= — V¢; + f; results in the equation of thermal exergy

D ;| DT T,
B;(T—TO)S—-—p(V'(T—TO)o)+S Dt+pT(0 v

+l (l—%) [{—(‘rs: V)= (7 VV)—Z (Uir Vo)

o
DT,

+2] (ji'ﬁ)} + {Z MR = D Ui I (i~ un))Z] -$ Dr
i J i
(32)

In this form, the equation of thermal exergy states that, for
an element of fluid moving with the mass-average velocity, the
thermal exergy changes because of (i) the net transport of
thermal exergy via diffusion, conduction and radiation, (i)
the reversible interconversion(s) with strain and/or chemical
exergy, (iii) the irreversible decrease in thermal exergy with the
entropy flux, (iv) the thermal exergy gain due to the irreversible
conversion of mechanical and chemical energy to thermal en-
ergy (see Egs. (12), (20), and (23)), and (v) any change in the
temperature of the reference environment.

The Equation of Strain Exergy
By taking the Stokes derivative of the strain exergy and

substituting Eqgs. (14) and (15)
D D Dv DP,
5 (Z(P=PYw) =p (= P9+ Po v

1 DP
= —; (Ve[m,— Pyolev)—v —D_t

1 DP, 1
+— @[ Vem)+v——+= (1, Vy) (33)

o Dt p
This equation of strain exergy states that, for an element of
fluid moving with the mass-average velocity, the strain exergy
changes because of (i) the net transport of strain exergy via
normal stresses, (if) the reversible interconversion(s) with ther-
mal and/or chemical exergy, (ii}) the net reversible intercon-
version with kinetic exergy, (iv) any change in the pressure of
the environment, and (v) the irreversible decrease in strain
exergy due to the conversion of strain energy to thermal energy.
The fraction (1 — T,/ T) of thisirreversible decrease is converted
to thermal exergy (see Eq. (32)) and the fraction (7,/T) is

destroyed (see Eq. (28)).
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The Equation of Chemical Exergy !

By taking the Stokes derivative of the chemical exergy and
substituting the equation of continuity of the individual species
(e.g., Eq. (11.1 = 1) of Hirschfelder et al., 1954) and Eq. (20)

D _D DO,
Di Z (ﬂi_ﬂia)ﬂi—Dt Z Qi — Z tio op
-5 Rk 1 : Dy,
Z &= Z (V'W"HZ,-: %D,
1
5 [Z i 9 (= ) = D )‘jRj]
7 J

1 Dy,
- W= (Vi) +rl= D, Q=7
pzi]uo[ (Vej)+ri Z i

Rearranging and, in accord with the earlier discussion, set-
ting Tu,r; equal to zero results in the equation of chemical
exergy

Di Z (i — mio)i= = Z,J (V (i — pioii) + z’: @ D1

1 ] D 0
+; [Z (li'V(I/«i_l"n))_; )\J-Rj:| —’Z Q; Dp't

35%)

In this form, the equation of chemical exergy states that,
for an element of fluid moving with the mass-average velocity,
the chemical exergy changes because of (i) the net transport
of chemical exergy by diffusion, (if) the reversible intercon-
version(s) with thermal and/or strain exergy, (iii) the dissipative
conversion of chemical energy to thermal energy of which the
fraction (1 — T,/ T) becomes thermal exergy (see Eq. (32)) and
the fraction (7,/7T) is destroyed (see Eq. (28)), and (iv) any
changes in the reference chemical potentials.

The Equation of Internal Exergy

In analogy to the equation of internal energy, an equation
of internal exergy is now developed. By adding Egs. (32), (33)
and (35), collecting terms, and employing the Gibbs-Duhem
relation, a form of the equation of internal exergy results

. D D
(T-T)S+p. (~(P=PJv) + 5 Z (i — pio)

S
S

= _l (V'(T- 7‘0)0')—l (V Q(W"_Poé).v)
o o
1
—% Z (V'(Mi—ﬂio)ji)+; e[V em,))

+% <1—L;> [—(T53VV)—2 (ie Vo) + Z Gie D1

Gy ¢

—% (%) (=99~ 3] 9 i o)

DpP, DT, Dy; )
+ Z ANRj— (e VDI + [v Dto—S F;—’—Z Q; ——D;Di|
j i

(36)

Another form is obtained by substituting the relations o =
¢/T+LSj;and B; = H;—T,S; into Eq. (36)
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This equation states that, for an element of fluid moving
with the mass-average velocity, the internal exergy changes
because of (i) the net transport of exergy via thermal conduc-
tion and radiation, (ii) the net transport of exergy via diffusion,
(i) the net transport of exergy via normal stresses, (iv) the
nondissipative interconversion between kinetic and strain ex-
ergy, (v) the internal exergy increase due to the irreversible
conversion of kinetic and potential exergy (see Eq. (38)), (v)
the destruction of exergy associated with () the entropy flux,
and the irreversible conversion(s) of (b) strain energy to thermal
energy, (c) chemical energy to thermal energy via diffusion,
and (d) chemical energy to thermal energy via reactions, and
{vii) any changes in the intensive properties of the reference
environment.

The Equation of Kinetic and Potential Exergy

By subtracting Eq. (37) from Eq. (28), the equation of kinetic
and potential exergy results

D%(I$+<i>)= —}) (v-[rs-vl)—% Z (V°¢J,~)+;) Z (ni~f)
L emD S 6n
o n 0 - i

1 1 1
05 IR DG 8= DL Gif) (38)

This equation states that, for an element of fluid moving
with the mass-average velocity, the kinetic and potential exergy
changes because of (/) the net transport of kinetic exergy via
shear stresses, (i7) the net transport of potential exergy via
diffusion, (/i) the net mechanical transport of exergy via work
done on the fluid by nonconservative body forces, (iv) the net
reversible interconversion with strain exergy, (v) potential ex-
ergy changes as a consequence of chemical reactions, (vi) the
irreversible conversion of kinetic energy to thermal energy via
shear stresses, (vii) the irreversible conversion of potential ex-
ergy to thermal energy, and (viii) the portion of the transport
via nonconservative body forces which is irre-
versibly converted to thermal energy. The fraction (1 — T, /T
of these irreversible conversions becomes thermal exergy (Eq.
(32)); the fraction (T,/T) is destroyed (Eq. (28)).

The Equation of Potential Exergy
By subtracting Eq. (3) from Eq. (38), the equation of po-
tential exergy results
Dd 1 1 1
Vil Vb +- nevVeo)+— ), on (39
o pZ( w)pZ( )pz

This equation states that, for an element of fluid moving
with the mass-average velocity, the potential exergy changes
because of (i) the net transport of potential exergy via diffusion,
(i1) the interconversion between kinetic and potential exergy,
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and (#) the potential exergy changes as a consequence of
reactions.

The Composite Equation of Exergy

The equation of kinetic exergy (Eq. (3)), the equation of
potential exergy (Eq. (39)), the equation of thermal exergy
(Eq. (32)), the equation of strain exergy (Eq. (33)), and the
equation of chemical exergy (Eq. (35)) are the component
equations of exergy. The sum of these five equations is

D 1 1 1
Dt a= {_; (V'[Ts"’])“‘; Z (”i'fi)—; Z (n+ve)

i

o ) (iii)
—}) (u-[v-m)+}) (rs:v»)—}, 3 G
(iv) v) (vi)
1
+; Z Gie V¢i)}
(vii)

1 L1
+ {—; Z (V'¢i/i)+; ,Z (ni'V¢i)+}) ,Z ¢iri}

i

(viii) (ix) )
1 DT T,
+ {_p (V(T-T)o)+ S E-‘-E (0e VD
(xi) (xii) (xiii)
+ 1 ] L . y
o 17 7) 5099 -00 9= 37 e v
(xiv) (xv) (xvi)
+ 25 G+ 2 NR = ST e Vi )]
i J i

(xvii) (xviii)

. DT,

Dy
(xx)

(xix)

1
+ {—;(v-[wn—Poal-u)—vf)—f
(xxii)

DP,

(xexi)

1
+- (1'~[V-7r,,])+1 (T V) +v
P Y

(xxiii) (xxiv) (xxv)

_1 (o — u Vi Duy;
+{ pZ(v (i u,o)J.)+Zi]9,- Dr

(exvid)

1
- [Z Ui V=)= 3 x,R,-]
i J

(xxviii)

(xxvi)

(xxix)

Dy,
LS

(xxx)

(40)

Equation (40) is a form of the equation of exergy in which
all the exergy interconversions, transports, and destructions
are explicitly shown. The first set of brackets contains the
changes of kinetic exergy, the second set the changes of po-
tential exergy, the third set the changes of thermal exergy, the
fourth set the changes of strain exergy, and the last set the
changes of chemical exergy. By (i) canceling all like terms, (ii)
employing the Gibbs-Duhem relation (Eq. (22)), (ifi) incor-
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porating the relationships ¢ = ¢/T + ELSj; and B; = H; —
T,S;, and employing the relation (for inelastic fluids) = = 7
+ 7., Eq. (40) reduces to a form of the equation of exergy
(e.g., Eq. (28)). The following is a term-by-term interpretation
of the thirty terms shown on the right-hand side of Eq. (40).

There are six transport terms: Term (i) represents the net
transport of Kinetic exergy via shear stresses; term (i7) the net
mechanical transport of exergy via the work done by noncon-
servative body forces; term (viii) the net transport of potential
exergy via diffusion; term (x/) the net transport of thermal
exergy via diffusion, conduction and radiation; term (xxi) the
net transport of strain exergy via normal stresses, term (xxvi)
the net transport of chemical exergy via diffusion.

There are a number of exergy interconversions which are
deemed reversible since the full amount of exergy converted
appears as another type of exergy, none being destroyed. For
example, terms (iv) and (xxiii) represent a reversible intercon-
version between kinetic and strain exergy. Terms (xii), (xxii),
and (xxvii) are reversible interconversions between thermal,
strain, and chemical exergy, subject to the Gibbs-Duhem re-
lation. Finally, terms (/i) and (ix) represent reversible inter-
conversion between kinetic and potential exergy.

Terms (xx), (xxv) and (xxx) are changes of exergy due to
changes in the intensive properties of the reference environ-
ment. Term (x) is a change in exergy as a consequence of the
potential exergy change associated with reactions. Each of
these exergy changes may go in either direction and thus, these
terms may be positive or negative in value.

The remaining terms represent irreversible conversions of
exergy. For example, term (v) is the irreversible conversion of
kinetic exergy of which the fraction (1 — 7,/ T) becomes thermal
exergy (term (xiv)); the fraction (7,/T) is destroyed. Term (vi)
is the portion of the exergy transport via nonconservative body
forces which is irreversibly converted to thermal energy, and
term (xvii) is the fraction which becomes thermal exergy. Term
(vii) is the portion of the potential to kinetic exergy conversion
(terms (ix) and (iif)) which is irreversibly converted to thermal
energy, and term (xvi) is the fraction which becomes thermal
exergy.

Term (xxiv) is the irreversible conversion of strain exergy of
which the fraction (1 - 7,/7T) becomes thermal exergy (term
(xv)), the fraction (7,/T) is destroyed. Similar logic holds for
terms (xxviii) and (xxix) which represent the irreversible con-
versions of chemical to thermal exergy (@) by diffusion and
(b) via chemical reactions, respectively. Finally, term (xifi) is
the destruction of exergy as a consequence of entropy flow in
the direction of lower temperatures.

The Equation of Mechanical Exergy
By adding Eqgs. (33) and (38)

l% (R+@—(P~Pyv) = —1 (Vo (m—Pyd)ew)

+ Z¢,r+v——

+% [T+ 270+ Y G Vo)) Giefd)) @D

——Z(v o)+ Z(n,f) v

This equation of mechanical exergy states that, for an element
of fluid moving with the mass-average velocity, the mechanical
exergy changes because of (/) the net transport of mechanical
exergy via stresses, (if) the net transport of potential exergy
via diffusion, (/i7) the net mechanical transport of exergy via
work done on the fluid by nonconservative body forces, (iv)
the reversible interconversion(s) with thermal and/or chemical
exergy, (v) the potential exergy change as a consequence of
reactions, (vi) any changes in the reference pressure, and (vii)
the dissipation of mechanical exergy of which the fraction
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(1-T,/T) becomes thermal exergy and the fraction (7,/7) is
destroyed.

The Equation of Thermochemical Exergy
By adding the Eqs. (32) and (35)

D o D . -
oy (T-To)S+ Z (i = pio)] =1 [H =TS — Z pioH]

1
== WV (T=Tpo)- Z (7 +(i— pioid]
[s =z Z Q D“’]
. 1 T,
+ 0 UiV i) - R+ (1 —7> [-(7: V)
i J

— (T V)~ Z Gie Vo) + Z Ui

DT, Dupiy
- [s Z Q D } (42)

This equation of thermochemical exergy states that, for an
element of fluid moving with the mass-average velocity, the
thermochemical exergy changes because of (¥) the net transport
of thermochemical exergy (@) with the entropy flux, and (b)
by diffusion, (if) the reversible interconversion with strain ex-
ergy, (iii) the decrease in thermochemical exergy (@) with the
irreversible heat flux, () by diffusion, and (c) via chemical
reactions, (fv) the thermal exergy increase due to the irreversible
conversion of mechanical exergy, and (v) any changes in the
reference chemical potentials and/or temperature.

L oew
+2 (09 T)

Closure

In this work, definitions for thermal, strain, and chemical
energy/exergy as well as mechanical and thermochemical en-
ergy/exergy are presented, and the equations of change for
these properties are derived. The resulting equations explicitly
contain (@) the breakdown of each energy/exergy transport
and interconversion into component parts, and (b) terms which
describe the reversible and irreversible conversions of energy.
The sum of these component equation of energy/exergy results
in equations of energy/exergy that contain interconversion
terms which are absent from the traditional form(s) of the
equations of energy/exergy. The transport and interconversion
terms allow for a deeper understanding of the various proc-
esses.
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