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Abstract

Objective: To develop a prospective method for optimizing seizure prediction, given an array of implanted electrodes and a set of

candidate quantitative features computed at each contact location.

Methods: The method employs a genetic-based selection process, and then tunes a probabilistic neural network classifier to predict

seizures within a 10 min prediction horizon. Initial seizure and interictal data were used for training, and the remaining IEEG data were used

for testing. The method continues to train and learn over time.

Results: Validation of these results over two workshop patients demonstrated a sensitivity of 100%, and 1.1 false positives per hour for

Patient E, using a 2.4 s block predictor, and a failure of the method on Patient B.

Conclusions: This study demonstrates a prospective, exploratory implementation of a seizure prediction method designed to adapt to

individual patients with a wide variety of pre-ictal patterns, implanted electrodes and seizure types. Its current performance is limited likely

by the small number of input channels and quantitative features employed in this study, and segmentation of the data set into training and

testing sets rather than using all continuous data available.

Significance: This technique theoretically has the potential to address the challenge presented by the heterogeneity of EEG patterns seen in

medication-resistant epilepsy. A more comprehensive implementation utilizing all electrode sites, a broader feature library, and automated

multi-feature fusion will be required to fully judge the method’s potential for predicting seizures.

q 2004 Published by Elsevier Ireland Ltd on behalf of International Federation of Clinical Neurophysiology.

Keywords: Multiple channels; Multiple features; Feature extraction; Seizure prediction; Classification
1. Introduction

Since the early 1970s, researchers have searched for

independent features and reproducible patterns that may

herald seizure onset. These features are not chosen

randomly. Rather, their selection is hypothesis driven,

based upon what has been observed in the interictal IEEG,

what changes in cellular function might be occurring in
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the ictal onset zone prior to seizure onset, and our

knowledge that some aspects of brain activity can be

modeled as a chaotic, non-linear dynamic system (Iasemidis

et al., 1988; Lehnertz et al., 2001; Lehnertz and Elger, 1998;

Litt and Echauz, 2002). Researchers now agree that the EEG

signal of an epileptic patient represents not only ‘seizure’

and ‘interictal’ states, but a more complex behavior that

includes a ‘preictal’ stage. We have hypothesized a cascade

of events that may wax and wane over a variety of

prediction horizons that together could provide a probabil-

istic model regarding the potential for seizure occurrence

(Litt et al., 2001; Litt and Echauz, 2002). The methodology
Clinical Neurophysiology 116 (2005) 506–516
www.elsevier.com/locate/clinph
tional Federation of Clinical Neurophysiology.

http://www.elsevier.com/locate/clinph


M. D’Alessandro et al. / Clinical Neurophysiology 116 (2005) 506–516 507
presented here evaluates a short-term prediction horizon,

focusing on events that occur up to ten minutes before

electrographic seizure onset.

We present a method using computational techniques to

select an optimized ‘seizure predictor’ from a candidate set

of intracranial electrode contacts and quantitative features

found to be useful for this purpose. Several investigators

have evaluated preictal entrainment among multiple elec-

trode contacts as a means for predicting seizures (Iasemidis

et al., 1996; Iasemidis and Sackellares, 2001), but

historically the investigations have been limited to evalu-

ation contacts around the epileptic focus (i.e. ictal onset

zone) (Litt and Echauz, 2002; Petrosian et al., 2000;

Petrosian and Homan, 1994). The approach we

implemented for the Bonn Workshop selects features and

electrode contacts within or outside of the ictal onset zone,

based on an abbreviation of the methodology reported in

(D’Alessandro et al., 2003). The original methodology

evaluates every monitored electrode contact using a set of

quantitative features derived from the intracranial EEG to

determine the best combination of electrode sites and

features for seizure prediction. To meet time constraints

imposed upon the workshop participants for data analysis,

fewer features and a smaller data training set were used for

this analysis. Specifically, we selected the features that

demonstrated the most predictive power in the original

methodology (D’Alessandro et al., 2003).
2. Methods

The algorithm employed was trained on preictal data

leading to two and four seizures for patients B and E,

respectively, 4 h of baseline EEG data for each patient,

followed by selection of a set of features and electrodes

using a genetic algorithm and probabilistic neural network

(PNN) to adapt the method to individual patients. The

trained system was then run on the remaining body of

intracranial EEG (IEEG) data for each patient, and

performance was assessed. This study evaluated the

predictive value of eight bipolar intracranial EEG channels

and a small set of candidate features found to be useful for

detecting seizure precursor events in past experiments.

A systematic approach to feature selection, classification,

and validation to predict seizures was applied to both data

sets. The chronologically first (leading) seizure in each

cluster, and 4 h of baseline data selected early in the hospital

stay, were used for training. The remaining data were used

for validation. Performance was evaluated for all IEEG data

and seizures not used for training. Seizure clusters were

included in the validation set due to the limited number of

leading seizures available. Performance was assessed by

evaluating sensitivity and the number of false positives per

hour (FPh).
2.1. Data and preprocessing

Intracranial EEG data provided for analysis at the First

Seizure Prediction Workshop from the University of

Pennsylvania (Patient E) and the University of Bonn

(Patient B) as described in the accompanying workshop

summary paper (Lehnertz and Litt, 2005) were evaluated for

this study. Ten-minute data epochs before onset of each

leading seizure in the training set, from eight IEEG channels

were selected for training to address the short-term

prediction horizon. A leading seizure was defined as the

first in a cluster of seizures with no seizures occurring 3 h

prior, or a seizure whose onset is at least 3 h removed from

any other seizure activity. Only leading seizures were used

for training, since clustered seizures have been demon-

strated to have different preictal characteristics than leading

seizures (Litt et al., 2001). The 3 h criteria were based upon

recent results indicating that at least this temporal

separation, and preferably 4 h, is required to best observe

seizure precursors (Litt et al., 2001). Given the close

clustering of seizures in the data shared in the workshop, a

separation of 3 h was deemed acceptable. In total, there

eight leading seizures for Patient E and four leading seizures

for Patient B. Half of the leading seizures for each patient

were used for training, while the remaining preictal

segments were reserved for validation and testing.

For training purposes, data epochs were considered

‘baselines’ if they were at least 3 h removed from the onset

or ending of an electrographic seizure. Our original

methodology described in (D’Alessandro et al., 2003),

used baselines from both the awake and asleep state during

training. Four hours of baseline data were used during

training in the method described here, with no regard to the

state of consciousness, as sleep-wake markings were not

available with data provided in the workshop.

The final validation set for Patient E included 11 preictal

segments (2 leading seizures and nine clustered seizures)

and approximately 55 h of baseline data; and eight preictal

segments (2 leading seizures and six clustered seizures) and

approximately 85 h of baseline data for Patient B. Patient

E’s last two leading seizures and the CDs containing them

were not evaluated since the CDs on which these seizures

were recorded had inconsistent amplifier gains.

2.2. Electrode contact selection

Due to the limited time available to evaluate all

monitored electrode contacts, we empirically selected a

subset of electrode contacts for evaluation and pruned our

original feature subset to include a smaller number of

features identified in previous studies as computationally

efficient and potentially useful preictal indicators.

Fig. 1 shows the electrode contacts (analyzed as bipolar

signals) evaluated for the study patients. In a four-patient

study reported in (D’Alessandro, 2003), the electrode

contact most closely associated with the majority of seizures



Fig. 1. Selected brain regions evaluated for each patient. Electrode contact locations are approximate and nomenclature is based on the nomenclature used for

each monitoring facility. Electrode contact locations (processed as bipolar signals) shown in black were evaluated in this experiment. Arrows point to particular

regions and to the focus channel for each patient.
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was never selected as the ‘best’ overall channel. In three of

the four patients, the ‘best’ channel identified for seizure

prediction for this relatively short prediction horizon was

found contralateral to the focus channel. Furthermore,

several channels exhibited low amplitudes minutes prior to

onset. Consequently, the results reported in (D’Alessandro,

2003) were used as a guideline for selecting the channels

analyzed for the study reported here. Specifically, contacts

both within the seizure onset zone and contralateral to it

were selected for processing. Channels near these regions

that exhibited lower amplitude but normal electrode

impedances were also selected.

The following electrode contacts were used to select the

bipolar signals analyzed: (1) focus electrode contact (site of

earliest onset read by two boarded electroencephalographers

(BL, GW)), (2) electrode adjacent to the focus electrode, (3)

electrode contralateral to focus electrode, (4) electrode

adjacent to selection 3, (5) low amplitude electrode

contralateral to focus electrode, (6) electrode adjacent to

selection 5, (7) electrode contralateral to selection 5, (8)

electrode adjacent to selection 7.
2.3. Pre-feature selection and processing

In (D’Alessandro, 2003), we conducted a search to select

the best among 25,872 features computed over all

monitored electrode contacts. The curve length and

energy-based features provided the most distinguishability

between preictal and baseline signals for the four patients

evaluated, all of whom had partial onset temporal lobe

epilepsy. Therefore, in the present study we limited the

features to the curve length, energy, and nonlinear energy.

The reduced feature set was examined to determine if the

results obtained in (D’Alessandro, 2003) can be generalized
to any patient studied. The reduced feature set resulted in a

search space of 800 features.

Processing was performed using a three step approach,

beginning with first-level feature extraction from the raw

data. Second-level features were extracted from first-level

features (e.g. the mean of the energy), and finally third-level

features extracted from second-level features (e.g. the

minimum of the mean of the energy). As more levels of

processing were completed, the prediction time horizon

decreased. This study used window length (L) Z2000

points and a displacement (d)Z500 points for first-level

feature extraction, and LZ24 and dZ1 for second- and

third-level feature extraction. Additional levels of feature

extraction required longer feature initialization periods. The

objective was to address the 10-min prediction horizon;

however, after three levels of feature extraction, the

prediction horizon was reduced to approximately eight

minutes, due to the increased data requirement for

processing. The mathematical expressions and derivations

of individual features are discussed in Appendix A.
2.4. Genetic and classifier based performance evaluation

After preprocessing (60 Hz filtering, bipolar montaging)

and processing (feature computation for each electrode site),

a genetic algorithm selected reasonable features off-line

from the preselected group of features to serve as inputs to

the classifier based feature selection process (see Appendix

A). The genetic algorithm search flowchart is shown in

Fig. 2. The number of chromosomes generated at each

iteration was equal to three times the length of the

chromosome. This process went through a number of

iterations (also equal to three times the length of the

chromosome, see below). The objective was to obtain



Fig. 2. A selected number of random chromosomes are generated from the available population. Each chromosome’s fitness is computed by comparing the

class separability between the feature value generated from class 1 (preictal) chromosome signals to the value generated from class 2 (no preseizure).
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a variety of different curve length and energy based features

for analysis.

Genetic algorithms are smart search processes inspired

by biological evolution (Chang et al., 1990). Precisely,

each possible solution is represented by a coded string of

bits called a ‘chromosome’. The 11-bit genetic algorithm

chromosome used in this work is shown in Fig. 3. Here,

each chromosome contains four ‘genes’ (1) electrode

contacts or channels, (2) first-level features, (3) second-

level features (these are derived from the first-level

features by taking overlapping windowed values such as

the mean, minimum, maximum, etc., of the windowed

data segments, see Appendix A), (4) third-level features

(derived from the 2nd-level features in the same way

(e.g. the variance of the mean of the first level feature,

see Appendix A). A selected number of chromosomes

are generated from the population to identify reasonable

features to serve as inputs to the classifier-based selection

process.

The degree of ‘fitness’ is computed by comparing the

class separability between the feature generated from the

class 1 (preictal) chromosome signals to the feature

generated from the class 2 (no preseizure) chromosome

signals. The effectiveness or ‘fitness’ of each individual
Fig. 3. Genetic algorithm chromosome representing the electrode contacts (cha

chromosome represents a unique electrode contact and processed signal available

compressed to accommodate a particular number of channels and features for inve

the search process.
feature is measured using a probabilistic neural network

(PNN) to compare the ‘preseizure’ and the ‘no-preseizure’

classes. The best performing feature and the corresponding

channel were then evaluated using the method described in

(D’Alessandro et al., 2003) to determine the prediction

block length used to validate the results.

The preictal data were segmented causally into ‘training’

and ‘testing’ data. Ideally, the baseline data also would be

segmented causally; however, enough baseline data seg-

ments were not available in each patient. Therefore, four 1-h

baselines located chronologically early in the dataset were

used for training, while the entire dataset was evaluated for

testing purposes.

The figure of merit (FOM) used to evaluate the

performance of each feature was a weighted represen-

tation of standard performance metrics based on the

classifier outputs of the training data (see below). This

figure could be adjusted for different seizure types and

severities, for example the cost of false negatives could

be made extremely high for patients with generalized

convulsions, or frequent injuries due to their seizures.

The weighting used in this study is based on a general

perspective regarding the importance of the preictal

versus baseline classifications. The FOM is calculated
nnels) and features potentially useful for seizure prediction. Each 11-bit

for analysis. The chromosome structure is flexible and is easily expanded or

stigation. Unassigned values are given a high penalty when selected during
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as follows:

FOM Z 0:55PTP C0:45PTN K0:55PFN K0:45PFP (1)

where:
Fig

mo
PTNZprobability of true negative or correct no pre-

seizure classification
PTPZprobability of true positive or correct preseizure

classification
PFNZprobability of false negative or incorrect presei-

zure classification
PFPZprobability of false positive or incorrect no

preseizure classification

This equation can be reduced to

FOM Z 1 K1:1PFN K0:9PFP (2)

and is easily used to rank the genetically selected features.

The FOM is designed to select the best feature combi-

nations, compared to performance of the training set. The

number of different combinations of features and electrodes

tested was limited to 3*(length of the chromosome) after

preliminary experiments showed that this number of trials

was sufficient to reach a ‘reasonable’ answer.
2.5. Classification

At the classifier stage, the probabilistic neural network

(PNN) classifier described in Echauz et al. (2000) and

D’Alessandro (2001) assigned the output of the feature

vector into the class preseizure or no-preseizure. The

advantage of the PNN is that its members can train quickly

and it is a nonparametric classifier which suits most of our

classification needs. The PNN input space was divided into

two classes, and used static training based on a priori

baseline preictal data. The PNN outputs from the training

data were used to select the block length required for

prediction.
. 4. Channel selections for seizure prediction. Figures represent brain region

ntage are in solid black.
2.6. Performance assessment

We chose to declare seizure predictions for blocks of

data, for example 1-minute long, rather than for every point.

In this way the analysis avoided numerous conflicting

predictions over very short periods of time. The block

lengths were empirically selected based on the classifier

outputs for the training data. False positives (FP) were

counted by identifying the number of incorrect classifi-

cations found in the data set. One FP was counted for each

toggled incorrect classification. True positive (TP) classifi-

cations were counted in the minutes an electrographic

seizure onset. If an incorrect classification preceded the

prediction horizon without toggling off before entering the

prediction horizon, an FP was declared, the classification

was not identified as preictal unless it was classified as no

preseizure before entering the prediction horizon.

The block length for Patient E (Penn) was set to one point

(2.48 s), since the preictal and baseline training records

were correctly classified (yielded no FPs) or false negatives

(FNs)). The block length for Patient B (Bonn) was

determined by averaging the length of the FP and FN data

segments in the training data. The block length for Patient B

was set to 5 min. This method provides a clinically sound

approach that demonstrates the calculation of data blocks to

obtain the sustained prediction requirement.
3. Results

The prediction methodology was applied to the complete

records of two patients and the resultant features and

electrode contacts selected are shown in Fig. 4. In patient E,

the best channel selected was contralateral to the focus

channel. The selected feature and electrode contact for

patient E was the ‘mean of the mean of the curve length for

bipolar channel LA1–LA2.’

The feature and classifier outputs for the Patient E

training data are shown in Fig. 5a. A PNN output value

equal to ‘0’ indicates the no preseizure class while a ‘1’
s evaluated for this study. Specific electrode contacts analyzed in bipolar



Fig. 5. Training data feature and classifier output plots. The feature outputs for the preictal training data and the baseline training data are shown. The overlaid

lines with values precisely ‘0’ or ‘1’ represent the outputs of the classifier. A classifier output equal to ‘1’ indicates a preictal classification, while a classifier

output equal to ’0’ indicates a baseline classification. (a) Normalized feature (mean of the mean of the curve length for bipolar signal LTA1–LTA2) and

classifier outputs for training data for the final feature selected for patient E (Penn). (b) Normalized feature (median of the maximum of the energy for bipolar

signal TLR4–TLR5) and classifier outputs for training data for the final feature selected for patient B (Bonn).
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delineates a preictal classification. The final feature and

classifier output for the training data provided optimal

performance. There were no false positives or false

negatives; therefore, the block length required using the

method described above is one data point for the feature,

which corresponds to 2.48 s of EEG data. Using a 2.48 s

block length and considering the initialization period

required by the feature extraction process permitted a

maximum prediction horizon of 7.93 min for this patient.

Using a 2.48 s block length, the sensitivity over the test data

was 100% with an average prediction time of 2.1 min and

1.1 FPh.

The feature and classifier outputs for the Patient B

training data are shown in Fig. 5b. The genetically selected

feature for this patient was the ‘max of the median of the

energy for bipolar channel TLR4–TLR5.’ The final feature

and classifier output for training provided optimal perform-

ance for the preictal data segments and suboptimal

performance over the baseline training data. Consequently,

the average length of the false positives and true positives in
the training data set were evaluated to determine a block

length size to be used for testing and validation.

The feature plots and classifier outputs for the entire stay

are shown in Figs. 6 and 7 for patient E and B, respectively.

The electrographic seizure onsets are marked with a vertical

red line. The times identified on the plots specify the

prediction time using a block length of 5 min for patient B

and 2.48 s for patient E. Fig. 6 provides the feature and

classifier outputs for patient E using the 2.48 s block length

to declare a false positive.

In Fig. 7, we observe that for Patient B, the performance

of the classifier was reasonable for CDs b–f; however, the

rate of incorrect classifications was extremely high for the

remaining CDs. We explore possible reasons for these

inaccuracies in the discussion. The minimal block length

required for testing using the method described above is

3.4 min long. The initialization required to implement this

block length reduces the prediction horizon from a

maximum of 5.3 min to a minimum of 3.4 min. The

technique applied here was selected to demonstrate



Fig. 6. Feature and classifier outputs for the feature selected for patient E (Penn). Training data included 10 min of data preceding the first four clinical seizures

(CS1, CS3, CS5, and CS9) and 4 h of baseline data occurring before clinical seizure nine (CS9). The y-axis is labeled with the respective compact disc number

provided for the workshop participants. The feature outputs, classifier outputs, and seizure onsets are shown. The overlaid lines with values precisely ‘0’ or ‘1’

represent the outputs of the classifier. The vertical lines identify the seizure onsets.
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the methodology; the block length of the predictor had a

profound impact on the false positive rate and the

sensitivity, and should have been optimized to demonstrate

statistical significance.

Fig. 8 shows the effect of block length on performance.

Curves are shown for several values of false positives per

hour (FPh) and sensitivity to compare the values selected for

evaluation. The results shown in the figure are recorded

in Table 1 where the block lengths and the attainable

prediction horizon for each value are identified. Each point

on the curve corresponds to a different block length and

subsequent prediction horizon. The vertical axis represents

the sensitivity of prediction based upon the performance of

the selected feature and electrode contact and is plotted

against false positives per hour (FPh). Points at the bottom

left corner of the curve represent performance using block

lengths for which there are no false alarms, and none of the

seizures can be predicted. Positions at the top right corner

represent block lengths for which all seizures are predicted,

but there is a high rate of false positives per hour. The most

desirable curve is a vertical line at the origin. This means the

rate of false positives per hour is minimized and the rate of

correct positives is maximized.

The high sensitivity achieved for patient E comes at the

expense of a high level of false positives per hour (FPh).

Patient B’s performance may be partially attributed to
the fact that the baselines selected for training were not

representative of the entire data set and may have tuned the

classifier to the training set rather than a general

representative data sample. The block lengths selected for

prediction are shown with the arrows in Fig. 8.
4. Discussion

The objective of this study was to (1) present a possible

methodology for selecting an optimal electrode contact and

feature among multiple contacts and potential features for

seizure prediction, and (2) to confine the prediction horizon

to a very useful, well defined period of time, within 10 min

of seizure onset, to facilitate incorporation in a therapeutic

device. The output of the probabilistic neural network

(PNN) classifier for Patient E demonstrates that a system

based upon multiple features and electrode sites tailored to

individual patients is capable of producing promising results

for seizure prediction. That the electrode site selected as

best for short-term prediction was contralateral to the focus

channel may indicate the importance of brain outside of the

ictal onset zone but within the ‘epileptic network’ in

generating clinical seizures. This finding also agrees with

previous experiments that demonstrate spread of seizure

precursors to the contralateral temporal lobe within 20 min



Fig. 7. Feature and classifier outputs for the feature selected for patient B (Bonn). Training data included 10 min of data preceding the first two clinical seizures

(CS1 and CS2) and 4 h of baseline data occurring before clinical seizure two (CS2). Note that the plots here indicate that the preictal training segments do not

predict. Since the classifier is ‘on’ prior to the prediction horizon, in both cases the apparent correct classification is considered a false positive. These results are

not contradictory to the training outputs since these outputs are considering a 5 min block rather than 2.477 s as in the training data and our imposed

requirement to toggle before the prediction horizon restricts a potential prediction.
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of electrographic seizure onset. Since this method compares

the change from baseline to a pre-ictal state, it is not

surprising that this change may be greater in the ‘normal’

temporal lobe minutes prior to seizure onset than in the

‘abnormal’ temporal lobe in unilateral temporal lobe

epilepsy.

This method requires further refinement and validation,

but provides one way of dealing with the heterogeneity of

seizure types and individual patterns to be addressed by

prediction technology. It may also provide insight into brain

mechanisms that underlie seizure generation, for example

the role of regions remote from the ictal onset zone but

functionally connected to the epileptic network. The

performance of the method on the data from Patient E is

discouraging. This may be a result of using a very limited

set of electrode sites and quantitative features for prediction.

It may also be limited by the relatively small number of

seizures used for training, and seizure clustering, as

previous work has demonstrated that clustered seizures
appear to be different from ‘leading’ seizures in the way that

they are generated (Litt et al., 2001).

In this study, after empirically selecting the validation

block length, we manually altered the block length to see its

effect on sensitivity and specificity (in the form of FPh).

Fig. 7 shows that accurate sensitivity is achieved at the

expense of an increased FPh rate. In an implantable device,

the electrode site and features might be selected during

intracranial monitoring before device implantation, then

further refined and retrained over time.

The poor performance on Patient B could be attributed to

a number of factors. First, the limited number of leading

preictal records used for training may have contributed to

suboptimal performance. This problem could be addressed

with iterative training over time, after device implantation.

Second, since the classifier is ‘on’ prior to the prediction

horizon, in both cases the apparent correct classification is

considered a false positive. These results are not contra-

dictory to the training outputs since these outputs consider



Fig. 8. Performance curves for both patients showing the effect of block

length on performance. Optimal performance would be achieved if the

curve rapidly approached the upper left hand corner of the graph. This

means that the rate of false positives per hour is minimized and the rate of

correct positives is maximized. The high sensitivity achieved for patient E,

is achieved at the expense of a high level of false positives per hour (FPh).

Patient B’s performance may be attributed to the small number of lead

seizures available for training, and the homogeneity of the baseline training

data.
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a 5 min block rather than 2.48 s, as in the training data, and

our imposed requirement to toggle before the prediction

horizon restricts potential predictions. Finally, the classifier

appears to have tuned to the training records rather than a

representative data sample from the training set. This could

have been detected in advance and prevented by comparing

baseline records to one another with one of a number of

quantitative techniques (e.g. correlation) prior to analysis to

ensure a diverse sample of baselines is represented in the

training set.

When compared to our original methodology, the

importance of sleep staging and including both states of

consciousness in the training set may also contribute to the

relatively poor performance in patient B. This is a topic of

further study in our laboratory. It also is possible that the

feature set reduction may have eliminated potentially useful

features, or the subset of electrodes chosen for analysis

excluded sites important to seizure generation important to
Table 1

Performance results for patients B and E for leading and clustered seizures

Prediction

block length

Sensitivity FPh Pred. time

horizon (min)

Patient B 2.48 s 0.13 4 7.89

5.0 min 0.13 0.71 2.89

5.5 min 0 0.59 2.39

6.0 min 0 0.59 1.89

6.5 min 0 0.58 1.39

Patient E 2.48 s 1 1.09 7.89

15 s 1 1.02 7.68

30 s 1 0.61 7.43

45 s 81.82 0.59 7.18

60 s 0.27 0.58 6.94
seizure generation. Interestingly, Fig. 7 indicates that the

preictal training segments do not predict seizures. Since the

classifier is ‘on’ prior to the prediction horizon, in both cases

the apparent correct classification is considered a false

positive. Requiring this ‘toggle’ is a more stringent criterion

for prediction, included purposefully so as to not bias the

performance assessment in favor of positive results.

Another option is to use portions of the preictal data

segments removed from the prediction horizon as baselines

in the training set to minimize the potential conflict

demonstrated here.

The next step in this research is to expand the original

methodology using all monitored IEEG channels and

multiple fused features, to include an optimized method

for combining electrode contacts and features to evaluate

multivariate feature analysis. Other options include apply-

ing approaches such as the ‘wrapper’ method to feature

selection, to introduce a feedback path to the genetic

algorithm, thereby enabling the system to learn which

features are relevant. In addition, other complementary

features such as sleep staging could be incorporated in the

process to track seizure generation. Training on continuous

data, and eliminating selected epochs, such as baselines, is

also an important step toward evolution of a reliable seizure

prediction algorithm that can be implemented prospectively.

Furthermore, the first step at incorporating classifier based

performance metrics used in this study is being refined to

incorporate generic specificity and sensitivity values that

will provide statistical validation of the protocol.

In our original work, we demonstrated (1) the need for

multiple features to accurately anticipate seizures in a short

term prediction horizon, (2) a novel method for combining

multiple quantitative features derived from the intracranial

EEG and selecting the best intracranial electrode sites using

a hybrid selection approach, and (3) the unexpected finding

that electrodes far from but physiologically connected to the

seizure onset zone may be the most useful for predicting

seizures in a time horizon in the ten minutes before onset.

These findings are important steps in refining our results and

optimizing the selection process. The method applied at the

Bonn workshop used the features identified as promising in

the original work. The results presented here demonstrate

that prediction is individual.

The most important lesson learned from this exercise is

that a well thought out methodology, if applied appropriately

may have great value in predicting seizures. To date, most

research has analyzed the focus channel since it appears that

the focus channel is the channel from which the seizure

originates. Litt et al. suggest that the accumulated energy

increases slope minutes prior to seizure onset on EEG, and

that it may be useful for seizure prediction when evaluating

the focus channel (Litt et al., 2001). However, when

evaluating the accumulated energy, asleep and awake

records must be differentiated and compared only with

those records in the same awareness state. At the Bonn

workshop, data analysis was performed without regard to
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the awareness state of the patient, which more than likely

contributed to the results presented here. This conclusion is

consistent with our original methodology where signals

representative of each awareness state were included in the

training data set. To acquire FDA approval for an

implantable device, clinical trials must yield improvement

in 25% of patients. The results presented in our original

analysis yield an average of 62.5% prediction in all patients

analyzed. Since only two patients were evaluated for the

Bonn workshop, it is difficult to hypothesize about the

predictive power of the abbreviated method used.

Training off-line is not an unreasonable approach, even

for implantable device applications, as long as features can

be computed online, once the appropriate combination of

electrode sites and predicting features is determined. In

attempting to expedite the process to meet the workshop

timelines, the step between the genetic algorithm selection

and the block length determination for the classification step

was eliminated and most likely contributed to suboptimal

performance of the method. The relevant aspect of the

processing time involved in this method is the time the

selected feature takes to process the signal. The features

selected for this evaluation are capable of being processed in

real time, a vital consideration in sensor-equipped implan-

table devices. (Rise, 2001; Echauz and Esteller, pers. comm.

2001).
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Appendix A

The mathematical representation of the curve length in

its discrete form is:

CL½n� Z
XnðNKDÞCD

ikZ1CðnK1ÞðNKDÞ

jxði K1ÞKxðiÞj (A1)

where CL[n] is the running curve length of the time series

x(n), N is the length of the sliding observation window

expressed in number of points, n is the discrete time

index, and D is the overlap. The curve length is useful for

observing amplitude and frequency changes and dimension-

ality of the signal. The accumulated energy (AE) provided

promising results for seizure prediction in all the patients

analyzed in (Esteller, 2000) and in (Litt et al., 2001) using

the focus channel. However, unless AE is converted to a

resetting AE, where it is initialized blind to the seizure
onset, it is not a practical feature for an online pattern

recognition system. Consequently, energy is considered as a

first-level feature and subsequent feature levels are expected

to provide predictive preseizure indicators. To calculate the

energy, let the sequence x(n) be a preprocessed and fused

input signal, then the instantaneous energy of x(n) is given

by x2(n). Considering a nonoverlapping sliding window, the

energy of the signal becomes the average power over the

window mathematically defined as,

E½n� Z
1

N

XnN

iZðnK1ÞNC1

xðiÞ2; (A2)

where N is the size of the sliding window expressed in

number of points, and nZ1,2,3,.
If an overlap of D points is allowed, then the average

energy becomes:

ED½n� Z
1

N

XnðNKDÞCD

iZ1CðnK1ÞðNKDÞ

xðiÞ2; (A3)

An overlap of 1500 points was used in this work at the

first level of feature extraction while an overlap of 23 points

was used at levels 2 and 3.

For the input signal x(n), in its discrete form, the

nonlinear (Teager) energy is:

NE½n� Z x2ðnÞKxðn K1Þxðn C1Þ (A4)

The nonlinear energy is an instantaneous feature, such

that it provides one value for each value of original data.

After the NE is obtained, the feature is weighted with a

Hanning window; then the mean of the windowed data,

NEw[n], is taken over the desired sliding window. After

windowing, the average nonlinear energy is then:

ANE Z
1

N

XkðNKDÞCD

nZ1CðkK1ÞðNKDÞ

NEw½n� (A5)

where ANE[k] is the average nonlinear energy at time k.

The measure captures both amplitude and frequency

changes, and is computationally efficient, and simple to

calculate. All first level features were calculated over a 10-s

window length with 2 s of displacement. Similarly second-

and third-level features were limited to those providing the

best results in (D’Alessandro et al., 2003). These included:

minimum, maximum, sum, mean, and median. All were

calculated over a one minute window with 2.5 s of

displacement.
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