The Mean Square Error in Kalman Filtering Sensor Selection is Approximately Supermodular

Luiz F. O. Chamon,
George J. Pappas and Alejandro Ribeiro

CDC 2017
December 12th, 2017
Why does greedy sensor selection for Kalman filtering works when it shouldn’t?
Problem (KFSS)

Select up to s *system outputs to estimate its internal states.*

\[
\begin{align*}
\text{minimize} & \quad \text{MSE}(S) \\
\text{subject to} & \quad |S| \leq s
\end{align*}
\]

- Why the MSE? KF
- NP-hard [Natarajan'95, Zhang’17, Ye’17]
Greedy KFSS

Definition
Select sensors/outputs one at a time by choosing the one that most improves estimation at each step.

\[
\textbf{function} \ \textsc{Greedy}(q) \\
\mathcal{G}_0 = \{\} \\
\text{for } j = 1, \ldots, q \\
\quad u = \arg\min_{v \in \mathcal{O} \setminus \mathcal{G}_{j-1}} \text{MSE} (\mathcal{G}_{j-1} \cup \{v\}) \\
\quad \mathcal{G}_j = \mathcal{G}_{j-1} \cup \{u\} \\
\text{end} \\
\text{end}
\]
Greedy KFSS

Definition
Select sensors/outputs one at a time by choosing the one that most improves estimation at each step.

function GREEDY(q)
 \(G_0 = \{ \} \)
 for \(j = 1, \ldots, q \)
 \(u = \arg\min_{v \in \mathcal{O} \setminus G_{j-1}} \text{MSE} (G_{j-1} \cup \{v\}) \)
 \(G_j = G_{j-1} \cup \{u\} \)
 end
end

▶ Low complexity
▶ Sequential
▶ Near-optimal for supermodular objectives
Problem (KFSS)

Select up to s system outputs to estimate its internal states.

\[
\begin{align*}
\text{minimize} & \quad \text{MSE}(S) \\
\text{subject to} & \quad |S| \leq s
\end{align*}
\]

- Why the MSE? KF
- NP-hard [Natarajan’95, Zhang’17, Ye’17]
- Estimation MSE is not supermodular [Tzoumas’16, Olshevsky’16, Singh’17, Zhang’17]
 - Use a supermodular surrogate (e.g., log det) [Joshi’09, Shamaiah’10, Tzoumas’16]
Greedy KFSS

![Graphs showing smoothing and filtering count](graph.png)

\[
\frac{\text{MSE}(G) - \text{MSE}(S^*)}{\text{MSE}(\emptyset) - \text{MSE}(S^*)}
\]
Greedy KFSS is near-optimal

\[
\frac{\text{MSE}(G) - \text{MSE}(S^*)}{\text{MSE}(\emptyset) - \text{MSE}(S^*)}
\]
Kalman filtering sensor selection

(Approximate) supermodularity

Near-optimality of greedy KFSS

luizf@seas.upenn.edu
Kalman filtering

\[x_{k+1} = F x_k + w_k \]
\[y_k = H x_k + v_k \]

\[w_k \sim \mathcal{N}(0, \sigma_w^2 I) \quad v_k \sim \mathcal{N}(0, \sigma_v^2 I) \quad x_0 \sim \mathcal{N}(\bar{x}_0, \Pi_0) \]

Problem (Filtering)

Estimate \(x_k \) based on outputs up to time \(k \), i.e.,

\[\hat{x}_k = \mathbb{E} [x_k | \{ y_j \}_{j \leq k}] \]

Solution (Kalman filter)

\[\hat{x}_k = F \hat{x}_{k-1} + K_k [y_k - H F \hat{x}_{k-1}] \]
Kalman filtering

\[x_{k+1} = F x_k + w_k \]
\[y_k = H x_k + v_k \]
\[w_k \sim \mathcal{N}(0, \sigma_w^2 I) \quad v_k \sim \mathcal{N}(0, \sigma_v^2 I) \quad x_0 \sim \mathcal{N}(\bar{x}_0, \Pi_0) \]

Problem (Filtering)

Estimate \(x_k \) based on outputs in \(S \subseteq \mathcal{O} \) up to time \(k \), i.e.,

\[\hat{x}_k = \mathbb{E} [x_k \mid \{ (y_j)_S \}_{j \leq k}] \]

Solution (Kalman filter)

\[\hat{x}_k(S) = F \hat{x}_{k-1}(S) + K_k \left[(y_k)_S - H_S F \hat{x}_{k-1}(S) \right] \]
Problem (KF sensor selection)

Find $S \subseteq \mathcal{O}$, $|S| \leq s$, that minimizes the estimation MSE

$$\text{minimize} \quad \sum_{j=0}^{m-1} \theta_j \text{MSE}_{\ell+j}(S)$$

- Myopic sensor selection: $m = 1$
- Final estimation MSE: $\theta_j = 0$ for $j < m - 1$ and $\theta_{m-1} = 1$
- Exponentially weighted error: $\theta_j = \rho^{m-1-j}$, $\rho < 1$
Problem (KF sensor selection)

Find $S \subseteq \mathcal{O}$, $|S| \leq s$, that minimizes the estimation MSE

$$\minimize_{|S| \leq s} \sum_{j=0}^{m-1} \theta_j \text{Tr} [P_{\ell+j}(S)]$$

where

$$P_k(S) = \left(F P_{k-1}(S) F^T + \sigma_w^2 I + \sigma_v^{-2} \sum_{i \in S} h_i h_i^T \right)^{-1}_{P_k|k-1}$$

Chamon, Pappas, Ribeiro
The MSE in KF Sensor Selection is Approximately Supermodular
Kalman filtering sensor selection

(Approximate) supermodularity

Near-optimality of greedy KFSS
Definition (Supermodularity)

For $A \subseteq B \subseteq O$ and $u \in O \setminus B$

$$f(A) - f(A \cup \{u\}) \geq f(B) - f(B \cup \{u\})$$

"diminishing returns"
Greedy supermodular minimization

Theorem ([NWF’78])

Let S^* be the optimal solution of the problem

$$\text{minimize} \quad f(S)$$

$|S| \leq s$

and G be its greedy solution. If f is (i) monotone decreasing and (ii) supermodular, then

$$\frac{f(G) - f(S^*)}{f(\emptyset) - f(S^*)} \leq e^{-1} \approx 0.37.$$
Theorem ([NWF’78])

If \(f \) is (i) monotone decreasing and (ii) supermodular, then

\[
\frac{f(G) - f(S^*)}{f(\emptyset) - f(S^*)} \leq e^{-1} \approx 0.37.
\]
\(\alpha \)-supermodularity

Definition (Supermodularity)

For \(\mathcal{A} \subseteq \mathcal{B} \subseteq \mathcal{O} \) and \(u \in \mathcal{O} \setminus \mathcal{B} \)

\[
f(\mathcal{A} \cup \{u\}) - f(\mathcal{A}) \leq f(\mathcal{B} \cup \{u\}) - f(\mathcal{B})
\]

If \(\alpha \geq 1 \):
\(f \) is supermodular

If \(\alpha < 1 \):
\(f \) is approximately supermodular
Definition (α-supermodularity)

For \(\mathcal{A} \subseteq \mathcal{B} \subseteq \mathcal{O} \), \(u \in \mathcal{O} \setminus \mathcal{B} \), and \(\alpha \geq 0 \)

\[
f(\mathcal{A} \cup \{u\}) - f(\mathcal{A}) \leq \alpha \left[f(\mathcal{B} \cup \{u\}) - f(\mathcal{B}) \right]
\]

- If \(\alpha \geq 1 \): \(f \) is supermodular
- If \(\alpha < 1 \): \(f \) is approximately supermodular
Theorem ([Chamon-Ribeiro’16])

Let S^* be the solution of the problem

$$\text{minimize} \quad f(S) \quad \text{subject to} \quad |S| \leq s$$

and G_q be the q-th iteration of a greedy solution. If f is
(i) monotone decreasing and (ii) α-supermodular, then

$$\frac{f(G_q) - f(S^*)}{f(\emptyset) - f(S^*)} \leq e^{-\alpha q/s}.$$
Theorem ([Chamon-Ribeiro’16])

If f is (i) monotone decreasing and (ii) α-supermodular, then

$$\frac{f(G_q) - f(S^*)}{f(\emptyset) - f(S^*)} \leq e^{-\alpha q/s}.$$

- For $q = s$ and $\alpha = 1$, we recover the classical e^{-1} result
- If $\alpha < 1$, then e^{-1} is recovered for $q = \alpha^{-1}s$
What is α for KFSS? Combinatorial problem

$$\alpha = \min_{A \subseteq B \subseteq O} \frac{\text{MSE}(A) - \text{MSE}(A \cup \{u\})}{\text{MSE}(B) - \text{MSE}(B \cup \{u\})}$$
Theorem ([Chamon-Pappas-Ribeiro’17])

The objective of KFSS is α-supermodular with

$$\alpha \geq \min_{\ell \leq k \leq \ell + m - 1} \frac{\lambda_{\min} [P_k(O)]}{\lambda_{\max} [P_{k|k-1}]}$$

$$P_k(O) = (P_{k|k-1} + \sigma_v^{-2} H^T H)^{-1}$$

$$P_{k|k-1} = FP_{k-1}F^T + \sigma_w^2 I$$

$\sigma_v^2 \gg \sigma_w^2$ and small $\kappa(F) \Rightarrow \alpha \approx 1$
\(n = 100 \) states and \(H = I \)
Kalman filtering sensor selection

(Approximate) supermodularity

Near-optimality of greedy KFSS
\(n = 100 \) states and \(H = I \)
Conclusion

Why does greedy KFSS work so well?

- The MSE in KFSS is not supermodular, but almost
- Greedy KFSS is efficient and has a guaranteed near-optimal performance
The Mean Square Error in Kalman Filtering
Sensor Selection is Approximately Supermodular

Luiz F. O. Chamon,
George J. Pappas and Alejandro Ribeiro

More details: http://www.seas.upenn.edu/~luizf