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3. Rigid Body Motion and the Euclidean Group

3.1 Introduction

In the last chapter we discussed points and lines in three-dimensond space, their
representations, and how they transform under rigid body. In this chapter, we will develop the
fundamenta concepts necessary to understand rigid body motion and to andyze instantaneous
and finite screw motions. A rigid body motion is smply a rigid body displacement that is a
function of time. The firg derivative of the motion will give us an expresson for the rigid body
veocity and this will lead us to the concept of an ingantaneous screw. Similarly, higher order

derivativeswill yield expressons for the acceleration and jerk.

3.2 TheEuclidean group

In Chapter 2, we saw that the digplacement of arigid body B can be described in reference
frame {A}, by edablishing a reference frame {B} on B and describing the postion and
orientation of {B} in {A} viaahomogeneous transformeation matrix:
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where *r? is the position vector of the origin O’ of {B} in the reference frame {A}, and ARg
is a rotation matrix that transforms the components of vectors in {B} into components in {A}.
Recal from Chapter 2, the composition of two displacements, from {A} to {B}, and from { B}
to {C}, is achieved by the matrix multiplication of “Ag and PAc :
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where the"” ” refers to the standard multiplication operation between matrices (and vectors).
The st of dl displacements or the sat of al such marices in Equation ( 1) with the

compostion rule above, is cdled SE(3), the special Euclidean group of rigid body

displacementsin three-dimensons.
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Figurel Therigid body displacement of arigid body from an initid postion and
orientation to a find postion and orientation. The body fixed reference
frame is coincident with {A} in the initid podtion and orientation, and
with {B} initsfina pogtion and orientation. The point P attached to the
rigid body movesfrom P to P’.



If we consder this set of matrices with the binary operation defined by matrix multiplication, it is
easy to see that SE(3) stisfies the four axioms that must be satisfied by the dements of an
algebraic group:

1. The st is closed under the binary operation. In other words, if A and B are any two
maricesin SE(3), ABT SE(3).

2. The binary operation is associative. In other words, if A, B, and C are any three matrices
T SE(3), then (AB) C = A (BC).

3. For every dement AT SE(3), there is an identity dement given by the 4° 4 identity metrix,
IT SE(3), suchthat Al = A.

4. Forevery dement AT SE(3), thereisan identity inverse, A* T SE(3), such that
AAL =,

It can be easly shown that () the binary operation in Equation ( 2 ) is a continuous
operation ¥ the product of any two dementsin SE(3) is a continuous function of the two
dements, and (b) the inverse of any dement in SE(3) is a continuous function of that eement.
Thus SE(3) is a continuous group. We will show that any open set of dements of SE(3) hasa
1-1 map onto an open set of R. In other words, SE(3) is adifferentiable manifold. A group
that is adifferentiable manifold is caled a Lie group, after the famous mathematician SophusLie
(1842-1899). Because SE(3) isa Lie group, it has many interesting properties that are o
interest in screw system theory.

In addition to the specid Euclidean group in three dimensions, there are many other groups
that are of interest in rigid body kinematics. They are dl subgroups of SE(3). A subgroup of a
group congsts of a collection of dements of the group which themsdlves form a group with the
same binary operation. We list some important subgroups and their sgnificance in kinematicsin
Table 1, and describe their properties below.



Table 1 Theimportant subgroups of SE(3)

Subgroup Notation Definition Significance
Thegroupof [  SO(3) The set of al proper orthogonal All spherica displacements. Or
rotationsin matrices. the set of all displacements
three C a7 T that can be generated by a
dimensions 30(3)={R |[RTR® % R'R=RR ='} spherical joint (S-pair).
Special SE(2) | Thesetof al 3 3 matriceswiththe | All planar displacements. Or
Euclidean structure: the set of displacements that
group in two ] . can be generated by a planar
dimensions ecosq sing ryu pair (E-pair).
g sing cosq ryH
g 0 0 14
where q, ry, and ry are real numbers.
The group of SO(2) The set of al 2 2 proper orthogona | All rotations in the plane, or the
rotationsin two matrices. They have the structure: | Set of all displacements that
dimensons _ can be generated by asingle
€cosq  Snqu revolute joint (R-pair).
& sing cosqf’
where g is areal number.
Thegroupof | T(n) The set of al n” 1 real vectorswith All trandationsin n
trangationsin vector addition as the binary dimensions. n = 2 indicates
n dimensions. operation. planar, n = 3 indicates spatid
displacements.
The group of T(2) The set of al real numberswith All trandations parallel to one
trandationsin addition as the binary operation. axis, or the set of al
one dimension. displacements that can be
generated by asingle prismatic
joint (P-pair).
The group of |SO(2)" T(1)| The Cartesian product of SO(2) and | Al rotations in the plane and
cylindrica T(1) trandations along an axis
displacements perpendicular to the plane, or
the set of all displacements
that can be generated by a
cylindricd joint (C-pair).
The group of H(2) A one-parameter subgroup of SE(3) | All displacements that can be
screw generated by a helica joint (H-
displacements

pair).




3.2.1 Thegroup of rotations

A rigid body B is sad to rotate relative to another rigid body A, when apoint of B isadways
fixed in {A}. Attach the frame {B} so thet itsorigin O’ is at the fixed point. The vector < is
equd to zero in the homogeneous transformation in Equation (1 ).
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The st of dl such displacements, dso cdled spherical displacements can be easly seen to
form asubgroup of SE(3).

If we compose two rotations, “Ag and PAc, the product is given by:
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Notice that only the 3 3 submatrix of the homogeneous transformation matrix plays a role in
decribing rotations.  Further, the binary operation of multiplying 4”4 homogoneous
transformation matrices reduces to the binary operation of multiplying the corresponding 3 3
submatrices.  Thus, we can  dmply use 3" 3 rotation matrices to represent spherica
displacements. This subgroup, is cdled the specid orthogond group in three dimensions, or

smply SO(3):
039 ={R |[R1 R¥ 3, RTR=RRT =1}
(4)
The adjective specid refers to the fact we exclude orthogona meatrices whose determinants are
negative.

It is well known that any rotation can be decomposed into three finite successve rotations,
each about a different axis than the preceding rotation. The three rotation angles, caled Euler

angles, completely describe the given rotation. The basic ideais as follows. If we condder any
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two reference frames {A} and {B}, and the rotation matrix “Rg, we can congtruct two

intermediate reference frames {M} and {N}, so that
ARg="Ry " MRy~ “Rg
where
1. Therotationfrom {A} to {M} isarotation about the x axis (of {A}) through y ;
2. Therotation from{M} to {N}isarotation about they axis (of {M}) through f ; and

3. Therotation from{N} to {B}is arotation about the z axis (of {N}) through q.

7
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(5)
Thus any rotation can be viewed as a composition of these three elementd rotations except for
rotations at which the Euler angle representation is sngulart. Thisin turn meansdl rotationsin an
open neighborhood in SO(3) can be described by three real numbers (coordinates). With alittle
work it can be shown that there is a 1-1, continuous map from SO(3) onto an open s&t in R..
This gives SO(3) the structure of athree-dimensond differentiable manifold, and therefore aLie
group.

The rotations in the plane, or more precisay rotations about axes that are perpendicular to a
plane, form a subgroup of SO(3), and therefore of SE(3). To see this, consider the canonical
form of this set of rotations, the rotations about the z axis. In other words, connect the rigid
bodies A and B with a revolute joint whose axis is dong the z axis in Figure 1. The

homogeneous transformation matrix has the form:

1 These singularities are easily found by writing out the right hand side of Equation ( 5 ) explicitly and
identifying points at which the Euler angles are not unique. Note that we have chosen the so-called x-y-z
representation for Euler angles, in which the first rotation is about the x-axis, the second about the y-axis
and third about the z-axis. There are eleven other choices of Euler angle representations which can be
derived by choosing different axes for the three elemental rotations. For any rotation, it is always possible
to find a suitable non singular Euler angle representation.
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where q is the angle of rotation. If we compose two such rotations, “Ag and PAc, through o,
and g, respectively, the product is given by:

écosq; sSing; O Oy écosgy, singy, O Og
€ u é 4 a
AAB' By =6 sing; cosq; O Ou, & Sinqz  Cosqy 0 Ol,J
C7e 0 0O 100¢é O 0 1 0d
é u é a
g 0 0O 01l ¢& O 0 0 1y
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All matrices in this subgroup are the same periodic function of one red variable, g, given by:

éosq - snq Ou
_é. a
R(q) =gSnq cosq Ou
g o0 0 1f
This subgroup is caled SO(2). Further, snce R(q:) © R(0z) = R(q: + gz), we can think of the
subgroup as being localy isomorphic? to R* with the binary operation being addition.

3.2.2 Thegroup of trandations

A rigid body B is sad to trandate relative to another rigid body A, if we can attach reference
framesto A and to B that are aways pardld. The rotation matrix “Rg equals the identity in the
homogeneous transformation in Equation (1).

2 The isomorphism is only local because the map from R' to SO(2) is many to one. Strictly speaking, the
subgroup isisomorphic to the unit circle in the complex plane with multiplication as the group operation.
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The st of dl such homogeneous transformation matrices is the group of trandaions in three
dimensions and is denoted by T(3).

If we compose two trandations, “Ag and PAc, the product is given by:
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Notice that only the 3 1 vector part of the homogeneous transformation matrix plays arole in
describing trandations. Thus we can think of a dement of T(3) as Smply a3 1 vector, *r°.
Since the composition of two trandations is captured by smply adding the two corresponding
3" 1 vectors, r® and 8", we can define the subgroup, T(3), asthe real vector space R with
the binary operation being vector addition.

Similarly, we can describe the two subgroups of T(3), T(1) and T(2), the group of
trandations in one and two dimensions respectively. Because they are subgroups of T(3), they
are dso subgroups of T(3). It isworth noting that T(1) congists of dl trandations aong an axis
and thisis exactly the set of displacements that can be generated by connecting A and B with a
single prismdic joint.

3.2.3 The special Euclidean group in two dimensions

If we congder dl rotations and trandations in the plane, we get the set of dl displacements
that are sudied in planar kinematics. These are aso the digplacements generated by the
Ebene-pair, the planar E-pair. If we let the rigid body B trandate along the x and y axis and
rotate about the z axis relative to the frame {A}, we get the canonica set of homogeneous

trandformeation matrices of the form:



A0y
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where g isthe angle of rotation, and Ar O¢ and A §) ¢ aethetwo components of trandation of

theorigin O'. If we compose two such displacements, “Ag and ®Ac, the product is given by:

gcosql sing; 0 “Ar O¢8 gcosqz sing, 0 Br O@B
Ap_ - Bp  _€SiNdp cosqy O Ar%a. & singy cosaz 0 Pr%
B "tTe o o 1 o0U& g o 1 o
é a é a
g O 0 0 1 §é& O 0 0 14
g coda; +az) sinfag +az) O (A 0%+B8 1 2%cosqy +B rP%sing;
=g T(Q1+Q2) COS(Q1+Q2) 0 (A ry’ - B r2%sing; +8 r?®cosqy
& 0 1 0
& 0 0 0 1

Because the set of matrices can be continuoudy parameterized by three variables, g, Ar O¢

and *r %, SE(2) isadifferentiable, three-dimensional manifold.

3.24 Theone-parameter subgroup in SE(3)

The group of cylindricad motionsis the group of motions admitted by acylindrical pair, or a C-
pair. If we let the rigid body B trandate along and rotate about the z axis relative to the frame
{A}, we get the canonica set of homogeneous transformation matrices of the form:

ki
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where q is the angle of rotation and k isthetrandation. The st of such matricesis continuoudy
parameterized by these two variables. Thus, this subgroup is a two-dimensond Lie group. In
fact, it is nothing but the Cartesian product SO(2) © T(1). Physicaly this means we can redize
the cylindricd pair by arranging a revolute joint and a prismdic joint in series (in any order)

adong the same axis.

A one-dimensiond subgroup is obtained by coupling the trandation and the rotation so that
they are proportiond. The canonica homogeneous transformation matrix is of the form:

gcosq sing O Oy
é o a
AAB _& sng cosgq 0 O a
é 0 0O 1 hqu
é a
g 0 0 0 1y

where h is ascdar congtant called the pitch. Because the displacement involves a rotation and
a co-axid trandation that is linearly coupled to the rotation, this digplacement is caled a screw
displacement. It is exactly the displacement generated by a helical pair, or the H-pair.

gcosq; singqp O Oy écosqy singy O Oy
Ap - B :g- singy cosqy 0 0 & sng, cosqg; O O
B "C7e 0 0 1 hgd & 0 0 1 hgyt
é a é a
€ 0 o o 138 o o o 1}
Coofay +az) sin(gp+ap) 0 0 U
_& sing; +gz) coqay+dz) O 0 ¢
¢ 1 hlgy +q5,)Y
e O 0 (o qz)g
& O 0 0o 1 g

The sat of dl screw digplacements about the z-axis can be described by amatrix function A(q),
with the property A(ql) " A(q) = A(qu + Q). Thus this one-dimensond subgroup is
isomorphic to the set R* with the binary operation of addition. Such one-dimensiona subgroups
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are cdled one-parameter subgroups and, as we will see later, they have an important

geometric significance.

{B}

z
[N P(t)

Arp(t) BrP(t) y
r¥(ty) P(t o

- POSITION AT TIME t

0 r-(t) ,
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Figure2 The mation of the rigid body B, as seen from {A}. The body fixed
reference frame is coincident with {A} in the initid pogtion and
orientation a time to, and with {B} in the current position and orientation
a timet. The point P is attached to the rigid body.

3.3 Velocity analysis
331 Twig

We study the motion of arigid body B in the reference frame {A} attached to therigid body A.
For al practica purposes, A can be considered to be a fixed rigid body, so that {A} can be
consdered an inertial or an absolute frame. We choose {A} to be the frame with which the
body fixed reference frame is coincident a some initid time to. We consder the body fixed
reference frame in its current position and orientation, {B}, a time t. The homogeneous
transformation matrix “Ag(t) is a function of time, as is the rotation matrix “Rg (t) and the
trandation vector “r° (t).

We consder, as before, a generic point P that is attached to the rigid body. In other words,
ArP(t) is a function of time, but ®r°(t) is a constant which is equal to “rP(to). The velodity of the
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point P on therigid body B as seen in the reference frame { A} is obtained by differentiating the

position vector “rP(to) in the reference frame {A} :

AVP(t) — %( Ar P(t)) — Ar P(t)

where a denotes the differentiation of the quantity a in the reference frame {A} .

Theveodity “v(t) isfound by is given by writing the equation for the position vector,

eArP(y)u eAr Pty )u
(}———Qu‘ Apg e____g_o_)u
e 1 ¢ e 1 @
€ARG(t) | ArOYt)ueA Pt )u
=8 S Ue ———-—= U
€03 ! 1 g 1 ¢
(6)
and differentiating it with respect to time:
é*vP(t)u é%r P (t, Ju
EVI_ a0 (LN
e 1 0 e 1 0
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=g Rel0) g (Ol
e 01'3 ! 1 u
Substituting for “rP(to) from Equation ( 6 ), we get:
eAVP()U L. éArP(y)u
g-—-—(-)uz AAB[AAB g:L---(--)u
e 1 ¢ 1 ¢
: < 6 T! T W
_§MR) A OIS AR (0] |- [AR (0] AR P ()Y
-G i Anbikla yi) TSGR JEpEY NS TN Ry L= S
€0rs ! 0 g8 03 | 1 He 1 @
| T N,
e Rel["Ra(0)] | ArOtD - AR ARplt)] ArO%) &P 0l
€ 0 rs T e 1 4@
(7)

Thusthe velocity of any point P on therigid body B in the reference frame {A} can be obtained
by premultiplying the position vector of the point P in {A} with the matrix, “Tg,
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AyO = A OC_ Ay A OC

O isapoint on the rigid body B that we will shortly establish as the point that is instantaneoudy

coincident with the origin of {A}.

The 3 3 marix “Ws is easily seen to be skew symmetric. Because “Rg [*Rg]T is the

identity matrix, itstime derivative is the zero matrix which means

. T . T
ARg[ARg| +“Rg|*Rp| =0

or,
-
AWg +[ AWB] -0
Thus“Wi(t) is a skew-symmetric matrix operator and has the form:

€0 -wz wpd
A _e u
W =g Ws 0 - wy

Ewy w 0 H

where Awg(t) = [wy, W, Ws]" isthe 3" 1 vector associated with the matrix operator.
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The physicd sgnificance of this operator isimmediately seen if we take the pecid case of a
spherical motion of B reldive to A, in which we can choose the origin of {B} to be coincident

with the origin of {A}. In this specia case,

AOC_g AOt_g

and Equation ( 7 ) gives usthe reault,

AV P(t) — AWB Ar P

=Awg” ArP,

which means the vector “wg must be the angular velocity vector of the rigid body B asseenin
reference frame {A}. Thematrix “Ws is called the angular velocity matrix of the rigid body B

as seen in reference frame {A} 3.
Once we see that “wy is the angular velocity vector of therigid body B in {A}, we see that

AVO = AOC, Ay - ( ArO¢)

isthe velocity of the point © on B whose position is the same as that of the point O on A.
Thus, *Tg is essentialy a matrix operator that yields the velocity of any point attached to B

in frame {A}. It congsts of the angular velocity matrix of {B} and the velocity of the point (5,

both as seen in frame {A}. Because “Tg depends on only Sx parameters ¥ the three

components of the vector “wg and the three components of the linear velocity AvO 3, thesix

components may be assembled into a6 1 vector4 cdled the twist vector:

(10)

3 It is worth emphasizing that “r®, “wg, A, and W, are components of physical quantitiesin the reference
frame {A}. The choice of {A} is somewhat arbitrary, as is the choice of the time t,. The components
themselves will depend on the exact choice of the coordinate system O-x-y-z in Figure 2.

4Some authors prefer an ordering with the linear velocity in the first three slots and the angular velocity at
the bottom of the 6" 1 vector.
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In andogy to the two representations of the angular velocity, the twist of body B in reference
frame {A} can be represented either asthe twist matrix “Tgin (9 ) or asthe twist vector “tg in

(10). Wewill pursue the geometric significance of the twist in the next subsection.

AXis, | fu

{A}

Figure3 Therigid bodies A and B are connected by arevolute joint with the axis
[. uisaunit vector dong the axis and P isapoint on theaxis. O-x-y-z
is the reference frame { A} .

3.3.2 Instantaneous screw axis

In order to obtain a better understanding of the geometric significance of a twist vector (or
matrix), it is productive to first sudy the two specid casesof rigid body rotation and rigid body
trandation.

Congder the two rigid bodies A and B, connected by a revolute joint with the axis | as
shown in Figure 3. u is a unit vector dong the axis and P is a point on the axis. The twigt, “tg,
can be found by ingpection to be:
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(11)

Figure4 Therigid bodies A and B are connected by a prismatic joint with the

axis|. uisaunit vector dong the axisand P isapoint on the axis. O-x-
y-zisthereference frame {A}.

Smilarly, in Figure 4, thetwo rigid bodies A and B, are connected by a prismatic joint with

an axis® pardld to theline |. u is a unit vector dong the axis and P isa point on the axis. The
twist, “tg, can be found by inspection to be:

5 The axis for a prismatic joint is not uniquely defined. The direction of translation determines the direction
of the axis, but the axis can be any line along this direction.
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(12)

In both these cases, the twist vector can be associated with an axis or aline whose Plucker

coordinates are easily identified. In Equation (11 ), the line associated with the twidt isthe axis
given by the unit line vector,

& Ay 0
ST
@Ar P Aug

In both cases, the twist vector is Smply unit line vector multiplied by a scaar quarntity which is
the rate & which the joint is displaced.

This naturd association of a line with a twist vector extends to the most generd type of
motion. Given any twist “Tg, we can dways find an axis such that “wg is pardld to the axis,
and points on the boxy B thet lie on the axis trandate dong the axis. In other words, thereisan
axis such that if the origin is chosen to be a any point on the axis, “wg and v° are pardld. This
is the “infinitesma verson” of Chades theorem, and the axis obtained in thisway is cdled the

instantaneous screw axis. A proof for thisfollows.
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POSITION
{8} AT TIMEt

Figure5 Theingantaneous screw axis (I1SA) with the axisl.

Consgder agenerd twigt vector of the form in pair of vectors.

Define u as the unit vector dong “wg, and let us write;
MB =wu
(13)
Decompose the linear velocity into two components, Vpgr and Vperp , Where vy, ispardld to
U and Vperp is perpendicular to u. Because it is perpendicular to W, Vperp CaN be written in the

form, r” “wg, for some position vector r . Vpar Can be written as the product of a scdar, h,
with Awg. Thus we can write;

A0 _
v _Vpar+vperp

A

—hA i
=h%wg +r" “wy

Now let P be apoint whose position vector in {A} isr . In other words, r =*rP, and:

AvO=hAwg + ArP7 Awg.
(14)

-18-



Since O and P are both points on the rigid body B, we can write:

AVO = AVP 4 AP T Ay

(15)
Comparing these two equations, it is clear that both are satisfied only if “v° = h*wg. In other
words, if P isa point whose postion vector from O satisfies Equation ( 14 ), its veocity must
be paralld to “wg. In fact, there is awhole set of points that satisfy Equation ( 14 ). Any point
P’ with the pogition vector,

ArP' = ArP + kU

has the property,
A Awg =A™ Awg,
and will dso satisfy Equetion ( 14 ). The locus of such points® isaline, |, shownin Figure 5, that
is pardld to u. Thus, for a generd twist of the rigid body B reativeto A, thereisaline thet is
pardle to the angular velocity of Bin A, congsting of points atached to B, such that their
velocities are pardld to the line. The veocity of any other point Q on therigid body B, isgiven
by:
AVQ = AyP 4 AWE” PO

(16)
The firg term on the right hand Sde is a component that is pardld to the axis, which isthe same
regardless of where Q lies, and the second term is a component that is perpendicular to the axis
whose magnitude is proportional to the distance from the axis. The velodity “v®, and therefore
the velocity of any point on the body, is tangentid to aright circular helix with the axis| passing
through thet point, whose pitch is given by h, the ratio of the magnitudes of “v” and “ws.
Because of this geometry, | is called the instantaneous screw axis (I1SA) of motion, and h the

pitch of the screw axis. The magnitude of the angular velocity, w, is cdled the amplitude. The

6 |f the origin, O, had been chosen at at any of these points, say P, “r"=0, and the velocity vector and the
angular velocity vectorswould be parallel.
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body B is sad to undergo atwist of amplitude w about the instantaneous screw axis| rdative to
body A.

A compact description of the twist and the instantaneous screw axis is obtained if we define
r , be the position vector of a point on the axis such that r ,, is perpendicular to “wg, as shown

in Fgure 5. The parameters that describe the twist and the instantaneous screw axis are given

by:

WZ‘AWB‘ = —\' AWB ><AWB

u=—>"8
W
o AWB» A0
n W2
o Awg xPyO
w2
(17)
The | SA associated with atwist can be made explicit using the equation:
At (?A_V!gs_u_ e _u_d
TG o T Gl
(18)

Thus, if the Plucker coordinates of the line vector (without normalization) are given by the vector
[L,M, N, P,Q, R, thetwist vector is given by:

L
M
N e
u
P+hLl;|
+hMmU
1
+hN g

() (0
p —
[ [
» (D> (D> D> (D> D> (D
[ oY ey e\ a2

28

(19)
The components of the twist vector are called screw coordinates in andogy to the Plucker line

coordinates for lines.

-20-



3.4 Forceanalysis and the wrench about an axis

In the previous section we showed that the instantaneous kinemetics of any rigid body
motion can be described by the ingtantaneous screw axis, and we derived a set of formulae that
dlow us to compute the location and the pitch of the screw axis. In this section we argue that
the idea of a screw axis is dso centrd to the description of a generd system of forces and

couples acting on arigid body, and we show how to compute the pitch and location of this axis.

A generd system of forces and couples acting on arigid body cannot be reduced to a pure
resultant force or a pure resultant couple. Instead, if we add al the forces to get a resultant
force, F, and add al the moments about the origin O to get a resultant couple, C, we have a
pure force and a pure couple. Such a force-couple combination was cdled a dyname by
Plucker (1862) and later by Routh (1892). It is shown next that any such force-couple dyname
can be described by an equivalent combination of a force and a couple such that the vectors

representing the pure force and the pure couple are paralld.

In Fgure 6, arigid body is acted upon by n forces, F4,...,F,, and m pure couples, Cq, ...,

C The resultant can be described by a force-couple combination:

F:é.Fi, MO:éCi+é.ri, Fi
i=1 i= i=1

(20)
We say that the system of F and M © is equipollent to the system consisting of Fy,...,F,, and
C1,..., Cm. In order to develop another equipollent system, we decompose M © into two vector
components, C and C', such that C ispardld to F and C' is perpendicular to F. Now we find a
vector r , that is perpendicular to F suchthat C' =r " F.

In other words,

(21)
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By trandating the line of action of the force through r , (as shown in the figure), we generate a
moment about O givenby r ;" F, whichisequd to C'. Theforce dong the new line of action, |,
with the couple C is a system that is equipollent to the n forces, F;,...,F,, ahd m pure couples,

Cl, any Cm.

Figure6 A system of forces and couples acting on arigid body can be reduced
to a wrench, a combination of a force and a couple such that the two
vectors are paralldl.

Thus any system of forces and couples can be described by an equivalent combination of a
force and a couple such that the vectors representing the pure force and the pure couple are
pardld. Such a combination is caled a wrench. In vector notation, awrench is described by a
6" 1 vector, Aw.

A _eF

WgMO

[ ey enid

(22)
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where the leading superscript A denotes the fact that the vectors are written with respect to
basis vectors in reference frame { A} and the moment is the moment about the origin of {A}.

The wrench acts dong a line which isthe line of action of the force (I in thefigure). Thisline
is cdled the wrench axis. The wrench has a pitch, | , which istheratio of the magnitude of the
couple and the force.

_ld

| =
|Fl

| is pogtive when the couple and the force have the same direction and is negative when the
directions are contrary. The magnitude of the force, F, isthe intensity of the wrench. Finaly,
note that pure forces and pure couples are specia cases of a wrench — a pure force is a

wrench of zero pitch and a pure couple is awrench of infinite pitch.

The concept of the wrench and the derivation above are very smilar to the presentation of
the twigt in kinematic andyss in Section 3.3.2. The geometric concept of a screw? is centrd to
both a twist and a wrench. If we ignore the amplitude of a twigt (or the intensity of a wrench),
what remains is the axis of the twist (or the axis of the wrench) and the pitch associated withit.
We define a screw as a line to which is attached a scdlar parameter, a pitch. We speak of a

wrench about a screw of acertain intengity or atwist about a screw with a certain amplitude.

3.5 Transformation laws for twists and wrenches

In the previous section, we developed expressions for the twist of arigid body by attaching
a frame {B} to the rigid body and describing the motion of the frame {B} in a frame {A}
attached to the rigid body {A}. It is worth recalling that we started with the homogeneous
transformation matrix “Ag, the representation of the position and orientation of {B} in the frame
{A}, and we derived expressions for “ts, the 6 1 twist vector describing the instantaneous
moation of {B} as seen by an observer attached to {A}. Note the components of the twist

"The instantaneous screw axis was first used by Mozzi (1763) although Chasles (1830) is credited with this
discovery. The basic idea of a wrench can be traced back to Poinsot’s work in 1806, but the the concept of
the wrench and the twist were formalized by Pliicker (1865) and later by Ball in his treatise The theory of
screwsin 1900.
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vector only make sense in the reference frame {A}. In this subsection, we examine how we can

find components of quantities like the twigt, “tg, in aframe other than {A} .

We have seen that the displacement of a frame attached to arigid body from {A} to {B}
can be represented in a frame {F} that is different from the firg frame ({A}) viaa amilarity
transform. In the frame {F}, the displacement is represented by the homogeneous transform:

FAG - FAA AAB (FAA)—l
(23)
Such smilarity transforms can be used to transform any matrix quantity in one frame to ancther

frame.

In order to see this, consider the matrix representation of the twist T obtained in frame

{A} by differentiating the matrix *Ag(t):

. 1 6A A, 00U
ATB:AAB[AAB] - Wg v i
60 04
(24)
The same ingtantaneous motion can be described in {F}, as shown in Figure 7, by differentiating

the matrix "Ag(t):

(25)
In the above differentiation, notice that that we are interested in the motion of {B} in {A} butin
aframe{F} that isrigidly attached to {A}. Therefore "A, is a constart.

An interesting result is obtained if we choose a frame {F} tha is coincident with the

reference frame {B}. This gives us the twist matrix in a frame that is atached to the moving
rigid body B.
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-1 AN s -1y -1
PAA ATB(BAA) = BAAEAAB(AAB) E(BAA)
Note that this new twist matrix represents the components of the same ingtantaneous motion (B
relative to A}, but in a coordinate system attached to {B} .

"Ag(t time t+Dt

{A}

time t+Dt

Y

Figure7 The movement of a frame attached to the moving rigid body B can be
sudied from frame {F} or from frame {A}. The indantaneous motion
can be described in reference frame {A} by the twist matrix “Tg. The
same motion can be described in reference frame {F} by FTe="Ax"Ts
CA)™
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The ability to express the indantaneous motion as a twist matrix in a frame other than the
frame in which the motion is described, necesstates some new notation.  The ingtantaneous
motion of B relative to A can be described by atwist matrix “Tg inframe{A}. However, if we
use a different frame, say {F}, to describe the same ingtantaneous motion, we will want to
explicitly dencote the fact that the twist is obtained by considering frames {A} and {B}, but
expressed in {F}, using the notation, 7[*Tg]. When the first leading superscript F is absent, it
should be clear that the twist matrix conssts of components in {A}. Thus, the ingtantaneous
motion of the body B rdativeto A, in the frame{B} isgiven by:

-1 -
B[ATB]:( AB) "Ag
(26)
Theterm spatial velocity is sometimes used to refer to “[*Tg], while body velocity is used to
denote B[ Tg]. See [MLS 94].
A dmilar notation works for angular velocity. The ingtantaneous rotationad motion of B

rdaive to A can be described by an angular velocity matrix “Wij in frame {A}. This motion in

any other reference frameis given by:
F [AWB]: FR, AWB(F RA)_l -FR, gARB(ARB)T lL;]J(F RA)T

A draightforward gpplication of this result gives the expression for the ingtantaneous rotationa

motion of the body B rdativeto A, in the frame{B} :

AN

B[A _dap [T Ag U

[ WB]—g RB) Rg ¢

H

(27)

For vectors, the transformation is much more draightforward. For example, the angular

velocity vector, Awg (components expressed in A) can be expressed in any other frame by
merdly premultiplying by the appropriate rotation metrix:
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(28)

(A H

Figure8 The motion of therigid body B relative to A is described in terms of the
moation of the frame {B} relative to {A}. The indantaneous motion is
represented by the twist vector “tg in {A}. The same motion is aso
given by the twist vector F[*tg] in {F}.

A smilar approach works for twist vectors. Consder an ingantaneous motion with the twist
vector “tg in {A} and [“tg] in{F}.

-27-



A ~
A, _Ala, |_& wsl
tg =""tg]=&, 50
eV
o T
F[At ]_? [ WB]‘,J
“€fr oY
e VT o

The angular velocity vector in both twidts refers to the same quantity except with componentsin

different frames. However, the linear velocity vectors in the two twist vectors are different.

AvO is the velocity of a point on the body B that is instantaneoudy coincident with O, while

FyQ is the velocity of a point on the body B that is ingantaneoudy coincident with Q. In
addition to the fact that the velocity vectors refer to components in different frames, the two
velocities are different quantities. Since ¢ and Q refer to two different points on the rigid body
{B}, itisclear that their velocities are related by:

AVQ = AVO+AWBr A Q

or,

(29)

The twist vectors“tg and [*tg] can be related by:
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éF[AW u é Fr, 0 UeA[ WB]
€ F u= Ap ] ue VO u
e Fyve g RAGE $]

where the “hat” over the vector a denotes the 3 3 skew symmetric matrix operator [a]
corresponding to the 3 1 vector a. Thus the two 6 1 twist vectors are related by the 6 6
transformation matrix, "G, given by:

F[AtB]: FGa A[AtBJ

é FR o u
~ A P
6 1

(30)
where[F fo] and “Rg are 3" 3matricesand 0 isa 3’ 3 zero matrix.

Note that thisis the same 6° 6 transformation matrix used to transform line vectors from one
reference frame to another. It is left as an exercise to verify that the same transformation matrix

alows us to transform wrenches from one frame to ancther.

3.6 Reciprocity

When the line of action of aforce acting on aparticle is perpendicular to the direction of the
velocity vector associated with the motion of the particle, we know that the force cannot do
work on the particle. Mathematicaly, the power, P, given by the scalar product of the force and
the velocity, equas zero. Sometimes we say that the force is orthogond to the velocity. In
mechanics, we are dways interested in Situations where the acting force(s) are “orthogona” to

the allowable direction(s) of motion. In fact, we cal such forces congtraint forces.

When we congder forces and moments, or angular and linear velocities, we need anew

terminology. Twigts are the natura generdizations of velocity vectors. Smilarly, force vectors
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ae now wrenches Reciprocity is the naturd generdization of this intuitive notion of
orthogondity®.

Formally, two screws are said to be reciprocal to each other if a wrench applied about
one does no work on atwist about the other. Since twists represent ingtantaneous motion, it is
more appropriate to consider the power associated with the action of a wrench on a body
undergoing a twist. Omitting he leading and tralling subscripts and superscripts for the time

being, The rate of work doneby awrench w=[F", MT]Tonatwistt = [wT, vT]T isgiven by

P=F:v+M:w

{A}

°\

S, Body A

Figure9 The ingtantaneous motion of body B relative to body A is described by
the twist t while w is the wrench exerted by A on B. The two screws S,
and S; are reciprocd (left) and only if awrench about S; does no work
on atwist about S, (center) ch about S, does no work on atwist about

St (right).

The above equation can be written in more forma notation. Writing the twists and wrenches in
frame {A}, we get:

8 It is incorrect to say that a force vector is orthogonal to a velocity vector. Strictly speaking, a velocity
vector can be orthogonal to another velocity vector and a force vector can be orthogonal to aforce vector.
But since forces and velocities “live” in different vector spaces, aforce cannot be said to be orthogonal to a
velocity.
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(31)

whereDisthe 6™ 6 métrix;

é® 0 O 1 0 Oy

S E l:l

8 00 i 0 1 Ol:l

b ’é\O 0O 000 O 1u
=@g oo )
él 00 5 00 Ou

@0 1 0:00 0@

e ' u

@ 0 1:0 0 Oy

which reorders the components of 6° 1 twist or wrench vectors.

If we congder two arbitrarily oriented lines in space and associate screws with different
pitches (see figure), we et the following necessary and sufficient condition for reciprocity. Two
screws S; (pitch hy) S, (pitch hy,) arereciprocd if and only if

(h1+ h2) cosf -danf =0
(32)

Figure 10 The reciprocity condition, (h, + h,) cosf - dgnf =0, isageometric
condition that relates the pitches of the two screws, the distance
between the axes and the relative angle between the axes.
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To show this, consder a coordinate system whose x-axisis digned with S;, and the z-axisis

digned with the mutud perpendicular going from S, to S,. The screw coordinates for the two

SCrews.
élu é cosf U
ént é : a
&0 g Sty
_éod _é 0 u
Sl_ghlﬂ’ 2_ghzcosf-dsan
éou €, snf +dcosfU
g~y € U
elg e 0 i
and the wrench w and the twist t given by:
élu é cosf u
énu é : a
0 e Mg
éf u feOu ( éava € 0 a
= =Té O = A A=WA /]
ghlﬂ il gh cosf - dsnfﬂ
éou éh,sn f +d cosf U
e u € u
e0q e 0 g

Since (31) must hold for the wrench and twist above, for any amplitude w and any intensity f,
the result ( 32) directly follows.

Thereader isinvited to prove the following facts are true.

1. A wrench acting on arigid body free to rotate about a revolute joint does no work on
the rigid body if one of the fallowing istrue

Thewrench is of zero pitch and the axis intersects the axis of rotation; or
The pitch isnon zero but equa tod tan f .

2. The contact wrench at africtionless point contact does no work on therigid body if one
of the following istrue

Thetwigt is of zero pitch and the axisintersects the contact normd; or

The pitch of the twist isnon zero but equa tod tan f .
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3. A wrench acting on arigid body free to trandate dong a prismatic joint does no work
on therigid bodly if

Thewrench is of infinite pitch; or

The pitch is zero or finite, but the axis is perpendicular to the axis of the prigmatic
joint.
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