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3. Rigid Body Motion and the Euclidean Group 

 

3.1 Introduction 

 In the last chapter we discussed points and lines in three-dimensional space, their 

representations, and how they transform under rigid body.  In this chapter, we will develop the 

fundamental concepts necessary to understand rigid body motion and to analyze instantaneous 

and finite screw motions. A rigid body motion is simply a rigid body displacement that is a 

function of time. The first derivative of the motion will give us an expression for the rigid body 

velocity and this will lead us to the concept of an instantaneous screw.  Similarly, higher order 

derivatives will yield expressions for the acceleration and jerk.  

 

3.2 The Euclidean group 

 In Chapter 2, we saw that the displacement of a rigid body B can be described in reference 

frame {A}, by establishing a reference frame {B} on B and describing the position and 

orientation of {B} in {A} via a homogeneous transformation matrix:  
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( 1 ) 

where ArO’ is the position vector of the origin O’ of {B} in the reference frame {A}, and A
BR  

is a rotation matrix that transforms the components of vectors in {B} into components in {A}.  

Recall from Chapter 2, the composition of two displacements, from {A} to {B}, and from {B} 

to {C}, is achieved by the matrix multiplication of  AAB and  BAC : 



-2- 

A
C

A
C

A O

A
B

A O B
C

B O

A
B

B
C

A
B

B O A O

A
R r
0

R r
0

R r
0

R R R r r
0

=












=












×












=
× × +











′′

′ ′′

′′ ′

1

1 1

1

 

( 2 ) 

where  the “×” refers to the standard multiplication operation between matrices (and vectors).   

 The set of all displacements or the set of all such matrices in Equation ( 1 ) with the 

composition rule above, is called SE(3), the special Euclidean group of rigid body 

displacements in three-dimensions:  
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Figure 1  The rigid body displacement of a rigid body from an initial position and 
orientation to a final position and orientation.  The body fixed reference 
frame is coincident with {A} in the initial position and orientation, and 
with {B} in its final position and orientation. The point P attached to the 
rigid body moves from P to P’.  
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If we consider this set of matrices with the binary operation defined by matrix multiplication, it is 

easy to see that SE(3) satisfies the four axioms that must be satisfied by the elements of an 

algebraic group: 

1. The set is closed under the binary operation. In other words, if A and B are any two 

matrices in SE(3),  AB ∈ SE(3).   

2. The binary operation is associative. In other words, if A, B, and C are any three matrices 

∈ SE(3), then (AB) C = A (BC).  

3. For every element A ∈ SE(3), there is an identity element given by the  4×4 identity matrix, 

I∈ SE(3),  such that AI = A. 

4. For every element A ∈ SE(3), there is an identity inverse, A-1 ∈ SE(3), such that  

 A A-1  = I. 

 It can be easily shown that (a) the binary operation in Equation ( 2 ) is a continuous 

operation    the product of  any two elements in SE(3) is a continuous function of the two 

elements; and  (b) the inverse of any element in SE(3) is a continuous function of that element. 

Thus SE(3) is a continuous group. We will show that any open set of elements of SE(3) has a 

1-1 map onto an open set of R6. In other words, SE(3) is a differentiable manifold.  A group 

that is a differentiable manifold is called a Lie group, after the famous mathematician Sophus Lie 

(1842-1899).  Because SE(3) is a Lie group, it has many interesting properties that are of 

interest in screw system theory.  

 In addition to the special Euclidean group in three dimensions, there are many other groups 

that are of interest in rigid body kinematics.  They are all subgroups of SE(3).  A subgroup of a 

group consists of a collection of elements of the group which themselves form a group with the 

same binary operation. We list some important subgroups and their significance in kinematics in 

Table 1, and describe their properties below.  
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Table 1 The important subgroups of SE(3) 

Subgroup Notation Definition Significance 

The group of 
rotations in 

three 
dimensions 

SO(3) The set of all proper orthogonal 
matrices.  

( ) { }SO R T T3 3 3= ∈ = =×R R R R RR I,
 

All spherical displacements. Or 
the set of all displacements 
that can be generated by a 

spherical joint (S-pair). 

Special 
Euclidean 

group in two 
dimensions 

SE(2) The set of all 3×3 matrices with the 
structure:  

cos sin
sin cos

θ θ
θ θ

r
r
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y−
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


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0 0 1

 

where θ, rx, and ry are real numbers. 

All planar displacements. Or 
the set of displacements that 
can be generated by a planar 

pair (E-pair). 

The group of 
rotations in two 

dimensions 

SO(2) The set of all 2×2 proper orthogonal 
matrices. They have the structure: 

cos sin
sin cos

θ θ
θ θ−









 ,  

where θ is a real number. 

 

All rotations in the plane, or the 
set of all displacements that 
can be generated by a single 

revolute joint (R-pair). 

The group of 
translations in 
n dimensions. 

T(n) The set of all n×1 real vectors with 
vector addition as the binary 

operation. 

All translations in n 
dimensions. n = 2 indicates 

planar, n = 3 indicates spatial 
displacements.  

The group of 
translations in 

one dimension. 

T(1) The set of all real numbers with 
addition as the binary operation. 

All translations parallel to one 
axis, or the set of all 

displacements that can be 
generated by a single prismatic 

joint (P-pair). 

The group of 
cylindrical 

displacements 

SO(2)×T(1) The Cartesian product of SO(2) and 
T(1) 

All rotations in the plane and 
translations along an axis 

perpendicular to the plane, or 
the set of all displacements 
that can be generated by a 
cylindrical joint (C-pair).  

The group of 
screw 

displacements 

H(1) A one-parameter subgroup of SE(3) All displacements that can be 
generated by a helical joint (H-

pair). 
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3.2.1 The group of rotations 

A rigid body B is said to rotate relative to another rigid body A, when a point of B is always 

fixed in {A}. Attach the frame {B} so that its origin O’ is at the fixed point. The vector ArO’ is 

equal to zero in the homogeneous transformation in Equation ( 1 ).  
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The set of all such displacements, also called spherical displacements, can be easily seen to 

form a subgroup of SE(3).   

 If we compose two rotations, AAB and BAC, the product is given by:  
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Notice that only the 3×3 submatrix of the homogeneous transformation matrix plays a role in 

describing rotations.  Further, the binary operation of multiplying 4×4 homogoneous 

transformation matrices reduces to the binary operation of multiplying the corresponding 3×3 

submatrices.  Thus, we can  simply use 3×3 rotation matrices to represent spherical 

displacements. This subgroup, is called the special orthogonal group in three dimensions, or 

simply SO(3): 

( ) { }SO R T T3 3 3= ∈ = =×R R R R RR I,
  

( 4 ) 

The adjective special refers to the fact we exclude orthogonal matrices whose determinants are 

negative.  

 It is well known that any rotation can be decomposed into three finite successive rotations, 

each about a different axis than the preceding rotation.  The three rotation angles, called Euler 

angles, completely describe the given rotation.  The basic idea is as follows. If we consider any 
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two reference frames {A} and {B}, and the rotation matrix ARB,  we can construct two 

intermediate reference frames {M} and {N}, so that    

 A
B

A
M

M
N

N
BR R R R= × ×   

where 

1. The rotation from {A} to {M} is a rotation about the x axis (of {A}) through ψ; 

2. The rotation from {M} to {N}is a rotation about the y axis (of {M}) through φ; and 

3. The rotation from {N} to {B}is a rotation about the z axis (of {N}) through θ. 
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φ φ

φ φ
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( 5 ) 

Thus any rotation can be viewed as a composition of these three elemental rotations except for 

rotations at which the Euler angle representation is singular1. This in turn means all rotations in an 

open neighborhood in SO(3) can be described by three real numbers (coordinates). With a little 

work it can be shown that there is a 1-1, continuous map from SO(3) onto an open set in R3.  

This gives SO(3) the structure of a three-dimensional differentiable manifold, and therefore a Lie 

group. 

 The rotations in the plane, or more precisely rotations about axes that are perpendicular to a 

plane, form a subgroup of SO(3), and therefore of SE(3). To see this, consider the canonical 

form of this set of rotations, the rotations about the z axis.  In other words, connect the rigid 

bodies A and B with a revolute joint whose axis is along the z axis in Figure 1. The 

homogeneous transformation matrix has the form:  

                                                 

1 These singularities are easily found by writing out the right hand side of Equation ( 5 ) explicitly and 
identifying points at which the Euler angles are not unique.  Note that we have chosen the so-called x-y-z 
representation for Euler angles, in which the first rotation is about the x-axis, the second about the y-axis 
and third about the z-axis.  There are eleven other choices of Euler angle representations which can be 
derived by choosing different axes for the three elemental rotations.  For any rotation, it is always possible 
to find a suitable non singular Euler angle representation. 
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where θ is the angle of rotation.  If we compose two such rotations, AAB and BAC, through θ1 

and θ2 respectively, the product is given by:  
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All matrices in this subgroup are the same periodic function of one real variable, θ, given by: 

( )















θθ

θ−θ

=θ
100
0cossin

0sincos

R

  

This subgroup is called SO(2).  Further, since R(θ1) × R(θ2) = R(θ1 + θ2), we can think of the 

subgroup as being locally isomorphic2 to R1 with the binary operation being addition. 

3.2.2 The group of translations 

A rigid body B is said to translate relative to another rigid body A, if we can attach reference 

frames to A and to B that are always parallel. The rotation matrix ARB equals the identity in the 

homogeneous transformation in Equation ( 1 ).  

                                                 

2 The isomorphism is only local because the map from R1 to SO(2) is many to one. Strictly speaking, the 
subgroup is isomorphic to the unit circle in the complex plane with multiplication as the group operation. 
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The set of all such homogeneous transformation matrices is the group of translations in three 

dimensions and is denoted by T(3).  

 If we compose two translations, AAB and BAC, the product is given by:  

A
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
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
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
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

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Notice that only the 3×1 vector part of the homogeneous transformation matrix plays a role in 

describing translations. Thus we can think of  a element of T(3) as simply a 3×1 vector, ArO’. 

Since the composition of two translations is captured by simply adding the two corresponding 

3×1 vectors, ArO’ and BrO’’,  we can define the subgroup, T(3), as the real vector space R3 with 

the binary operation being vector addition. 

 Similarly, we can describe the two subgroups of T(3),  T(1) and T(2), the group of 

translations in one and two dimensions respectively.  Because they are subgroups of T(3), they 

are also subgroups of T(3).  It is worth noting that T(1) consists of all translations along an axis 

and this is exactly the set of displacements that can be generated by connecting A and B with a 

single prismatic joint.  

3.2.3 The special Euclidean group in two dimensions 

 If we consider all rotations and translations in the plane, we get the set of all displacements 

that are studied in planar kinematics.  These are also the displacements generated by the 

Ebene-pair, the planar E-pair.  If we let the rigid body B translate along the x and y axis and 

rotate about the z axis relative to the frame {A},  we get the canonical set of homogeneous 

transformation matrices of the form: 
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where θ is the angle of rotation, and A
x
Or ′  and A

y
Or ′  are the two components of translation of 

the origin O’.  If we compose two such displacements, AAB and BAC, the product is given by:  
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O
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O
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


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Because the set of matrices can be continuously parameterized by three variables, θ, A
x
Or ′ , 

and A
y
Or ′ , SE(2) is a differentiable, three-dimensional manifold.   

 

3.2.4 The one-parameter subgroup in SE(3) 

The group of cylindrical motions is the group of motions admitted by a cylindrical pair, or a C-

pair. If we let the rigid body B translate along and rotate about the z axis relative to the frame 

{A},  we get the canonical set of homogeneous transformation matrices of the form: 
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A
B k
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
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

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where θ is the angle of rotation and k is the translation.  The set of such matrices is continuously 

parameterized by these two variables. Thus, this subgroup is a two-dimensional Lie group. In 

fact, it is nothing but the Cartesian product SO(2) × T(1). Physically this means we can realize 

the cylindrical pair by arranging a revolute joint and a prismatic joint in series (in any order) 

along the same axis. 

 A one-dimensional subgroup is obtained by coupling the translation and the rotation so that 

they are proportional.  The canonical homogeneous transformation matrix is of the form:  

A
B h
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

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


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θ
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0 0 1
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where h is a scalar constant called the pitch.  Because the displacement involves a rotation and 

a co-axial translation that is linearly coupled to the rotation, this displacement is called a screw 

displacement. It is exactly the displacement generated by a helical pair, or the H-pair. 
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


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

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
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

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
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
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The set of all screw displacements about the z-axis can be described by a matrix function A(θ), 

with the property A(θ1) × A(θ2) = A(θ1 + θ2).  Thus this one-dimensional subgroup is 

isomorphic to the set R1 with the binary operation of addition. Such one-dimensional subgroups 
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are called one-parameter subgroups and, as we will see later, they have an important 

geometric significance.  

x
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Figure 2  The motion of the rigid body B, as seen from {A}.  The body fixed 
reference frame is coincident with {A} in the initial position and 
orientation at time t0, and with {B} in the current position and orientation 
at time t. The point P is attached to the rigid body.  

 

3.3 Velocity analysis 

3.3.1 Twist 

We study the motion of a rigid body B in the reference frame {A} attached to the rigid body A.  

For all practical purposes, A can be considered to be a fixed rigid body, so that {A} can be 

considered an inertial or an absolute frame. We choose {A} to be the frame with which the 

body fixed reference frame is coincident at some initial time t0.  We consider the body fixed 

reference frame in its current position and orientation,  {B}, at time t. The homogeneous 

transformation matrix AAB(t) is a function of time, as is the rotation matrix ARB (t) and the 

translation vector ArO’(t).  

 We consider, as before, a generic point P that is attached to the rigid body. In other words, 
ArP(t) is a function of time, but BrP(t)  is a constant which is equal to ArP(t0). The velocity of the 
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point P on the rigid body B as seen in the reference frame {A} is obtained by differentiating the 

position vector  ArP(t0) in the reference frame {A}: 

( ) ( )( ) ( )A P A P A Pt
d
dt

t tv r r= = &
 

where &a denotes the differentiation of the quantity a in the reference frame {A}. 

 The velocity AvP(t) is found by is given by writing the equation for the position vector, 
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( 6 ) 

and differentiating it with respect to time: 
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Substituting for ArP(t0) from Equation ( 6 ), we get: 

( ) [ ] ( )
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( 7 ) 

Thus the velocity of any  point P on the rigid body B in the reference frame {A} can be obtained 

by premultiplying the position vector of the point P in {A} with the matrix, ATB,  
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where 
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and 

[ ]A
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A
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= −′ ′

&

&
$

R R

v r r . 

$O  is a point on the rigid body B that we will shortly establish as the point that is instantaneously 

coincident with the origin of {A}.   

 The 3×3 matrix AΩ B is easily seen to be skew symmetric. Because ARB
 [ARB]T is the 

identity matrix, its time derivative is the zero matrix which means  

[ ] [ ]A
B

A
B

T A
B

A
B

T& &R R R R 0+ =
 

or,  

[ ]A
B

A
B

T
Ω Ω+ = 0

 

Thus AΩ B(t) is a skew-symmetric matrix operator and has the form: 

A
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−
−

−

0
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where AωB(t) = [ω1, ω2, ω3]T
  is the 3×1 vector associated with the matrix operator.  
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 The physical significance of this operator is immediately seen if we take the special case of a 

spherical motion of B relative to A, in which we can choose the origin of {B} to be coincident 

with the origin of {A}.  In this special case,  

A O A Or r′ ′= =0 0, & ,    

and Equation ( 7 ) gives us the result,  

( )A P A
B

A P

A
B

A P

tv r

r

=

= ×

Ω

ω ,  

which means the vector AωB must be the angular velocity vector of the rigid body B as seen in 

reference frame {A}.  The matrix AΩ B is called the angular velocity matrix of the rigid body B 

as seen in reference frame {A}3.  

 Once we see that AωB is the angular velocity vector of the rigid body B in {A}, we see that  

( )A O A O A
B

A Ov v r
$

= + × −′ ′ω  

is the velocity of the point $O  on B whose position is the same as that of the point O on A.  

 Thus, ATB is essentially a matrix operator that yields the velocity of any point attached to B 

in frame {A}.  It consists of the angular velocity matrix of {B} and the velocity of the point $O , 

both as seen in frame {A}. Because ATB  depends on only six parameters   the three 

components of the vector AωB  and the three components of the linear velocity A Ov
$

   the six 

components may be assembled into a 6×1 vector4 called the twist vector: 

A
B

A
B

A Ot
v

=
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
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





ω
$

  

( 10 ) 

                                                 

3 It is worth emphasizing that ArP, AωB, AvP, and  AΩ B are components of physical quantities in the reference 
frame {A}. The choice of {A} is somewhat arbitrary, as is the choice of the time t0. The components 
themselves will depend on the exact choice of the coordinate system O-x-y-z in Figure 2. 

4Some authors prefer an ordering with the linear velocity in the first three slots and the angular velocity at 
the bottom of the 6×1 vector. 
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In analogy to the two representations of the angular velocity, the twist of body B in reference 

frame {A} can be represented either as the twist matrix ATB in ( 9 ) or as the twist vector AtB in 

( 10 ). We will pursue the geometric significance of the twist in the next subsection.  

θ

u

y

z

Ox

Axis, l

A

B

P

{A}

 

Figure 3 The rigid bodies A and B are connected by a revolute joint with the axis 
l. u is a unit vector along the axis and P is a point on the axis.  O-x-y-z 
is the reference frame {A}.  

 

3.3.2 Instantaneous screw axis 

 In order to obtain a better understanding of the geometric significance of a twist vector (or 

matrix), it is productive to first study the two special cases of  rigid body rotation and rigid body 

translation.  

 Consider the two rigid bodies A and B, connected by a revolute joint with the axis l as 

shown in Figure 3. u is a unit vector along the axis and P is a point on the axis. The twist, AtB, 

can be found by inspection to be:  
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( 11 ) 
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d
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Figure 4 The rigid bodies A and B are connected by a prismatic joint with the 
axis l. u is a unit vector along the axis and P is a point on the axis.  O-x-
y-z is the reference frame {A}.  

 

 Similarly, in Figure 4,  the two rigid bodies A and B, are connected by a prismatic joint with 

an axis5 parallel to the line  l. u is a unit vector along the axis and P is a point on the axis. The 

twist, AtB, can be found by inspection to be:  

                                                 

5 The axis for a prismatic joint is not uniquely defined.  The direction of translation determines the direction 
of the axis, but the axis can be any line along this direction. 
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( 12 ) 

 In both these cases,  the twist vector can be associated with an axis or a line whose Plucker 

coordinates are easily identified.  In Equation ( 11 ), the line associated with the twist is the axis 

given by the unit line vector,  

,












× ur
u

APA

A

 

while in Equation ( 12 ), the unit line vector is a line at  infinity given by: 

.







u

0
A

 

In both cases, the twist vector is simply unit line vector multiplied by a scalar quantity which is 

the rate at which the joint is displaced.  

 This natural association of a line with a twist vector extends to the most general type of 

motion.  Given any twist ATB, we can always find an axis such that AωB  is parallel to the axis, 

and points on the boxy B that lie on the axis  translate along the axis. In other words, there is an 

axis such that if the origin is chosen to be at any point on the axis, AωB and AvP are parallel. This 

is the “infinitesimal version” of Chasles’ theorem, and the axis obtained in this way is called the 

instantaneous screw axis. A proof for this follows. 
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Figure 5  The instantaneous screw axis (ISA) with the axis l.  

 Consider a general twist vector of the form in pair of vectors: 

A
B

A
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A Ot
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ω
$

 

 Define u as the unit vector along AωB, and let us write: 

AωB = ω u 

( 13 ) 

 Decompose the linear velocity into two components, vpar and vperp , where vpar  is parallel to  

u and vperp is perpendicular to u. Because it is perpendicular to AωB,  vperp can be written in the 

form,  ρ×AωB,   for some position vector ρ . vpar can be written as the product of a scalar, h, 

with AωB. Thus we can write: 

B
A

B
A

perppar
OA

h ωρω ×+=

+= vvv
ˆ

 

Now let  P be a point whose position vector in {A} is ρ .  In other words, ρ=ArP, and: 

B
APA

B
AOA h ωω ×+= rv

ˆ
. 

( 14 ) 
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 Since  $O  and P are both points on the rigid body B, we can write: 

B
APAPAOA ω×+= rvv

ˆ

 

( 15 ) 

Comparing these two equations, it is clear that both are satisfied only if AvP = h 
AωB.   In other 

words, if P  is a point whose position vector from O satisfies Equation ( 14 ), its velocity must 

be parallel to AωB. In fact, there is a whole set of points that satisfy Equation ( 14 ).  Any point 

P’ with the position vector,  

ArP’ = ArP + ku 

has the property, 

ArP’ ×AωB = ArP×AωB, 

and will also satisfy Equation ( 14 ). The locus of such points6 is a line, l, shown in Figure 5, that 

is parallel to u. Thus, for a general twist of the rigid body B relative to A, there is a line that is 

parallel to the angular velocity of B in A, consisting of points attached to B, such that their 

velocities are parallel to the line.  The velocity of any other point Q on the rigid body B,  is given 

by:  

PQBAPAQA ×+= ωvv  

( 16 ) 

The first term on the right hand side is a component that is parallel to the axis, which is the same 

regardless of where Q lies, and the second term is a component that is perpendicular to the axis 

whose magnitude is proportional to the distance from the axis.  The velocity AvQ, and therefore 

the velocity of any point on the body, is tangential to a right circular helix with the axis l passing 

through that point, whose pitch is given by h, the ratio of  the magnitudes of AvP and AωB.  

Because of this geometry, l is called the instantaneous screw axis (ISA) of motion, and h the 

pitch of the screw axis. The magnitude of the angular velocity, ω, is called the amplitude.  The 

                                                 

6 If the origin, O,  had been chosen at at any of these points, say P, ArP=0, and the velocity vector and the 
angular velocity vectors would be parallel. 
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body B is said to undergo a twist of amplitude ω about the instantaneous screw axis l relative to 

body A. 

 A compact description of the twist and the instantaneous screw axis is obtained if we define 

ρn be the position vector of a point on the axis such that ρn is perpendicular to  AωB, as shown 

in Figure 5. The parameters that describe the twist and the instantaneous screw axis are given 

by: 
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( 17 ) 

The ISA associated with a twist can be made explicit using the equation: 
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( 18 ) 

Thus, if the Plucker coordinates of the line vector (without normalization) are given by the vector 

[L, M, N, P, Q, R]T, the twist vector is given by: 
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( 19 ) 

The components of the twist vector are called screw coordinates in analogy to the Plucker line 

coordinates for lines.  
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3.4 Force analysis and the wrench about an axis 

 In the previous section we showed that the instantaneous kinematics of any rigid body 

motion can be described by the instantaneous screw axis, and we derived a set of formulae that 

allow us to compute the location and the pitch of the screw axis.  In this section we argue that 

the idea of a screw axis is also central to the description of a general system of forces and 

couples acting on a rigid body, and we show how to compute the pitch and location of this axis.  

 A general system of forces and couples acting on a rigid body cannot be reduced to a pure 

resultant force or a pure resultant couple. Instead, if we add all the forces to get a resultant 

force, F, and add all the moments about the origin O  to get a resultant couple, C, we have a 

pure force and a pure couple. Such a force-couple combination was called a dyname by 

Plücker (1862) and later by Routh (1892). It is shown next that any such force-couple dyname 

can be described by an equivalent combination of a force and a couple such that the vectors 

representing the pure force and the pure couple are parallel.   

 In Figure 6, a rigid body is acted upon by n  forces, F1,...,Fn, and m pure couples, C1, ..., 

Cm. The resultant can be described by a force-couple combination: 

∑∑∑
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×+==
n

i
ii

m

i
i

O
n

i
i

111

, FrCMFF
  

( 20 ) 

We say that the system of F and MO is equipollent to the system consisting of F1,...,Fn, and  

C1,..., Cm. In order to develop another equipollent system, we decompose MO into two vector 

components, C and C', such that C is parallel to F and C' is perpendicular to F. Now we find a 

vector ρn that is perpendicular to F such that  C' = ρn×F. 

 In other words,  

ρn =
F × C'
F ⋅ F  

( 21 ) 
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By translating the line of action of the force through ρn (as shown in the figure), we generate a 

moment about O given by  ρn×F, which is equal to C'. The force along the new line of action, l, 

with the couple C is a system that is equipollent to the n  forces, F1,...,Fn, and m pure couples, 

C1, ..., Cm.  

 
F i 

r i 

C i 
F j 

C j 

ρ 
n 

C ' 

O 
O 

C 

F 

O M 

u 

l 

 

Figure 6 A system of forces and couples acting on a rigid body can be reduced 
to a wrench, a combination of a force and a couple such that the two 
vectors are parallel.  

 Thus any system of forces and couples can be described by an equivalent combination of a 

force and a couple such that the vectors representing the pure force and the pure couple are 

parallel. Such a combination is called a wrench. In vector notation, a wrench is described by a 

6×1 vector, Aw: 


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
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
= O

A

M
F

w  

( 22 ) 
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where the leading superscript A denotes the fact that the vectors are written with respect to 

basis vectors in reference frame {A} and the moment is the moment about the origin of {A}. 

  The wrench acts along a line which is the line of action of the force (l in the figure). This line 

is called the wrench axis.  The wrench has a pitch, λ, which is the ratio of the magnitude of the 

couple and the force.  

λ =
C
F  

λ is positive when the couple and the force have the same direction and is negative when the 

directions are contrary. The magnitude of the force, F, is the intensity of the wrench. Finally, 

note that pure forces and pure couples are special cases of a wrench — a pure force is a 

wrench of zero pitch and a pure couple is a wrench of infinite pitch.  

 The concept of the wrench and the derivation above are very similar to the presentation of 

the twist in kinematic analysis in Section 3.3.2. The geometric concept of a screw7 is central to 

both a twist and a wrench. If we ignore the amplitude of a twist (or the intensity of a wrench), 

what remains is the axis of the twist (or the axis of the wrench) and the pitch associated with it. 

We define a screw as a line to which is attached a scalar parameter, a pitch. We speak of a 

wrench about a screw of a certain intensity or a twist about a screw with a certain amplitude.  

3.5 Transformation laws for twists and wrenches 

 In the previous section, we developed expressions for the twist of a rigid body by attaching 

a frame {B} to the rigid body and describing the motion of the frame {B} in a frame {A} 

attached to the rigid body {A}.  It is worth recalling that we started with the homogeneous 

transformation matrix AAB, the representation of the position and orientation of  {B} in the frame 

{A}, and we derived expressions for AtB,  the 6×1 twist vector describing the instantaneous 

motion of {B} as seen by an observer attached to {A}.  Note the components of the twist 

                                                 

7The instantaneous screw axis was first used by Mozzi (1763) although Chasles (1830) is credited with this 
discovery. The basic idea of a wrench can be traced back to Poinsot’s work in 1806, but the the concept of 
the wrench and the twist were formalized by Plücker (1865) and later by Ball in his treatise The theory of 
screws in 1900. 
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vector only make sense in the reference frame {A}.  In this subsection, we examine how we can 

find components of quantities like the twist, AtB,  in a frame other than {A}.  

 We have seen that the displacement of a frame attached to a rigid body from {A} to {B} 

can be represented in a frame {F} that is different from the first frame ({A}) via a similarity 

transform.  In the frame {F}, the displacement is represented by the homogeneous transform: 

FAG 
 = FAA 

AAB (FAA)-1 

( 23 ) 

Such similarity transforms can be used to transform any matrix quantity in one frame to another 

frame.  

 In order to see this, consider the matrix representation of the twist ATB obtained in frame 

{A} by differentiating the matrix AAB(t): 
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The same instantaneous motion can be described in {F}, as shown in Figure 7, by differentiating 

the matrix FAG(t): 
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( 25 ) 

In the above differentiation, notice that that we are interested in the motion of {B} in {A} but in 

a frame {F} that is rigidly attached to {A}.  Therefore FAA is a constant.  

 An interesting result is obtained if we choose a frame {F} that is coincident with the 

reference frame {B}.  This gives us the twist matrix in a frame that is attached to the moving 

rigid body B.  
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Note that this new twist matrix represents the components of the same instantaneous motion (B 

relative to A}, but in a coordinate system attached to {B}.   
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Figure 7 The movement of a frame attached to the moving rigid body B can be 
studied from frame {F} or from frame {A}.  The instantaneous motion 
can be described in reference frame {A} by the twist matrix ATB.  The 
same motion can be described in reference frame {F} by FTG

 = FAA 
ATB 

(FAA)-1. 
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 The ability to express the instantaneous motion as a twist matrix in a frame other than the 

frame in which the motion is described, necessitates some new notation.  The instantaneous 

motion of B relative to A can be described by a twist matrix  ATB in frame {A}.  However, if we 

use a different frame, say {F}, to describe the same instantaneous motion, we will want to 

explicitly denote the fact that the twist is obtained by considering frames {A} and {B}, but 

expressed in {F}, using the notation, F[ATB].  When the first leading superscript F is absent, it 

should be clear that the twist matrix consists of components in {A}. Thus, the instantaneous 

motion of the body B relative to A, in the frame{B} is given by: 

[ ] ( ) BB
A

B
B AAT AA &1−

=  

( 26 ) 

The term spatial velocity is sometimes used to refer to A[ATB], while body velocity is used to 

denote B[ATB]. See [MLS 94]. 

 A similar notation works for angular velocity.  The instantaneous rotational motion of B 

relative to A can be described by an angular velocity matrix AΩ B in frame {A}. This motion in 

any other reference frame is given by:  
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FT
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− &1
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A straightforward application of this result gives the expression for the instantaneous rotational 

motion of the body B relative to A, in the frame{B}: 

[ ] ( ) 
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= B

T
B

A
B

B RR AA &Ω  

( 27 ) 

 For vectors, the transformation is much more straightforward. For example, the angular 

velocity vector, AωB  (components expressed in A) can be expressed in any other frame by 

merely premultiplying by the appropriate rotation matrix: 
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Figure 8 The motion of the rigid body B relative to A is described in terms of the 
motion of the frame {B} relative to {A}.  The instantaneous motion is 
represented by the twist vector AtB in {A}.  The same motion is also 
given by the twist vector F[AtB] in {F}. 

 

 A similar approach works for twist vectors. Consider an instantaneous motion with the twist 

vector AtB in {A} and F[AtB] in {F}. 



-28- 

[ ]

[ ] [ ]











=












==

QF
B

AF

B
AF

OA
B

A

B
AA

B
A

ˆ

ˆ

v
t

v
tt

ω

ω

 

The angular velocity vector in both twists refers to the same quantity except with components in 

different frames. However, the linear velocity vectors in the two twist vectors are different. 

A Ov
$
 is the velocity of a point on the body B that is instantaneously coincident with O, while 

F Qv
$

 is the velocity of a point on the body B that is instantaneously coincident with Q. In 

addition to the fact that the velocity vectors refer to components in different frames, the two 

velocities are different quantities. Since $O  and $Q  refer to two different points on the rigid body 

{B}, it is clear that their velocities are related by:  

A Q A O A
B

A Qv v r
$ $

= + ×ω  

or,  
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( 29 ) 

Given that vectors are transformed using rotation matrices, we can write: 
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RrRvR

rRvR

vRv

R

×+=

×−+=

×−+=

=

=

ˆ

ˆ

ˆ

ˆˆ

 

The twist vectors AtB and F[AtB] can be related by: 
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[ ]
[ ]

[ ]























=












OA

B
AA

A
F

A
FOA
A

F

QF
B

AF

ˆˆ ˆ vRRr
0R

v

ωω
 

where the “hat” over the vector a denotes the 3×3 skew symmetric matrix operator [$a ] 

corresponding to the 3×1 vector a. Thus the two 6×1 twist vectors are related by the 6×6 

transformation matrix, FΓA, given by: 

[ ] [ ]B
AA

A
F

B
AF tt Γ=  

[ ] 










=

A
F

A
FOA
A

F

A
F

RRr
0R

ˆ
Γ  

( 30 ) 

where [ F O$r ] and ARB are 3×3 matrices and 0 is a 3×3 zero matrix.  

 Note that this is the same 6×6 transformation matrix used to transform line vectors from one 

reference frame to another. It is left as an exercise to verify that the same transformation matrix 

allows us to transform wrenches from one frame to another.  

3.6 Reciprocity 

 When the line of action of a force acting on a particle is perpendicular to the direction of the 

velocity vector associated with the motion of the particle, we know that the force cannot do 

work on the particle. Mathematically, the power, P, given by the scalar product of the force and 

the velocity, equals zero. Sometimes we say that the force is orthogonal to the velocity. In 

mechanics, we are always interested in situations where the acting force(s) are “orthogonal” to 

the allowable direction(s) of motion. In fact, we call such forces constraint forces.   

 When we consider forces and moments, or angular and linear velocities, we need a new 

terminology. Twists are the natural generalizations of velocity vectors. Similarly, force vectors 
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are now wrenches. Reciprocity is the natural generalization of this intuitive notion of 

orthogonality8.  

  Formally, two screws are said to be reciprocal to each other if a wrench applied about 

one does no work on a twist about the other. Since twists represent instantaneous motion, it is 

more appropriate to consider the power associated with the action of a wrench on a body 

undergoing a twist. Omitting the leading and trailing subscripts and superscripts for the time 

being, The rate of work done by a wrench w = [FT,  MT ]T on a twist t = [ωT,  vT ]T  is given by 

ω⋅+⋅= MvFP  

 S1 

S2 

O 

{A} 

     

 w 

t 

Body B 

Body A 

O 

{A} 

     

 t 

w 

Body B 

Body A 

O 

{A} 

 

Figure 9 The instantaneous motion of body B relative to body A is described by 
the twist t while w is the wrench exerted by A on B. The two screws S1 
and S2 are reciprocal (left) and only if a wrench about S1 does no work 
on a twist about S2 (center) ch about S2 does no work on a twist about 
S1 (right).  

 

The above equation can be written in more formal notation. Writing the twists and wrenches in 

frame {A}, we get: 

                                                 

8 It is incorrect to say that a force vector is orthogonal to a velocity vector. Strictly speaking, a velocity 
vector can be orthogonal to another velocity vector and a force vector can be orthogonal to a force vector. 
But since forces and velocities “live” in different vector spaces, a force cannot be said to be orthogonal to a 
velocity.  
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[ ]

[ ]











==












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?
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B
ATA

A
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B
?AT

B
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ω
∆

ω∆
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( 31 ) 

where ∆ is the 6×6 matrix: 

∆ =

























0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 
which reorders the components of 6×1 twist or wrench vectors.  

 If we consider two arbitrarily oriented lines in space and associate screws with different 

pitches (see figure), we get the following necessary and sufficient condition for reciprocity. Two 

screws S1 (pitch h1)  S2 (pitch h2) are reciprocal if and only if 

(h1 + h2) cos φ - d sin φ = 0 

( 32 ) 

 

φ

d

F 
M 

v 

ω

S1
S2  

Figure 10  The reciprocity condition, (h1 + h2) cos φ - d sin φ = 0, is a geometric 
condition that relates the pitches of the two screws, the distance 
between the axes and the relative angle between the axes.  
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To show this, consider a coordinate system whose x-axis is aligned with S1, and the z-axis is 

aligned with the mutual perpendicular going from S1 to S2. The screw coordinates for the two 

screws:  

















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



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

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
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








=

0
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0
sin
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,

0
0

0
0
1

2

2
2

1
1

dh
dhh

SS  

and the wrench w and the twist t given by: 
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


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dh
dhh

f
v

t
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f
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ω

 

Since  ( 31 ) must hold for the wrench and twist above, for any amplitude ω and any intensity f, 

the result ( 32 ) directly follows.  

The reader is invited to prove the following facts are true.  

1. A wrench acting on a rigid body free to rotate about a revolute joint does no work on 

the rigid body if one of the following is true 

• The wrench is of zero pitch and the axis intersects the axis of rotation; or 

• The pitch is non zero but equal to d tan  φ. 

2. The contact wrench at a frictionless point contact does no work on the rigid body if one 

of the following is true 

• The twist is of zero pitch and the axis intersects the contact normal; or 

• The pitch of the twist is non zero but equal to d tan  φ. 
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3. A wrench acting on a rigid body free to translate along a prismatic joint does no work 

on the rigid body if  

• The wrench is of infinite pitch; or 

• The pitch is zero or finite, but the axis is perpendicular to the axis of the prismatic 

joint.  
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