
Hidden Information, Teamwork, and Prediction in
Trick-Taking Card Games

Hadi Elzayn
School of the Arts and Sciences

University of Pennsylvania
Pennsylvania, PA 19103
hadas@sas.upenn.edu

Mikhail Hayhoe
School of Engineering and Applied Sciences

University of Pennsylvania
Pennsylvania, PA 19103

mhayhoe@seas.upenn.edu

Harshat Kumar
School of Engineering and Applied Sciences

University of Pennsylvania
Pennsylvania, PA 19103

harshat@seas.upenn.edu

Mohammad Fereydounian
School of Engineering and Applied Sciences

University of Pennsylvania
Pennsylvania, PA 19103

mferey@seas.upenn.edu

Abstract

We highlight a class of card games which share several interesting features: hidden information, teamwork,
and prediction as a crucial component. This family of games in question, known as “Whist” games, all
consists of games of trick-taking, turn-based play, with team relationships of varying intensities, differing
betting and scoring rules, and slight variations in mechanics. Using self-play, we have trained a DeepRL-
style algorithm to bet and play Four Hundred, a flagship game in the family (Hearts, Spades, and Bridge are
all related to varying degrees). Our algorithm reaches human-competitive performance, dominating all
baselines it was tested against.

We believe this family of games provides an interesting testing ground for reinforcement learning algo-
rithms because of its features; however, we are most interested in approaches to transfer insights across
variations of games. We propose a meta-algorithm as follows: learn one game in the family or through
self-play using a large number of games, then learn a cross-game invariance mapping from a small number
of (human or self-played) games, and finally return the optimal policy of the new game with respect to
the learned value function of the original game and the invariance mapping. We call this approach invari-
ance discovery by analogy to image classification tasks, or insight abstraction with an eye towards its goal.
We hope that this approach will result in more efficient training and perhaps more human-like play, and
provide inspiration or machinery for other settings in which generalizing learning is a major goal.

Keywords: Reinforcement Learning, Self-Play, Games, Transfer Learning

Acknowledgements

We appreciate valuable feedback from Shivani Agarwal, Heejin Chloe Jeong, and Steven Chen.



1 Introduction

Inspired by the recent successes in the design of artificial intelligence to play games such as Backgammon,
Chess, Poker, and Go with superhuman performance, we study a family of card games (“Whist” descen-
dants) that provide a rich strategic environment for testing learning algorithms. These games share several
interesting features, including hidden information, teamwork, and prediction as a crucial component. The
Whist family consists of games of trick-taking, turn-based play, with team relationships of varying intensi-
ties, differing betting and scoring rules, and slight variations in mechanics. In work so far, we have focused
on Four Hundred, a flagship of the game family, and design a reinforcement learning algorithm to play the
game at a level competitive with humans. We describe our problem formulation, algorithms, and results in
Section ??. However, we are interested more in this family of games as a testing ground, and in particular
we wish to explore the transfer of insights and strategies from one game into similar games. We discuss
this question and our initial algorithm in Section ??.

2 Solving Four Hundred

Rules of Four Hundred

;/lA deck of cards is distributed evenly (face down) to four players. Each player sits across from their
teammate. No communication of hands is allowed. Before beginning play, players must bet an expected
number of ‘tricks’ they plan to take over the 13-card hand. In each round after bets are placed, players take
turns choosing a card to play from their hand in order, beginning with the player to take the previous trick.
The suit of the first card played determines the ‘lead suit’, and all other players must play cards from that
suit if they have any. The winner of the trick is the player with the highest card of the ‘lead suit’, or the
highest card of the ‘trump suit’ if any were played. At the end of 13 rounds, each player’s score is increased
by their bet if they meet or exceed it, but decreased by their bet if they fail to meet it. The game is over once
one team has a player with 41 or more points, and the other player has positive points.

Learning Problem Find an optimal betting policy βi,∗ and playing policy πi,∗t to maximize expected reward for
player i given each other and the play of the others:

βi,∗ = arg max
β∈B

E

[
13∑
t=0

R
(
β(Hi0), πi,∗t (Hit)

)]
, πi,∗t = arg max

c∈Hi
t

E
[
R(βi,∗(Hi0), c) | Sit

]
.

where Hi0 is player i’s starting hand, Hit is their hand after trick t ∈ {1, . . . , 13}, and Sit is the information
known to player i about the state of the game up until trick t.

BETTING: While both betting and playing may be viewed from a reinforcement learning perspective, we
chose to view betting as a supervised learning problem. That is, given some particular strategy and initial
hand, the player can expect to win some number of tricks (where randomness comes from the distribution
of cards across opponents’ hands as well as variation in player strategies, stochastic and otherwise). Given
observed games under a given strategy and initial hand compositions, a model that predicts tricks taken by
the end of the round may serve as a good bet model.

Thus, the data we generate during games in the form of initial hands can serve as input data, while the
total number of tricks won that round functions as the label. We implement a neural network for regression
using this data. The input is a 4 × 13 binary matrix with exactly 13 non-zero elements representing which
cards are in the player’s hand. Each column of the matrix represents a value (e.g. 7 or Queen), while each
row represents a suit. The first suit is reserved for the trump suit, which is higher in value than all other
suits. The output of the neural network is a real number, which we then map to the closest integer between
2 and 13 (since bets of 0 and 1 are not allowed). We define the loss as the squared difference between the
score received and the best possible:

`bet(y, ŷ) = (y − sign(ŷ − y) · ŷ)
2

=

{
(y − ŷ)2, if y ≥ ŷ,
(y + ŷ)2, otherwise,

where ŷ is the bet, and y is the tricks won. Motivated by the game’s scoring rules, this loss function is
asymmetric - it penalizes more for bets which are higher than the tricks obtained. Therefore our goal in this

1



supervised learning problem is to learn a relationship between the initial cards dealt to each player and the
number of tricks that player won at the end of the round. In this regard, the actual play of the game greatly
affects the number of tricks expected to win.

CARD PLAY: The second component of the game is the playing of cards, wherein we consider a reinforce-
ment learning approach to solve the problem. We capture the state of the game by three 4 × 13 matrices
and two 1× 4 vectors in the following way. The first matrix represents the order history of the game, which
begins as a zero matrix. Each card played is represented in the order history by an integer between 1 and
52. For example, in the 5th trick of the game, the card played by the third player will have a 23 in the cor-
responding location (5th trick × 4 cards per trick + 3rd card played = 23). The second matrix is for player
history, which is also initially a zero matrix. As each card is played, its location will be filled by a number
denoting the ID of the player. Continuing our example, if the card above was played by player 2, then a 2
will be put in the corresponding location. Representing order and player history as a matrix in this fashion
was inspired by the state representation of AlphaGo. The final matrix is the player hand, which is similar
to the input for the betting neural network, and indeed is identical at the beginning of the game. As the
game continues, whenever a card is played, the 1 indicating the presence of a card in the hand becomes a
zero. Returning to our example, the matrix after the fifth round will have 8 (13 initial cards - 5 cards played)
non-zero elements. The first 1 × 4 vector contains the bets that each player made at the beginning of the
round. The second vector contains the tricks that each player has won so far in the round.

Given the states, we define a reward at the end of each round by

Reward =

{
bet, if tricks ≥ bet,
−bet, otherwise.

The state size is combinatorially large, and hence we do not consider tabular reinforcement learning solu-
tion methods but rather function approximation with neural nets. Ultimately, given the possible actions
available to the player, we will evaluate the function at each of the potential states and choose the action
which enters the state with the highest value. Our approach is informed by the classical Q-learning ap-
proach, where the value function is updated by

V t+1(s) = max
a

∑
s′

p(s′|s, a)(r(s, a, s′) + γV t(s′)),

where s is the state, a is an action, s′ is the state after taking action a from state s, and γ ∈ [0, 1) is the
discount factor. We consider a mild adaptation, similar to [?], in which the reward is provided as a label to
each observed state, and the neural net Q-update occurs in batches. Given that reward is observed at the
end of the round, for trick t ∈ {1, . . . , 13}, we assign a reward to that state s by

Value(s) = γ13−t · (RewardTeam member 1 + RewardTeam member 2) + 1{Team won the trick}.
We include the 1 term for reward shaping [?] as it is a favorable outcome which should help increase
convergence. Once we have assigned a label to each of the states in terms of the value defined above, we
use a neural network for regression to map each state to the appropriate value.

BASELINES: All data was generated from a game simulator developed from scratch. Three baselines
were created to compare against: the first baseline is Random Play-Random Bet. Random bet selects a
random value from {2, 3, 4, 5} during the betting stage, and in each round chooses a random card to play
from the set of valid cards. The second baseline is Greedy Play-Model Bet. During play, greedy simply
selects the highest card in its hand from the set of valid cards, without consideration of its partner. Betting
for greedy uses a neural net trained on 100,000 games of 4 greedy players with the same architecture as
Over400, as described earlier. For the final baseline, Heuristic Play-Model Bet, a heuristic strategy was
defined based on human knowledge of the game. This heuristic takes into account knowledge of the team
member’s actions as well as opponents’ actions. While a betting heuristic was also defined, the betting for
the heuristic baseline is also given by a model which was trained, in the same way as greedy, on 100,000
games of 4 heuristic players.

2.1 Results

To understand the performance of the betting model, we consider the metrics of loss and Trick-bet differ-
ence. The noise observed is due to the betting and playing strategies being constantly updated in tandem.

2



Figure ?? shows the Trick-bet difference metric. As we can see, the highest peaks of the histogram occur at
Tricks - Bet ∈ {0, 1, 2}. This means that most of the bets are slightly less than the number of actual tricks
taken, indicating that the players are betting conservatively.

(a) Loss function for the Betting Neural Net-
work for regression

(b) Histogram showing difference between
tricks won and bet made

Figure 1: Betting Network Performance

To understand the performance of the card play network, we consider the average score shown in Figure ??.
As expected, the average score of all four players increases as the number of training iterations increase. It
is important to note that the game is learning how to play relative to the other players, in that it understands
the relationship between its team member and its opponents relative to its position. Finally, we consider
Table 1 which shows the performance of our Program against the baselines. Our Heuristic algorithm was
able to defeat Random and Greedy Baselines 100 - 0, as did Over400. Even more impressively, Over400 beat
the heuristic baseline 89.5 % of the time.

Human players also squared off against the network to get a sense as to how Over400 was playing. The
AI understood to win tricks by playing high cards of the lead suit and also to play a trump card when
the lead suit had run out in its hand. Interestingly, it seemed that one of the AI players was consistently
betting higher and performing better than the other team member. However, Over400 would occasionally
play high cards which were not capable of winning since they were not the lead or trump suit. We imagine
this is due to the difficulty in learning the concept of the lead suit, which may have been accomplished with
more samples of training data or with a deeper neural net structure.

(a) Neural Network Architecture for Card Play
(b) Average score showing the performance of
the self play NN model

Figure 2: Card Play Network and Performance

3



Random Greedy Heuristic Over400
Heuristic Win % 100 100 - 10.5
Over400 Win % 100 100 89.5 -

Table 1: Percentage of wins against the baselines over 200 games.

3 Future Work

There are many games that can fit into our problem formulation with minor tweaking; there are over 30
varieties of Whist games with major or minor variations in rules. In future work, we will examine whether
and how, by learning one game, we can learn them all.

For example, Spades is nearly the same as 400: the objective is to take tricks, but Spades is the trump
suit (rather than Hearts), and there is usually no betting or teams. Tarneeb is nearly the same as 400, but
the trump suit is chosen by players (and the betting is more complicated). Finally, Hearts has the same
mechanics as Spades, but the goal is to avoid taking tricks.

A policy trained for Four Hundred will likely fail to produce good results on any of these other games.
However, it is clear that the similarity of structure in these games should mean a learner which is good at
one game should perform well when playing others. An analogy can be drawn to classification: playing
Spades well and Hearts poorly feels similar to classifying objects with high accuracy but failing to do so if
they are rotated and translated. Overcoming this problem in image classification required, in some sense,
focusing on features that were ‘invariant’ to translation and rotation; in our case, there is some ‘invariance’
about the relative ordering of the cards. We thus call our proposed approach invariance discovery, or insight
abstraction.

Let S be the set of observed states, VG be the value of each state under game G, and VG′ be the value of the
state under game G′. Recall that we estimate VG to be able to return the following policy:

πG = argmaxaEs′∼P (s,a) [V (s′)] .

In order to avoid retraining for G′, we would like to learn the invariance mapping χ in order to produce a
policy πG′ for the game G′:

χ : VG(s) 7→ VG′(s) ⇒ πG′ = argmaxaEs′∼P (s,a)χ(V (s′))

Such a mapping exists whenever the value functions do, but learning this function from noisy samples
may be hard. Indeed, in full generality it may be impossible without exponentially many samples, since
we may not see the same states across games. However, we may make this problem tractable by restricting
χ to live in some class of functions Ω. For example, χ could be a linear function; this may approximate
the truth when mapping Spades to Hearts, since having high cards is good in Spades but bad in Hearts. The
meta-algorithm would be roughly as follows in Algorithm ??.

Algorithm 1 Value Correspondence

Require: Games G, G′, Tmany, Tfew
1: Learn a policy πG and value function VG via self-play of G over Tmany rounds.
2: Learn a policy π′G and value function V ′G via self-play of G′ over Tfew rounds.
3: Learn χ : VG(s)→ VG′(s) from rounds 1 : Tfew of G and 1 : Tfew of G′.
4: Return π(s) = argmaxEχ(VG(s)).

References

[1] V. Mnih et al. Human-level control through deep reinforcement learning. Nature, 518:529–533, 2015.
[2] M. Riedmiller. Neural fitted q iteration – first experiences with a data efficient neural reinforcement

learning method. European conference on Machine Learning, 05:317–328, 2005.

4


