Non-asymptotic Coded Slotted ALOHA

Mohammad Fereydounian Xingran Chen Hamed Hassani Shirin Saeedi Bidokhti

ESE, University of Pennsylvania

July 7, 2019

Non-asymptotic Analysis

- Multi-access channels
- Random access channels
- Non-asymptotic analysis \equiv Number of users is moderate finite

Coded Slotted ALOHA (CSA)

- N: number of users. M: number of slots. N_a : number of active users. $G = \frac{N_a}{M}$: channel load.
- Decoding k out of n coded packets is enough to recover the original message.

[1] G. Liva, "Graph-based analysis and optimization of contention resolution diversity slotted aloha," 2011.

[2] M. Berioli, G. Cocco, G. Liva, and A. Munari, "Modern random access protocals," 2016.

[3] A. G. i. Amat and G. Liva, "Finite length analysis of irregular repetition slotted aloha in the waterfall region," 2018.

Coded Slotted ALOHA (CSA)

 Decoding: A successive interference cancelation (SIC) procedure.

►
$$N_a = 4, M = 4, k = 2, n = 3, G = \frac{N_a}{M}$$

Coded Slotted ALOHA (CSA)

Gaps

 $G = \frac{N_a}{M} \in (0,1)$

1. Does the decoding process get stuck at some point? —The decoding stops when there is no singleton left P_B : probability of decoding fails

Asymptotically, when $N_a, M \to \infty$, there exists G^* such that

if $G < G^*$ the decoding is successful (almost surely) $P_B = 0$

if $G \geq G^*$ the decoding is unsuccessful (almost surely) $P_B = 1$

2. Non-asymptotically, for finite N_a , M, how does P_B behave?

Our Contributions

 $G = \frac{N_a}{M} \in (0, 1)$ 1. Does the decoding process get stuck at some point? We compute G^* (analytically) for CSA

2. Non-asymptotically, for finite N_a , M, how does P_B behave? We obtain the non-asymptotic P_B (analytically) for CSA

Our Approaches

Formulating the dynamics of decoding using sequential ODEs

- $E = nN_a$: Initial number of edges
- $t = q\Delta t$: Time where $\Delta t = \frac{1}{E}$ and q is the decoding step
- L_i(t): The expected number of edges connected to a degree i user node at time t

- $\blacktriangleright l_i(t) = \frac{L_i(t)}{E} = L_i(t)\Delta t$
- $e(t) = \sum_i l_i(t)$
- *R_j(t)*: The expected number of edges connected to a degree *j* slice node at time *t*

 $r_j(t) = \frac{R_j(t)}{E} = R_j(t)\Delta t$

Asymptotic Evolution of I_i

$$\begin{cases} L_i(t + \Delta t) - L_i(t) = -i \cdot \frac{l_i(t)}{e(t)} + i \cdot \frac{l_{i+1}(t)}{e(t)}, & n-k < i < n \\ L_n(t + \Delta t) - L_n(t) = -n \cdot \frac{l_n(t)}{e(t)}. \end{cases}$$

If N_a is large, and $\Delta t
ightarrow 0$, then

$$\begin{cases} \frac{dl_i(t)}{dt} = i \cdot \frac{l_{i+1}(t) - l_i(t)}{e(t)}, \ n-k < i < n, \\ \frac{dl_n(t)}{dt} = -n \cdot \frac{l_n(t)}{e(t)}. \end{cases}$$

Asymptotic Evolution of r_j

By similar analysis, define a(t): the expected number of removed edges at time t.

$$a(t) = (n-k+1) \cdot \frac{l_{n-k+1}(t)}{e(t)} + \sum_{i=n-k+2}^{n} 1 \cdot \frac{l_i(t)}{e(t)}.$$

$$\begin{cases} \frac{dr_j(t)}{dt} = j \cdot (r_{j+1}(t) - r_j(t)) \cdot \frac{a(t) - 1}{e(t)}, \quad j \ge 2, \\ r_1(t) = e(t) - \sum_{j \ge 2} r_j(t) \end{cases}$$

Density Evolution

For the left-hand side:

$$\begin{cases} \frac{dl_i(t)}{dt} = i \cdot \frac{l_{i+1}(t) - l_i(t)}{e(t)}, \ n-k < i < n, \\ \frac{dl_n(t)}{dt} = -n \cdot \frac{l_n(t)}{e(t)}. \end{cases}$$

For the right-hand side:

$$\begin{cases} \frac{dr_j(t)}{dt} = j \cdot (r_{j+1}(t) - r_j(t)) \cdot \frac{a(t) - 1}{e(t)}, j \ge 2, \\ r_1(t) = e(t) - \sum_{j \ge 2} r_j(t). \end{cases}$$

where

$$egin{aligned} &a(t) = (n-k+1) \cdot rac{l_{n-k+1}(t)}{e(t)} + \sum_{i=n-k+2}^n 1 \cdot rac{l_i(t)}{e(t)}, \ &e(t) = \sum_{i=n-k+1}^n l_i(t) = \sum_{j \geq 1}^n r_j(t) \end{aligned}$$

Change of Variable

The density evolution is

$$\begin{cases} \frac{dl_i(x)}{dx} = i \cdot \frac{l_{i+1}(x) - l_i(x)}{x}, & n-k < i < n, \\ \frac{dl_n(x)}{dx} = -n \cdot \frac{l_n(x)}{x}, \\ \frac{dr_j(x)}{dx} = j \cdot (r_{j+1}(x) - r_j(x)) \cdot \frac{\lambda'(x)}{\lambda(x)}, & j \ge 2. \end{cases}$$
$$r_1(x) = e(x) - \sum_{j \ge 2} r_j(x).$$

Theorem 1

$$l_i(x) = \sum_{j=n-k+1}^n \frac{\alpha_j^{(i)}}{x^j}, \qquad i \in \{n-k+1, \cdots, n\}, \qquad (1)$$

where $\{\alpha_{j}^{(i)}\}_{i,j}$, $n - k + 1 \le i \le j \le n$, is a finite 2-dimensional recursive sequence of integers which is (uniquely) determined by the following equations:

$$\begin{cases} \alpha_n^{(n)} = 1\\ \alpha_i^{(i)} = \sum_{j=i+1}^n (-1)^{j-i+1} {j-1 \choose i-1} \alpha_j^{(j)}, \quad n-k+1 \le i < n, \\ \alpha_j^{(i)} = (-1)^{j-i} {j-1 \choose i-1} \alpha_j^{(j)}, \quad i < j \le n. \end{cases}$$
(2)

Theorem 2

Suppose
$$G = \frac{N_a}{M}, R = \frac{k}{n}$$

 $r_j(x) = \frac{1}{(j-1)!\lambda^j(x)} \left(\frac{G}{R}\right)^{j-1} \exp\left(-\frac{G}{R\lambda(x)}\right), j \ge 2$ (3)
 $r_1(x) = \left[\sum_{j=n-k+1}^n \frac{\beta_j}{x^j}\right] - \frac{1}{\lambda(x)} \left(1 - \exp\left(-\frac{G}{R\lambda(x)}\right)\right)$ (4)

where

$$\beta_j := \alpha_j^{(j)} (-1)^j \sum_{i=n-k+1}^j (-1)^i {\binom{j-1}{i-1}} \\ \lambda(x) := \exp\left((n-k) \int_1^x \frac{\sum_{j=0}^{k-1} \alpha_{n-j}^{(n-k+1)} y^j}{\sum_{j=0}^{k-1} \beta_{n-j} y^{j+1}} dy\right)$$

Computation of G^*

$$r_1\left(x; \tilde{G}(x)\right) = 0, \quad G(x) \ge G(x^*), x \in N(x^*; \delta)$$

$$\frac{d\tilde{G}(x)}{dx}\Big|_{x=x^*} = 0, \qquad G^* = \tilde{G}(x^*)$$
(5)
16/23

Theorem 3

$$\widetilde{G}(x) = -R\lambda(x)\log\left(1 - e(x)\lambda(x)\right)$$

Define $h(x) = e(x)\lambda(x)$. Then $G^* = \tilde{G}(x^*)$, where x^* is the solution of the following algebraic equation:

$$\log(1 - h(x)) = \frac{1 - h(x)}{h(x)} \left(1 + \frac{xe'(x)}{(n - k)I_{n - k + 1}(x)} \right).$$
(6)

Numerical Comparison for G^*

Let $N_a = 20000$ by averaging over 2000 trials The Error is less than 0.01% even for moderate values of N_a

Parameters	Simulated G*	Computed G^*
n = 5, k =2	0.737	0.7388
n = 5, k =3	0.582	0.5840
n = 6, k =2	0.724	0.7253
n = 6, k =3	0.669	0.6699
n = 8, k =2	0.659	0.6602
n = 8, k =5	0.545	0.5458
n = 12, k =4	0.636	0.6372
n = 12, k =10	0.266	0.2664
n = 25, k =4	0.459	0.4595

Scaling Law for Non-asymptotic Behavior

Inspired by a result from statistical physics: Non-asymptotic P_B in the waterfal region:

$$\lim_{\substack{N_a \to \infty \\ \text{s.t. } N_a^{1/\mu}(G^* - G) = z}} P_B(N_a, G) = f(z).$$
(7)

In our problem, f is the Q-function

$$P_B(N_a, G) = Q\left(\frac{\sqrt{N_a}}{\alpha}\left(G^* - \beta N_a^{-2/3} - G\right)\right).$$
(8)

[4] A. Amraoui, A. Montanari, T. Richardson, and R. Urbanke, "Finite-length scaling for iteratively decoded LDPC ensembles," 2009.

Covariance Evolution

$$z = (z_0, z_1, \cdots, z_d) = (r_1, r_2, I_{n-k+1}, \cdots, I_n)$$

 $\delta^{(z_i z_j)}(x)$: the normalized covariance between the corresponding node-based quantities of z_i and z_j at time x,

 $\hat{f}^{(z_i z_j)}(x)$: the covariance between the corresponding edge-based quantities of z_i and z_j at time x,

 $\hat{f}^{(z_i)}$: the expected change of the corresponding edge-based quantity of z_i .

$$\frac{d\delta^{(z_i z_j)}(x)}{dx} = \frac{e(x)}{x} \left[\frac{\hat{f}^{(z_i z_j)}(x)}{n} + \sum_{k=0}^d \delta^{(z_i z_k)}(x) \frac{\partial \hat{f}^{(z_j)}(x)}{\partial z_k} + \frac{\partial \hat{f}^{(z_i)}(x)}{\partial z_k} \delta^{(z_k z_j)}(x) \right],$$

Theorem 4: Computation of α and β

The probability of error P_B is

$$P_B = Q\left(\frac{\sqrt{N_a}}{\alpha}\left(G^* - \beta N_a^{-2/3} - G\right)\right)$$

where

$$\alpha = -\sqrt{\frac{\delta^{(r_1,r_1)}(x)}{n}} \left(\frac{\partial r_1(x;G)}{\partial G}\right)^{-1}\Big|_{x=x^*,G=G^*},$$

$$\beta = -\left(\frac{\hat{f}^{(r_1r_1)}(x)}{n}\right)^{2/3} \left[\sum_{k=1}^d \frac{\partial \hat{f}^{(r_1)}(x)}{\partial z_k} \hat{f}^{(z_k)}(x)\right]^{-1/3} \\ \times \left(\frac{\partial r_1(x;G)}{\partial G}\right)^{-1}\Big|_{x=x^*,G=G^*}.$$

Simulation Results for P_B

 $N_a = 1000, 2000, 4000, 8000, 16000, 32000.$ $n = 5, k = 3, \text{ over } 2 \times 10^5 \text{ trials}$ $\alpha = 0.42362, \beta = 0.8629, G^* = 0.5840$

Thank you!