Non-asymptotic Coded Slotted ALOHA

Mohammad Fereydounian Xingran Chen Hamed Hassani
Shirin Saeedi Bidokhti

ESE, University of Pennsylvania

$$
\text { July 7, } 2019
$$

Non-asymptotic Analysis

- Multi-access channels
- Random access channels
- Non-asymptotic analysis \equiv Number of users is moderate finite

Coded Slotted ALOHA (CSA)

- N : numer of users. M : number of slots. N_{a} : number of active users. $\quad G=\frac{N_{a}}{M}$: channel load.
- Decoding k out of n coded packets is enough to recover the original message.
[1] G. Liva, "Graph-based analysis and optimization of contention resolution diversity slotted aloha," 2011.
[2] M. Berioli, G. Cocco, G. Liva, and A. Munari, "Modern random access protocals," 2016.
[3] A. G. i. Amat and G. Liva, "Finite length analysis of irregular repetition slotted aloha in the waterfall region," 2018.

Coded Slotted ALOHA (CSA)

- Decoding: A successive interference cancelation (SIC) procedure.
- $N_{a}=4, M=4, k=2, n=3, G=\frac{N_{a}}{M}$

Coded Slotted ALOHA (CSA)

Gaps

$G=\frac{N_{a}}{M} \in(0,1)$

1. Does the decoding process get stuck at some point? -The decoding stops when there is no singleton left
P_{B} : probability of decoding fails
Asymptotically, when $N_{a}, M \rightarrow \infty$, there exists G^{*} such that
if $G<G^{*}$ the decoding is successful (almost surely) $P_{B}=0$
if $G \geq G^{*}$ the decoding is unsuccessful (almost surely) $P_{B}=1$
2. Non-asymptotically, for finite N_{a}, M, how does P_{B} behave?

Our Contributions

$G=\frac{N_{a}}{M} \in(0,1)$

1. Does the decoding process get stuck at some point?

We compute G^{*} (analytically) for CSA
2. Non-asymptotically, for finite N_{a}, M, how does P_{B} behave? We obtain the non-asymptotic P_{B} (analytically) for CSA

Our Approaches

Formulating the dynamics of decoding using sequential ODEs

- $E=n N_{a}$: Initial number of edges
- $t=q \Delta t$: Time where $\Delta t=\frac{1}{E}$ and q is the decoding step
- $L_{i}(t)$: The expected number of edges connected to a degree i user node at time t

- $I_{i}(t)=\frac{L_{i}(t)}{E}=L_{i}(t) \Delta t$
- $e(t)=\sum_{i} l_{i}(t)$
- $R_{j}(t)$: The expected number of edges connected to a degree j slice node at time t
- $r_{j}(t)=\frac{R_{j}(t)}{E}=R_{j}(t) \Delta t$

Asymptotic Evolution of I_{i}

$$
\left\{\begin{array}{l}
L_{i}(t+\Delta t)-L_{i}(t)=-i \cdot \frac{l_{i}(t)}{e(t)}+i \cdot \frac{l_{i+1}(t)}{e(t)}, \quad n-k<i<n \\
L_{n}(t+\Delta t)-L_{n}(t)=-n \cdot \frac{I_{n}(t)}{e(t)}
\end{array}\right.
$$

If N_{a} is large, and $\Delta t \rightarrow 0$, then

$$
\left\{\begin{array}{l}
\frac{d l_{i}(t)}{d t}=i \cdot \frac{l_{i+1}(t)-l_{i}(t)}{e(t)}, n-k<i<n \\
\frac{d I_{n}(t)}{d t}=-n \cdot \frac{I_{n}(t)}{e(t)}
\end{array}\right.
$$

Asymptotic Evolution of r_{j}

By similar analysis, define $a(t)$: the expected number of removed edges at time t.

$$
\begin{aligned}
& a(t)=(n-k+1) \cdot \frac{I_{n-k+1}(t)}{e(t)}+\sum_{i=n-k+2}^{n} 1 \cdot \frac{l_{i}(t)}{e(t)} . \\
& \left\{\begin{array}{l}
\frac{d r_{j}(t)}{d t}=j \cdot\left(r_{j+1}(t)-r_{j}(t)\right) \cdot \frac{a(t)-1}{e(t)}, \quad j \geq 2, \\
r_{1}(t)=e(t)-\sum_{j \geq 2} r_{j}(t)
\end{array}\right.
\end{aligned}
$$

Density Evolution

For the left-hand side:

$$
\left\{\begin{array}{l}
\frac{d l_{i}(t)}{d t}=i \cdot \frac{l_{i+1}(t)-l_{i}(t)}{e(t)}, n-k<i<n \\
\frac{d I_{n}(t)}{d t}=-n \cdot \frac{I_{n}(t)}{e(t)}
\end{array}\right.
$$

For the right-hand side:

$$
\left\{\begin{aligned}
\frac{d r_{j}(t)}{d t} & =j \cdot\left(r_{j+1}(t)-r_{j}(t)\right) \cdot \frac{a(t)-1}{e(t)}, j \geq 2 \\
r_{1}(t) & =e(t)-\sum_{j \geq 2} r_{j}(t)
\end{aligned}\right.
$$

where

$$
\begin{aligned}
& a(t)=(n-k+1) \cdot \frac{I_{n-k+1}(t)}{e(t)}+\sum_{i=n-k+2}^{n} 1 \cdot \frac{I_{i}(t)}{e(t)}, \\
& e(t)=\sum_{i=n-k+1}^{n} I_{i}(t)=\sum_{j \geq 1} r_{j}(t)
\end{aligned}
$$

Change of Variable

- To eliminate $e(t)$:

$$
t \longmapsto x=\exp \left(\int_{0}^{t} \frac{d \tau}{e(\tau)}\right) \quad \Rightarrow \quad \frac{d x}{x}=\frac{d t}{e(t)} .
$$

- To eliminate $a(t): \frac{\lambda^{\prime}(x)}{\lambda(x)}=\frac{a(x)-1}{x}, \quad \lambda(1)=1$.
- The density evolution is

$$
\begin{aligned}
& \left\{\begin{array}{l}
\frac{d l_{i}(x)}{d x}=i \cdot \frac{I_{i+1}(x)-I_{i}(x)}{x}, n-k<i<n, \\
\frac{d I_{n}(x)}{d x}=-n \cdot \frac{I_{n}(x)}{x},
\end{array}\right. \\
& \frac{d r_{j}(x)}{d x}=j \cdot\left(r_{j+1}(x)-r_{j}(x)\right) \cdot \frac{\lambda^{\prime}(x)}{\lambda(x)}, \quad j \geq 2 . \\
& r_{1}(x)=e(x)-\sum_{j \geq 2} r_{j}(x) .
\end{aligned}
$$

Theorem 1

$$
\begin{equation*}
l_{i}(x)=\sum_{j=n-k+1}^{n} \frac{\alpha_{j}^{(i)}}{x^{j}}, \quad i \in\{n-k+1, \cdots, n\}, \tag{1}
\end{equation*}
$$

where $\left\{\alpha_{j}^{(i)}\right\}_{i, j}, n-k+1 \leq i \leq j \leq n$, is a finite 2-dimensional recursive sequence of integers which is (uniquely) determined by the following equations:

$$
\left\{\begin{array}{l}
\alpha_{n}^{(n)}=1 \tag{2}\\
\alpha_{i}^{(i)}=\sum_{j=i+1}^{n}(-1)^{j-i+1}\binom{j-1}{i-1} \alpha_{j}^{(j)}, \quad n-k+1 \leq i<n, \\
\alpha_{j}^{(i)}=(-1)^{j-i}\binom{j-1}{i-1} \alpha_{j}^{(j)}, \quad i<j \leq n .
\end{array}\right.
$$

Theorem 2

Suppose $G=\frac{N_{a}}{M}, R=\frac{k}{n}$

$$
\begin{align*}
& r_{j}(x)=\frac{1}{(j-1)!\lambda^{j}(x)}\left(\frac{G}{R}\right)^{j-1} \exp \left(-\frac{G}{R \lambda(x)}\right), j \geq 2 \tag{3}\\
& r_{1}(x)=\left[\sum_{j=n-k+1}^{n} \frac{\beta_{j}}{x^{j}}\right]-\frac{1}{\lambda(x)}\left(1-\exp \left(-\frac{G}{R \lambda(x)}\right)\right) \tag{4}
\end{align*}
$$

where

$$
\begin{aligned}
\beta_{j} & :=\alpha_{j}^{(j)}(-1)^{j} \sum_{i=n-k+1}^{j}(-1)^{i}\binom{j-1}{i-1} \\
\lambda(x) & :=\exp \left((n-k) \int_{1}^{x} \frac{\sum_{j=0}^{k-1} \alpha_{n-j}^{(n-k+1)} y^{j}}{\sum_{j=0}^{k-1} \beta_{n-j} y^{j+1}} d y\right)
\end{aligned}
$$

Computation of G^{*}

$$
G_{1}<G^{*}<G_{2}
$$

$$
\begin{gather*}
r_{1}(x ; \tilde{G}(x))=0, \quad G(x) \geq G\left(x^{*}\right), x \in N\left(x^{*} ; \delta\right) \\
\left.\frac{d \tilde{G}(x)}{d x}\right|_{x=x^{*}}=0, \quad G^{*}=\tilde{G}\left(x^{*}\right) \tag{5}
\end{gather*}
$$

Theorem 3

$$
\tilde{G}(x)=-R \lambda(x) \log (1-e(x) \lambda(x))
$$

Define $h(x)=e(x) \lambda(x)$. Then $G^{*}=\tilde{G}\left(x^{*}\right)$, where x^{*} is the solution of the following algebraic equation:

$$
\begin{equation*}
\log (1-h(x))=\frac{1-h(x)}{h(x)}\left(1+\frac{x e^{\prime}(x)}{(n-k) I_{n-k+1}(x)}\right) . \tag{6}
\end{equation*}
$$

Numerical Comparison for G^{*}

Let $N_{a}=20000$ by averaging over 2000 trials
The Error is less than 0.01% even for moderate values of N_{a}

Parameters	Simulated G^{*}	Computed G^{*}
$\mathrm{n}=5, \mathrm{k}=2$	0.737	0.7388
$\mathrm{n}=5, \mathrm{k}=3$	0.582	0.5840
$\mathrm{n}=6, \mathrm{k}=2$	0.724	0.7253
$\mathrm{n}=6, \mathrm{k}=3$	0.669	0.6699
$\mathrm{n}=8, \mathrm{k}=2$	0.659	0.6602
$\mathrm{n}=8, \mathrm{k}=5$	0.545	0.5458
$\mathrm{n}=12, \mathrm{k}=4$	0.636	0.6372
$\mathrm{n}=12, \mathrm{k}=10$	0.266	0.2664
$\mathrm{n}=25, \mathrm{k}=4$	0.459	0.4595

Scaling Law for Non-asymptotic Behavior

Inspired by a result from statistical physics:
Non-asymptotic P_{B} in the waterfal region:

$$
\lim _{\substack{N_{a} \rightarrow \infty \\ \text { s.t. } N_{a}^{1 / \mu}\left(G^{*}-G\right)=z}} P_{B}\left(N_{a}, G\right)=f(z) .
$$

In our problem, f is the Q-function

$$
\begin{equation*}
P_{B}\left(N_{a}, G\right)=Q\left(\frac{\sqrt{N_{a}}}{\alpha}\left(G^{*}-\beta N_{a}^{-2 / 3}-G\right)\right) \tag{8}
\end{equation*}
$$

[4] A. Amraoui, A. Montanari, T. Richardson, and R. Urbanke, "Finite-length scaling for iteratively decoded LDPC ensembles," 2009.

Covariance Evolution

$$
z=\left(z_{0}, z_{1}, \cdots, z_{d}\right)=\left(r_{1}, r_{2}, I_{n-k+1}, \cdots, I_{n}\right)
$$

$\delta^{\left(z_{i} z_{j}\right)}(x)$: the normalized covariance between the corresponding node-based quantities of z_{i} and z_{j} at time x, $\hat{f}\left(z_{i} z_{j}\right)(x)$: the covariance between the corresponding edge-based quantities of z_{i} and z_{j} at time x,
$\hat{f}\left(z_{i}\right)$: the expected change of the corresponding edge-based quantity of z_{i}.

$$
\frac{d \delta\left(z_{i} z_{j}\right)}{d x}
$$

$$
=\frac{e(x)}{x}\left[\frac{\hat{f}^{\left(z_{i} z_{j}\right)}(x)}{n}+\sum_{k=0}^{d} \delta^{\left(z_{i} z_{k}\right)}(x) \frac{\partial \hat{f}^{\left(z_{j}\right)}(x)}{\partial z_{k}}+\frac{\partial \hat{f}^{\left(z_{i}\right)}(x)}{\partial z_{k}} \delta^{\left(z_{k} z_{j}\right)}(x)\right]
$$

Theorem 4: Computation of α and β

The probability of error P_{B} is

$$
P_{B}=Q\left(\frac{\sqrt{N_{a}}}{\alpha}\left(G^{*}-\beta N_{a}^{-2 / 3}-G\right)\right)
$$

where

$$
\begin{aligned}
\alpha= & -\left.\sqrt{\frac{\delta^{\left(r_{1} r_{1}\right)}(x)}{n}}\left(\frac{\partial r_{1}(x ; G)}{\partial G}\right)^{-1}\right|_{x=x^{*}, G=G^{*}} \\
\beta= & -\left(\frac{\hat{f}^{\left(r_{1} r_{1}\right)}(x)}{n}\right)^{2 / 3}\left[\sum_{k=1}^{d} \frac{\partial \hat{f}^{\left(r_{1}\right)}(x)}{\partial z_{k}} \hat{f}^{\left(z_{k}\right)}(x)\right]^{-1 / 3} \\
& \times\left.\left(\frac{\partial r_{1}(x ; G)}{\partial G}\right)^{-1}\right|_{x=x^{*}, G=G^{*}}
\end{aligned}
$$

Simulation Results for P_{B}

$N_{a}=1000,2000,4000,8000,16000,32000$.
$n=5, k=3$, over 2×10^{5} trials
$\alpha=0.42362, \beta=0.8629, G^{*}=0.5840$

Thank you!
$23 / 23$

