
Non-asymptotic Coded Slotted ALOHA

Mohammad Fereydounian
University of Pennsylvania

3401 Walnut St, Philadelphia, PA 19104
mferey@seas.upenn.edu

Xingran Chen
University of Pennsylvania

3330 Walnut St, Philadelphia, PA 19104
xingranc@sas.upenn.edu

Hamed Hassani
University of Pennsylvania

3401 Walnut St, Philadelphia, PA 19104
hassani@seas.upenn.edu

Shirin Saeedi Bidokhti
University of Pennsylvania

3330 Walnut St, Philadelphia, PA 19104
saeedi@seas.upenn.edu

Abstract

Coding for random access communication is a key challenge in Internet of Things applications. In this
paper, the well-known scheme of Coded Slotted Aloha (CSA) is considered and its performance is ana-
lyzed in the non-asymptotic regime where the frame length and the number of users are finite. A density
evolution framework is provided to describe the dynamics of decoding, and fundamental limits are found
on the maximum channel load (i.e., the number of active users per time slot) that allows reliable communi-
cation (successful decoding). Finally, scaling laws are established, describing the non-asymptotic relation
between the probability of error, number of users, and the channel load.

1 Introduction

The technology of Internet of Things (IoT) has brought new challenges in the design of multi-access com-
munication systems. In traditional networks, the number of users is small and it is hence practical to coordinate
them for transmission. For example, this can be done with the help of a common clock that can be implemented
through a low rate (vanishing by blocklength) communication link. In IoT application, however, the number
of users is very large, orders of magnitude larger than the blocklength. For example, in Low-Power Wide-Area
Networks (P-WANs), the number of users is in the order of tens of millions. Clearly, coordinating all the users
is infeasible in such scenarios and hence communication should be assumed uncoordinated. This has moti-
vated the key challenge of coding for massive random access communication, where senders communicate
their packets in a bursty manner at random times.

The literature on massive random access communciation ranges from traditional (slotted) ALOHA-type pro-
tocols [1–3], and their coded variants [4–6], to recent information theoretic frameworks and code designs in
the regime of operation where the total number of users scale linearly with the blocklength [7–10]. Slotted
ALOHA (SA) [1–3] is one of the first random-access protocols that deals with collision through random re-
transmission of packets and it is still in use for cellular and satellite communication. In SA protocols, time is
slotted and users randomly choose slots to send their packets. Naturally, without coordination, packets that are

1

transmitted may collide in which case each involved users will send its packet later in another random timeslot.
In multi-access channels in which the output is a superposition of the inputs, however, successive interference
cancellation (SIC) can be implemented through iterative algorithms and it offers significant gains in spectral
efficiency [4,5]. For a thorough review of random-access protocols and their challenges we refer to [6] and the
references therein.

In [5,11], the problem of recovering from collisions has be tackled from the perspective of error correct-
ing codes. The idea is to encode redundancy into the transmitted packets via repetition coding, leading to the
class of Irregular Repetition Slotted ALOHA (IRSA) schemes [5], or more generally via an error correcting
code, leading to the class of Coded Slotted ALOHA (CSA) schemes [11]. The redundancy is then exploited
in decoding by successive cancellation and a corresponding iterative message passing algorithm. Exploiting
a bipartite graph representation, [11] derives density evolution equations for CSA and analyzes the SIC pro-
cess in an asymptotic setting where the frame length and the number of users both tend to infinity (their ratio
remaining constant).

In this work, we provide a non-asymptotic analysis of CSA. The non-asymptotic regime is arguably the prac-
tical regime of interest especially in applications where delay is of importance. Previous work on random ac-
cess schemes, including coded variants of SA, have mostly relied on simulations to address the non-asymptotic
performance of the schemes. Some notable exceptions are [12–16]. The work in [12] gives an accurate analy-
sis of frameless ALOHA (parallel to rateless codes) in the finite-length regime. The works in [13–15] analyze
CSA in the error floor region, and [16] provides a finite-length analysis for IRSA in the waterfall region. To
the best of our knowledge, a finite-length analysis of the more general class of CSA protocols in the waterfall
region has been missing from the literature.

In summary, our contributions are as follows:
• We use connections between CSA and LDPC ensembles that were established in [11] and build on

methods that were originally developed in [17,18] to analyze LDPC ensembles in the finite blocklength
regime. In a recent work, [16] uses a similar approach and provides the non-asymptotic analysis of the
special class of IRSA random access codes. While the existing analytical methods in LDPC ensembles
are directly applicable to the analysis of IRSA, they turn out to be insufficient for the analysis of CSA .
Assuming a regular CSA ensemble in which (active) users have the same rate and blocklength, we gener-
alize the methods of LDPC ensembles to analyze the performance of regular CSA in the non-asymptotic
regime. This generalization includes the derivation of a new density evolution as well as the components
of the so-called scaling law which describe the probability of error.

• Channel load G is defined to be the number of active users per time slot. It turns out that CSA ensembles
encounter a thresholding effect, meaning that there is a maximum achievable channel load G∗ such that
for G > G∗, it is almost surely impossible to decode all messages and for G < G∗ it is almost surely
possible. We provide an analytical approach to obtain G∗ as a root of an algebraic equation.

• Finally, we simulate the CSA ensemles we defined earlier and verify our results with the simulation
outcomes.

The paper is organized as follows. Section 2 presents the modeling and an overview on the the SIC decod-
ing process that is used throughout the paper. Section 3.1 derives the differential equations that describe this
process. Section 3.2, solves the differential equations and Section 3.3, finds the maximum achievable channel
load as a root of an algebraic equation. Section 4 provides the probability of error in the waterfall region for
the non-asymptotic settings. Section 5, presents simulation results that validates our derivations.

2

2 Modeling

Suppose we have a multi-access channel with N users, each of which is active with probability p. An active
user is one that has a message to send at the current time. Let Na denote the expected number of active users;
i.e., Na = pN. In Slotted Aloha (SA) protocols, channel resources (e.g., time) are divided into slots. Let M
denote the number of time slots. Channel load G is then defined as

G =
Na

M
=

pN
M

.

Each user chooses a set of time slots to send its message. If two users transmit during the same time slot, a
collision occurs. In case of collision, the receiver has only access to the summation of all the collided packets
(at the time slot in which collision occurs). We also assume that a packet cannot be recovered in a time slot
unless all the other collided packets are previously recovered and hence can be subtracted from the summation.

If all active users encode their messages as one packet to be sent in one time slot, then it is very likely that
the entire message is lost due to collision. Therefore, to increase reliability, one can encode a message in one
packet but repeat this packet n times. This way, the information rate is reduced to R = 1/n but recovering
only one of these packets is enough to recover the message.

This is called Repetition Slotted ALOHA (RSA). More generally, one can use different repetition lengths for
users and design what is known as an Irregular Repetition Slotted ALOHA scheme [5]. Note that even under
full recovery, the information rate for each user in RSA is R = 1/n i.e., each packet is repeated n times. This
means higher reliability is attained at the expense of lower rates. Replacing repetition coding with a general
coding scheme is a fundamental way to increase the rate while ensuring high reliability in communication
systems. This approach leads to Coded Slotted Aloha (CSA) introduced in [11]. CSA is clearly more expensive
than RSA in terms of system complexity (leading to more expensive equipments, shorter battery life, larger
processing time), however, CSA provides higher throughput for each user.

The CSA scheme is described as follows: Each time slot is divided into k smaller time slices. We thus have
m = kM time slices in total. Also, each message is divided into k smaller packets. Now, a coding scheme is
used to encode these k packets into n coded packets. Each user chooses n distinct time slices out of m time
slices uniformly at random to send its n coded packets. The setting is illustrated in Figure 1a for 4 users with
n = 3, k = 2, and m = 8. We assume that fully recovering an arbitrary subset of k coded packets out of n
coded packets is enough to recover the original message. Therefore, the resulting rate is R = k/n (note that
the special case k = 1 is equivalent to RSA). For simplicity, we consider a regular scenario in which all users
utilize the same blocklength n. We refer to such a CSA scheme by CSA(n, k, Na, M).

For decoding, we use a successive interference cancelation (SIC) procedure: At each step q, q = 0, 1, 2, . . . ,
we first find a collision-free time slice containing only one packet and then we fully recover that packet. From
this packet we identify its user. We mark this packet as “decoded”. For any user, when k out of n packets are
marked as decoded, then the user’s original message can be fully recovered, and as a result, all of its n packets
are known. We thus can After that, we subtract those n packets from their corresponding time slices, remove
the user and we say the user is resolved. This elimination will result in more collision-free slices with only one
packet inside. We then continue decoding by finding the next collision-free slice. The decoding stops when
there is no collision-free slice. At this point, if all users are resolved, decoding is successful, otherwise, we
declare a B-error (in analogy to block error in LDPC ensembles). If a B-error occurs, the fraction of unresolved
users is statistically known as packet loss probability (PLP). In terms of analysis, PLP can be simply computed
in terms of the probability of B-error (as we will see in the following).

For a refined analysis of the SIC process discussed above, we need a more structured modeling based on a
bipartite graph which we call the decoding graph. This is analogous to the so-called Tanner graph used for the
analysis of LDPC codes [19]. Define a bipartite graph K with two sets of nodes: A set of Na user nodes UN

3

user 1

user 2

user 3

user 4

slice 1 slice 2

slot 1

collision

slice 4 slice 5 slice 6 slice 7 slice 8

slot 4

(a) Time slice allocation

UN0 SN0

1

2

3

4

1

2

3

4

5

6

7

8

(b) K0

UN4 SN4

1

2

3

4

1

2

3

4

5

6

7

8

(c) K4

Figure 1: A realization of CSA scheme with parameters Na = 4, M = 4, n = 3, k = 2, m = kM = 8.
Figure 1a represents the initial time slice allocation. Figures 1b and 1c illustrate the residual graphs at the
beginning of iterations q = 0 and q = 4, respectively. Note that user node 4 is removed at iteration q = 3. In
both graphs, the edges connected to singletons depicted in dashed lines

and a set of m slice nodes SN. The ith user node represents the ith active user, where i ∈ {1, . . . , Na} and
the jth slice node represents the jth time slice, where j ∈ {1, . . . , m}. For each user, there is an edge to the n
slice nodes in which its packets are sent. As a result, each user node has degree n. However, the degree of a
slice node is potentially between 0 and Na. We recall that neighbours of a user node are chosen uniformly at
random among slice nodes. A slice node with degree 1 is called a singleton.
The SIC decoding process discussed above can be expressed in terms of the decoding graph as follows: At
each step q, we find a singleton, and remove from the graph the singleton along with the edge connected to it.
We then consider the user connected to the singleton. If the corresponding user node has degree n− k, that
user node together with all connecting edges are removed. We continue until no singleton is found. At each
step, by the graph resulted from the previous step is called residual graph. Figure 1a shows the initial time
slice allocation while Figures 1a, 1b, and 1c illustrate the SIC process for a CSA realization with 4 users and
parameters n = 3, k = 2, and m = 8. Figures 1b and 1c represent the residual graphs at iterations q = 0 and
q = 4. As it can be seen, the initial graph K0 includes 4 singletons namely, slice nodes 2, 4, 7, and 8. The slice
nodes 2, 4, 7, will be removed in iterations q = 0, 1, 2, respectively. In iteration q = 3, we first remove the
slice node 8. At this point, 2 out 3 slice nodes connecting to user node 4 are decoded. This means user node
4 is resolved and it must be removed from the graph. This makes a new singleton i.e., slice node 6 and the
process goes to iteration 4. We refer to this SIC decoding process as the peeling process. Algorithm 1 presents
the pseudo code of the peeling process.

2.1 Notation and Definitions

Throughout this paper, the set of edges of a graph K is denoted by E(K), the number of elements of a set S
is denoted by |S|, and the expectation of a random variable X is denoted by E[X]. Consider a continuous time
t. Suppose step q of the decoding process, where q ∈ {0, 1, 2, . . . }, happens at t = q∆t where ∆t = 1/E
and E = nNa is the total number of edges in K. Also, let t f be the time at which decoding stops. Let Kt
be the residual graph at time t and UNt and SNt be the corresponding sets of user nodes and slice nodes of
Kt. Note that K0 = K, UN0 = UN, SN0 = SN and thus |UN0| = Na and |SN0| = m = kM. Now for
i ∈ {n− k + 1, . . . , n} and t ∈ [0, t f] define

Li(t) := E
[
|{e ∈ E(Kt) : e is connected to u ∈ UNt with deg(u) = i}|

]
,

4

Algorithm 1 Peeling process for CSA(n, k, Na, M)
Input: The bipartite graph K with two sets of nodes UN and SN connected by CSA(n, k, Na, M) protocol.
Output: B-error ∈ {0, 1}.

1: top:
2: if UN = ∅ then
3: B error = 0
4: Break
5: end if
6: if ∃s ∈ SN : deg(s) = 1 then
7: N(s) := the neighbour of s in UN
8: Remove the node s and the edge connected to s
9: if deg(N(s)) = n− k then

10: remove N(s) and the edges connected to N(s)
11: end if
12: goto top
13: end if
14: B-error =1

li(t) :=
Li(t)

E
= Li(t)∆t,

λi := li(t)
∣∣∣∣
t=0

.

Similarly for j ∈ {0, . . . , Na} and t ∈ [0, t f] define

Rj(t) := E
[
|{e ∈ E(Kt) : e is connected to s ∈ SNt where deg(s) = j}|

]
, (1)

rj(t) :=
Rj(t)

E
= Rj(t)∆t, (2)

ρj := rj(t)
∣∣∣∣
t=0

, (3)

Pj := Pr {a random s ∈ SNa satisfies deg(s) = j} . (4)

Also define

e(t) :=
E [|E(Kt)|]

E
. (5)

Note that

e(t) =
Na

∑
i=1

li(t) =
m

∑
j=1

rj(t), (6)

ρj =
jPj

∑j jPj
. (7)

3 Asymptotic Analysis

3.1 Differential Equations for Density Evolution

Consider the CSA(n, k, Na, M) model defined in Section 2. By applying the peeling process to the elements
of this model, as Na increases, the sequence of residual graphs closely follows a “typical path”. We will de-

5

scribe this path, characterize the typical deviation from it, and derive a set of differential equations describing
this path. Note that the peeling process can be viewed as a stochastic process with small increments, i.e., at
each step a singleton is chosen and is peeled from the graph along with the connecting user node. Hence, by
using standard arguments based the Wormald’s method [20,21], one can show that for large values of Na, the
behavior of individual instances follow a “typical behavior” or an “expected behavior” with high probability
and such typical behavior can be expressed as the solution of a differential equation (see [22], [23, Appendix
C]).

We now construct a set of coupled differential equations describing the typical behavior discussed above.
We call the sequence

{
li(t), rj(t)

}
i,j, the degree distribution of residual graph at time t. The degree distribution

of the residual graph constitutes a sufficient statistic for tracking the distribution of the residual graph. This is
because given this degree distribution all residual graphs which are compatible with this degree distribution are
equally likely. Therefore, in order to analyze the behavior of the decoder, it suffices to analyze the evolution
of this degree distribution. In order to obtain differential equations describing the dynamic of li(t) and rj(t),
our first step is to compute the change in Li(t) at each step of the peeling process i.e., computing Li(t + ∆t)−
Li(t). As defined earlier, Li(t) denotes the expected number of edges which are connected to degree i user
nodes at time t. Consider a step of peeling process at time t. First, a singleton (a degree 1 slice node) s ∈ SNt
is chosen arbitrarily. Let e be the connecting edge. Then, s and e are removed. By this removal, a change
in Li(t) happens only when e is connected to a degree i or i + 1 user node. With probability li(t)/e(t), e is
connected to a degree i user node u. In this case, by removing e, u is not of degree i anymore and thus Li(t)
will be decreased by i units. Also, with probability li+1(t)/e(t), e is connected to a degree i + 1 user node u′.
In this case, by removing e, u′ becomes a degree i node and thus Li(t) will be increased by i units. Note that
the latter case is valid when i < n since i + 1 must exist. Thus, based on this argument, we have the following
equations for case n− k + 1 ≤ i ≤ n− 1 and case i = n.

Li(t + ∆t)− Li(t) = −i · li(t)
e(t)

+ i · li+1(t)
e(t)

, i ∈ {n− k + 1, . . . , n− 1} ,

Ln(t + ∆t)− Ln(t) = −n · ln(t)
e(t)

.

Replacing li(t) = Li(t)∆t results in
li(t + ∆t)− li(t)

∆t
= −i · li(t)

e(t)
+ i · li+1(t)

e(t)
, i ∈ {n− k + 1, . . . , n− 1} ,

ln(t + ∆t)− ln(t)
∆t

= −n · ln(t)
e(t)

.
(8)

Now, as Na → ∞, we have E = nNa → ∞ and as a result, ∆t = 1/E→ 0. Therefore, (8) becomes
dli(t)

dt
= i · li+1(t)− li(t)

e(t)
, i ∈ {n− k + 1, . . . , n− 1} ,

dln(t)
dt

= −n · ln(t)
e(t)

.
(9)

The approach for deriving similar equations for rj is quite the same but needs further explanation. Consider
the decoding step happening at time t. Define a(t) to be the expected number of the edges that are removed
in this step. Let s ∈ SNt be the singleton that is removed and e be the connecting edge. With probability
ln−k+1(t)/e(t), e is connected to a degree n− k + 1 user node u. In this case, after peeling s and e, u becomes
of degree n− k. This results in removal of u which leads to removing n− k other edges (connected to u) and

6

in total n− k + 1 edges will be removed in this step. Otherwise, if e is not connected to a degree n− k + 1
user node, only e will be removed and decoding process goes to the next step. Thus, we have

a(t) = (n− k + 1) · ln−k+1(t)
e(t)

+
n

∑
i=n−k+2

1 · li(t)
e(t)

. (10)

Note that the expected number of deleted edges other than e, is a(t)− 1. Now, consider one of these deleted
edges, namely, e′. Then with probability rj(t)/e(t), e′ is connected to a degree j slice node. In this case, Rj(t)
will be decreased by j units. Also, with probability rj+1(t)/e(t), e′ is connected to a degree j + 1 slice node
and in this case, Rj will be increased by j units. This is true for any such e′ and expected number of them is
a(t)− 1. Here, it is important to note that for j, the degree of a slice node, we have j ∈ {0, . . . , Na}. Thus, the
above argument is valid when j < Na since j + 1 must exist. This argument results in the following equations:

Rj(t + ∆t)− Rj(t) =
(
−j ·

rj(t)
e(t)

+ j ·
rj+1(t)

e(t)

)
· (a(t)− 1) , j ∈ {2, . . . , Na − 1} ,

RNa(t + ∆t)− RNa(t) = −Na ·
rNa(t)
e(t)

· (a(t)− 1) .

Substituting rj(t) = Rj(t)∆t, gives
rj(t + ∆t)− rj(t)

∆t
=

(
−j ·

rj(t)
e(t)

+ j ·
rj+1(t)

e(t)

)
· (a(t)− 1) , j ∈ {2, . . . , Na − 1} ,

rNa(t + ∆t)− rNa(t)
∆t

= −Na ·
rNa(t)
e(t)

· (a(t)− 1) .
(11)

Now, as Na → ∞, we have E = nNa → ∞ and as a result, ∆t = 1/E→ 0 and only the first equation in (11)
matters. Therefore, (11) becomes

drj(t)
dt

= j ·
(
rj+1(t)− rj(t)

)
· a(t)− 1

e(t)
, j ≥ 2. (12)

Moreover, using (6), for j = 1, we have

r1(t) = e(t)−∑
j≥2

rj(t). (13)

In order to solve (9) and (12) analytically, the following change of variable turns out to be useful since it
eliminates e(t):

t 7−→ x = exp
(∫ t

0

dτ

e(τ)

)
. (14)

As a result, for the initial point, we have
t = 0 7−→ x = 1.

Now, taking derivatives yields
dx
x

=
dt

e(t)
.

For simplicity, we consider this new variable x as “time”. By applying this change of variable to (9) and (12),
we have

dli(x)
dx

= i · li+1(x)− li(x)
x

, i ∈ {n− k + 1, . . . , n− 1} ,

dln(x)
dx

= −n · ln(x)
x

,
(15)

7

and
drj(x)

dx
= −j ·

(
rj+1(x)− rj(x)

)
· a(x)− 1

x
, j ≥ 2. (16)

Note that by using (13) and the change of variable t 7→ x described in (14), as Na → ∞, we have

e(x) =
n

∑
i=n−k+1

li(x) = ∑
j≥1

rj(x). (17)

As a result, we have
r1(x) = e(x)−∑

j≥2
rj(x). (18)

In order to solve these equations, we need to determine their initial conditions. Recall that we defined

λi = li(t = 0) = li(x = 1)

ρj = rj(t = 0) = rj(x = 1),

and that λi denotes the fraction of edges connected to a degree i user node in the initial graph K0. As we
discussed earlier, initially each user node has degree n which means

λi =

{
0, n− k + 1 ≤ i < n,
1, i = n.

(19)

Determining ρj needs further computations. We ignore empty time slices (corresponding to j = 0) and focus
on j ≥ 1. The following lemma gives ρj for j ≥ 1.
Lemma 1. Consider CSA(n, k, Na, M) and ρj as defined in (3). Suppose Na → ∞ and M→ ∞ with G = Na

M
to be a fixed constant. Then for j ≥ 1, we have

ρj =
1

(j− 1)!

(
G
R

)j−1

exp
(
−G

R

)
, (20)

where R = k/n.

Proof. See Appendix A.2.

The set of differential equations given by (15), (16), and, (18) together with their initial conditions given by
(19) and (20) characterize the evolution of degree distribution. In the rest of this manuscript, we refer to them
as density evolution. As we discussed earlier density evolution is statistically sufficient to analyze the peeling
process. Note that r1(x), starting from ρ1 = exp (−G/R) at x = 1, shows the fraction of singletons at time
x. Considering x f as the time at which decoding stops, we have r1(x f) = 0. Therefore, decoding is successful
if and only if the residual graph Kt f is empty or equivalently, e(x f) = 0. Otherwise, a B-error is declared.
Hence, evolution of r1(x) is critical to analyze the peeling process.

In order to find a closed form for r1(x), we need to analytically solve rj(x) for j ≥ 2 and then replace them
into (18). Solving rj(x) requires having a(x) which itself depends on li(x), i ∈ {n− k + 1, . . . , n}. Note
that (15) shows a finite sequence of recursive differential equations which goes backward. One challenge to
find an analytical solution here is that the length of this recursion varies with n. The other challenge is that
even if we knew li(x), i ∈ {n− k + 1, . . . , n} (and hence a(x)), the differential equations for rj(x) in (16)
form an infinite sequence of recursive differential equations which go backward. This means that each rj has
a coupled differential equation with the next element rj+1(x). At first glance, solving such a system seems
challenging even numerically because we do not have any initial differential equation to start with. This is

8

also the case in LDPC ensembles but the difference here is that unlike LDPC, guessing the solutions does not
seem straightforward which may reduce the chance for finding closed form solutions. We will address these
challenges in the next section. As we will see, using some tricks, both of these challenges will be resolved and
closed form solutions for li(x), rj(x), e(x) and most importantly, r1(x), will be found. Moreover, based on
these results, we also find an algebraic equation whose root is the maximum achievable channel load G∗. This
equation can be solved numerically and G∗ can be computed algebraically up to any desired precision. This
approach gives a precise analytic way of determining G∗.

3.2 Solving Density Evolution

In this section, we provide solutions for the density evolution discussed in the previous section i.e., the dif-
ferential equations (15), (16), and equation (18) with initial conditions given in (19) and (20). Solving these,
requires some intermediate steps. Our method for solving such a recursive sequence of coupled differential
equations, is first converting this sequence into a recursive sequence of numbers and then solving this sequence
of numbers, using some combinatorial tricks. We used this general method for guessing the solution of li and
rj. Note that providing the details of how the solutions are being guessed is unnecessary and it suffices to only
prove that these solutions satisfy the density evolution. All proofs are provided in Appendix.
Lemma 2. The finite recursive sequence of differential equations defined in (15) together with initial condi-
tions li(1) = λi, where λi is given by (19), result in the following recursive sequence of solutions:

li(x) =
i
xi

∫ x

1
yi−1li+1(y)dy, i ∈ {n− k + 1, . . . , n− 1} ,

ln(x) =
1
xn .

(21)

Proof. See Appendix A.1.

Theorem 1. The finite recursive sequence of functions given by (21), has the following solution:

li(x) =
n

∑
j=n−k+1

α
(i)
j

xj , i ∈ {n− k + 1, · · · , n} , (22)

where
{

α
(i)
j

}
i,j

, n − k + 1 ≤ i ≤ j ≤ n, is a finite 2-dimensional recursive sequence of integers which is

(uniquely) determined by the following equations:

α
(n)
n = 1

α
(i)
i =

n

∑
j=i+1

(−1)j−i+1
(

j− 1
i− 1

)
α
(j)
j , i ∈ {n− 1, n− 2, . . . , n− k + 1}

α
(i)
j = (−1)j−i

(
j− 1
i− 1

)
α
(j)
j , j ∈ {i + 1, · · · , n}

(23)

Proof. See Appendix A.1.

Remark 1. Note that the elements in the sequence
{

α
(i)
j

}
i,j

are uniquely determined by (23) as follows: From

the first equation, we have α
(n)
n = 1. Then second equation gives α

(n−1)
n−1 and then α

(n−2)
n−2 . Continue these

derivations until α
(1)
1 is obtained. Then all diagonal elements i.e., α

(j)
j are known. At this point, the third

equation directly relates all other elements to the diagonal elements.

9

Lemma 3. Consider e(x) as given in (17), then we have

e(x) =
n

∑
j=n−k+1

β j

xj , (24)

where β j is a finite sequence of integers defined as the following:

β j := α
(j)
j (−1)j

j

∑
i=n−k+1

(−1)i
(

j− 1
i− 1

)
, (25)

where α
(j)
j given by (23).

Proof. See Appendix A.2.

In order to find the solution of the infinite recursive sequence of differential equations described in (16), we
use a function λ(x). Let λ(x) be the function satisfying

λ′(x)
λ(x)

=
a(x)− 1

x
, λ(1) = 1, (26)

where a(x) is obtained from (10) by applying the change of variable (14).
Lemma 4. Consider λ(x) defined in (26), then we have

λ(x) = exp

(n− k)
∫ x

1

∑k−1
j=0 α

(n−k+1)
n−j yj

∑k−1
j=0 βn−jyj+1

dy

 , (27)

where α
(j)
j determined by (23) and β j defined as (25).

Proof. See Appendix A.2.

Lemma 5. The infinite recursive sequence of differential equations defined in (16) together with initial condi-
tions rj(1) = ρj where ρj is given by (20), result in the following infinite recursive sequence of solutions:

rj(x) =
1

λj(x)

(
j
∫ x

1
rj+1(y)λj(y)

λ′(y)
λ(y)

dy + ρj

)
, j ≥ 2, (28)

where λ(x) satisfies (26) and is computed in (27).

Proof. See Appendix A.2.

Theorem 2. The infinite recursive sequence of functions given by (28), has the following solution:

rj(x) =
1

(j− 1)!λj(x)

(
G
R

)j−1

exp
(
− G

Rλ(x)

)
, j ≥ 2. (29)

Moreover, this result, together with (18) and (25), imply

r1(x) =

[
n

∑
j=n−k+1

β j

xj

]
− 1

λ(x)

(
1− exp

(
− G

Rλ(x)

))
, (30)

where β j defined by (25) and λ(x) is given by (27).

10

Proof. See Appendix A.2.

Remark 2. Theorem 2 is one the main results of this paper. Indeed, (30) is the key component in analysis of
CSA(n, k, Na, M) ensembles which reveals the dynamic of the number of singletons throughout peeling pro-
cess. Moreover, as we will see in the next subsection, (30) makes it possible to compute G∗ algebraically and
directly from parameters of the system.

3.3 Finding Maximum Achievable Channel Load G∗

The dynamic of decoding process is strongly based on r1(x). The analytical solution of r1(x) in (30) shows
the dependency of r1(x) on G. For emphasizing on this dependency, we denote r1(x) by r1(x; G) whenever
needed. r1(x) represents the expected value of normalized number of singletons at time x through peeling
process. Suppose decoding stops at time x f . As discussed earlier, the decoding is successful if and only if the
residual graph at time x f i.e., Kx f is empty, otherwise, there are some unresolved user nodes left. Note that
regardless of success or failure of the decoding, r1(x f) = 0.
It is known that nature of CSA ensembles yields a thresholding effect on channel load in an analogy to the
thresholding effect on information rate of a communication system which leads to definition of capacity. In
other words, there exists a threshold G∗ such that if G < G∗, then the decoding succeeds with high probability
and if G > G∗, it fails with high probability. In terms of density evolution, G < G∗ if and only if Kx f is empty
with high probability.
A visualization for such a transition is illustrated in Figure 2. This figure shows three plots corresponding
to three different channel loads G1 < G∗ < G2. The plots visualize the appearance of typical shapes of
r1(x) in CSA ensembles. It can be seen that as G increases, r1(x; G) goes downward. Starting from a very
small channel load G1, where the decoding is expected to be successful, r1(x; G1) lies above the x-axis. As G
increases, r1(x; G) goes downward all the way until it becomes tangent to x-axis. Let x∗ be the tangent point,
then this means that decoding stops at r1(x∗) = 0 and because this happens at very early stages (corresponding
to converted time x), this is the moment that decoding fails. Let G∗ be the corresponding channel load at this
moment. Keeping increasing G, results in r1(x; G) to further going down and thus the remaining in the state of
decoding failure. Note that r1(x∗; G∗) = 0. This equation does not distinguish between x∗ and x f and hence
is not enough for computing G∗. A sharper argument for finding G∗ is as follows: Start increasing G and
plotting r1(x) for each G as illustrated for three values in Figure 2. Consider r1(x; G1) for some G1 < G∗ and
fix a point x2 ∈ (0, x f). As G gets larger, there exists a moment (i.e., some G2) where r1(x; G2) hits x-axis
at x = x2 as shown in Figure 2. Define function G̃(x) that for a given x, returns such G corresponding to the
hitting point. Therefore, for x = x2, we have G̃(x2) = G2. In other words, for each x, we define G̃(x) as the
unique value satisfying

r1
(
x; G̃(x)

)
= 0.

Computing G̃(x) using (30) imply

r1
(
x; G̃(x)

)
= e(x)− 1

λ(x)

(
1− exp

(
− G̃(x)

Rλ(x)

))
= 0,

⇔ G̃(x) = −Rλ(x) log (1− e(x)λ(x)) . (31)

Now, we argue that x∗ is a local minimizer for G̃(x). Consider a small neighborhood N(x∗) around x∗ in
Figure 2. In this neighborhood, by increasing G, x∗ is the first point at which r1 hits the x-axis by definition
of x∗. This means ∀x ∈ N(x∗) : G̃(x) ≥ G̃(x∗). Thus, x∗ is local minimizer of G̃(x). Also, analytical
expressions of e(x) and λ(x), given in (24) and (27), imply that e(x) and λ(x) are differentiable and as a
result G̃(x) is differentiable. Hence, this argument results in

dG̃(x)
dx

∣∣∣∣
x=x∗

= 0, (32)

11

x

0

r
1
(x)

G
1

G
*

G
2

x
* x

2

Figure 2: This figure illustrates the argument of derivation of x∗ and G∗. Values of G satisfy G1 < G∗ < G2
and we have G̃(x2) = G2, G̃(x∗) = G∗.

and we know that
G∗ = G̃(x∗). (33)

Thus, in order to obtain G∗, we first find x∗ by solving (32) and then we replace x∗ into (33). Since we have
the analytical form of e(x) and λ(x), derivative of G̃ in (31) can be computed analytically. This results in an
algebraic equation whose root is G∗. Theorem 3 finds this equation.
Theorem 3. Consider ln−k+1(x), e(x), λ(x), and G̃(x) which are given by (22), (24), (27), and (31), respec-
tively, and define h(x) = e(x)λ(x). Then the maximum achievable channel load G∗ satisfies G∗ = G̃(x∗),
where x∗ is the solution of the following algebraic equation:

log(1− h(x)) =
1− h(x)

h(x)

(
1 +

xe′(x)
(n− k)ln−k+1(x)

)
. (34)

Proof. See Appendix A.3.

Note that alculation of the root of the algebraic equation (34) can be easily implemented by a single MAT-
LAB command. Furthermore, in Section 5, comparing computed values of G∗ from (34) to simulated values
of G∗ from non-asymptotic realizations of CSA shows that (34) provides an extremely accurate prediction of
G∗. Indeed, they show an accuracy more than 99%.

4 Non-asymptotic Analysis: Probability of Error

Consider the definition of B-error defined in Section 2. Let PB(Na, G) denote the probability of occurring B-
error in the CSA(n, k, Na, M) scheme under the discussion with Na active users and M = Na/G time slots. As
we discussed in the previous sections, it turns out that asymptotically i.e., as Na → ∞, PB(Na, G) encounters
a thresholding effect in terms of the channel load G. In other words, there is a threshold G∗ that if G > G∗,
then PB(Na, G) → 1 and if G < G∗, PB(Na, G) → 0. In the non-asymptotic case, however, this transition of
PB from 0 to 1 is not sharp and forms a smooth curve in the region where values of G are less than and close
enough to the threshold G∗. This region is called the waterfall region. The behavior of PB in the waterfall

12

region turns out to be governed by the so-called scaling law. Results for the scaling law from statistical physics
[24] suggest that there exist a non-negative constant µ and a non-negative function f such that the smooth
transition in non-asymptotic case is expected to be governed as follows:

lim
Na→∞

s.t. N1/µ
a (G∗−G)=z

PB(Na, G) = f (z).

Inspired by the general scaling law, [18] analyzed the non-asymptotic behavior of LDPC ensembles. In analogy
to that analysis, we will have the following formula for our setting:

PB(Na, G) = Q
(√

Na

α

(
G∗ − βN−2/3

a − G
))

. (35)

where Q(.) is the tail probability of standard normal distribution and the scaling parameters α and β will be
obtained later in this section based on the asymptotic analysis. Note that in [18], the effect of the scaling
parameter β has been proved numerically and analytically has been left as a conjecture.
Our approach for derivation of α and β will be generally based on [18]. Let d = k + 1 and define the (d + 1)-
dimensional vector z = (z0, z1, · · · , zd) = (r1, r2, ln−k+1, · · · , ln). Note that rj(x) is related to two different
notions, one is the number of edges connected to degree j slice nodes at time x and the other is the number
of degree j slice nodes at time x. We refer to these two related values as corresponding edge-based and node-
base quantities of rj, respectively. We exploit similar definitions for li(x). Now define δ(zizj)(x) to be the
normalized covariance between corresponding node-base quantities of zi and zj at time x. The analysis of
finite dimensional Markov processes over z then leads to the following set of (d+1

2)+ d+ 1 coupled differential
equations for δ(zizj), where i, j ∈ {0, · · · , d} , i ≤ j:

dδ(zizj)(x)
dx

=
e(x)

x

[
f̂ (zizj)(x)

n
+

d

∑
k=0

δ(zizk)(x)
∂ f̂ (zj)(x)

∂zk
+

∂ f̂ (zi)(x)
∂zk

δ(zkzj)(x)

]
, (36)

where f̂ (zi)(x) represents the expected change of the corresponding edge-based quantity of zi and f̂ (zizj)(x)
represents the covariance between the corresponding edge-based quantities of zi and zj at time x. The functions
f̂ (zi) and f̂ (zizj) are generally called local drifts and local covariances and we refer to the differential system
(36) as covariance evolution. Note that (36) is obtained after applying the change of variable in (14). In order
to solve covariance evolution, we need to first derive local drifts and local covariances for the formulation of
CSA that we discussed in Section 2. The following theorem computes these values:
Theorem 4. The local drifts and local covariances corresponding to the CSA scheme defined in Section 2,
satisfy

f̂ (r1)(x) = (n− k)
ln−k+1(x)

e2(x)
(r2(x)− r1(x))− 1,

f̂ (r2)(x) = −2(n− k)
ln−k+1(x)

e2(x)
r2(x),

f̂ (li)(x) =
i

e(x)
(li+1(x)− li(x)), i ∈ {n− k + 1, . . . , n} ,

f̂ (ln)(x) = −n
ln(x)
e(x)

,

f̂ (r1r1)(x) = (n− k)
ln−k+1(x)

e3(x)
(
(n− k− 1)(r1(x)− r2(x))2 + (3r1(x)− r2(x))e(x)

)
+ 1−

(
f̂ (r1)(x)

)2
,

f̂ (r1r2)(x) = 2(n− k)(n− k− 1)
ln−k+1(x)

e3(x)
r2(x) (r1(x)− r2(x))− f̂ (r1)(x) f̂ (r2)(x),

13

f̂ (r1ln−k+1)(x) = −n− k + 1
e(x)

[ln−k+1(x)((n− k)(r2(x)− r1(x))− e(x)) + e(x)ln−k+2(x)]− f̂ (r1)(x) f̂ (ln−k+1)(x),

f̂ (r1li)(x) = − i
e(x)

(li+1(x)− li(x))− f̂ (r1)(x) f̂ (li)(x), i ∈ {n− k + 2, . . . , n− 1} ,

f̂ (r1ln)(x) =
nln(x)
e(x)

− f̂ (r1)(x) f̂ (ln)(x),

f̂ (r2r2)(x) = 4(n− k)
ln−k+1(x)

e3(x)
r2(x) (e(x) + (n− k− 1)r2(x))−

(
f̂ (r2)(x)

)2
,

f̂ (r2ln−k+1)(x) = 2(n− k)(n− k + 1)
ln−k+1(x)

e2(x)
r2(x)− f̂ (r2)(x) f̂ (ln−k+1)(x),

f̂ (r2li)(x) = − f̂ (r2)(x) f̂ (li)(x), i ∈ {n− k + 2, . . . , n} ,

f̂ (li li)(x) =
i2

e(x)
(li(x) + li+1(x))−

(
f̂ (li)(x)

)2
, i ∈ {n− k + 1, . . . , n− 1} ,

f̂ (li li+1)(x) = −i(i + 1)
li+1(x)

e(x)
− f̂ (li)(x) f̂ (li+1)(x), i ∈ {n− k + 1, . . . , n− 1} ,

f̂ (li lj)(x) = − f̂ (li)(x) f̂ (lj)(x), i ∈ {n− k + 1, . . . , n− 2} , j > i + 1,

f̂ (ln ln) = n2 ln(x)
e(x)

−
(

f̂ (ln)(x)
)2

,

where the functions li(x), rj(x), and e(x) are from Theorem 1, Theorem 2, and Lemma 3, respectively.

Proof. See AppendixA.4.

In order to solve the covariance evolution in (36), we also need to compute the initial conditions of δzizj(x).
Note that due to the change of variable (14), the initial point is x = 1. The following lemma obtains these
quantities:
Lemma 6. The initial conditions for the covariance evolution (36) are

δ(zizj)(1) = 0, if i /∈ {0, 1} or j /∈ {0, 1} ,

δ(r1r1)(1) = nρ1(1− ρ1),

δ(r2r2)(1) = nρ2(1− ρ2),

δ(r1r2)(1) = −nρ1ρ2,

where the values of ρj are given as (20).

Proof. See AppendixA.4.

In order to solve the covariance evolution (36), one needs to first compute local drifts and local covariances
from Theorem 4 and intial conditions from Lemma 6. Solving covariance evolution reveals the functions δ(zizj)

for all i, j including δ(r1r1). Using this result together with the components computed in Theorem 4, the scaling
parameters α and β can be calculated as follows:

α =−

√
δ(r1r1)(x)

n

(
∂r1(x; G)

∂G

)−1 ∣∣∣∣
x=x∗,G=G∗

,

β =−
(

f̂ (r1r1)(x)
n

)2/3 [d

∑
k=1

∂ f̂ (r1)(x)
∂zk

f̂ (zk)(x)
]−1/3 (

∂r1(x; G)

∂G

)−1 ∣∣∣∣
x=x∗,G=G∗

,

(37)

14

where r1(x; G) is given as (30). Note that the covariance evolution needs to be computed numerically to obtain
α, however, β can be directly achieved from the values in Theorem 4. Furthermore, the derivative of r1(x; G)
can be taken analytically from (30). In the next section, we provide simulation results in comparison to our
asymptotic and non-asymptotic predictions.

5 Simulation Results

In this section, we will compare our predictions of maximum achievable channel load G∗ and probability of
B-error PB with the outcomes of simulations.
Table 1, shows computation results of G∗ from Theorem 3 versus values of G∗ which are obtained from simu-
lating the corresponding CSA scheme under various settings of n and k. These simulations are obtained with
Na = 20000 and by averaging over 2000 trials. This table actually reveals that true optimal channel load G∗

can be approximated by Theorem 3 with a very high precision i.e., an accuracy more than 99%. Moreover,
note that the implementation of (34) is also straightforward since e′(x) can be determined analytically using
(3) and as a result, (34) is a simple algebraic equation which can be solved simply by a single MATLAB com-
mend.
In Figure 3, we compare our non-asymptotic prediction from (35) to simulation results in the waterfall region.
All plots sharing the same setting where n = 5 and k = 3 with solid lines corresponding to the computa-
tion of (35) using the scaling parameters α = 0.42362 and β = 0.8629 obtained from (37) and dashed lines
corresponding to simulations. The curves represent the plots for Na = 1000, 2000, 4000, 8000, 16000, 32000
with the most left curve corresponding to Na = 1000 and the most right curve corresponding to Na = 32000.
The curves in between, correspond to the other values of Na in an order. The results from simulations (i.e.,
dashed lines) are acquired by averaging over 200000 trials. Moreover, the vertical dashed line accord with
G∗ = 0.5840 which is coming from (34). Several observations can be taken from Figure 3. First, noting that
the region for G is very small and the curves are plotted in a semi-log configuration, it can be seen that PB from
(35) accurately predicts the actual probability or B-error up to a very high precision. Second, it shows that as
Na increases, the non-asymptotic prediction from (35) and the true probability of B-error become closer and
for Na = 32000, they are almost coincided. In addition to being closer, they also converge to the vertical line
as expected. Third, it can be seen that the thresholding effect is actually happening for the CSA scheme de-
fined in Section 2. Forth, as it can be seen in the figure, the G∗ computed from (34) is well approximating the
true value of the thresholding effect.
Figure 4 illustrates the dynamic of the solution of density evolution for r1(x) as the values of G are increasing to
reach G∗. The curves of r1(x) in Figure 4 are plotted based on (30) for G = 0.45, 0.55, 0.65 and G∗ = 0.7253.
From (34), the stopping time of the decoding process when G = G∗, is acquired as x∗ = 1.2822. Replacing
this x∗ in (33), results in G∗ = 0.7253.

A Appendix: Proofs

A.1 Proofs for Evolution of User Nodes

Proof of Lemma 2. First, from (15), for ln(x) we have

dln(x)
dx

= −nln(x)
x
⇒ log(ln(x)) = −n log x + c⇒ ln(x) = ecx−n.

Note that ec = ln(1) = λn = 1. Thus,

ln(x) =
1
xn .

15

Table 1: Computed G∗ versus simulated G∗ under Na = 20000 by averaging over 2000 trials.

Parameters Simulated G∗ Computed G∗ from Theorem 3
n = 5, k =2 0.737 0.7388
n = 5, k =3 0.582 0.5840
n = 6, k =2 0.724 0.7253
n = 6, k =3 0.669 0.6699
n = 8, k =2 0.659 0.6602
n = 8, k =5 0.545 0.5458
n = 12, k =4 0.636 0.6372
n = 12, k =10 0.266 0.2664
n = 25, k =4 0.459 0.4595

0.545 0.55 0.555 0.56 0.565 0.57 0.575 0.58 0.585 0.59

G

10
-2

10
-1

10
0

P
B

Figure 3: The probability of B-error PB in terms of G for Na = 1000, 2000, 4000, 8000, 16000, 32000. All
curves are obtained using the parameters n = 5, k = 3. The solid and dashed lines correspond to results of
computations and simulations respectively. The vertical dashed line shows G∗ = 0.5840. Furthermore, the
scaling parameters are α = 0.42362 and β = 0.8629.

Now, for i ∈ {n− k + 1, . . . , n− 1}, we have

dli(x)
dx

= i · li+1(x)− li(x)
x

⇒ xi
(

dli(x)
dx

+
ili(x)

x

)
= ixi−1li+1(x)

⇒ (xili(x))′ = ixi−1li+1(x)

⇒ xili(x) =
∫ x

1
iyi−1li+1(y)dy + ci

Also for i ∈ {n− k + 1, . . . , n− 1}, ci = li(1) = λi = 0. Hence,

li(x) =
i
xi

∫ x

1
yi−1li+1(y)dy.

16

1 1.5 2 2.5 3 3.5 4

x

0

0.05

0.1

0.15

0.2

0.25

0.3

r 1
(x

)

G=0.45

G=0.55

G=0.65

G
*
=0.7253

Figure 4: Illustrating the behavior of the solution of the density evolution for r1 with respect to increasing G
under the setting n = 6, k = 2.

Proof of Theorem 1. We prove the statement using backward induction. If i = n, from (21), we have ln(x) =
1/xn, which gives α

(n)
n = 1. Now, for i ∈ {n− k + 1, · · · , n− 1}, suppose li+1(x) = ∑n

j=1 α
(i+1)
j /xj for

some given numbers α
(i+1)
j . Then, replacing it into (21) implies

li(x) =
i
xi

∫ x

1
yi−1

n

∑
j=i+1

α
(i+1)
j

yj dy

=
i
xi

n

∑
j=i+1

α
(i+1)
j

∫ x

1
yi−j−1dy

=
i
xi

n

∑
j=i+1

α
(i+1)
j

(
xi−j

i− j
− 1

i− j

)

=

 n

∑
j=i+1

iα(i+1)
j

j− i

 1
xi +

n

∑
j=i+1

−iα(i+1)
j

j− i
· 1

xj .

Now, by defining
α
(i)
i :=

n

∑
j=i+1

iα(i+1)
j

j− i
,

α
(i)
j :=

−iα(i+1)
j

j− i
, j ∈ {i + 1, . . . , n} ,

(38)

it suffices to prove that (38) is equivalent to (21). From (38), for j ∈ {i + 1, · · · , n} and i ∈ {n− k + 1, · · · , n− 1},
we have

α
(i)
j =

−iα(i+1)
j

j− i
=

(−1)2i(i + 1)
(j− i)(j− i− 1)

α
(i+2)
j = · · · = (−1)j−ii(i + 1) · · · (j− 1)

(j− i)(j− i− 1) · · · 1 α
(j)
j = (−1)j−i

(
j− 1
i− 1

)
α
(j)
j .

17

Thus, (38) is equivalent to
α
(i)
i =

n

∑
j=i+1

iα(i+1)
j

j− i
, i ∈ {n− k + 1, · · · , n− 1} ,

α
(i)
j = (−1)j−i

(
j− 1
i− 1

)
α
(j)
j , j ∈ {i + 1, · · · , n} .

(39)

Now, from (39), we have

α
(i)
i =

n

∑
j=i+1

iα(i+1)
j

j− i

=
n

∑
j=i+1

i
j− i

(−1)j−i−1
(

j− 1
i

)
α
(j)
j

=
n

∑
j=i+1

(−1)j−i−1
(

j− 1
i− 1

)
α
(j)
j ,

which implies that (39) is equivalent to
α
(i)
i =

n

∑
j=i+1

(−1)j−i+1
(

j− 1
i− 1

)
α
(j)
j , i ∈ {n− k + 1, · · · , n− 1} ,

α
(i)
j = (−1)j−i

(
j− 1
i− 1

)
α
(j)
j , j ∈ {i + 1, · · · , n} .

Also, as discussed earlier α
(n)
n = 1. Hence, (38) is equivalent to (21).

A.2 Proofs for Evolution of Slice Nodes

Proof of Lemma 1. Note that in K0, each user node is connected to n slice nodes which are chosen uniformly
at random. When Na → ∞, this choosing scheme is equivalent to the situation where each edge is choosing
a slice node uniformly at random i.e., with probability 1/kM. Moreover, in this way, possible range of j will
become j ∈ {0, . . . , nNa} but as Na → ∞, these two schemes are equivalent. Consider Pj as defined in (4).
As stated earlier in problem statement, we remove all zero degree slice nodes prior to decoding. Let P′j defined
in a same way as Pj under consideration of these zero degree slice nodes. Then, for j ∈ {0, . . . , nNa}, we can
write

P′j =
(

nNa

j

)(
1

kM

)j (
1− 1

kM

)nNa−j

.

Now, in order to compute Pj, we must disregard zero degree slice nodes which results in

Pj =
P′j

1− P′0
.

18

We have Na
M = G, where G is a given constant and thus, as Na → ∞, we have M → ∞. Also note that

nNa
kM = G

R . Therefore, as Na → ∞, we have

P′j = lim
Na→∞

(
nNa

j

)(
1

kM

)j (
1− 1

kM

)nNa−j

=
1
j

(
G
R

)j

e−
G
R .

As a result, for j = 0

P′0 = e−
G
R .

Therefore,

Pj =
1
j

(
G
R

)j e−
G
R

1− e−
G
R

.

Hence, from (7), we have

ρj =
jPj

∑j jPj
=

1
(j− 1)!

(
G
R

)j−1

e−
G
R .

Proof of Lemma 3. Using (17) and (22), we can write

e(x) =
n

∑
i=n−k+1

li(x)

=
n

∑
i=n−k+1

n

∑
j=i

α
(i)
j

xj

=
n

∑
i=n−k+1

n

∑
j=i

(−1)j−i

xj

(
j− 1
i− 1

)
α
(j)
j

=
n

∑
j=n−k+1

j

∑
i=n−k+1

(−1)j−i

xj

(
j− 1
i− 1

)
α
(j)
j

=
n

∑
j=n−k+1

(−1)j

xj α
(j)
j

j

∑
i=n−k+1

(−1)i
(

j− 1
i− 1

)

=
n

∑
j=n−k+1

β j

xj .

Proof of Lemma 4. Using (10), the change of variable described in (14), and (17) imply

a(x)− 1
x

=
1
x

(
(n− k + 1)ln−k+1(x) + ∑n

i=n−k+2 li(x)
e(x)

− 1
)
=

(n− k)ln−k+1(x)
xe(x)

. (40)

Now, replacing values from (22) and (24) results in

a(x)− 1
x

= (n− k)
∑n

j=n−k+1 x−jα
(n−k+1)
j

x ∑n
j=n−k+1 x−jβ j

= (n− k)
∑k−1

j=0 α
(n−k+1)
n−j xj

∑k−1
j=0 βn−jxj+1

.

19

Note that from (26), we can simply conclude that

a(x)− 1
x

=
λ′(x)
λ(x)

⇒ log(λ(x)) =
∫ x

1

a(y)− 1
y

dy + c

⇒ λ(x) = ec exp
(∫ x

1

a(y)− 1
y

dy
)

.

Also, ec = λ(1) = 1. Hence,

λ(x) = exp

(n− k)
∫ x

1

∑k−1
j=0 α

(n−k+1)
n−j yj

∑k−1
j=0 βn−jyj+1

dy

 .

Proof of Lemma 5. Replacing (26) into (16) gives

drj(x)
dx

= j(rj+1(x)− rj(x))
λ′(x)
λ(x)

, j ≥ 2.

Multiply both sides by λj(x) to get

λj(x)
drj(x)

dx
+ jλj(x)rj(x)

λ′(x)
λ(x)

= jrj+1(x)λj(x)
λ′(x)
λ(x)

⇒ d
dx

(
λj(x)rj(x)

)
= jrj+1(x)λj(x)

λ′(x)
λ(x)

.

Taking integral from both sides gives

rj(x) =
1

λj(x)

(
j
∫ x

1
ri+1(y)λj(y)

λ′(y)
λ(y)

dy + cj

)
.

Note that cj = rj(1) · λj(1) = ρj · 1 = ρj. Hence

rj(x) =
1

λj(x)

(
j
∫ x

1
rj+1(y)λj(y)

λ′(y)
λ(y)

dy + ρj

)
.

Proof of Theorem 2. For j ≥ 2, it suffices to prove that rj(x) given by (29) satisfies (28). By replacing
rj+1(x) from (29) into the right hand side of (28) and using (20), we get rj(x) defined in (29), as follows:

1
λj(x)

(
j
∫ x

1
rj+1(y)λj(y)

λ′(y)
λ(y)

dy + ρj

)
=

1
λj(x)

(
j
∫ x

1

1
j!λj+1(y)

(
G
R

)j

exp
(
− G

Rλ(y)

)
λj(y)

λ′(y)
λ(y)

dy + ρj

)

=
1

λj(x)

(
1

(j− 1)!

(
G
R

)j ∫ x

1
exp

(
− G

Rλ(y)

)
λ′(y)
λ2(y)

dy + ρj

)

=
1

λj(x)

(
1

(j− 1)!

(
G
R

)j−1 [
exp

(
− G

Rλ(x)

)
− exp

(
− G

Rλ(1)

)]
+ ρj

)

=
1

λj(x)

(
1

(j− 1)!

(
G
R

)j−1

exp
(
− G

Rλ(x)

)
− ρj + ρj

)
= rj(x),

20

Therefore, for j ≥ 2, rj(x) given by (29) satisfies (28). Now, for r1(x), substituting (29) into (18) implies

r1(x) = e(x)−∑
j≥2

rj(x)

= e(x)−∑
j≥2

1
λj(x)

(
1

(j− 1)!

(
G
R

)j−1

exp
(
− G

Rλ(x)

))

= e(x)− 1
λ(x)

exp
(
− G

Rλ(x)

)
∑
j≥2

1
(j− 1)!

(
G

Rλ(x)

)j−1

= e(x)− 1
λ(x)

exp
(
− G

Rλ(x)

)(
exp

(
G

Rλ(x)

)
− 1
)

= e(x)− 1
λ(x)

(
1− exp

(
− G

Rλ(x)

))
.

Then, replacing e(x) from (24) results in

r1(x) =

[
n

∑
j=n−k+1

β j

xj

]
− 1

λ(x)

(
1− exp

(
− G

Rλ(x)

))

A.3 Proofs for G∗

Proof of Theorem 3. As discussed earlier in the paper, we have

dG̃(x)
dx

∣∣∣∣
x=x∗

= 0.

Taking derivative of G̃ gives

dG̃(x)
dx

= −R
[

λ′(x) log(1− e(x)λ(x))− λ(x)
e′(x)λ(x) + e(x)λ′(x)

1− e(x)λ(x)

]
. (41)

Now, (26) and (40) together imply

λ′(x)
λ(x)

=
a(x)− 1

x
=

(n− k)ln−k+1(x)
xe(x)

.

Therefore,

λ′(x) = λ(x)
(n− k)ln−k+1(x)

xe(x)
. (42)

Replacing (42) into (41) results in

dG̃(x)
dx

= −Rλ2(x)x
[
(n− k)ln−k+1(x)

h(x)
log(1− h(x))− xe′(x) + (n− k)ln−k+1(x)

1− h(x)

]
,

where h(x) = e(x)λ(x). Now, noting that we have x > 0 and λ(x) > 0, the following can be concluded:

dG̃(x)
dx

∣∣∣∣
x=x∗

= 0 ⇒ log(1− h(x∗)) =
1− h(x∗)

h(x∗)

(
1 +

x∗e′(x∗)
(n− k)ln−k+1(x∗)

)
.

21

A.4 Proofs for Scaling Law

Proof of Theorem 4. For notation simplicity, we omit the argument x from all functions, particularly, we con-
sidered e = e(x). Note that local drift f̂ (zi) represents the expected change of the corresponding edge-based
quantity of zi and local covariance f̂ (zizj) represents the covariance between the corresponding edge-based
quantities of zi and zj. Obtaining these local drift and local covariance only need some straightforward prob-
abilistic evaluations of the problem. We include all the computations without detail explanations. We also
include computations of the derivatives of the resulted values which are needed to form (36) as well as (37).
First, for i ∈ {n− k + 1, . . . , n}, define

wi(u1, u2) =

(
i− 1

u1 − 1, u2

)
qu1−1

1 q2(1− q1 − q2)
i−u1−u2 ,

where we used the following notation: (
m
r, s

)
:=

m!
r!s!

.

Note that

∑
u1,u2

wi(u1, u2) = ∑
u1,u2

(
i− 1

u1 − 1, u2

)
qu1−1

1 qu2
2 (1− q1 − q2)

i−u1−u2 = 1.

Also define

Wi(x, y) := ∑
u1,u2

wi(u1, u2)xu1 yu2 .

Then we can write

Wi(x, y) = x ∑
u1,u2

(
i− 1

u1 − 1, u2

)
(xq1)

u1−1(yq2)
u2(1− q1 − q2)

i−u1−u2

= x(xq1 + yq2 + 1− q1 − q2)
i−1.

Now, consider the following computations:

∑
u1,u2

wi(u1, u2)u1 =
∂Wi(x, y)

∂x

∣∣∣∣
x=y=1

= (xq1 + yq2 + 1− q1 − q2)
i−1 + xq1(i− 1)(xq1 + yq2 + 1− q1 − q2)

i−2
∣∣∣∣

x=y=1

= 1 + q1(i− 1),

∑
u1,u2

wi(u1, u2)u2 =
∂Wi(x, y)

∂y

∣∣∣∣
x=y=1

= xq2(i− 1)(xq1 + yq2 + 1− q1 − q2)
i−2
∣∣∣∣

x=y=1

= q2(i− 1),

22

∑
u1,u2

wi(u1, u2)u2
1 = ∑

u1,u2

wi(u1, u2)u1(u1 − 1) + ∑
u1,u2

wi(u1, u2)u1

=
∂2Wi(x, y)

∂x2

∣∣∣∣
x=y=1

+ (1 + q1(i− 1))

= q1(i− 1)(xq1 + yq2 + 1− q1 − q2)
i−2 + q1(i− 1)(xq1 + yq2 + 1− q1 − q2)

i−2

+ xq2
1(i− 1)(i− 2)(xq1 + yq2 + 1− q1 − q2)

i−3
∣∣∣∣

x=y=1
+ (1 + q1(i− 1))

= q1(i− 1)(2 + q1(i− 2)) + 1 + q1(i− 1)
= q1(i− 1)(3 + q1(i− 2)) + 1,

∑
u1,u2

wi(u1, u2)u2
2 = ∑

u1,u2

wi(u1, u2)u2(u2 − 1) + ∑
u1,u2

wi(u1, u2)u2

=
∂2Wi(x, y)

∂y2

∣∣∣∣
x=y=1

+ q2(i− 1)

= xq2
2(i− 1)(i− 2)(xq1 + yq2 + 1− q1 − q2)

i−3
∣∣∣∣

x=y=1
+ q2(i− 1)

= q2
2(i− 1)(i− 2) + q2(i− 1)

= q2(i− 1)(q2(i− 2) + 1),

∑
u1,u2

wi(u1, u2)u1u2 =
∂2Wi(x, y)

∂x∂y

∣∣∣∣
x=y=1

= q2(i− 1)(xq1 + yq2 + 1− q1 − q2)
i−2

+ xq1q2(i− 1)(i− 2)(xq1 + yq2 + 1− q1 − q2)
i−3
∣∣∣∣

x=y=1

= q2(i− 1) + q1q2(i− 1)(i− 2).

Using these computaions, we can now calculate the components appeared in the differential equations of co-
varianve evolution as follows:

f̂ (r1) =
ln−k+1

e ∑
u1,u2

wn−k+1(u1, u2)(u2 − u1)−
n

∑
i=n−k+2

li
e

=
ln−k+1

e
((n− k)q2 − (n− k)q1 − 1)−

n

∑
i=n−k+2

li
e

= (n− k)
ln−k+1

e2 (r2 − r1)− 1,

f̂ (r2) =
ln−k+1

e ∑
u1,u2

wn−k+1(u1, u2)(−2u2)

= −2(n− k)
ln−k+1

e
q2

= −2(n− k)
ln−k+1

e2 r2,

23

f̂ (li) =
i
e
(li+1 − li) , i ∈ {n− k + 1, . . . , n} ,

f̂ (ln) = −nln

e
,

Therfore, for derivatives of these values which apeare in covariance evolution, we have

∂ f̂ (r1)

∂r1
= −(n− k)

ln−k+1

e2 ,

∂ f̂ (r1)

∂r2
= (n− k)

ln−k+1

e2 ,

∂ f̂ (r1)

∂ln−k+1
= (n− k)(r2 − r1)

e− 2ln−k+1

e3 ,

∂ f̂ (r1)

∂li
= −2(n− k)(r2 − r1)

ln−k+1

e3 , i ∈ {n− k + 2, . . . , n} ,

∂ f̂ (r2)

∂r1
= 0,

∂ f̂ (r2)

∂r2
= −2(n− k)

ln−k+1

e2 ,

∂ f̂ (r2)

∂ln−k+1
= −2(n− k)

e− 2ln−k+1

e3 r2,

∂ f̂ (r2)

∂li
= 4(n− k)

ln−k+1

e3 r2, i ∈ {n− k + 2, . . . , n} ,

∂ f̂ (li)

∂r1
= 0, i ∈ {n− k + 1, . . . , n} ,

∂ f̂ (li)

∂r2
= 0, i ∈ {n− k + 1, . . . , n} ,

∂ f̂ (li)

∂li
= − i

e2 (li+1 − li + e) , i ∈ {n− k + 1, . . . , n} ,

∂ f̂ (li)

∂li+1
= − i

e2 (li+1 − li − e) , i ∈ {n− k + 1, . . . , n} ,

∂ f̂ (li)

∂lj
= − i

e2 (li+1 − li) , i ∈ {n− k + 1, . . . , n} , j /∈ {i, i + 1} ,

∂ f̂ (ln)

∂r1
= 0,

∂ f̂ (ln)

∂r2
= 0,

24

∂ f̂ (ln)

∂li
=

nln

e2 , i ∈ {n− k + 1, . . . , n− 1} ,

∂ f̂ (ln)

∂ln
= − n

e2 (e− ln) .

Based on these computaions of f̂ zi , f̂ zizj can be computed as follows:

f̂ (r1r1) +
(

f̂ (r1)
)2

=
ln−k+1

e ∑
u1,u2

wn−k+1(u1, u2)(u2 − u1)
2 +

ln−k+2

e
(−1)2 + · · ·+ ln

e
(−1)2

=
ln−k+1

e ∑
u1,u2

(u1, u2)
(
u2

1 + u2
2 − 2u1u2

)
+

n

∑
i=n−k+2

li
e

=
ln−k+1

e
(q1(n− k)(3 + (n− k + 1)q1) + 1 + q2(n− k)(q2(n− k− 1) + 1)

− 2q2(n− k) + q1q2(n− k)(n− k− 1)) +
n

∑
i=n−k+1

li
e

= (n− k)
ln−k+1

e
((n− k− 1)(q1 − q2)

2 + 3q1 − q2) + 1

= (n− k)
ln−k+1

e3 ((n− k− 1)(r1 − r2)
2 + (3r1 − r2)e) + 1,

⇒ f̂ (r1r1) = (n− k)
ln−k+1

e3 ((n− k− 1)(r1 − r2)
2 + (3r1 − r2)e) + 1−

(
f̂ (r1)

)2
,

f̂ (r1r2) + f̂ (r1) f̂ (r2) =
ln−k+1

e ∑
u1,u2

wn−k+1(u1, u2)(u2 − u1)(−2u2)

=
ln−k+1

e ∑
u1,u2

(u1, u2)(−2u2
2 + 2u1u2)

=
ln−k+1

e
(−2q2(n− k)(q2(n− k + 1) + 1) + 2(q2(n− k) + q1q2(n− k)(n− k− 1)))

= 2(n− k)(n− k− 1)
ln−k+1

e
q2(q1 − q2)

= 2(n− k)(n− k− 1)
ln−k+1

e3 r2(r1 − r2),

⇒ f̂ (r1r2) = 2(n− k)(n− k− 1)
ln−k+1

e3 r2(r1 − r2)− f̂ (r1) f̂ (r2),

f̂ (r1ln−k+1) + f̂ (r1) f̂ (ln−k+1) =
ln−k+1

e ∑
u1,u2

wn−k+1(u1, u2)(u2 − u1)(−1)(n− k + 1)

+
ln−k+2

e ∑
u1,u2

wn−k+2(u1, u2)(−1)(n− k + 1)

= −(n− k + 1)
ln−k+1

e
((n− k)q2 − (n− k)q1 − 1)− (n− k + 1)

ln−k+2

e

= −n− k + 1
e

(ln−k+1((n− k)(q2 − q1)− 1) + ln−k+2)

= −n− k + 1
e2 (ln−k+1((n− k)(r2 − r1)− e) + eln−k+2)

25

⇒ f̂ (r1ln−k+1) = −n− k + 1
e2 (ln−k+1((n− k)(r2 − r1)− e) + eln−k+2)− f̂ (r1) f̂ (ln−k+1),

f̂ (r1li) + f̂ (r1) f̂ (li) =
li
e ∑

u1,u2

wi(u1, u2)(−1)(−i) +
li+1

e ∑
u1,u2

wi+1(u1, u2)(−1)i

= − i
e
(li+1 − li), i ∈ {n− k + 2, . . . , n− 1} ,

⇒ f̂ (r1li) = − i
e
(li+1 − li)− f̂ (r1) f̂ (li), i ∈ {n− k + 2, . . . , n− 1} ,

f̂ (r1ln) + f̂ (r1) f̂ (ln) =
ln

e ∑
u1,u2

wn(u1, u2)(−1)(−n)

⇒ f̂ (r1ln) =
nln

e
− f̂ (r1) f̂ (ln),

f̂ (r2r2) +
(

f̂ (r2)
)2

=
ln−k+1

e ∑
u1,u2

wn−k+1(u1, u2)(−2u2)
2

=
4ln−k+1

e
q2(n− k)(1 + (n− k− 1)q2)

= 4(n− k)
ln−k+1

e3 r2(e + (n− k− 1)r2),

⇒ f̂ (r2r2) = 4(n− k)
ln−k+1

e3 r2(e + (n− k− 1)r2)− (f̂ (r2))2,

f̂ (r2ln−k+1) + f̂ (r2) f̂ (ln−k+1) =
ln−k+1

e ∑
u1,u2

wn−k+1(u1, u2)(−2u2)(−1)(n− k + 1)

= 2(n− k + 1)
ln−k+1

e
(n− k)q2

= 2(n− k)(n− k + 1)
ln−k+1

e2 r2

⇒ f̂ (r2ln−k+1) = 2(n− k)(n− k + 1)
ln−k+1

e2 r2 − f̂ (r2) f̂ (ln−k+1),

f̂ (r2li) + f̂ (r2) f̂ (li) = 0, i ∈ {n− k + 2, . . . , n} ,

⇒ f̂ (r2li) = − f̂ (r2) f̂ (li), i ∈ {n− k + 2, . . . , n} ,

f̂ (li li) +
(

f̂ (li)
)2

= (−i)2 li
e
+ i2 li+1

e
, i ∈ {n− k + 1, . . . , n− 1} ,

⇒ f̂ (li li) =
i2

e
(li + li+1)−

(
f̂ (li)
)2

, i ∈ {n− k + 1, . . . , n− 1} ,

f̂ (li li+1) + f̂ (li) f̂ (li+1) = −i(i + 1)
li+1

e
, i ∈ {n− k + 1, . . . , n− 1} ,

26

⇒ f̂ (li li+1) = −i(i + 1)
li+1

e
− f̂ (li) f̂ (li+1), i ∈ {n− k + 1, . . . , n− 1} ,

f̂ (li lj) + f̂ (li) f̂ (lj) = 0, i ∈ {n− k + 1, . . . , n− 1} ,

f̂ (li lj) = − f̂ (li) f̂ (lj), i ∈ {n− k + 1, . . . , n− 2} , j > i + 1

f̂ (ln ln) +
(

f̂ (ln)
)2

= n2 ln

e
,

⇒ f̂ (ln ln) = n2 ln

e
−
(

f̂ (ln)
)2

.

Proof of Lemma 6. Using the same idea as in the proof of Theoram 4, first define

d(u1, u2) =

(
nNa

u1, u2

)
ρu1

1 ρu2
2 (1− ρ1 − ρ2)

nNa−u1−u2 .

where we used the following notation: (
m
r, s

)
:=

m!
r!s!

.

Note that

∑
u1,u2

d(u1, u2) = ∑
u1,u2

(
nNa

u1, u2

)
ρu1

1 ρu2
2 (1− ρ1 − ρ2)

nNa−u1−u2 = 1.

Also define
D(x, y) := ∑

u1,u2

d(u1, u2)xu1 yu2 = (xρ1 + yρ2 + 1− ρ1 − ρ2)
nNa .

Now, consider the following computations:

∑
u1,u2

d(u1, u2)u1 =
∂D(x, y)

∂x

∣∣∣∣
x=y=1

= ρ1nNa(xρ1 + yρ2 + 1− ρ1 − ρ2)
nNa−1

∣∣∣∣
x=y=1

= ρ1nNa,

∑
u1,u2

d(u1, u2)u2 =
∂D(x, y)

∂y

∣∣∣∣
x=y=1

= ρ2nNa(xρ1 + yρ2 + 1− ρ1 − ρ2)
nNa−1

∣∣∣∣
x=y=1

= ρ2nNa,

∑
u1,u2

d(u1, u2)u2
1 = ∑

u1,u2

d(u1, u2)u1(u1 − 1) + ∑
u1,u2

d(u1, u2)u1

=
∂2D(x, y)

∂x2

∣∣∣∣
x=y=1

+ ρ1nNa

27

= ρ2
1nNa(nNa − 1)(xρ1 + yρ2 + 1− ρ1 − ρ2)

nNa−2
∣∣∣∣

x=y=1
+ ρ1nNa

= ρ2
1nNa(nNa − 1) + ρ1nNa

= ρ1nNa(1 + ρ1(nNa − 1)),

∑
u1,u2

d(u1, u2)u2
2 = ∑

u1,u2

d(u1, u2)u2(u2 − 1) + ∑
u1,u2

d(u1, u2)u2

=
∂2D(x, y)

∂y2

∣∣∣∣
x=y=1

+ ρ2nNa

= ρ2
2nNa(nNa − 1)(xρ1 + yρ2 + 1− ρ1 − ρ2)

nNa−2
∣∣∣∣

x=y=1
+ ρ2nNa

= ρ2
2nNa(nNa − 1) + ρ2nNa

= ρ2nNa(1 + ρ2(nNa − 1)),

∑
u1,u2

d(u1, u2)u1u2 =
∂D(x, y)

∂x∂y

∣∣∣∣
x=y=1

= ρ1nNa(nNa − 1)ρ2(xρ1 + yρ2 + 1− ρ1 − ρ2)
nNa−2

∣∣∣∣
x=y=1

= nNa(nNa − 1)ρ1ρ2.

Based on these computations, we can now calculate the initial conditions for δ(ij). Firstly, note that for i ∈
{n− k + 1, . . . , n}, li(1) is deterministic. Thus,

δ(ij)(1) = 0, if i /∈ {0, 1} or j /∈ {0, 1} .

For i, j ∈ {0, 1}, initial conditions for δ(ij) can be computed as follows:

Naδ(00)(1) = ∑
u1,u2

d(u1, u2)u2
1 −

(
∑

u1,u2

d(u1, u2)u1

)2

= ρ1nNa (1 + ρ1(nNa − 1))− (ρ1nNa)
2

= nNaρ1(1− ρ1),

⇒ δ(00)(1) = nρ1(1− ρ1),

Naδ(11)(1) = ∑
u1,u2

d(u1, u2)u2
2 −

(
∑

u1,u2

d(u1, u2)u2

)2

= ρ2nNa (1 + ρ2(nNa − 1))− (ρ2nNa)
2

= nNaρ2(1− ρ2),

⇒ δ(11)(1) = nρ2(1− ρ2),

Naδ(01)(1) = ∑
u1,u2

d(u1, u2)u1u2 −
(

∑
u1,u2

d(u1, u2)u1

)(
∑

u1,u2

d(u1, u2)u2

)

28

= nNa(nNa − 1)ρ1ρ2 − (ρ1nNa)(ρ2nNa)

= −nNaρ1ρ2

⇒ δ(01)(1) = −nρ1ρ2.

References

[1] N. Abramson, “The aloha system: another alternative for computer communications,” in 1970 Fall Joint
Computer Conf., Houston, Texas, USA, November 1970, pp. 281–285.

[2] L. G. Roberts, “Aloha packet system with and without slots and capture,” ACM SIGCOMM Computer
Communication Review Newsletter, vol. 5, no. 2, pp. 28–42, Apr. 1975.

[3] D. Bertsekas, D. Bertsekas, and R. Gallager, Data Networks, ser. Prentice-Hall international editions.
Prentice-Hall, 1987.

[4] E. Casini, R. D. Gaudenzi, and O. D. R. Herrero, “Contention resolution diversity slotted aloha (crdsa):
An enhanced random access schemefor satellite access packet networks,” IEEE Transactions on Wireless
Communications, vol. 6, no. 4, pp. 1408–1419, April 2007.

[5] G. Liva, “Graph-based analysis and optimization of contention resolution diversity slotted aloha,” IEEE
Transactions on Communications, vol. 59, no. 2, pp. 477–487, February 2011.

[6] M. Berioli, G. Cocco, G. Liva, and A. Munari, “Modern random access protocols,” Foundations and
Trends® in Networking, vol. 10, no. 4, pp. 317–446, 2016.

[7] X. Chen and D. Guo, “Many-access channels: The gaussian case with random user activities,” in 2014
IEEE International Symposium on Information Theory, June 2014, pp. 3127–3131.

[8] X. Chen, T. Chen, and D. Guo, “Capacity of gaussian many-access channels,” IEEE Transactions on
Information Theory, vol. 63, no. 6, pp. 3516–3539, June 2017.

[9] Y. Polyanskiy, “A perspective on massive random-access,” in 2017 IEEE International Symposium on
Information Theory (ISIT), June 2017, pp. 2523–2527.

[10] M. Effros, V. Kostina, and R. C. Yavas, “Random access channel coding in the finite blocklength regime,”
Jan. 2018, https://arxiv.org/abs/1801.09018.

[11] E. Paolini, G. Liva, and M. Chiani, “Coded slotted aloha: A graph-based method for uncoordinated mul-
tiple access,” IEEE Trans. Inform. Theory, vol. 61.

[12] F. Lázaro and u. Stefanović, “Finite-length analysis of frameless aloha with multi-user detection,” IEEE
Communications Letters, vol. 21, no. 4, pp. 769–772, April 2017.

[13] A. Vem, K. R. Narayanan, J. Cheng, and J. Chamberland, “A user-independent serial interference cancel-
lation based coding scheme for the unsourced random access gaussian channel,” in 2017 IEEE Informa-
tion Theory Workshop (ITW), Nov 2017, pp. 121–125.

[14] M. Ivanov, F. Brännström, A. G. i Amat, and P. Popovski, “Broadcast coded slotted aloha: A finite frame
length analysis,” IEEE Transactions on Communications, vol. 65, no. 2, pp. 651–662, Feb 2017.

[15] E. Sandgren, A. G. i Amat, and F. Brännström, “On frame asynchronous coded slotted aloha: Asymptotic,
finite length, and delay analysis,” IEEE Transactions on Communications, vol. 65, no. 2, pp. 691–704,
Feb 2017.

[16] A. Graell i Amat and G. Liva, “Finite length analysis of irregular repetition slotted aloha in the waterfall
region,” IEEE Communications Letters, vol. 22, pp. 886–889, 05 2018.

29

[17] A. Amraoui, “Asymptotic and finite-length optimization of ldpc codes,” Ph.D. dissertation, EPFL, Lau-
sanne, Switzerland, 2006, number 3558.

[18] A. Amraoui, A. Montanari, T. Richardson, and R. Urbanke, “Finite-length scaling for iteratively decoded
LDPC ensembles,” IEEE Trans. Inform. Theory, vol. 55, no. 2, pp. 473–498, Feb. 2009.

[19] R. Tanner, “A recursive approach to low complexity codes,” IEEE Transactions on Information Theory,
vol. 27, no. 5, pp. 533–547, Sep. 1981.

[20] N. C. Wormald, “Differential equations for random processes and random graphs,” The annals of applied
probability, pp. 1217–1235, 1995.

[21] ——, “The differential equation method for random graph processes and greedy algorithms,” Lectures
on approximation and randomized algorithms, vol. 73, p. 155, 1999.

[22] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. A. Spielman, and V. Stemann, “Practical loss-
resilient codes,” in Proceedings of the twenty-ninth annual ACM symposium on Theory of computing.
ACM, 1997, pp. 150–159.

[23] T. Richardson and R. Urbanke, Modern Coding Theory. Cambridge University Press, 2008.
[24] V. Privman, Finite Size Scaling and Numerical Simulation of Statistical Systems. World Scientific, Sin-

gapour, 1990.

30

	Introduction
	Modeling
	Notation and Definitions

	Asymptotic Analysis
	Differential Equations for Density Evolution
	Solving Density Evolution
	Finding Maximum Achievable Channel Load G*

	Non-asymptotic Analysis: Probability of Error
	Simulation Results
	Appendix: Proofs
	Proofs for Evolution of User Nodes
	Proofs for Evolution of Slice Nodes
	Proofs for G*
	Proofs for Scaling Law

