

Channel Coding at Low Capacity

Mohammad Fereydounian¹ Mohammad Vahid Jamali² Hamed Hassani¹ Hessam Mahdavifar²

¹ESE department of University of Pennsylvania ²EECS department of University of Michigan

◆ Narrowband communication: NB-IoT, eMCT [17-18]

By 2021, there will be 1.5 billion IoT devices This infers a 170 dB of coupling loss Which leads to having a -13dB of the effective SNR This can be translated to a very small capacity of 0.03

Motivation

✦ Wideband communication: mmWave [17-18]

$$C = B \log(1 + \frac{P}{N_0 B})$$

$$B \to \infty \Longrightarrow SNR \to 0 \Longrightarrow C \to 0$$

Low Capacity Regime

The capacity C is small with respect to the blocklength n [2]

✦ Formal definition

 $C < n^{s-1}$, where $s \in [0, 1)$ is a tuning parameter

s can be specified depending on

- the application
- the channel under discussion

✦ Informal definition

$$\kappa := nC = o(n)$$

$$\kappa = \mathcal{O}(1) \quad \leftrightarrow \quad C = \mathcal{O}\left(\frac{1}{n}\right) \quad \leftrightarrow \quad s = 0$$

$$\kappa = \mathcal{O}(\sqrt{n}) \quad \leftrightarrow \quad C = \mathcal{O}\left(\frac{1}{\sqrt{n}}\right) \quad \leftrightarrow \quad s = \frac{1}{2}$$

Challenges

◆ In the <u>moderate-capacity</u> regime [1,4,7]

$$\log_2 M^*(n, p_e) = nC - \sqrt{nV}Q^{-1}(p_e) + \mathcal{O}(\log_2 n)$$

This is the best that can be achieved in the moderate-capacity regime. (The last term depends on the type of the channel [8-11])

- ◆ In the <u>low-capacity</u> regime [2], however,
 - using the above prediction leads to off numeral estimates since some neglected terms will become significant and also because the governing laws are different.
 - Moreover, the current practical code designs are not efficient in this regime.

Our Contribution

◆ Deriving non-asymptotic laws for BEC and BSC in the low-capacity regime

◆ Proposing a provably efficient practical code design for the low-capacity regime

Let ϵ be the erasure probability

♦ In the <u>moderate-capacity</u> regime: e.g., $\epsilon = 0.3, 0.6$

output: ...1??0?1???00?1??0110??10???111?1??.....

Gaussian Convergence Laws

$$R = n(1 - \epsilon) + \mathcal{O}\left(\sqrt{n}\right)$$

✦ In the <u>low-capacity</u> regime:

e.g., $\epsilon = 0.95, 0.99$

Rare information —> Poisson Convergence Laws [I6] $P\{R < r\} = \mathcal{P}_{n(1-\epsilon)}(r)$

$$M^*(n, p_e) = \max \{ M \mid \exists (M, p_e) \text{-code for } W^n \}$$

where n is the blocklength and p_e is the average probability of error

The raw achievability bound (RCU) for BEC [1,5,6]

$$p_e \le \sum_{r=0}^n \binom{n}{r} \epsilon^{n-r} (1-\epsilon)^r 2^{-[r-\log_2(M-1)]^+}$$

The raw converse bound for BEC [1,5,6]

$$p_e \ge \sum_{r < \log_2 M} \binom{n}{r} \epsilon^{n-r} (1-\epsilon)^r \left(1-\frac{2^r}{M}\right)$$

Theorem. Consider transmission over $BEC(\epsilon)$ in low-capacity regime and let $\kappa = n(1 - \epsilon)$. Then,

$$M_1 \le M^*(n, p_e) \le M_2,$$

where M_1 is the solution of

$$\mathfrak{P}_1(M_1) + \alpha \sqrt{\mathfrak{P}_1(M_1)} - p_e = 0, \qquad (1)$$

and M_2 is the solution of

$$\mathfrak{P}_2(M_2) - \alpha \sqrt{\mathfrak{P}_2(M_2)} - \alpha \sqrt{\mathcal{P}_\kappa(\log_2 M_2)} - p_e = 0, \qquad (2)$$

and

$$\mathfrak{P}_{1}(M_{1}) = \mathcal{P}_{\kappa}(\log_{2} M_{1}) + M_{1}e^{-\kappa/2}\left(1 - \mathcal{P}_{\kappa/2}(\log_{2} M_{1})\right),$$

$$\mathfrak{P}_{2}(M_{2}) = \mathcal{P}_{\kappa}(\log_{2} M_{2}) - \frac{e^{\kappa}}{M_{2}}\mathcal{P}_{2\kappa}\left(\log_{2} M_{2}\right),$$

$$\alpha = \frac{\sqrt{2}}{\epsilon^{3/2}}\left(1 + 2\sqrt{\frac{3}{\epsilon\kappa}}\right)\left(\sqrt{e} - 1\right)(1 - \epsilon).$$

At each ϵ we plotted the optimal n such that $M^*(n, 10^{-2}) = 2^{40}$

- **Green:** The raw upper and lower bounds for the reality
- **Blue:** Our prediction of the bounds
- Black: The prediction from [I] (A single prediction for both upper and lower bounds)

The polar code is concatenated with cyclic redundancy check (CRC) code of length 6, and is decoded with the list-SC algorithm [3] with list size L=16.

Let δ be the crossover probability

 \blacklozenge In the <u>moderate-capacity</u> regime: e.g., $\delta = 0.2, 0.9$

output: ...IOIOOIIIOOOIIOIOIOIOIOOOIIOIIO.....

Gaussian Convergence Laws

♦ In the <u>low-capacity</u> regime: e.g., $\delta = 0.46, 0.52$

output: ...001010111001011100011001101111010.....

Again Gaussian Convergence Laws but needs a finer analysis since some neglected terms are significant now

The raw achievability bound (RCU) for BSC [1,5,6]

$$p_e \le \sum_{r=0}^n \binom{n}{r} \delta^r (1-\delta)^{n-r} \min\left\{1, (M-1)S_n^r\right\}$$
$$S_n^r = \sum_{s=0}^r \binom{n}{s} 2^{-n}$$

The raw converse bound for BSC [1,5,6]

$$M \le \frac{1}{\beta_{1-p_e}^n}$$

where β_{α}^{n} for a real $\alpha \in [0, 1]$ is defined below based on values of β_{ℓ} where ℓ is an integer:

$$\beta_{\alpha}^{n} = (1 - \lambda)\beta_{L} + \lambda\beta_{L+1},$$
$$\beta_{\ell} = \sum_{r=0}^{\ell} \binom{n}{r} 2^{-n},$$

such that $\lambda \in [0, 1)$ and integer L satisfy the following:

$$\alpha = (1 - \lambda)\alpha_L + \lambda\alpha_{L+1},$$
$$\alpha_\ell = \sum_{r=0}^{\ell-1} \binom{n}{r} \delta^r (1 - \delta)^{n-r}.$$

IEEE Information Theory Workshop

At each δ we plotted the optimal n such that $M^*(n, 10^{-2}) = 2^{40}$

Green: The raw upper and lower bounds for the reality

Blue: Our prediction of the bounds (A single prediction for both upper and lower bounds)

Black: The prediction from [I] (A single prediction for both upper and lower bounds)

The polar code is concatenated with cyclic redundancy check (CRC) code of length 6, and is decoded with the list-SC algorithm [3] with list size L=16.

In summary:

- ✦ Current standards use repetition + some off-the-shelf moderate-rate codes like Turbo codes/ LDPC.
- ✦ Using iterative codes + repetition results in mediocre performances.
- ◆ **Polar codes** implicitly apply the optimal repetition length.

The next slides argue these results in detail.

Consider the largest (optimal) repetition size r_{β} which satisfies

 $\frac{n}{r_{\beta}}C(W^{r_{\beta}}) \ge \beta nC(W)$

Theorem. If $W = BEC(\epsilon)$, then for the largest repetition size, r_{β} , we have

$$\frac{n(1-\epsilon)\ell}{2\left(1-\frac{\beta}{\ell}\right)} \cdot \left(\frac{\beta}{\ell}\right)^2 \le \frac{n}{r_\beta} \le \frac{n(1-\epsilon)\ell}{2\left(1-\frac{\beta}{\ell}\right)},$$

where $\ell = -\frac{\ln \epsilon}{1-\epsilon}$. Equivalently, assuming $\kappa = n(1-\epsilon)$, we have

$$\frac{\kappa}{2(1-\beta)} \cdot \beta^2 (1+\mathcal{O}(1-\epsilon)) \le \frac{n}{r_\beta} \le \frac{\kappa}{2(1-\beta)} (1+\mathcal{O}(1-\epsilon))$$

The previous result about BEC leads to the following theorem

Theorem. Among all BMS channels with the same capacity, BEC has the largest repetition length r_{β} . Hence, for any BMS channel with capacity C and $\kappa = nC$, we have

$$\frac{n}{r_{\beta}} \ge \frac{\kappa}{2(1-\beta)}\beta^2(1+\mathcal{O}(1-C)).$$

Remark. we can conclude that for any BMS channel with low capacity, in order to have the total rate loss of order $\mathcal{O}(1)$, the repetition size should be at most $\mathcal{O}(n/\kappa^2)$.

Now the following theorem shows that polar codes automatically perform a repetition coding which matches the optimal repetition size $O(n/\kappa^2)$.

Theorem. Consider using a polar code of length $n = 2^m$ for transmission over a BMS channel W. Let $m_0 = \log_2(4\kappa^2)$ where $\kappa = nC(W)$. Then any synthetic channel $W_n^{(i)}$ whose Bhattacharyya value is less than $\frac{1}{2}$ has at least m_0 plus operations in the beginning. As a result, the polar code constructed for W is equivalent to the concatenation of a polar code of length (at most) 2^{m_0} followed by 2^{m-m_0} repetitions.

- Comparison for low-capacity BAWGN. The number of information bits is k=40.
- The polar-CRC has length 8192, is constructed using 6 CRC bits, and is decoded using the SC-list decoder with L =16.
- The Turbo-repetition has an underlying (120,40) Turbo code which is repeated 68 times (total length = 8160) and is decoded with 6 iterations.
- The Shannon limit for this setting is -4.75dB.

References

[I] Polyanskiy, H. V. Poor, and S. Verdú, "Channel coding rate in the finite blocklength regime," IEEE Trans. Inf. Theory, vol. 56, no. 5, 2010.

[2] M. Fereydounian, M. V. Jamali, H. Hassani, and H. Mahdavifar, "Channel coding at low capacity," arXiv preprint arXiv:1811.04322, 2018.

[3] I. Tal and A. Vardy, "List decoding of polar codes," IEEE Transactions on Information Theory, vol. 61, no. 5, pp. 2213–2226, 2015.

[4] C. E. Shannon, "A mathematical theory of communication," Bell System Tech. Journal, no. 27, pp. 379–423, 1948.

[5] R. G. Gallager, Information Theory and Reliable Communication. New York: Wiley, 1968.

[6] J. Wolfowitz, *Coding Theorems of Information Theory*, 3rd ed.

[7] V. Strassen, "Asymptotische abscha tzungen in Shannon's informationstheorie," in Trans. 3rd Prague Conf. Inf. Theory, pp. 689–723, Prague, 1962.

[8] T. Erseghe, "Coding in the finite-blocklength regime: Bounds based on laplace integrals and their asymp- totic approximations," *IEEE Trans. Info. Theory*, vol. 62, no. 12, pp. 6854–6883, Dec 2016.

[9] P.Moulin, "Thelog-volumeofoptimalcodesformemorylesschannels, asymptotically within a few nats," IEEE Trans. Info. Theory, vol. 63, no. 4, pp. 2278–2313, April 2017.

[10] J. Scarlett, A. Martinez, and A. G. i. Fabregas, "Mismatched decoding: Error exponents, second-order rates and saddlepoint approximations," *IEEE Trans. Info. Theory*, vol. 60, no. 5, pp. 2647–2666, 2014.

[11] W. Yang, A. Collins, G. Durisi, Y. Polyanskiy, and H. V. Poor, "Beta–Beta bounds: Finite-blocklength analog of the golden formula," *IEEE Trans. Info. Theory*, vol. 64, pp. 6236–6256, 2018.

[12] E. Arikan, "Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels," *IEEE Transactions on Information Theory*, vol. 55, no. 7, pp. 3051–3073, 2009.

[13] V. Y. F. Tan, "Asymptotic estimates in information theory with non-vanishing error probabilities," arXiv:1504.02608v1 [cs.IT].

[14] C. E. Shannon, "A mathematical theory of communication," Bell System Tech. Journal, no. 27, pp. 379-423, 1948.

[15] M. Hayashi, "Information spectrum approach to second-order coding rate in channel coding," *IEEE Transactions on Information Theory*, vol. 55, no. 11, pp. 4947–4966, 2009.

[16] M. Talagrand, "The missing factor in hoeffding's inequalities," Annales de l'I.H.P. Probabilite's et statis- tiques, no. 4, pp. 689–702, 1995.

[17] "5G; Study on scenarios and requirements for next generation access technologies," 3GPP TR 38.913 version 14.3.0 Release 14, 2017.

[18] R. Ratasuk, B. Vejlgaard, N. Mangalvedhe, and A. Ghosh, "NB-IoT system for M2M communication," in Proc. IEEE Wireless Commun. Netw. Conf., Apr. 2016, pp. 1–5.

IEEE Information Theory Workshop

Thank you!