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Motivation 
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✦Narrowband communication:   NB-IoT, eMCT [17-18]

By 2021, there will be 1.5 billion IoT devices 

This infers a 170 dB of coupling loss 

Which leads to having a -13dB of the effective SNR

This can be translated to a very small capacity of 0.03
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Motivation 
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✦Wideband communication:   mmWave [17-18]

C = B log(1 +
P

N0B
)

B ! 1 =) SNR ! 0 =) C ! 0
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Low Capacity Regime 
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The capacity C is small with respect to the blocklength n [2]

✦Formal definition 

where   C < ns�1, s 2 [0, 1) is a tuning parameter  

s can be specified depending on  
• the application  
• the channel under discussion  

✦ Informal definition 

 := nC = o(n)

 = O(1) $ C = O

✓
1

n

◆
$ s = 0

 = O(
p
n) $ C = O

✓
1
p
n
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Challenges 
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✦ In the moderate-capacity regime [1,4,7]

✦ In the low-capacity regime [2], however,  

• using the above prediction leads to off numeral estimates since some neglected 
terms will become significant and also because the governing laws are different. 

• Moreover, the current practical code designs are not efficient in this regime. 

log2 M
⇤(n, pe) = nC �

p

nV Q�1(pe) +O(log2 n)

This is the best that can be achieved in the moderate-capacity regime.  
(The last term depends on the type of the channel [8-11])
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Our Contribution
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✦Deriving non-asymptotic laws for BEC and BSC in the low-capacity regime

✦Proposing a provably efficient practical code design for the low-capacity regime
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Binary Erasure Channel (BEC)
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Let    be the erasure probability ✏

✦ In the moderate-capacity regime:        e.g., ✏ = 0.3, 0.6

output:  …1??0?1???00?1??0110??10???111?1??…..

R = n(1� ✏) +O
�p

n
�

Gaussian Convergence Laws

✏ = 0.95, 0.99✦ In the low-capacity regime:                    e.g., 

output:  …?????1????0??????????1??????1??…..

Rare information —> Poisson Convergence Laws [16] P{R < r} = Pn(1�✏)(r)
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Binary Erasure Channel (BEC)
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The raw achievability bound (RCU) for BEC [1,5,6] 

pe 
nX

r=0

✓
n
r

◆
✏n�r(1� ✏)r2�[r�log2(M�1)]+

where n is the blocklength and       is the average probability of error

M⇤(n, pe) = max {M | 9(M,pe)-code for Wn}

pe �
X

r <log2 M

✓
n

r

◆
✏n�r(1� ✏)r

✓
1� 2r

M

◆
The raw converse bound for BEC [1,5,6]

pe
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Binary Erasure Channel (BEC)
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The raw achievability bound (RCU) The raw converse bound

Using Gaussian  
convergence laws  
for the moderate- 
capacity regime, 
due to [1]

Using Poisson  
convergence laws  
for the low- 
capacity regime 
+ a finer analysis

Our result on the next page

log2 M
⇤(n, pe) = nC �

p

nV Q�1(pe) +O(1)

C = 1� ✏

V = ✏(1� ✏)
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Binary Erasure Channel (BEC)
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Theorem. Consider transmission over BEC(✏) in low-capacity regime
and let  = n(1� ✏). Then,

M1  M⇤(n, pe)  M2,

where M1 is the solution of

P1(M1) + ↵
p

P1(M1)� pe = 0, (1)

and M2 is the solution of

P2(M2)� ↵
p

P2(M2)� ↵
p

P(log2 M2)� pe = 0, (2)

and

P1(M1) = P(log2 M1) +M1e
�/2

�
1� P/2(log2 M1)

�
,

P2(M2) = P(log2 M2)�
e

M2
P2 (log2 M2) ,

↵ =

p
2

✏3/2

 
1 + 2

r
3

✏

!
�p

e� 1
�
(1� ✏).
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Binary Erasure Channel (BEC)
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At each    we plotted the optimal n such that M⇤(n, 10�2) = 240✏

The polar code is concatenated with cyclic redundancy check (CRC) code of 
length 6, and is decoded with the list-SC algorithm [3] with list size L=16. 

Green:     The raw upper and lower bounds for the reality 
Blue:        Our prediction of the bounds 
Black:      The prediction from [1] (A single prediction for both upper and lower bounds)
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Binary Symmetric Channel (BSC)
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Let    be the crossover probability 

✦ In the moderate-capacity regime:        e.g., 

output:  …1010011100011010110101000110110…..

Gaussian Convergence Laws

✦ In the low-capacity regime:                    e.g., 

output:  …001010111001011100011001101111010…..

Again Gaussian Convergence Laws  
but needs a finer analysis since some neglected terms are significant now

�

� = 0.2, 0.9

� = 0.46, 0.52
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Binary Symmetric Channel (BSC)
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The raw achievability bound (RCU) for BSC [1,5,6]

The raw converse bound for BSC [1,5,6]

pe 
nX

r=0

✓
n

r

◆
�r(1� �)n�r min

⇢
1, (M � 1)Sr

n

�

Sr
n =

rX

s=0

✓
n

s

◆
2�n

M  1

�n
1�pe

where �n
↵ for a real ↵ 2 [0, 1] is defined below based on values of �` where ` is

an integer:

�n
↵ = (1� �)�L + ��L+1,

�` =
X̀

r=0

✓
n

r

◆
2�n,

such that � 2 [0, 1) and integer L satisfy the following:

↵ = (1� �)↵L + �↵L+1,

↵` =
`�1X

r=0

✓
n

r

◆
�r(1� �)n�r.
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Binary Symmetric Channel (BSC)
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The raw achievability bound (RCU) The raw converse bound

for the moderate- 
capacity regime, 
due to [1] for the low- 

capacity regime 
+ a finer analysis

log2 M
⇤(n, pe) = nC �

p

nV Q�1(pe) +
1

2
log2 n+O(1)

C = 1� h2(�)

V = �(1� �) log22((1� �)/�)

log2 M
⇤(n, pe) = � 2

r
2�(1� �)

ln 2
·
p
Q�1 (pe) +

1

2
log2 � log2 pe +O (log log )

 = n(1� h2(�))

Theorem.
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Binary Symmetric Channel (BSC)
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At each    we plotted the optimal n such that M⇤(n, 10�2) = 240

The polar code is concatenated with cyclic redundancy check (CRC) code of 
length 6, and is decoded with the list-SC algorithm [3] with list size L=16. 

Green:     The raw upper and lower bounds for the reality 
Blue:        Our prediction of the bounds (A single prediction for both upper and lower bounds) 
Black:      The prediction from [1] (A single prediction for both upper and lower bounds)

�
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Practical Code Design
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In summary: 

✦ Current standards use repetition + some off-the-shelf moderate-rate codes 
like Turbo codes/ LDPC.  

✦ Using iterative codes + repetition results in mediocre performances. 

✦ Polar codes implicitly apply the optimal repetition length. 

The next slides argue these results in detail.



�17

Practical Code Design
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Consider the largest (optimal) repetition size        which satisfies

n

r�
C(W r� ) � �nC(W )

r�

Theorem. If W = BEC(✏), then for the largest repetition size, r� , we have

n(1� ✏)`

2
⇣
1� �

`

⌘ ·

✓
�

`

◆2


n

r�


n(1� ✏)`

2
⇣
1� �

`

⌘ ,

where ` = �
ln ✏
1�✏ . Equivalently, assuming  = n(1� ✏), we have



2 (1� �)
· �2(1 +O(1� ✏)) 

n

r�




2 (1� �)
(1 +O(1� ✏)).
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Practical Code Design
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The previous result about BEC leads to the following theorem

Theorem. Among all BMS channels with the same capacity, BEC has the

largest repetition length r� . Hence, for any BMS channel with capacity C and

 = nC, we have
n

r�
�



2(1� �)
�2

(1 +O(1� C)).

Remark. we can conclude that for any BMS channel with low capacity, in
order to have the total rate loss of order O(1), the repetition size should be at
most O(n/2).

Now the following theorem shows that polar codes automatically perform a 
repetition coding which matches the optimal repetition size                 .    O(n/2)

Theorem. Consider using a polar code of length n = 2m for transmission
over a BMS channel W . Let m0 = log2(4

2) where  = nC(W ). Then any

synthetic channel W (i)
n whose Bhattacharyya value is less than 1

2 has at least
m0 plus operations in the beginning. As a result, the polar code constructed
for W is equivalent to the concatenation of a polar code of length (at most) 2m0

followed by 2m�m0 repetitions.
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Practical Code Design
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• Comparison for low-capacity BAWGN. The number of information bits is k=40.  
• The polar-CRC has length 8192, is constructed using 6 CRC bits, and is decoded using 

the SC-list decoder with L =16.  
• The Turbo-repetition has an underlying (120,40) Turbo code which is repeated 68 times 

(total length = 8160) and is decoded with 6 iterations.  
• The Shannon limit for this setting is -4.75dB.
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