The field of software analysis is highly diverse: there are many different approaches each with their own strengths and limitations in aspects such as soundness, completeness, scalability, and applicability.

We will learn about a dominant approach to software analysis called constraint-based analysis.

Constraint-based analysis follows a declarative paradigm: it is concerned with expressing “what” the analysis computes rather than “how” the analysis computes it.

In other words, constraint-based analysis is concerned with the specification of the analysis, rather than the implementation of the analysis.

The analysis specification takes the form of constraints over program facts, while the analysis implementation involves solving these constraints using an off-the-shelf constraint solver.

This separation of concerns has many benefits: it simplifies the design and understanding of the analysis, it allows to rapidly prototype analyses, and it enables to leverage continual performance improvements in constraint solvers.

We will illustrate these benefits on classical dataflow analysis problems using Datalog, a constraint programming language.
Designing an efficient program analysis is challenging. It involves dealing with both the specification of the analysis -- that is, what information the analysis must compute -- and the implementation of the analysis -- that is, the details of how the analysis should compute that information efficiently.

For example, in a null-pointer dereference checking analysis, the specification might be, "No null pointer is dereferenced along any path in the program." As for the implementation, there are several design choices that affect the efficiency of the analysis, such as whether to use a forward vs. a backwards traversal of the program, whether to use symbolic vs. explicit representations of the program's state, and many others.
Even the first choice, whether to traverse the program forward or backward, is a nontrivial decision.

Consider for instance a null-pointer dereference checking analysis.

A forward traversal involves starting at locations in the program where pointers are set to null and checking if they can flow to locations in the program where pointers are dereferenced. A backward traversal involves doing the opposite, that is, starting at locations in the program where pointers are dereferenced, and checking if locations where pointers are set to null can reach them.

It is easy to see that, if a program does not set any pointers to null, then forward traversal is more efficient. On the other hand, if the program does not dereference any pointers, then backward traversal is more efficient. In practice, programs contain a mix of both null pointer assignments and pointer dereferences, making it challenging to determine the most efficient traversal strategy.
What Is Constraint-Based Analysis?

Designing an efficient program analysis is challenging

\[
\text{Program Analysis} = \text{Specification} + \text{Implementation}
\]

“What” Defined by the user in the constraint language.

“How” Automated by the constraint solver.

In constraint-based analysis, the analysis designer defines the specification of the program analysis using what is called a constraint language, and a constraint solver automates the implementation of the analysis.
This approach to program analysis has several benefits.

Because the analysis specification is separated from the implementation, analysis designers can focus their efforts on specifying what information the analysis must compute, rather than implementing how the analysis should compute that information efficiently.

Another benefit of constraint-based analysis is that it yields natural program specifications: just like types in a type system, constraints are usually local, whose conjunctions capture global properties about the program.

Finally, the modularization of the program analysis task into a specification and an implementation sub-problem allows the specification to be agnostic of the implementation. In other words, we can "plug-and-play" powerful, off-the-shelf constraint solvers, giving us flexibility that would otherwise not be available.
To illustrate the difference between the specification and the implementation of a program analysis, let’s look at the following quiz. Consider a dataflow analysis such as live variables analysis. If this analysis is expressed as a constraint-based analysis, which of the following must the analysis designer still decide upon?

- The order in which statements should be processed
- What the gen and kill sets for each kind of statement are
- In what language to implement the chaotic iteration algorithm
- Whether to take intersections or unions at merge points

Check all that apply.
Recall that, when using a constraint-based analysis, the user only needs to decide aspects of the specification, not the implementation. Therefore, the answers to this quiz are those that are part of the specification of live variables analysis instead of its implementation. Let’s consider each statement in turn.

The order in which statements should be processed: this is an implementation aspect, as changing the order in which statements are processed would not change the outcome of the analysis. Therefore this is an aspect the constraint solver would determine, so the analysis designer does not need to decide this.

What the gen and kill sets for each kind of statement are: this is a specification aspect. Choosing different gen and kill sets would affect the outcome of the analysis. Therefore the analysis designer needs to decide on this aspect.

In what language to implement the chaotic iteration algorithm: this choice won’t affect the final outcome of the analysis, so it’s another implementation aspect that the analysis designer is not responsible for.

Whether to take the intersection or union at merge points: switching between intersection and union changes the type of analysis that is being done, so this is a specification detail that the analysis designer needs to decide.
Here are the topics we will consider in the remainder of this lesson.

Next, you will learn a language called Datalog that can be used to specify constraint-based analyses.

Once you have learned the basics of Datalog, you will see how to use it to specify two kinds of static analyses:

First, you will see how to specify an intra-procedural analysis in Datalog, that is, an analysis that is restricted to a single procedure. In particular, you will see how to specify computing reaching definitions.

Then, you will see how to define an inter-procedural analysis in Datalog, that is, an analysis of a program involving multiple procedures. In particular, you will see how to specify computing points-to information. You will also see the extra complexities inherent in defining these types of analysis.
Datalog is a declarative logic programming language.

It is not a Turing-complete language: it can be viewed as a subset of Prolog, or as SQL with recursion. Efficient algorithms exist to evaluate programs in these languages, so there exist efficient algorithms to evaluate Datalog programs.

Datalog originated as a query language for deductive databases. It was later applied in many other domains, including software analysis, data mining, networking, security, knowledge representation, cloud computing, and others.

There are many implementations of Datalog. Some of the implementations available include Logicblox, bddbddb, IRIS, and Paddle.

You can learn more about Datalog using the resources linked in the Instructor Notes.

[http://www.utdallas.edu/~gupta/courses/acl/papers/datalog-paper.pdf and online book at webdam.inria.fr/Alice/]
We will now present the syntax of Datalog by means of an example program that computes reachability in a directed graph.

The problem of graph reachability is to determine all pairs of nodes in a graph that are connected by a path.

To express this problem as a program in Datalog, we need to define three things:

- the form of the input to the Datalog program,
- the form of the output of the Datalog program, and
- the rules of inference comprising the Datalog program that compute the output from the input.
A Datalog program’s inputs and outputs are defined in terms of relations, which are declarative statements that some number of objects are related in some way.

A relation is similar to a table in a relational database, and a tuple in a relation is similar to a row in the table: it asserts that the relation holds among some number of objects.
For the graph-reachability problem, the input is a single binary relation called edge(n:N, m:N), where n and m are variables of type Node, denoted by N, the set of all nodes. This relation encodes the edges in the input graph. For example, for the graph shown here, the edge relation contains tuples (0,1) and (2,3), but not tuples (3,4), (0,3), or (2,0).

The four tuples (0,1), (0,2), (2,3), and (2,4) are sufficient to establish the entire structure of the graph.

The output of this Datalog program is a single binary relation called path(n:N, m:N), which is true iff there is a directed path in the graph from n to m. So, for the graph shown, the path relation should contain tuples (0,4) and (0,3), but not tuples (3,0) or (1,4).
In order for the Datalog program to compute the output relations from the input relations, we must provide rules of inference. These are deductive rules that hold universally. They specify logical “if-then” statements.

Syntax of Datalog: Example

<table>
<thead>
<tr>
<th>Input Relations:</th>
<th>Output Relations:</th>
</tr>
</thead>
<tbody>
<tr>
<td>edge(n:N, m:N)</td>
<td>path(n:N, m:N)</td>
</tr>
</tbody>
</table>

Rules:
- `path(x, x).`
- `path(x, z) :- path(x, y), edge(y, z).`

Deductive rules that hold universally (i.e., variables like x, y, z can be replaced by any constant). Specify “if ... then ...” logic.
The rules of inference that we will define for this problem are (in English):

First: There is always a path from each node x to itself, which in Datalog syntax takes the form

$$\text{path}(x, x).$$

Second: If there is a path from node x to node z and an edge from node z to node y, then there is a path from node x to node y. In Datalog syntax, this rule takes the form

$$\text{path}(x, z) \leftarrow \text{path}(x, y), \text{edge}(y, z).$$

The rules of inference are written in the opposite order that they are typically written in: the hypothesis of an implication is written on the right-hand side, and the conclusion is written on the left-hand side. Relations separated by a comma are ANDed together. The first inference rule, because it has no hypotheses, acts as an axiomatic statement. Finally, a period is used to end each inference rule.
Now that you’re familiar with the syntax of Datalog programs, I will illustrate the semantics of Datalog programs, using the graph-reachability example. Conceptually, we start out with the empty path relation, and apply each of these two rules, growing the path relation with each application. We stop when the path relation stops growing.

A slight variant of this algorithm is depicted here [point to box]. It starts out by applying the first rule, which involves adding to the path relation each tuple \((x, x)\) for each node \(x\) in the graph, capturing the intent of this rule that there exists a path from each node to itself. It then repeatedly applies the second rule, which involves adding to the path relation each tuple \((x, z)\) whenever there exists a node \(y\) such that tuple \((x, y)\) exists in the current path relation and tuple \((y, z)\) exists in the input edge relation. This captures the intent of the second rule, that there exists a path from node \(x\) to node \(z\) if there exists a path from node \(x\) to some node \(y\), and there exists an edge from that node \(y\) to node \(z\).

This naive algorithm is essentially the chaotic iteration algorithm used for dataflow analyses and pointer analysis. In practice, Datalog solvers have much more efficient algorithms for computing the output relations from the input relations and inference rules. The key is that if there are multiple rules, the order in which the rules are applied does not matter.

Additionally, the result of the algorithm, like that of chaotic iteration, is the least solution: the smallest path relation that satisfies all the rules. The least solution typically corresponds to what the user wants to compute in many problems. An example of a non-least solution to this problem would be that \(\text{path}(x, y)\) holds for all nodes \(x\) and \(y\). While this relation doesn’t violate any rules, it contains many nonsensical paths that would not be desired by a user.
Let’s look at a run of this Datalog program on an example input.

Suppose the input is the following directed graph, encoded by the following edge relation, which contains four tuples: (0, 1), (0, 2), (2, 3) and (2, 4).

The output of this Datalog program on this input is as follows:
Applying the first rule, path(x,x), produces all paths of length 0, represented by the following tuples in the path relation: (0,0), (1,1), (2,2), (3,3), and (4,4).
Applying the second rule at this time yields all paths of length 1, represented by the following tuples in the path relation: (0,1), (0,2), (2,3), and (2,4).
Applying the second rule again yields all paths of length two: \((0,3)\) and \((0,4)\).

Because the path relation doesn’t change after applying either of these rules again, the algorithm terminates, yielding the least solution seen here.
Let’s work on expressing another computation in Datalog in the form of a quiz. Suppose we want to compute the relation \textit{scc} (standing for strongly connected component) on a directed graph from the input relations \textit{edge} and \textit{path} (as we defined them earlier), and suppose we want our Datalog program to output \textit{scc}(n_1, n_2) if and only if \(n_2 \) is reachable from \(n_1 \) and \(n_1 \) is reachable from \(n_2 \).

Select each of the inference rules below that will compute the correct output:

\[
\text{scc}(n_1, n_2) :- \text{edge}(n_1, n_2), \text{edge}(n_2, n_1). \\
\text{scc}(n_1, n_2) :- \text{path}(n_1, n_2), \text{path}(n_2, n_1). \\
\text{scc}(n_1, n_2) :- \text{path}(n_1, n_3), \text{path}(n_3, n_2), \\
\hspace{1cm} \text{path}(n_2, n_4), \text{path}(n_4, n_1). \\
\text{scc}(n_1, n_2) :- \text{path}(n_1, n_3), \text{path}(n_2, n_3).
\]
Two of these inference rules---the second and third---correctly compute the relation \texttt{scc}. The second rule is minimal in its expression of the \texttt{scc} relation, but the third rule still computes the same relation. To see this, recall that \texttt{path(x,x)} holds for all nodes \textit{x}; therefore, by taking \textit{n3} equal to \textit{n1} and \textit{n4} equal to \textit{n2}, the hypothesis is true if and only if \texttt{path(n1,n2)} and \texttt{path(n2,n1)} are true.

While the first rule will not produce any incorrect tuples in relation \texttt{scc}, it will fail to produce \texttt{scc(n1,n2)} for any two nodes that are reachable from each other but which are not adjacent to each other.

Finally, the last rule could potentially produce incorrect tuples: the fact that there exists some node \textit{n3} such that there is a path from \textit{n1} to \textit{n3} and a path from \textit{n2} to \textit{n3} is neither a necessary nor a sufficient condition for nodes \textit{n1} and \textit{n2} to belong to a strongly connected component.
A constraint language: Datalog

Two static analyses in Datalog:

• Intra-procedural analysis: computing reaching definitions

• Inter-procedural analysis: computing points-to information

Now that we have seen the syntax and semantics of Datalog programs, we will consider how to use Datalog to specify an intra-procedural dataflow analysis; specifically, reaching definitions analysis.
Dataflow Analysis in Datalog

• Recall the specification of reaching definitions analysis:

\[
\begin{align*}
\text{OUT}[n] &= (\text{IN}[n] - \text{KILL}[n]) \cup \text{GEN}[n] \\
\text{IN}[n] &= \bigcup_{n' \in \text{predecessors}(n)} \text{OUT}[n']
\end{align*}
\]

The specification of reaching definitions analysis is as follows:

\[
\begin{align*}
\text{OUT}[n] &= (\text{IN}[n] - \text{KILL}[n]) \cup \text{GEN}[n] \\
\text{IN}[n] &= \bigcup_{n' \in \text{predecessors}(n)} \text{OUT}[n']
\end{align*}
\]

where KILL[n] is the set of definitions killed at program point n, GEN[n] is the set of definitions generated at program point n, and predecessors(n) is the set of program points that immediately precede program point n in the input procedure’s control-flow graph.
Let us describe the form of the input and output relations as well as the inference rules that would be used to specify reaching definitions analysis in Datalog.
The input relations for the analysis should capture all the information from the input procedure’s control-flow graph that is relevant to computing the IN and OUT sets for each program point. While we haven’t yet formally defined the inference rules for the analysis, by looking at the specification we see that in order to compute OUT[n], we need to know KILL[n] and GEN[n], and in order to compute IN[n], we need to know predecessors(n). Therefore, the input relations should give Datalog’s constraint solver knowledge of the contents of the KILL, GEN, and predecessors sets. Moreover, all three of these relations can be computed from the control-flow graph of the procedure to be analyzed.

Let us define the relation kill(n:N, d:D) to mean that the definition d is in the KILL set of program point n ...
the relation gen(n:N, d:D) to mean that the definition d is in the GEN set of program point n ...
and the relation next(n:N, m:N) to mean that program point m is an immediate successor of program point n, or equivalently, that program point n is an immediate predecessor of program point m.

(In these relations, N denotes the set of all program points and D denotes the set of all definitions in the given control-flow graph.)
In reaching definitions analysis, we want to compute the IN and OUT sets for each program point. So let us say that \(\text{in}(N:P, D:D) \) is the relation that asserts that the definition \(d \) is a member of the IN set of program point \(n \)—that is, definition \(d \) may reach the program point just before \(n \) ...
... and let us define $\text{out}(n:P, d:D)$ to mean that definition d is a member of the OUT set of program point n—that is, definition d may reach the program point just after n.
Lastly, we specify three rules of inference to compute the IN and OUT sets. These will be based on the formulas for OUT[n] and IN[n] shown here:

\[
\text{OUT}[n] = (\text{IN}[n] - \text{KILL}[n]) \cup \text{GEN}[n]
\]

\[
\text{IN}[n] = \bigcup_{n' \in \text{predecessors}(n)} \text{OUT}[n']
\]

Rules:
- \text{out}(n, d) :- \text{gen}(n, d).
- \text{out}(n, d) :- \text{in}(n, d), \neg \text{kill}(n, d).
- \text{in}(m, d) :- \text{out}(n, d), \text{next}(n, m).

The first two rules map to the first rule in the specification, which is \(\text{OUT}[n] = (\text{IN}[n] - \text{KILL}[n]) \cup \text{GEN}[n]\). We use two separate rules to reflect the union of \((\text{IN}[n] - \text{KILL}[n])\) with \(\text{GEN}[n]\), and we use the '!' character to mean the relation \(\text{kill}(n, d)\) does not hold. This represents the fact that \(\text{IN}[n] - \text{KILL}[n]\) is the intersection of \(\text{IN}[n]\) with the complement of \(\text{KILL}[n]\).
Finally, the third rule maps to the second rule in the specification, which is $\text{IN}[n] = \bigcup_{n' \in \text{predecessors}[n]} \text{OUT}[n']$. Because this expression is a union, we only need a single inference rule to ensure all definitions are correctly added to the appropriate IN set. For each predecessor n of program point m, each definition d in the OUT set of that predecessor n will satisfy the hypothesis of this third inference rule.
Let's look at an example run of our reaching definitions analysis specified in Datalog. Consider this control-flow graph:

Program point 1 is the entry point to the procedure. It has a single transition to program point 2, which contains the statement \(x = 8 \). Program point 2 has a single transition to program point 3, which is a test of the boolean expression \(x \neq 1 \). If this expression is true, control flows to program point 4, which contains the definition \(x = x - 1 \) and then transitions to program point 3 again. If the boolean expression at program point 3 is false, control flows to program point 5, which is the exit point of the procedure.
Recall that the inputs to reaching definitions analysis are the relations $\text{kill}(n, d)$, $\text{gen}(n, d)$, and $\text{next}(n, m)$. Because each definition is associated with a program point, we will label the definitions by the number of the program point they appear at (so the definition $x = 8$ will be denoted by letting d equal 2 in the relations, and the definition $x = x - 1$ will be denoted by letting d equal 4).

There are only two tuples in the gen relation of this control-flow graph: $(2, 2)$ and $(4, 4)$, as no other program points establish any variable definitions.

The next relation can be computed from the directed edges in the control-flow graph. Each edge corresponds to a tuple in this relation. This relation thus contains the following tuples: $(1, 2)$, $(2, 3)$, $(3, 4)$, $(3, 5)$, and $(4, 3)$.

The kill relation is a bit more difficult to compute. A definition d is in the KILL set of a program point n if there is a definition other than d generated at n and there is a directed path from the point where d is generated to n. Using the graph-reachability analysis we described earlier (for example), we can compute that the only such tuple that is applicable for this procedure is $(4, 2)$, capturing the fact that the definition associated with program point 2 is killed at program point 4.
Given these input relations and the inference rules described previously, the output relations produced are as follows.

The in relation contains the following tuples: (3, 2), (3, 4), (4, 2), (4, 4), (5, 2), and (5, 4).

The out relation contains the following tuples: (2, 2), (3, 2), (3, 4), (4, 2), (4, 4), (5, 2), and (5, 4).

You can verify the contents of these relations for yourself by using, for example, the chaotic iteration algorithm.
Complete the Datalog program below by filling in the rules for live variables analysis.

Input Relations:
- kill(n:N, v:V)
- gen (n:N, v:V)
- next(n:N, m:N)

Output Relations:
- in (n:N, v:V)
- out(n:N, v:V)

Rules:
- \[\text{RULE1} \rightarrow \text{RULE2} \]
- \[\text{RULE3} \rightarrow \text{RULE4} \]
- \[\text{RULE5} \rightarrow \text{RULE6} \]

To practice specifying a program analysis in Datalog yourself, in the following quiz define the inference rules needed to compute a live variables analysis.
The three rules used for live variables analysis are very similar to those for reaching definitions analysis. In fact, the only change needed is that the IN and OUT sets have swapped places. The three rules needed are:

\[
\begin{align*}
in(n,v) \&::= & gen(n,v). \\
in(n,v) \&::= & out(n,v), \ lkill(n,v). \\
out(n,v) \&::= & in(m,v), \ next(n,m). \\
\end{align*}
\]

The order of the two hypotheses in your third rule may have varied but it should be equivalent to this rule.
Outline of this Lesson

A constraint language: Datalog

Two static analyses in Datalog:

- Intra-procedural analysis: computing reaching definitions
- Inter-procedural analysis: computing points-to information

We will wrap up the lesson with a discussion of how to specify an inter-procedural analysis in Datalog using a pointer analysis as an example.

An inter-procedural analysis is an analysis that spans multiple procedures in a program.
Let's now consider a flow-insensitive may-alias analysis on programs in the following language.

A program in this language consists of functions that have a single argument variable and whose body is a set of simple statements s1, through sn. For convenience of presentation, we presume that the flow-insensitivity approximation has already been applied to the body of the function, enabling us to view it as a set of statements rather than a control-flow graph.

Each statement is either an object allocation statement, a copy assignment, a return statement, or a call to a function f with actual argument u whose return result is assigned to v.

Since we are dealing with a pointer analysis, we are only concerned with pointer typed variables, and we presume that each object allocation site is associated with a unique label.

For simplicity, we do not allow field-reads or field-writes in this language.
Let's first look at the intra-procedural aspects of the pointer analysis for our language. For this part of the analysis, we can ignore the function call and return statements, though we'll come back to them when we consider the inter-procedural aspects of the analysis.

Consider a flow-insensitive may-alias analysis for a simple language:

(function body) \(f(v) \) \{ s1, ..., sn \}

(statement) \(s ::= v = \text{new} \ h \mid v = u \mid \text{return} u \mid v = f(u) \)

(pointer variable) \(u, v \)

(allocation site) \(h \)

(function name) \(f \)
Let’s recall the specification of the pointer analysis rules associated with the object allocation and copy assignment statements as depicted in this diagram.

Before analyzing an object allocation statement ‘v = new h’, if the variable v points to an allocation site labeled h2, then after analyzing this statement, v may point to both allocation sites h and h2.

Likewise, before analyzing a copy assignment statement ‘v = u’, if the variable v points to an allocation site labeled h and variable u points to an allocation site labeled h2, then after analyzing this statement, v may point to both h and h2.

Note that in both cases, we accumulate points-to facts of variables rather than overwriting them, as this particular pointer analysis performs weak updates rather than strong updates, given its flow-insensitive nature.
The input relations to the pointer analysis correspond to object allocation and copy assignment statements.

The first one is new(v:V, h:H), meaning that the object allocation statement v = new h appears in the program being analyzed, and the second is assign(v:V, u:V), meaning that the copy assignment statement v = u appears in the program.

(The letter V denotes the set of all pointer-typed variables and the letter H denotes the set of labels of all object allocation statements.)
The output relation generated by the pointer analysis is of the form points(v:V, h:H), meaning that the variable v may point to an object allocated at the site labeled h.
Finally, the inference rules used to compute the points-to information are defined to reflect the diagrams depicting the specification of the pointer analysis.

The rule for object allocation statements is:

\[
\text{points}(v, h) \quad \leftarrow \quad \text{new}(v, h).
\]
and the rule for copy assignment statements is:

\[
\text{points}(v, h) :- \text{assign}(v, u), \text{points}(u, h).
\]
Now let us remove the restriction on function call and return statements, which will allow us to conduct inter-procedural pointer analysis.
Suppose we have the following program to analyze. The program has two statements: an object allocation statement `x = new h1` and a function call statement `y = f(x)`. Function `f` takes a single argument `v` and has two statements in its body: `u = v` and return `u`.
To analyze the program, we need to introduce rules for handling function calls and returns.

So far, we know how to address the object allocation and copy assignment statements via the input relations `new(v, h)` and `assign(v, u)`.

But how do we handle function calls and returns?

The trick is to treat parameter passing and return statements as copy assignments.
More concretely, the line $y = f(x)$ can be effectively replaced by three lines:

\[
\begin{align*}
v & = x; \\
u & = v; \\
y & = u;
\end{align*}
\]

where the first line assigns the value of the passed argument x to the variable v, the second line is the body of the function f, which in this case is just the statement $u = v$, and the third line assigns the value of variable u that would be returned to variable y receiving the output of the function call $f(x)$.
To implement the inter-procedural version of the pointer analysis, we need to add input relations capturing function calls, function definitions, and return statements:

\[
\begin{align*}
\text{arg}(f:F, v:V) \quad & \text{v:V} \\
\text{ret}(f:F, u:V) \quad & \\
\text{call}(y:V, f:F, x:V) \\
\end{align*}
\]

where the letter F denotes the set of all functions in the program being analyzed.

arg(f:F, v:V) means that the function f is defined with v as its argument variable.

ret(f:F, u:V) means that the function f returns the value of the variable u.

And call(y:V, f:F, x:V) means that the function f is called with argument variable x and that its output is assigned to the variable y.
So, for our example program, we would include the following tuples: tuple (f,v) in the arg relation, tuple (f,u) in the ret relation, and tuple (y,f,x) in the call relation.
Finally, we add new rules of inference to compute points-to information from these relations. The first rule is

\[
\text{points}(v, h) :\!-\! \text{call}(_, f, x), \text{arg}(f, v), \text{points}(x, h).
\]

to reflect the fact that the variable \(v\) in the definition of \(f\) may point to the same allocation site as the variable \(x\) passed into \(f\) at the call.

The underscore character refers to a "wildcard": it doesn’t matter what variable is present in that slot, as the output is unaffected by it.
And the second new inference rule is

points(y, h) :- call(y, f, _), ret(f, u), points(u, h).

to reflect that if variable y receives the output of a call to f, and f returns the variable u, then y may point to the same allocation site as u.
Suppose you want to compute the relation mustNotAlias for a program in our toy language, where mustNotAlias(u,v) holds if and only if u and v do not alias in any run of the program.

Select each of the Datalog programs below that will compute the correct output.

The first program consists of a single rule:
mustNotAlias(u, v) :- points(u, h1), points(v, h2), h1 != h2.

The second program consists of two rules:
mayAlias(u, v) :- points(u, h), points(v, h).
mustNotAlias(u, v) :- !mayAlias(u, v).

The third program consists of two rules:
mayAlias(u, v) :- points(u, _), points(v, _).
mustNotAlias(u, v) :- !mayAlias(u, v).

And the fourth program consists of three rules:
common(u, v, h) :- points(u, h), points(v, h).
mayAlias(u, v) :- common(u, v, _).
mustNotAlias(u, v) :- !mayAlias(u, v).
The two programs which correctly compute the mustNotAlias relation are the second and fourth.

The first program does not correctly compute the relation. A variable may point to more than one allocation site at once, so it is not sufficient merely to check that there exist distinct allocation sites that are pointed to by \(u \) and \(v \).

The second program does correctly compute the mustNotAlias relation. \(\text{mayAlias}(u,v) \) holds whenever \(u \) and \(v \) may point to the same allocation site, and \(\text{mustNotAlias} \) is the logical negation of \(\text{mayAlias} \).

The third program does not correctly compute the relation. Because of the wildcard character, it would generate the tuple \(\text{mayAlias}(u,v) \) if there is any points tuple with \(u \) and any points tuple with \(v \), even if the allocation sites in those tuples are not the same.

Finally, the fourth program does correctly compute mustNotAlias. The first two rules are logically equivalent to the rule \(\text{mayAlias}(u,v) :: \text{points}(u,h), \text{points}(v,h) \), so this program computes the same result as the second program.
The rules we've defined so far correspond to what is called a context-insensitive pointer analysis -- that is, an analysis that conflates points-to information across different calls to the same function. This in turn results in a loss of precision. To achieve a more precise analysis, we introduce context sensitivity.

For example, consider this new program. The program has four statements: two object allocation statements \(x = \text{new } h1 \) and \(z = \text{new } h2 \), and two function call statements \(y = f(x) \) and \(w = f(z) \). Function \(f \) is as before: it takes a single argument \(v \) and has two statements in its body: \(u = v \) and return \(u \).
As before, we could try replacing the function calls with assignment statements:

\[y = f(x); \text{ would be replaced by } v = x; u = v; y = u; \text{ and } \]

\[w = f(z); \text{ would be replaced by } v = z; u = v; w = u; \]
Let’s build the points-to graph that would correspond to the pointer analysis as we’ve defined it so far.
Notice that \(w \) may point to \(h_1 \) and \(y \) may point to \(h_2 \) in this points-to graph. This introduces imprecision into the pointer analysis we've defined so far: \(w \) can never point to the object allocated at \(h_1 \), and \(y \) can never point to the object allocated at \(h_2 \).
One way to add context sensitivity to the analysis is through what is called "cloning". It achieves context sensitivity by reproducing the bodies of the procedure in-line with distinguished variable names.

For example, in this program, instead of replacing $y = f(x)$; $v = x$; $u = v$; $w = f(z)$; by $v = z$; $u = v$; $w = u$; we could introduce different copies of the variables v and u (say, v_i and u_i versus v_j and u_j) for each call to f. In this way, we avoid imprecisely claiming that w may point to h_1 or that y may point to h_2. Instead, we would have an equivalent program for which pointer analysis would generate a precise points-to graph.

We can achieve greater precision by allowing cloning to be used for more levels in the call stack. However, the tradeoff for precision via cloning is scalability. The deeper we allow function calls to be cloned, the more space and time we need to allow for the resulting analysis. If each function calls just two other functions, the resources needed for a precise analysis becomes exponential in the depth of the stack of nested function calls.
What about Recursion?

```c
x = new h1;
z = new h2;
y = f(x);
w = f(z);

f(v) {
    if (*)
        v = f(v);
    return v;
}
```

Need **infinite** cloning depth to differentiate the points-to sets of x, y and w, z!

In fact, if there are recursive function calls, as in the following program, which is similar to the previous one except that the body of function f recursively calls f, then an infinite cloning depth is needed to differentiate the points-to set of x and y from that of w and z.

You can learn more about cloning-based context sensitivity by following the link in the Instructor Notes.

Cloning is not the only way to perform context-sensitive analysis. Another popular approach, called the summary-based approach, uses the incoming program states to differentiate between different calls to the same procedure.

Since in general, there may be infinitely many different such concrete states, the analysis designer must apply a suitable abstraction that conflates them enough to enable the analysis to be scalable and terminate, yet make enough distinctions to enable the analysis to be precise.

Then, the same incoming program states yield the same outgoing program states for a given procedure, and these input-output pairs of program states are called summaries.

Summary-based analysis is as precise as cloning-based analysis with infinite cloning depth.

You can read more about summary-based inter-procedural analysis by following the link in the instructor notes.

[https://research.cs.wisc.edu/wpis/papers/popl95.pdf]
We focussed on a particular constraint language, Datalog, in this lesson. However, there are several other constraint languages with different expressiveness and performance characteristics. Here are some of the popular languages along with the kind of problem that one can express using each of them, and some example solvers for each of those problems.

In Datalog, recall that one must specify the analysis in terms of the problem of finding the least solution of deductive inference rules, and example solvers for this problem are LogicBlox and bddbddb.

SAT is the well-known Boolean satisfiability problem. Using SAT, one must specify the analysis in terms of the problem of determining whether a set of Boolean constraints is satisfiable. Example solvers for this problem are MiniSat and Glucose.

MaxSAT is an optimization extension of the Boolean satisfiability problem. One can specify not only what Boolean constraints must be satisfied but also an objective function to minimize or maximize. This optimization aspect of MaxSAT can be used to express, for instance, various tradeoffs in the analysis. Example MaxSAT solvers are open-wbo and SAT4j.

SMT, the Satisfiability Modulo Theories problem, is an extension of the SAT problem. It allows one to specify not just constraints over booleans, but also constraints over integers and pointers. Example SMT solvers include Z3 from Microsoft and Yices.

Finally, MaxSMT is an optimization extension of the SMT problem, similar to how MaxSAT is to the SAT problem. An example MaxSMT solver is Z3.

Other Constraint Languages

<table>
<thead>
<tr>
<th>Constraint Language</th>
<th>Problem Expressed</th>
<th>Example Solvers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datalog</td>
<td>Least solution of deductive inference rules</td>
<td>LogicBlox, bddbddb</td>
</tr>
<tr>
<td>SAT</td>
<td>Boolean satisfiability problem</td>
<td>MiniSat, Glucose</td>
</tr>
<tr>
<td>MaxSAT</td>
<td>Boolean satisfiability problem extended with optimization</td>
<td>open-wbo, SAT4j</td>
</tr>
<tr>
<td>SMT</td>
<td>Satisfiability modulo theories problem</td>
<td>Z3, Yices</td>
</tr>
<tr>
<td>MaxSMT</td>
<td>Satisfiability modulo theories problem extended with optimization</td>
<td>Z3</td>
</tr>
</tbody>
</table>
In this lesson, we have looked at the benefits of constraint-based analysis and how it separates the specification of an analysis from its implementation.

We have also seen how to use a constraint language (particularly Datalog) to set up and solve static analysis problems. The key points to remember are:

- the mapping between the logic of the analysis and the constraints or rules of inference in Datalog, and
- the mapping between the inputs and outputs of the analysis and the relations by which facts are asserted in Datalog.

We have also explored the difficulties and potential solutions that arise in extending pointer analysis to context-insensitive and context-sensitive forms of inter-procedural analysis.