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Abstract

Neuro-Symbolic programming (NESY) was proposed to address challenges with training neural
networks for complex reasoning tasks with the added benefits of interpretability, reliability, and
efficiency. NESY methods train neural models in conjunction with symbolic reasoning, yet they
face issues with scalability and training that limit them to simplistic problems. On the other hand,
purely-neural foundation models can now reach state-of-the-art performance through prompting
rather than training, but they are often unreliable and lack interpretability. Supplementing foun-
dation models with reasoning programs, which we call Prompt-Symbolic (PRSY), provides a way
to use these models for complex reasoning tasks. Doing so raises the question: What role does
neuro-symbolic have in the age of foundation models? To explore this question, we highlight three
pitfalls of NESY with respect to the compute, data, and programs. We then argue that PRSY can re-
place task-specific NESY training, offering opportunities for achieving the original goals of NESY
without the downsides which come with training.
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1. Introduction

Foundation models pre-trained on general internet-scale data are now ubiquitous, bringing the ben-
efits of deep learning to downstream applications across several domains (Bommasani et al., 2021).
This is achieved primarily via prompting techniques, or finetuning for more niche use cases. Their
success is driven by scaling up both the training data and model parameters, leading to predictable
performance improvements (Kaplan et al., 2020). Even still, limitations on problems requiring com-
plex reasoning and reliability remain (Dziri et al., 2023; Valmeekam et al., 2024). Further, these
systems are fundamentally black-box and lack features like interpretability, vital for safety-critical
domains such as medicine (Khan et al., 2025; Wu et al., 2024), autonomous driving (Sun et al.,
2021), and aviation (Siyaev and Jo, 2021), and their unpredictable nature raises safety concerns for
their real-world deployment (Amodei et al., 2016).

Neuro-Symbolic programming (NESY) is a paradigm that moves towards a solution to these
limitations by training deep neural models in conjunction with symbolic reasoning (Chaudhuri et al.,
2021). Figure 1 on the left shows a setup common for NESY systems. Here, the task is split into
two common subtasks, perception and reasoning. Perception tasks convert raw inputs (text, images,
video, etc.) into symbols using deep neural models and the reasoning task uses a symbolic program
(e.g. a Python function) to process the symbols from perception (Mao et al., 2019). Training
the system end-to-end provides several benefits over traditional neural networks, including data
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Figure 1: NESY consists of neural models whose results are fed into a program to produce the
desired output (shown on the left). Training the neural models in NESY is a significant
challenge due to not having supervision for the intermediate symbols s. Shown in the
middle is the modern foundation model PROMPTING paradigm where a user provides a
prompt and their input to a foundation model which then produces the output. On the
right, we show the foundation model approach to Neuro-Symbolic which like PROMPT-
ING does not need training and like NESY uses a symbolic component.

efficiency (using smaller datasets and less supervision), generalizability, and interpretability (the
intermediate symbols can be examined and the program offers a faithful explanation of the output).
Despite these benefits, NESY is often impractical due to a lack of scalability since direct supervision
on the output of the neural model is not provided (Feldstein et al., 2024).

While a major challenge in NESY is learning the neural component, foundation models can now
perform many tasks requiring strong input understanding without any additional training (Bom-
masani et al., 2021; Yue et al., 2024; Ferber et al., 2024). The common prompting setup is shown in
the middle of Figure 1 where there is now just a prompt rather than the training and program used
in NESY. As foundation models are trained on such large amounts of data, prompting can even
offer better performance and robustness than a training-based method using less data (Bommasani
et al., 2021). This raises the following question: What role does Neuro-Symbolic have in the age of
foundation models?

To answer this, we investigate the extent to which frontier foundation models allow for achieving
the benefits of NESY—program reliability and symbol interpretability—without the disadvantages
that come with training. We term the replacement of neural components in NESY with founda-
tion models as Prompt-Symbolic (PRSY), and show its setup in Figure 1 on the right. PRSY uses
prompted foundation models to perform the perception task of extracting symbols, while a symbolic
program (e.g. a Python program) is used to reason over the detected symbols.

Our experiments uncover several NESY pitfalls including unnecessarily training models when
prompting is now available, overfitting to labeled datasets, and trusting a single program to provide
learning signal for the correct behaviors. On the other hand, we show that PRSY provides opportu-
nities for enabling reliability and interpretability of foundation models without the pitfalls that come
with training in NESY. In light of these findings, we look towards future research on PRSY, where
we highlight the problem of autonomously inferring the symbols and program as the significant
remaining frontier.
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Figure 2: Performance of PRSY for four benchmarks as model size increases compared to Scallop,
a baseline NESY method which trains neural models. As model size increases, the gap
between NeSy training and prompting increasingly vanishes. There is still a considerable
gap for the Leaf dataset which we discuss in regards to the program pitfall in Section 2.3.
See Table 2 for full results on all five datasets.

2. Pitfalls

The Neuro-Symbolic paradigm enables the use of explicit programs in an end-to-end differentiable
manner, which allows for learning models for reasoning tasks using less supervision, data, and com-
pute compared to traditional deep learning techniques. However, in the age of foundation models,
a well-crafted prompt often replaces the more resource-intensive training of deep neural networks.
Prompt-Symbolic techniques further make many of the benefits of NESY available for foundation
models. We thus observe that the NESY paradigm faces three main pitfalls in the age of foundation
models: the compute pitfall, the data pitfall, and the program pitfall.

2.1. The Compute Pitfall

From its inception, NESY was proposed as a solution for tasks requiring both deep learning and
complex reasoning where, formerly, knowledge that was otherwise human-specifiable was instead
being learned indirectly by extensive training of large neural networks from scratch. While the
NESY paradigm still required training, the models trained could be smaller and more specialized,
learning concepts from less data and using less overall compute.

The proliferation of foundation models significantly changes the underlying assumptions of this
paradigm. If one can replace the models from traditional NESY with foundation models that don’t
require additional training, they may forgo the compute required to train NESY models. It is then
imperative to ask: how beneficial is it to still train NESY models?

We try and answer this question by comparing NESY techniques, Scallop (Huang et al., 2021)
and ISED (Solko-Breslin et al., 2024), against PRSY instantiated with various open and proprietary
foundation models. As benchmarks, we consider the Sum5 dataset (Huang et al., 2021) which asks
for the sum of five MNIST (LeCun et al., 2010) handwritten digits, the HWFS5 dataset (Li et al.,
2020) which asks for the result of evaluating a handwritten arithmetic expression, the CLUTRR
dataset (Sinha et al., 2019) which asks for the relationship between people described in text, the
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CLEVR dataset (Johnson et al., 2017) which asks questions about an image containing various
objects, and finally the Leaf dataset (Solko-Breslin et al., 2024; Chouhan et al., 2019) which asks
for a plant’s name from an image of a leaf. For foundation models, we use the Llama 3.2 (Dubey
et al., 2024), Qwen 2.5 VL (Team, 2025), InternVL 2.5 (Chen et al., 2024), and Phi 3.5 (Abdin
et al., 2024) family of open models along with Gemini 2.0 Flash (Team et al., 2023) and GPT 4o
(Hurst et al., 2024). See Appendix B for further information on our experimental setup.

Figure 2 shows a snapshot of four benchmarks: Sum5, CLUTRR, Leaf, and CLEVR. In each
graph, Scallop’s performance is denoted by a black dashed line, whereas the solid lines indicate the
performance of the foundation models using PRSY. We plot the performance of foundation models
against their size (number of parameters). In all cases, the foundation models are strictly prompted,
without any training or fine-tuning.

Consider the graphs for the CLUTRR and CLEVR benchmarks. In both cases, we can see
that the smallest versions of the foundation models perform worse than Scallop, where the deep
models are specifically trained for that particular task. However, notice that as the size of the foun-
dation models increases, they progressively close the performance gap, with their largest versions
eventually outperforming Scallop’s trained models. In the case of both Sum5 and Leaf, the largest
foundation models are unable to outperform Scallop’s models, with the performance gap being more
significant for Leaf. However, in both cases, the gap still narrows with scale.

These results show that foundation models have successfully learned the ability to convert raw
input into a symbolic form in a general manner. Further, as the size of foundation models in-
creases, they can replace, or come closer to matching, task-specific models trained through NESY
techniques. This encapsulates our first pitfall: spending compute on training NESY models has
diminishing returns as the performance gap with PRSY shrinks with scale. Naturally, we want to
understand why there may be performance gaps for the Sum5 and Leaf benchmarks; closer exami-
nation of model behaviors over these benchmarks reveals the next two pitfalls.

2.2. The Data Pitfall

Examining the gap between NESY and PRSY reveals that errors in PRSY can stem from ambiguous
or complex cases of identifying symbols. In several cases, the models trained via NESY predict
“correct” symbols that conform to the ground truth of the dataset, even if the data contains biases or
noise. This finding sheds light on the data pitfall: NESY training on specialized datasets, as opposed
to large-scale foundation model pretraining, encourages overfitting to dataset particularities.

Consider Figure 3. We show several examples across benchmarks where the data itself is am-
biguous, yet Scallop makes the correct prediction. For instance, consider the MNIST digits used in
one sample from the Sum5 dataset. While the first four digits are relatively clear, the last digit is
more ambiguous. Gemini predicts this digit to be a ‘1°, while Scallop predicts this as a ‘2’. While
the digit appears to be closer to a ‘1’, the correct answer is ‘2’, allowing Scallop to infer the correct
sum of digits. We attribute this discrepancy to the possibility that the model trained by Scallop has
memorized this particular image to be a 2, while Gemini’s prediction is not biased by the peculiar-
ities of the MNIST dataset. We see similar behavior in other benchmarks including HWF5, Leaf,
and CLEVR shown in Figure 3.

We see further evidence of NESY models overfitting by seeing how it generalizes under slight
distribution shifts. In Figure 4, we show NESY and PRSY performance on the Sum5 task when we
replace the digits with versions from MNIST-C (Mu and Gilmer, 2019) with varying levels of noise
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Dataset Example Prompt-symbolic (Gemini) Neuro-symbolic (Scallop)
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Figure 3: Examples from the five benchmarks of the data pitfall. All examples show cases where
the PRSY method using Gemini results in an “error”. In contrast, the NESY method is
“correct.” These predictions which are marked as errors from PRSY reflect cases where
some of the symbols are ambiguous or hard to determine from the input. In contrast,
the NESY method appears to have memorized noise and biases in the dataset to get the
“correct” symbols. For example, for the leaf dataset, the leaf is folded such that it looks
oblong (which is predicted by Gemini), but Scallop predicts elliptical, which is correct
based on this species of leaf.
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(a) Accuracy with increasing noise. (b) MNIST+noise.

Figure 4: NeSy trained neural models memorize dataset biases rather than learn general concepts.

shown in Figure 4(b). Observe that the introduction of noise into the data in Figure 4(b) does not
significantly affect the visibility of the digits in the images. Despite this, while NESY outperforms
PRSY on small noise levels, adding Gaussian noise significantly drops its performance below that
of PRSY. On the other hand, PRSY, which relies on general purpose foundation models, is less
affected by the introduction of noise into the data.

2.3. The Program Pitfall

The NESY paradigm assumes the reasoning program is provided by domain experts and relies on
it as a form of supervision. As such, the concepts learned by the perception models are highly
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Dataset Example Prompt-symbolic (Gemini) Neuro-symbolic (Scallop)
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Figure 5: Examples of the program pitfall. All examples reflect errors of PRSY which the NESY
method (Scallop) got correct. We see that the NESY method reaches the correct answer
for the wrong reasons or even identifies seemingly undetectable symbols to reach the
correct answer. For CLUTRR, the PRSY method extracts the correct symbols, but the
symbolic program cannot deduce an answer, while the NESY method hallucinates incor-
rect symbols and reaches the correct answer. For CLEVR, the NESY method incorrectly
identifies a blue sphere as “small” when it appears large while PRSY identifies the blue
sphere as large but misjudges a cube as large which was vital to the question.

dependent on the program itself. Since this supervision is relatively weak, with ground truth not
available for the perception subtasks, the neural network may learn to hallucinate, or mispredict,
symbols that still result in the correct answer due to the reasoning program. This results in the
program pitfall: using programs as a component in NESY training can lead to the neural component
hallucinating symbols.

Figure 5 shows examples of the program pitfall in three datasets. Consider the Leaf dataset,
where there is still a large gap between NESY and PRSY performance in Figure 2. The reasoning
program in this case is a decision tree over the edge, shape, and texture of a leaf. This program is
taken from instructions in a forestry database (Talhouk et al., 2015) developed for identifying leaves
on the field. Here, we find that many of the PRSY errors correspond to cases where these features
are extremely challenging to identify simply from a given image of a leaf.

For the leaf shown in Figure 5, Gemini identifies that it has an “entire” margin, meaning it is
smooth, while the Scallop NESY method identifies it as “serrulate,” meaning it has a finely serrated
edge. From just the image, it is difficult to determine whether the margin is serrulate or entire, even
though identifying this is vital to the program outputting the correct answer. Even more ambiguous
is the texture of the leaf, since this is heavily dependent on external factors such as the lighting
conditions. While Gemini claims it is glossy, Scallop’s model predicts it as smooth. Again, making
this prediction is crucial to getting the correct answer from the reasoning program. The Scallop
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solution correctly predicts the final label, as computed by its human-specified program, even when
the image itself lacks clear visual evidence supporting the neural predictions.

To validate that these concepts are not immediately apparent from just the image, we perform
a human evaluation with 10 people hired from Prolific to determine if they agree with the outputs
of Scallop’s trained neural model for the cases where PRSY with Gemini gets the wrong answer.
Results are shown in Table 1. We see that a majority of respondents disagree with Scallop’s neural
outputs for margin and shape classification even though they result in the correct answer. For tex-
ture classification, the inter-annotator agreement is so low that it indicates people cannot reliably
determine leaf texture from the images.

Symbol Category % Scallop Wrong  Agreement (Cohen’s Kappa)

Margin 58.8 0.32
Shape 60.0 0.34
Texture 46.7 0.05

Table 1: Human evaluation of Foundation Model errors on the Leaf classification dataset. We com-
pare Foundation Model predictions leading to the wrong classification with the Scallop
predictions which produce the correct answer. We find that Scallop leads to “symbol hal-
lucination” since humans overall disagree with Scallop predictions even if they lead to the
right answer.

We call this behavior symbol hallucination, since the neural model in NESY identifies symbols
which do not appear present in the input, but their identification leads to the correct output from
the program. We also see a similar behavior on the CLUTRR dataset in Figure 5 where, due to
limitations of the reasoning program, PRSY gets the wrong answer even though it correctly identifies
the symbols, while Scallop hallucinates the incorrect fact that "Benjamin is the son of Timothy,”
resulting in a correct answer that was spuriously derived. For the CLEVR example, both Scallop’s
model and PRSY mispredict some symbols due to misjudging object size, but the NESY method
still results in the correct answer since the program happens to ignore the mispredicted object. In
this case, NESY gets the right answer, but has not actually learned the desired distinction between
small and large objects.

3. Opportunities

In light of the above pitfalls, where does Neuro-Symbolic programming hold merit today? In this
section, we argue that NESY provides several opportunities for advancing the usefulness of founda-
tion models.

3.1. Program Reliability

Compared to pure foundation model prompting, using a symbolic program in a NESY or PRSY
approach can improve accuracy and provide reliability. Recent results have shown that combining
foundation models with explicit programs in various PRSY configurations improves performance
for mathematical reasoning tasks while providing reliability and trustworthiness that were lacking
through pure prompting (Lyu et al., 2023; Chen et al., 2023; Gao et al., 2023). Beyond mathemat-
ical reasoning, a PRSY approach is beneficial for any task involving symbolic computation, since
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performing exact symbolic computation will always be more accurate and reliable than a neural
approximation.
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Figure 6: Performance of end-to-end prompting of Gemini-2.0-Flash compared to NeSy prompting
of the same model on CLUTRR and CLEVR examples of increasing complexity. Com-
plexity for CLUTRR is measured by the minimum number of reasoning steps needed,
and complexity for CLEVR is measured by the length of the program corresponding to
which answers a sample’s question.

As an example, we take the CLUTRR benchmark which asks about the relationship between
two people described in a paragraph and compare the accuracy of PRSY to PROMPTING (using
chain-of-thought (Wei et al., 2022)). The results shown in Figure 6(a) demonstrate that PRSY
achieves consistently high accuracy with increasing question complexity while PROMPTING lags in
performance. As such, PROMPTING serves as an approximation for symbolic behavior, but using a
real symbolic program via PRSY yields higher accuracy. Similar behavior is shown for the CLEVR
dataset in Figure 6(b) where PRSY results in higher and more stable performance than PROMPTING
with chain-of-thought.

3.2. Symbol Interpretability

In addition to the benefits from using program execution rather than a neural approximation, the
other significant benefit is that the symbol extraction step provides a means for interpretability,
which was a major motivation for the emergence of NESY (Garcez et al., 2019). Now that founda-
tion models are increasingly useful in more domains and adopted into real-world applications, this
need only serves to grow. These paradigms are not orthogonal in this manner; foundation models
can offer additional interpretablity to NESY since large-scale pretraining is less likely to overfit to
artifacts of any one dataset (Hendrycks et al., 2020).

An example of how intermediate symbols are useful for interpretability can be seen in the
CLEVR example in Figure 3. In this case, PRSY results in the wrong answer of “rubber.” The
nature of PRSY allows us to debug why the model output the wrong answer by investigating the in-
termediate symbols input to and resulting from the reasoning program. In this case, we see that the
green cylinder was misidentified as rubber, since it is hard to tell the cylinder’s material. However, a
prediction from pure PROMPTING would have been difficult to debug and understand due to a lack
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of intermediate symbols that are interpretable and any guarantees that autoregressive explanations
are faithful to themselves.

4. Looking Ahead
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Figure 7: Example of ChatGPT code execution feature. Generated code is executed for solving
the problem, but we can see in the example on the left from CLEVR that the model can
produce the wrong code. For the example on the right, the model correctly calculates the
Cohen’s Kappa of the attached data.

As foundation models continue to scale, the NESY pitfalls will only become more apparent,
and the opportunities more important. As we demonstrate in this paper, foundation models are
now highly capable for general input processing/understanding tasks which neural models were
traditionally trained for in NESY. The remaining problem in NESY is no longer learning to identify
symbols, but determining which symbols and what program to use for a problem.

We empirically demonstrate in Section 3.2 that the use of programs in a PRSY setup offers the
potential for reliable and accurate symbolic reasoning, but the requirement on the program being
specified by humans before inference greatly limits the practical applicability and performance of
the method. As such, effectively synthesizing programs over foundation model symbols is still an
open problem.

There is now growing interest in this problem with methods which mostly focus on prompt-
ing or finetuning foundation models for generating the program in a PRSY setup (Lyu et al., 2023;
Chen et al., 2023; Gao et al., 2023; Pan et al., 2023). Industry has also taken interest as shown
with the release of OpenAlI’s Code Interpreter (Achiam et al., 2023) and Google’s Gemini code
execution (Team et al., 2023) which can write and execute its generated code as well as OpenAl’s
Operator (OpenAl, 2025) which writes code for performing actions on a computer. As shown in
the example on the right of Figure 7, currently available PRSY tools are already useful for rela-
tively simple data analysis tasks. However, for more complicated tasks such as CLEVR questions,
the example on the left shows these methods are ineffective, potentially resulting in even worse
performance than pure prompting.
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5. Related Work

5.1. Neuro-Symbolic Learning Methods

For a survey on NESY methods see Garcez et al. (2019). NESY learning methods often consist
of a neural perception component followed by symbolic reasoning (Mao et al., 2019; Yi et al,,
2018). There are now several frameworks for constructing such NESY setups including Deep-
ProbLog (Manhaeve et al., 2018), Scallop (Huang et al., 2021), NeurASP (Yang et al., 2020), ISED
(Solko-Breslin et al., 2024), and Dolphin (Naik et al., 2024). All these approaches make various
assumptions regarding program differentiability, and the provide different levels of scalability.

5.2. Integrating Foundation Models in Neuro-Symbolic

Existing work which incorporates foundation models with NESY often uses a foundation model to
generate code which is then executed (Lyu et al., 2023). These approaches either use prompting to
produce explicit code (Lyu et al., 2023; Li et al., 2024b; Chen et al., 2023; Gao et al., 2023; Hao
et al., 2025) or finetuning for code generation (Gou et al., 2024; Pan et al., 2023). There is also work
on directly finetuning foundation models for symbol extraction (Cunnington et al., 2024). Finally,
NESY has also been combined with foundation models to help design new NESY datasets (Li et al.,
2020) and to develop of datasets for finetuning of foundation models (Li et al., 2024a).

5.3. Challenges in Neuro-Symbolic

Several works have recently identified challenges and misconceptions with the common NESY
framing. Reasoning shortcuts, identified by Marconato et al. (2023), are cases where a NESY
method learns to symbols with the wrong semantics, leading to poor performance on programs us-
ing the same symbols in different ways. Reasoning shortcuts are a consequence of the program
pitfall. Another challenge comes from the common assumption on independence of all symbols,
which often does not hold (van Krieken et al., 2024). Similarly, it is assumed that the detected sym-
bols should display locality, or being influenced by a subset of input features (Raman et al., 2023).
As observed by Raman et al. (2023), training in a NESY setup actually does not result in symbols
with the desired locality, another instance of the program pitfall.

6. Conclusion

In this paper, we took a critical look at traditional NESY in the age of foundation models. NESY,
as originally proposed, was meant to address the limitations of deep learning on complex reasoning
problems, as well as its lack of reliability and interpretability. While addressing these problems,
NESY introduced scalability and training issues which limited its effectiveness to overly simplistic
domains. In the age of foundation models, where prompting alone is enough to solve many tasks
without training, we highlight three pitfalls of NESY with respect to data, compute, and programs.
These pitfalls are avoided by PRSY which replaces training with prompting of foundation models to
offer the benefits of NESY without the downsides of training. Finally, we encourage future research
on PRSY systems which infer the necessary symbols and program for solving a problem, instead of
requiring them to be known in advance.
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Appendix A. Prompts

The prompt we use for the foundation models for all benchmarks takes the following form with
placeholders that depend on the particular dataset.

System Prompt:
You are a helpful assistant.

User Prompt:

After examining the input, determine <output_description>. Here
are some examples:

Example 1l:<exl_input>This is an example of <exl_output>.

<input>The input is <input_description>. Examine it and then
output Jjust <output_description> after 'FINAL ANSWER:’. If

unsure of the answer, try to choose the best option.

Assistant:

For Sum5 the input description is “an image of a handwritten digit”, the output description is
“the digit as an integer from 0 to 9”, and we use 5 few-shot examples.

For HWF?5 the input description is “a handwritten number from 0 to 97, the input description is
“the value of the number as an integer from 0 to 97, and we use 5 few-shot examples for the digit
perception. For operator extraction the input description is “a handwritten arithmetic operator”, the
input description is “the operator as a string in the set *+’,’-’, >*’,’/> (note that the division operator
can look like a line with a dot above and below it and multiplication can look like an ’x’)”” and we
use 4 few-shot examples.

For CLUTRR the input description is “a description of a relationship between two people and a
query about the two people’s relationship”, the output description is

the described relationship which answers the question. Use the
pronouns to determine the people’s gender. The relationship
must be one of the following: {’brother’, ’'sister’, ’father’,
"mother’, ’'son’, ’'daughter’, ’'grandfather’, ’'grandmother’, '
uncle’, ’"aunt’, ’'nephew’, ’'niece’, ’'husband’, ’'wife’, ’'brother
—in-law’, ’sister-in-law’, ’son—-in-law’, ’daughter-in-law’, '
father-in-law’, ’'mother-in-law’, ’grandson’, ’'granddaughter’,
"unknown’ }. For example, for the input ’John took his sister
Mary to the store. John is Mary’s what?’ the output should be
"brother.’ Output Jjust the relationship as a word.

and we use 2 few-shot examples.
For CLEVR the input description is “an image of geometric objects”, the output description is

each object’s bounding box and attributes in the form {\"bbox_2d
\": (x1, yl, x2, y2), \"attributes\": (color, shape, material,
size)\}. Colors can be one of [’'gray’,’green’,’blue’,’red’,’
brown’,’purple’,’yellow’,’cyan’], shapes can be one of [’cube
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",’cylinder’,’ sphere’], material can be one of [’rubber’,’
metal’] (it is rubber if the finish is matte and metal if
shiny), and size can be one of [’small’,’large’].

and we use 2 few-shot examples.

For Leaf, we use three different prompts for the three networks used for perception in the NESY
program. For all networks, the input description is “an image of a leaf”’. For the margin network, the
output description is “the classification of the leaf’s margin as one of ’entire’, indented’, ’lobed’,
’serrate’, ‘serrulate’, ‘undulate’”, and we use 5 few-shot examples. For the shape network, the output
description is “the leaf’s shape as one of ’elliptical’, ’lanceolate’, ’oblong’, ’obovate’, ’ovate’”
and we use 9 few-shot examples. Finally, the output description for the texture network is “the
classification of the leaf’s texture as one of "glossy’, ’leathery’, ’smooth’, ‘rough’” and we use 3
few-shot examples.

Appendix B. Experiment Details

For all prompting experiments, we use greedy decoding (temperature 0) so there are no error bars
for PRSY methods.

B.1. Setup
We describe the benchmark datasets, Foundation Models, and NeSy learning baseline below.
Datasets We use five standard NeSy benchmarks:

e Sum5 (Huang et al., 2021): Constructed from the MNIST dataset of handwritten digits (Le-
Cun et al., 2010). The input consists of five images of digits and the expected output is the
sum of the digit values.

 HWFS5 (Li et al., 2020): This dataset consists of five images creating an arithmetic expression.
There are three handwritten digits from zero through nine and two handwritten operators
representing addition, subtraction, division, and multiplication. The expected output is the
evaluation of the expression.

* CLUTRR (Sinha et al., 2019): The input consists of natural language paragraphs describing
family relationships and a question about the relationship between two people mentioned.

* CLEVR (Johnson et al., 2017): The input is an image containing various objects of different
shape, size, color, and texture along with a question about the image.

* Leaf (Solko-Breslin et al., 2024; Chouhan et al., 2019): The input is an image of a leaf and
the expected output is the species of the leaf.

Models We evaluate Foundation Model prompting as a replacement for neural network training
in NeSy learning using the following Foundation Models:

* Qwen2.5 VL Instruct (3B, 7B, and 72B) (Team, 2025)

e InternVL 2.5 Instruct (8B, 38B, and 78B) (Chen et al., 2024)
* Llama 3.2 Vision Instruct (11B and 90B) (Dubey et al., 2024)
e Gemini 2.0 Flash (Team et al., 2023)
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NeSy learning baselines

 Scallop (Huang et al., 2021): We use Scallop as a representative NeSy learning method.
¢ ISED (Solko-Breslin et al., 2024).

B.2. Full NeSy Learning vs. Foundation Model Prompting Performance Gap

The performance gap between NeSy prompting and full NeSy learning is quickly diminishing. In
addition, the performance gap reduces with increasing model scale. This is shown in Figure 2.
Results labelled with “—" for ISED are due to an unavailable implementation for the dataset. For
GPT-40, we only evaluate on two datasets to reduce cost. Finally, the PRSY results marked “—" for
the CLEVR dataset are due to those models not supporting object bounding box generation.

Method Sum5 HWF5 CLUTRR CLEVR Leaf
Scallop 0.975 £ 0.002 0.966 + 0.005 0.400 4+ 0.031 0.750 0.811 4+ 0.035
ISED 0.923 4+ 0.004 0.023 — —  0.823 £0.041
Phi-3.5-vision-instruct 0.17 0.01 0.53 — 0.055
Llama-3.2-11B-Vision-Instruct 0.645 0.0 0.285 — 0.255
Llama-3.2-90B-Vision-Instruct 0.655 0.180 0.626 — 0.178
Qwen2.5-VL-3B-Instruct 0.075 0.015 0.560 0.250 0.215
Qwen2.5-VL-7B-Instruct 0.595 0.03 0.640 0.650 0.335
Qwen2.5-VL-72B-Instruct 0.790 0.250 0.790 0.900 0.390
InternVL2.5 8B 0.540 0.025 0.150 0.160 0.250
InternVL2.5 38B 0.825 0.140 0.730 0.730 0.335
InternVL2.5 78B MPO 0.830 0.000 0.760 0.880 0.405
GPT-40 0.860 — — — 0.509
Gemini-2.0-Flash 0.815 0.710 0.760 0.765 0.405

Table 2: All results
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