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Abstract—We propose NetSpec, a tool that synthesizes network spec-
ifications in a declarative logic programming language from input-output
examples. NetSpec aims to accelerate the adoption of formal verification
in networking practice, by reducing the effort and expertise required
to specify network models or properties. NetSpec aims to be i) highly
expressive, capable of synthesizing network specifications with complex
semantics; ii) scalable, by virtue of using a novel best-first search algo-
rithm to efficiently explore an unbounded solution space, and iii) robust,
avoiding the need for exhaustive input-output examples by actively gen-
erating new examples. Our experiments demonstrate that NetSpec can
synthesize a wide range of specifications used in network verification,
analysis, and implementations. Furthermore, NetSpec improves upon
existing approaches in terms of expressiveness, robustness to exam-
ples, and the quality of synthesized programs.

Index Terms—Network protocol, program synthesis.

1 INTRODUCTION

Formal specifications are vital for a wide range of net-
working tasks, including verification [20], [5], [6], [40], [41],
analysis [4], [26], [9], and debugging [11], [43]. Network
operators who seek to verify properties of their network
need a formal specification of the network’s protocols [20].
In cloud management, cluster administrators who wish to
ascertain reachability of nodes must specify the desired
behavior using declarative queries [4], [26]. In distributed
systems, programmers who wish to verify certain system
properties rely on formal specifications of a wide range
of protocols, including inter-domain routing [41], [20], [6],
consensus protocols [3], [37], and security protocols [12].
Furthermore, various domain specific languages [31], [25],
[17], [7] rely on formal specifications expressed in logic
as a basis for generating actual implementations, thereby
bridging the specifications-implementation divide.

Despite their promising benefits, formal specifications
have not yet gained mainstream adoption in practice. Today,
it remains challenging for a network practitioner to write
these formal specifications in the first place. It is even harder
to ensure that the specifications capture all aspects of the
network. Formal languages have steep learning curves, and
it is difficult to find engineers who are simultaneously well-
versed in network operations and formal methods. Conse-
quently, despite the progress in tools for network verifica-
tion and analysis, undertaking these tasks still necessitates a

formal methods expert who can at least write the desired
properties or model the network in formal specification
languages.

In this paper, we present NetSpec, a specification-by-
example (SBE) toolkit that aims to automatically synthesize
formal specifications of network protocols in logic. NetSpec
aims to make formal network analysis more accessible to
network programmers, who do not necessarily have exper-
tise in formal methods. In the SBE paradigm, programmers
provide input-output examples of their protocol designs.
These designs can be handwritten or derived from actual
runtime communication traces. NetSpec then applies pro-
gram synthesis techniques to automatically yield the logical
specifications which are amenable to verification [40] or
generation of distributed implementations [25].

Our choice of logic as a basis for NetSpec is motivated
by the fact that many formal network models trace their
roots to logical specifications. In particular, we target an
extension of the declarative logic programming language
Datalog [2], which is popular in the literature on network
verification [20], [17], [5], [40], [41], analysis [31], [4], [26],
debugging [43], [11], and implementation [31], [25], [3], [37].
Thus, our logical specifications can be seen as declarative
programs in themselves: the input comprises facts about a
network (e.g., topology, VM configurations, etc) or incoming
messages (e.g., route requests), while the output comprises
actual network state (e.g., the shortest path, the reachable
VM pairs, etc) or outgoing messages (e.g., route updates).

We envision NetSpec being used in a variety of settings:
1) rapid prototyping of a protocol design by compiling the

synthesized logical specifications into distributed imple-
mentations.

2) verifying network protocols at design time by providing
input-output examples that can be proof-checked based
on its synthesized logical specifications. When a design
bug is revealed by a verifier, the user can correct the
design by adding new examples.

3) taking a legacy program and deriving its logical specifi-
cations from runtime executions for subsequent verifica-
tion or software analysis. When a verifier finds a counter-
example, it can be used to test against the legacy pro-
gram. If the legacy program exhibits undesired behavior,
a real bug is caught. Otherwise, the logical specifications
is inaccurate, and can be refined by adding the counter-
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example to NetSpec.
To this end, NetSpec provides key features that advance

upon state-of-the-art programming-by-example approaches
and enable it to effectively address the above use-cases. We
next elucidate each of these features:
• Expressivity. NetSpec supports expressive features neces-

sitated by complex semantics involved in network spec-
ifications. These features include recursion, aggregation,
and user-defined functions (UDFs). None of the existing
techniques for synthesizing declarative programs support
this combination of features, which precludes them from
targeting many common network specifications, e.g., rout-
ing protocols and consensus protocols.

• Scalability. NetSpec uses a novel best-first search algo-
rithm that incrementally proceeds from simple to complex
programs, with the ability to rapidly backtrack, which
enables to efficiently explore an unbounded search space
and produce succinct specifications. In contrast, existing
techniques either require the user to bound the search
space [24], [33] (e.g., by providing the maximum number
of operators), or suffer in terms of efficiency by exploring
a large number of incorrect programs [28].

• Robustness. NetSpec is robust to the quality of input-
output examples. Approaches based on programming-
by-example rely on the user to craft a complete set of
examples in order to learn the correct program. However,
it is easy to miss corner cases when providing these ex-
amples manually. NetSpec proactively detects the incom-
pleteness in the specified examples, and generates new in-
put queries to the example provider—a network operator
or a legacy implementation. These new inputs, together
with the provider’s answers as the outputs, improve the
example quality and enable NetSpec to unambiguously
learn a correct program.

We have developed a prototype of NetSpec and evaluate
it on a suite of 26 benchmarks that encompass a wide range
of network protocols in different sub-domains, including
network analysis, software-defined networking (SDN), sen-
sor networks, routing protocols, and consensus protocols.
Our experiments demonstrate that NetSpec can faithfully
synthesize most logical specifications in under a few sec-
onds, with the most complex one in slightly more than 1
minute. In contrast, state-of-the-art tools GenSynth [28] and
Scythe [42] cannot synthesize benchmarks requiring either
aggregation or user-defined functions (10 out of 26), and
benchmarks requiring recursion or user-defined functions
(11 out of 26), respectively. Moreover, the specifications syn-
thesized by NetSpec can be directly compiled into declara-
tive networking [31], [25] for distributed implementations.

To validate NetSpec on actual implementations, we fur-
ther demonstrate that NetSpec is able to synthesize logical
specifications from actual program execution traces derived
from popular open-source SDN controller implementations
written in Floodlight [19] and POX [32], highlighting its
ability to synthesize specifications for large-scale programs.
Contributions. To summarize, the key technical contribu-
tions of this paper are as follows:
• We propose a novel synthesis algorithm to efficiently

synthesize highly expressive network specifications from
input-output examples. The specifications, expressed in
first-order relational logic, have a variety of uses including
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Fig. 1: Architecture of NetSpec.

verifying, analysing, and generating implementations.
• Since programming-by-example approaches are suscep-

tible to missing examples, we develop a novel example
generation algorithm to supplement synthesis. It queries
the example provider for new examples that guide the
synthesis algorithm to an unambiguous specification.

• We realize our approach in a tool NetSpec and evaluate
it on diverse benchmarks and use-cases. NetSpec is able
to correctly synthesize a wide-range of network protocols
within seconds and is robust to missing examples. More-
over, we demonstrate that NetSpec outperforms state-of-
the-art synthesis approaches in terms of its expressive-
ness, and in the quality of its synthesized programs.

2 ILLUSTRATIVE EXAMPLE

In this section, we illustrate the end-to-end operation of
NetSpec using the shortest path routing protocol as an
example. The overall architecture of NetSpec is depicted in
Figure 1. In Sections 2.1, 2.2, and 2.3, we describe the input-
output examples, the synthesis algorithm, and the example
augmentation process respectively.

2.1 Problem Specification
NetSpec takes two kinds of input: (1) A set of input-output
example pairs, where each pair is consist of a set of input
tables, and a set of output tables. These tables are rela-
tional, where each row is interpreted as relational tuples in
Datalog. (2) Optionally, a list of user-defined functions and
aggregators that could appear in the output specification.
And NetSpec returns a logical specification, in the syntax of
Datalog, that is consistent with the input-output examples.
In the remainder of this paper, we will use “specification”
and “program” to refer to NetSpec’s output interchangeably.

Figure 2a depicts such an example for our shortest path
routing protocol. In this example, one input-output pair is
provided. The input table is named link, describing the
network topology as a weighted graph. And the output
table is named bestPath, specifying an optimal path for
each pair of source and destination nodes. Functions in-
cluding list initialization (l = [x, y]), concatenation (x :: l),
and membership checking (x in l), and aggregators (min and
max) are also provided.

From this data, NetSpec automatically synthesizes the
declarative logical specification shown in Figure 2b. We
have expressed the specification using the syntax for Data-
log, which we briefly review in Section 3. The first two rules
specify paths between pairs of nodes and their associated
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(a) A small network topology as a weighted directed graph
(left), its relational representation (middle), and the expected
output (right).

// compute available paths
r1: path(x, y, p, c) :- link(x, y, c), p=[x, y].
r2: path(x, y, x::p1 ,c1+c2) :- link(x, z, c1),

path(z, y, p1, c2), !(x in p1).
// select the minimum cost path
r3: minCost(x, y, min<c>) :- path(x, y, _, c).
r4: bestPath(x, y, p, mc) :- path(x, y, p, mc),

minCost(x, y, mc).

(b) Specification synthesized by NetSpec.

Fig. 2: Example of a shortest path routing protocol specification.

costs: rule r1 specifies a network link as a one-hop path,
and rule r2 specifies the transitive case. In particular, x::p1
prepends node x to the head of path p1, and !(x in p1)
checks that x is not in path p1, to avoid generating loops
and to enforce termination. Rules r3 and r4 select the path
with the minimum cost as the output best path.

This specification provides a high-level abstraction for
verifying route convergence properties [41] and explain-
ing route derivations [45]. Similarly, logical specification of
other routing protocols can also be used to reason about net-
work connectivity under different network dynamics [26],
[20].

Despite the simplicity of the final specification, several
aspects of the synthesis problem make it challenging in
practice. First, the search space is enormous. For example,
the rule r2 contains 13 variable occurrences, so that there
are 13! ≈ 109 ways of filling in its variables even after the
rest of the rule structure is fixed. Furthermore, interaction
between the rules makes the problem non-compositional,
and techniques which synthesize one rule at a time become
inapplicable [30], [15]. Finally, because input-output exam-
ples often under-specify the target concept and because of
the undecidability of program equivalence [2], it is difficult
to determine whether the synthesized specification correctly
captures the user’s intent.

2.2 Synthesis by Optimization
We organize the synthesis algorithm as an optimization
problem and illustrate the process in Figure 3. Each node in
the figure represents a candidate program, and its outgoing
edges indicate each of its possible offspring. We highlight
critical steps that lead to the final program and defer details
of the algorithm to the next two sections.

Conceptually, we consider three possible modifications
to each candidate program: introducing rules, introducing
literals within a rule, and introducing aggregation operators.
In the rest of this section, we first describe the overall search
strategy for applying the modifications, and then outline
each one of the three modification steps.
Search strategies. The objective function of the optimization
problem is based on two measures of success on a candidate
program s:

score(s) = precision(s)× recall(s) (1)

In particular, given the set of expected output tuples Oexp,
and a candidate specification s that produces set of output

tuples Oret, we calculate precision(s) = |Oexp∩Oret|/|Oret|,
which is the fraction of tuples produced which are expected,
and recall(s) = |Oexp ∩ Oret|/|Oexp|, which is the fraction
of expected tuples which are produced by the candidate
specification. The score(s) is discounted by a γ(s) metric
that is a fraction of columns whose column values are all
known given s.

Starting with an empty program, with score 0, the syn-
thesis algorithm repeatedly generates offspring programs by
applying all mutation strategies, and adds these offspring
into a set of candidate programs. The next program to
mutate is sampled from offspring that have higher scores,
or the whole set of candidate programs when no offspring
has a higher score.

In Figure 3, the input relation link generates 3 of the
6 expected bestPath tuples in Programs 1 and 2. For
instance, the rule bestPath(x,y,p,c):- link(x,y,c),
p=[x,y] has a recall of 0.5 and a precision of 0.75, and has
the highest score among all candidate programs. A red color
bestPath tuple denoting the shortest path from a to c is
incorrect and needs to be fixed. Moreover, some bestPath
tuples are missing. In subsequent steps, the candidate pro-
gram with the highest score is successively modified to
include the transitive rule for paths, and the aggregation
operation to select the optimum weight path. Eventually,
the red tuple is corrected, the missing tuples generated, and
we converge on the best paths that matches the given input-
output examples.

We next describe the three modification steps that can be
applied to the current best candidate program. Each modi-
fication is described by referencing the generated candidate
programs (1–4) in Figure 3.
Modification 1: Introducing new rules. The algorithm be-
gins by enumerating single rule programs which produce at
least one expected output tuple. The same rule generation
algorithm is also invoked when the intermediate program
fails to produce a desired output tuple, i.e., it has imperfect
recall (less than 1). Each synthesized rule is chosen so that
it produces at least one desirable tuple which is currently
missing. These rules are synthesized by repeatedly intro-
ducing literals (modification 2) to the set of minimal rules,
which contain only one head literal and one body literal,
until it produces at least one expected output tuple.

We illustrate this process for the running example in
Figure 3. Midway through running the best-first search
algorithm after two refinement steps, the precision and
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Fig. 3: NetSpec synthesis procedure. On the left is the input table link. The highlighted blue boxes show the three
intermediate programs leading up to the final solution. The tables underneath describe their respective outputs.

recall of the best candidate program are 0.75 and 0.5 re-
spectively. At this point, the best candidate program is
only able to generate one-hop best paths by virtue of
the rule bestPath(x,y,p,c):- link(x,y,c),p=[x,y]
(Program 2). New rules need to be added so that one can
generate outputs for paths that are two-hops and beyond,
and this is done by adding the recursive rule that contains
bestPath in the rule body. Upon adding this new rule,
the recall of the resulting output (Program 3) is increased
to 1 although the precision is still not yet 1 (pending one
additional modification to introduce aggregates).
Modification 2: Rule refinement by introducing literals.
If the precision of a candidate program is less than 1, the
algorithm adds new constraints to its rules by introducing
literals, or by augmenting them with aggregation opera-
tions. By adding new literals to its rules, the algorithm
produces an offspring program s′ which produces a subset
of the output tuples produced by the original program s.

To provide some intuition on rule refinement, we con-
sider the scenario shown in Figure 3 where the current
best candidate is the partial rule bestPath(x,y,_,c):-
link(x,y,c) (Program 1). Since the third column of the
output relation has not yet been specified, the algorithm
scores this partial rule by only comparing the remaining
columns to the reference output. Intuitively, the partial
rule mispredicts the cost of the (a,c) path, so that the
program has a precision of 0.5 and a recall of 0.75. This
score is additionally discounted by a factor of γ = 0.75
to account for incompleteness in output and bias the rule
search towards faster rule completion. At this point, the
rule refinement adds a literal p = [x, y] where [ ] is a path
concatenation function which is one of the candidate user-
defined functions provided to the synthesis algorithm. Inter-
estingly, with this refinement, while precision is unchanged
in the resulting output (Program 2), γ increases to 1 and all
column values are known.

Fig. 4: Two solutions of the routing protocol specified with
incomplete examples. The difference is highlighted.

Observe that this process of adding literals provides
flexibility in supporting arbitrary functions because it makes
no assumptions about the underlying semantics. It is also
highly efficient because it only considers one literal at a time,
instead of arbitrary combinations of literals.
Modification 3: Aggregation operators. The final way to
modify a program output is to apply an aggregation opera-
tion to produce one of its output columns. Consider the rule
r3 which finds the length of the shortest path between x and
y. Informally, the aggregation operator min first groups the
output tuples by their source and destination nodes, (x,y),
and then aggregates over all possible values of c for which
a path exists: path(x,y,_,c). In Figure 3, after adding the
min aggregate to a candidate (Program 3), the algorithm
converges upon the final solution (Program 4).

2.3 The Example Augmentation Process

The synthesis algorithm discovers all programs which are
consistent with the input-output examples up to a max-
imum depth. When the provided input-output examples
only partially constrain the possible solutions, the algorithm
may discover multiple solutions, all of which are consis-
tent with the data. We show two possible solutions to the
shortest path routing program in Figure 4, and highlight
their difference in yellow. In general, dealing with under-



5

(input relation) I
(output relation) O

(function) F
(aggregation) A ∈ { min, max, count }

(variable) x
(body literal) b ::= I(x̄) | !I(x̄) | O(x̄) | F(x̄)

(head argument) a ::= x | A(x)
(head literal) h ::= O(ā)

(rule) r ::= h :- b1, ..., bn
(specification) p ::= { r1, ..., rn }

Fig. 5: Abstract syntax of specifications in NetSpec. Input
relation (I), output relation (O), user-defined functions (F),
and aggregation (A) are application-specific.

constrained specifications is a major outstanding challenge
in programming-by-example (PBE) systems, and solution
disambiguation is an important contribution of this paper.

One reason for the difficulty of disambiguation is that
the equivalence checking problem for Datalog programs
is undecidable [2]. To address this, NetSpec employs the
idea of differential testing from program analysis [27] to
repeatedly run the two programs with randomly perturbed
inputs. In our example, by modifying the link costs, one
obtains an input which reveals the difference between the
two programs. We can then request the user to provide
the ground truth for this new example, which will in turn
eliminate at least one of the candidate solutions. The process
repeats until only one program remains, or NetSpec fails to
generate a distinguishing input among the programs. In this
latter case, NetSpec produces the simplest program as the
final solution. Because the enumeration process is biased
towards smaller programs, and because the tie-breaking
routine favors the syntactically smallest solution, in practice
NetSpec produces small programs that are also readily
interpretable and resistant to over-fitting.

3 THE NETSPEC SPECIFICATION LANGUAGE

This section provides a more formal overview of the lan-
guage of specifications synthesized by NetSpec. The design
of the language is motivated by two key goals: the ability
to express a wide range of network specifications, and the
ability to leverage a variety of network verifiers, analyzers,
and implementations.

Figure 5 presents the abstract syntax of specifications. We
elucidate it using our running example of the shortest-path
routing specification shown in Figure 2b. A specification is
a program whose inputs and outputs are a set of relations.
In our routing example, the input relations include link,
which represents the network topology, as well as com-
mon predicates such as in (list membership). The output
relations include bestPath, which represents the shortest
path between every pair of nodes in the input network, as
well as relations such as path and minCost which hold
intermediate results needed to compute bestPath.

A specification comprises a set of rules that specify how
to compute the output relations from the input relations.

Our routing example comprises four rules denoted r1
through r4. Each rule is a Horn clause of the form:

Rh(x̄h) :- R1(x̄1), ..., Rn(x̄n)

where the x̄i’s are vectors of variables of appropriate arity.
Each rule is read from right-to-left as a universally quan-
tified implication: for all variable valuations x̄, if each of
tuples R1(x̄1), ..., Rn(x̄n) are derivable, then so is Rh(x̄h).

For instance, rule r4 in our routing example states that if
path(x, y, p,mc) and minCost(x, y,mc) are derivable, then
so is bestPath(x, y, p,mc). This rule also depicts a basic
logic operation: conjunction (i.e., join). On the other hand,
disjunction (i.e., union) is expressed by means of different
rules with the same head relation, as illustrated by rules r1
and r2 which denote the base case and inductive step, re-
spectively, for computing the path relation. These two rules
also illustrate recursion—an operation commonly needed in
network specifications to specify reachability properties.

The features described thus far constitute the declar-
ative logic programming language Datalog [2]. However,
Datalog is inadequate to express real-world network speci-
fications with rich functionality. The specification language
of NetSpec therefore extends Datalog with three additional
kinds of operations: negation (denoted !), aggregation (e.g.,
min and count), and user-defined functions, which include
common utility functions such as :: (list prepend) and +
(integer addition). To ensure well-founded semantics (Data-
log programs with negations should be stratified [2, Chap-
ter 15]), NetSpec only applies negations to input relations or
functions, e.g., to function in in rule r2. In addition, to keep
the synthesis task tractable, NetSpec applies the following
syntactic restrictions to each rules:

1) Each rule can have at most 2 literals of the
same relation. For example, a rule h(x,w) :−
p(x, y), p(y, z), p(z, w) would not be generated by
NetSpec because it has 3 literals of relation “p”.

2) A negation literal can have at most 2 bound variables.
For example, literal !p(a, b, c) would not be added to
rules, because it has 3 bound variables (a, b, c). But
literal !p(a, b, ) could be added.

3) At most one aggregation is used in each program.
4) Aggregation can only be applied in the head of a

rule. For instance, applying min in rule r3 yields the
minimum cost c over all paths between each pair of
nodes x and y in the input network.

5) A user-defined function’s result can only be used in the
head of a rule, e.g., the result of + in rule r2.

In evaluation, we show that these syntactic restrictions have
no impact on all declarative specifications from prior litera-
ture, except PAXOS, which has two layers of aggregations.
We show how to synthesize such complex protocols by
breaking it down into independent modules in Section 7.1.

Specifications are executable programs: execution begins
with all output relations initialized to empty, and proceeds
by repeatedly evaluating the rules until the output relations
stop changing. The syntactic restrictions described above
ensure a deterministic result regardless of rule evaluation
order. However, note that the presence of recursion together
with user-defined functions can lead to non-termination
(e.g., by recursively applying integer addition). NetSpec
thus supports a highly expressive class of specifications.
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An important benefit of the specifications synthesized by
NetSpec is their suitability for a variety of networking tasks.
They can be verified using SDN verifiers such as Vericon [5]
and FlowLog [31], and routing verifiers such as Batfish [20]
and FSR [41]; They can be analyzed using network analysis
tools such as NOD [26],Tiros [4] and ExSPAN [45]. Lastly,
they can be compiled to distributed implementations in
Network Datalog [25] and FlowLog [31].

4 SYNTHESIS ALGORITHM

Algorithm 1 Synth(I,O, F ). Given a set of input tuples
I , expected output tuples O, and a library of functions F ,
produces all consistent programs.

1) Initialize the set of solutions, S := ∅, the set of candidate
programs, Q := {P0}, and the current program P :=
P0, where P0 is the empty program.

2) While Q ̸= ∅, do:
a) Let Offspring(P ) = {P ′

1, P
′
2, . . . } be the offspring of

P , computed according to Equation 2.
b) Update the set of solutions, and add all remaining

programs for further enumeration:

S := S ∪ {P ′ ∈ Offspring(P ) | score(P ′) = 1}, and
Q := (Q \ P ) ∪ {P ′ ∈ Offspring(P ) | score(P ′) > 0}.

c) Sample the next program to explore:

HS := {P ′ ∈ Offspring(P ) | score(P ′) > score(P )}
HR := {P ′ ∈ Offspring(P ) | recall(P ′) > recall(P )}

P :=


Sample(HS, P ) if HS ̸= ∅
Sample(HR, P ) else if HR ̸= ∅
Sample(Q,P ) otherwise.

3) Return S.

Offspring(P ) = OD(P ) ∪OC(P ) ∪OA(P ), where (2)

OD(P ) =

{
AddRule(P ) if recall(P ) < 1, and
∅ otherwise,

OC(P ) =

{
ExtRule(P ) if precision(P ) ≤ 1, and
∅ otherwise, and

OA(P ) =


MkAgg(P ) if precision(P ) ≤ 1 and

recall(P ) = 1, and
∅ otherwise.

We present the top-level synthesis procedure in Algo-
rithm 1. It takes only a set of input tuples (I), and a set
of output tuples (O), and we will explain how to support
multiple instances of input-output example pairs in sec-
tion 4.4. As described in Section 2, it models an optimization
problem in the Datalog program space, where each state is
a program. And the objective function score(p) is defined as
the product of precision(p) and recall(p).

At each iteration, the algorithm explores the program
space by mutating the current program P , which gives rise
to several offspring (step 2a). Offspring(P ) is defined in

equation 2, where the D, C , and A subscripts indicate the
generation of offspring by adding new rules (disjunctions),
extending existing rules (conjunctions), and by applying
aggregation operators, respectively. The conditions to apply
each of these mutation strategy are based on the semantics
of Datalog. Both adding clause in a conjunction rule, and
aggregate the output of current program, monotonically
decrease the size of program output (number of tuples), thus
may improve precision, but may also lower recall at the
same time. Thus they are only applied when the program
has imperfect precision. Adding a rule, on the contrary,
monotonically increase the size of program output, and
could potentially improve recall, but lower precision at the
same time. Therefore it is only applied when the program
has imperfect recall. In addition, we assume the program
space where only one aggregator is used, thus we wait until
all necessary rules are added to reach perfect recall before
applying aggregation.

In step 2b, offspring with score 1 are added to the solu-
tion set S. Offspring with score 0 implies that it produces no
desired output (P (I)∩O = ∅). Such offspring are discarded,
based on the previous observation that, applying ExtRule
or MkAgg to a program monotonically decreases the output
size of the program. This means that further extending any
rule of this program would not produce any desired output,
except adding new rules. In addition, we assume that in
all solution programs, every non-aggregate rule directly
contributes to some output in O. Therefore, only rules with
non-zero score (P (I) ∩ O ̸= ∅) are added into the set of
candidate programs (Q) for further mutations.

Algorithm 2 Sample(Q,P ). Given a set of candidate pro-
grams Q, the current program P , return a program P ′ ∈ Q.

For k ∈ {1, 2, ...,Kmax}, do:
1) Uniformly sample a program P ′ from Q.
2) Compute acceptance probability of P ′:

s0 := score(P ), s1 := score(P ′)

T := 1− k

Kmax

Pr[accept P ′] :=

{
1 if s1 > s0
exp(− s0−s1

T ) otherwise
(3)

3) If Pr[accept P ′] ≥ random(0, 1):
• return P ′

In step 2c, the next program to explore is sampled
probabilistically. When there are offspring with higher score
or higher recall, these offspring will always be chosen as
the next program to explore. Otherwise, it samples from
the whole set of candidate programs Q. The sub-routine
Sample(Q,P ) is described in algorithm 2. Borrowing the
idea in simulated annealing, it iteratively samples a can-
didate P ′ ∈ Q uniformly, and accept it with probability
computed by equation 3. Intuitively, when a candidate pro-
gram has higher score than current program, it is accepted
with probability 1. Otherwise, it is accepted with probability
between 0 to 1, depending on how worse its score compared
to the current program.
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The rest of this section describes each of these mutation
strategies, and formal properties of the synthesis algorithm.

4.1 Adding and extending Rules
The AddRule(P ) procedure enumerates all minimal rules
and generate offspring by adding one minimal rule to P . A
minimal rule is a rule that has only one literal in the body,
and the head only have one field bound to the body, with
all remaining fields being empty place holders (“ ”). In the
short-path routing example, one of the minimal rules is:

r_0: bestPath(x,_,_,_) :- link(x,_,_).
Let MinimalRules be the set of all minimal rules obtained
from the given input and output relations, AddRule(P ) is
defined as:

AddRule(P ) := {(P ∪ r)|r ∈ MinimalRules} (4)

Next we introduce “ExtRule(P)” procedure, which fur-
ther contains two atomic operations on a rule, namely
“AddLiteral(r)” and “AddBinding(r)”. They are defined as:

AddLiteral(r) = {r ∧ l|r ∈ P, l ∈ L} (5)

where L is the set of all literals whose relation is from the
set of all input relations, output relations, and user-defined
functions, and contains only empty place holders “ ”. r ∧
l represents a new rule by adding literal l in conjunction
with r’s body. Continuing on the example on shortest-path
routing, one of the new rules generated by “AddLiteral(r0)”
is:

r_1: bestPath(x,_,_,_) :- link(x,_,_),
bestPath(_,_,_,_).

where bestPath( , , , ) is a literal instantiated from the
output relation bestPath.

Next, “AddBinding(r)” is defined as follow:

AddBinding(r) ={r ∧ (v1 = v2)|v1, v2 ∈ r (6)
∧ dom(v1) = dom(v2)}

where v1, v2 ∈ r means that variable v1 and v2 appear in the
rule r, and dom(v) is the domain of variable v, as specified
in the schema of the literal where v appears. As an example,
we show one of the rules generated by “AddBinding(r1)”:

r_2: bestPath(x,_,_,_) :- link(x,z,_),
bestPath(z,_,_,_).

where the second variable in literal link is bound
with the first variable in literal bestPath in the
body. Note that instead of explicitly add a predi-
cate that match two variables as: bestPath(x, , , ) :
−link(x, v1, ), bestPath(v2, , , ), v1 = v2., we rename
v1 and v2 to z for brevity.

Putting them together, “ExtRule(P)” generates all pro-
grams resulted from applying either “AddLiteral” or “Ad-
dBinding” to any one of the rules in program P . “Ex-
tRule(P)” is defined as:

ExtRule(P ) ={(P \ r) ∪ r′|r ∈ P, (7)
r′ ∈ (AddLiteral(r) ∪AddBinding(r))

TABLE 1: Example of scoring a partial program Pr. It
contains a partial rule r, where only two fields in the head
are determined, thus only two columns are generated by
this rule. Precision is 0.86 because 6 out of the 7 output
tuples are desired (in O∪πc(O)). Recall is composed of two
parts, the complete tuples (3 in green box), and the partial
tuples (3 in red box). The recall on the partially generated
output is discounted by factor 0.5 because only 2 out of
4 columns are generated. Putting them together, the total
recall is 3+3×0.5

6 = 0.75.

4.2 Evaluating partial programs
When applying AddRule(P ) and ExtRule(P ), we will have
partial rules in the program queue. By partial rule we mean
rules that have empty place holders in the head. We further
define partial programs as programs that contains at least
one partial rule.

As an example, consider the four-place bestPath(x,
y, p, c) relation, and a partial rule as the following:

rp1: bestPath(x, y, _, _) :- link(x, z, _),
bestPath(z, y, _, _).

Notice that this rule only produces the first two columns of
the output relation, the source node and and the destination
node, but does not produce the remaining two columns, the
optimum path, and its length.

As a consequence, programs with these partial rules,
such as P ∪{rp1}, cannot be directly compared to the entire
reference output O, and we are instead only able to compare
its first two columns to πsrc,dest(O), borrowing the notation
for projections from relational algebra.

This leads us to the following definition of precision and
recall for partial programs Pr:

precisiond(Pr) =
|Pr(I) ∩ (O ∪ πc(O))|

|P (I)|
, (8)

O′ = {t ∈ (O \ P (I))| πc(t) ∈ P (I)}

recalld(Pr) =
|P (I) ∩O|+ γ|O′|

|O|
(9)

where πc is the projection operator that project to the
columns that have been bound on the partial rule’s head,
The set O′ is the subset O that are not in P (I), but whose
projection on columns c appear in P (I), we visualize this
set computation in Table 1.

4.3 Introducing Aggregation Operations
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Algorithm 3 MkAgg(P ). Produces offspring of P by intro-
ducing aggregation operators.

1) Let F be the family of aggregation operations, and Let
C be the set of all columns in output relation R.

2) For each operator op ∈ F , for each subset Cagg ⊆ C ,
and for each aggregation column f ∈ C\Cagg, construct
the offspring program P ′: First rename the output re-
lation R of P to Rbase, and let Crem be the remaining
columns C \ Cagg \ {f}. Then add the following two
rules.

Ropt(Cagg, fopt) :- Rbase(Cagg, fopt, _),
fopt = op f: Rbase(Cagg, f, _).

R(Cagg, fopt, Crem) :- Ropt(Cagg, fopt),
Rbase(Cagg, fopt, Crem).

3) Return all offspring produced in Step 2.

Algorithm 3 describes MkAgg Procedure. Recall the
third program in our running example of Figure 3:

r1: bestPath(x, y, p, c) :- link(x, y, c), p = [x, y].
r2: bestPath(x, y, x::p, c1 + c2) :- link(x, z, c1),

bestPath(x, y, p, c2), !(x in p1).

This program correctly predicts the reachability relation, but
it produces additional incorrect paths, i.e., it has perfect
recall but imperfect precision. In this case, NetSpec attempts
to remedy the situation by introducing aggregation opera-
tors. It introduces two new rules, which may be informally
interpreted as follows: The first rule selects a subset of
columns (in this case, the source node x and the destination
node y), and performs an aggregation on another column
(in this case, computing the minimum of all path weights
which share the source and destination nodes). The second
rule then selects the values of the remaining columns which
lead to this maximization or minimization objective. Thus,
after mutation, the following program is added to the queue:

r1: path(x, y, p, c) :- link(x, y, c), p = [x, y].
r2: path(x, y, x::p, c1 + c2) :- link(x, z, c1),

bestPath(x, y, p, c2), !(x in p1).
r3: minPath(x, y, mc) :- path(x, y, _, mc),

mc = min c: path(x, y, _, c).
r4: bestPath(x, y, p, mc) :- minPath(x, y, mc),

path(x, y, p, mc).

4.4 Supporting multiple input-output example pairs

So far our algorithm description is based on one set of
input tuples (I) and one set of output tuples (O). To sup-
port multiple instances of examples, NetSpec introduces an
additional field ‘InstanceID’ to every tuple, which indicates
the particular example instance that the tuple belongs to.
Tuples across different instances are then combined into one
set of input tuples (I), and one set of output tuples (O),
respectively. During the rule search process, NetSpec only
generates rules that bind all ‘InstanceID’ fields to one single
variable. For example, a rule generated by NetSpec would
look like the following:

h(v1,v2,i) :- p1(v1,v3,i), p2(v3,v2,i).

where all variables for ‘InstanceId’ field are bound to the
same name i. Thus, the synthesis problem with multiple

example instances is reduced to one with single instance,
which is solved by Algorithm 1.

4.5 Soundness and completeness

Theorem 1 (Soundness). Given a set of input tuples and a set
of output tuples (I,O), when NetSpec terminates, its output S
satisfies the following property:

∀p ∈ S, p(I) = O. (10)

Proof sketch. In algorithm 1, a program p is added to
solution set S if and only if score(p) = 1 (step 2b). To prove
Theorem 1 suffice to show that:

score(p) = 1 =⇒ p(I) = O (11)

where score(p) is defined in equation 1. By the definition,
when score(p) = 1, program output p(I) has perfect preci-
sion and recall on the reference output O. This implies that
p(I) = O.

Next, we state the completeness property. We first define
the program space, using the following definitions:

Definition 1 (Empty program). Program p is an empty pro-
gram if and only if it consists of no rule.

Definition 2 (Successor relation). Let → be a binary relation
on the set of Datalog programs:

p → q ⇐⇒ q ∈ Offspring(p) (12)

Let →∗ be a binary relation on the set of Datalog programs:

p →∗ q ⇐⇒ p → p1 → ... → pn → q (13)

where n ≥ 0.

Definition 3 (Output-contributing rule). Given a set of input
tuples and a set of output tuples (I,O), a rule r in a program p
is an output-contributing rule if r’s evaluation result on input I
intersects with O.

A special case is for programs with aggregations (either
argMax or argMin). If r’s output is aggregated, then r’s
result is compared with renamed tuples in O, whose rela-
tions are renamed as r’s output relation. In the shortest-
path example (Figure 2b), path relation is aggregated into
bestPath, when determining if r1 is contributing to out-
put, we rename relations of tuples in O from bestPath to
path, and then check intersection. If r is an aggregation
rule, because NetSpec introduces an aggregation (min or
max) rule and a selection rule simultaneously to achieve
argMin or argMax semantics, r’s output is interpreted as the
derivation result of both aggregation and selection rules. If
the shortest-path example, r3 and r4 are introduced simul-
taneously, and they are both considered output-contributing
rules if the derivation results of r4 intersects with O.

All solutions of NetSpec contain only output-
contributing rules. Because, during the rule extension phase
in algorithm 1, a candidate program is discarded if the
newly extended rule does not produce desired output.

Definition 4 (Program space). Given a set of input tuples and
a set of output tuples (I,O), and a set of user-defined functions,
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let Pc be the set of Datalog programs that contain only output-
contributing rules (definition 3). The program space is defined as
programs in Pc that are descendants of the empty program p0:

{p ∈ Pc| p0→∗ p} (14)

Theorem 2 (Weak completeness). For all input-output tables
(I ,O), if there exists a program p in the program space (defini-
tion 4), such that p terminates on input I within a time bound
T , with output O, then NetSpec always returns a solution set S,
which contains at least one such program p. Otherwise, it returns
an empty solution set S = ∅.

This completeness property is “weak” because it as-
sumes a smaller program space (only rules that derive
output tuples, definition 4) than the full program space
{p|p0 →∗ p}. For example, in the routing protocol in
Figure 2b, rule r1 generates one-hop paths. Given an input
network where all best paths have more than one hop, r1’s
output has no intersection with the desired output, and is
thus discarded by Algorithm 1(step 2b), although it is part
of the solution. Appendix A shows the proof sketch of
Theorem 2.

5 HANDLING INCOMPLETE EXAMPLES

We now describe the example augmentation process. Given
an initial set of input-output examples, when multiple satis-
fying programs are found, NetSpec searches for a new input
example that can differentiate these candidate programs,
and asks the user to specify the expected output for this new
input example. By actively querying the user for feedback,
this allows the system to robustly learn programs even from
a set of initially under-specified examples.

Algorithm 4 Sample(). Samples new input tuples for dis-
ambiguation.

1) Initialize the set of input tuples I := ∅.
2) For each input relation R:

a) Uniformly sample the number of tuples, n ∈
{1, 2, . . . , nmax}, where nmax is the upper bound on
the size of the sampled tables.

b) Sample n tuples, t1, t2, . . . , tn, where each ti =
(c1, c2, . . . , ck), all constants being uniformly sam-
pled, and where k is the arity of the relation R.

c) Insert t1, t2, . . . , tn into IR.
3) Return I .

We describe the core example sampling process in Algo-
rithm 4. In particular, in step 2a), nmax is the maximum
of the table sizes in the initial example input I. In step
2b), constants are uniformly sampled from the set of all
constants, that appear in the initial example input I.

Given a set of candidate programs P1, P2, . . . , Pn

which are consistent on the initial example input I (i.e.,
P1(I), P2(I), ..., Pn(I) match the initial example output), we
repeatedly run the sample procedure to obtain k new exam-
ple inputs, I1, I2, . . . , Ik. We then choose an example input
Iq ∈ {I1, I2, . . . , Ik} for the user to label the corresponding
example output, as follows:

Iq = argmax
Ij

(−
∑
O

pO log(pO)), (15)

where O ranges over the set of example outputs
{P1(Ij), P2(Ij), . . . , Pn(Ij)}, and pO is the fraction of the
candidate programs which produce O as output. By max-
imizing the entropy of the new example, we eliminate as
many programs as possible after user feedback. We illustrate
this using n = 4 candidate programs and k = 3 sampled
examples {I1, I2, I3} 1 such that:
1) The programs are consistent on I1. Then, O ranges over

a singleton set of outputs and pO = 1, so the score of I1
is −(1 · 1 · log(1)) = 0.

2) The programs are 50-50 split on I2. Then, O ranges over
a set of two distinct outputs and pO = 0.5, so the score
of I2 is −(2 · 0.5 · log(0.5)) ∼ 0.69.

3) Each program produces a unique output on I3. Then, O
ranges over a set of four distinct outputs and pO = 0.25,
so the score of I3 is −(4 · 0.25 · log(0.25)) ∼ 1.38.

Thus, I3 would be selected as the new example, which
corresponds with the intuition that user feedback would
eliminate the most (i.e. 3 out of 4) candidate programs.

We repeat this procedure until the remaining programs
can no longer be distinguished by the sampled inputs.
This approach is similar to the query-by-committee method
[35] and enables NetSpec to rapidly converge to the final
solution.

Theorem 3. Assume NetSpec is always able to disambiguate can-
didate programs, and that the user always gives correct answers
to NetSpec’s queries, if there exists a solution p in the program
space (Definition 4), then NetSpec always returns solutions that
are logically equivalent to p after active-learning.

Proof sketch. By theorem 2, p is always in the solution
set S after every iteration of synthesis. By the assumption
that NetSpec is always able to disambiguate candidate
programs, a new queries will always be generated to dif-
ferentiate p from other solutions, until all programs in S are
logically equivalent. Therefore, when NetSpec terminates,
all solutions are logically equivalent to p.

6 IMPLEMENTATION

NetSpec is implemented in Scala and comprises ∼ 3.5K
lines of code. 2 It uses Souffle [38] as the backend Datalog
interpreter to validate the candidate specifications. In this
section, we discuss implementation details regarding how
NetSpec handles non-terminating candidate specifications,
and how it synthesizes specifications with constants.
Handling non-terminating specifications. During the syn-
thesis process, NetSpec could encounter non-terminating
specifications in the presence of recursion and user-defined
functions. For example, consider the following candidate
which NetSpec encounters in the process of synthesizing
the routing example in Section 2.1:

// compute available paths
r1: path(x,y,p,c) :- link(x,y,c), p=[x,y].
r2: path(x,y,x::p1,c1+c2) :- link(x,z,c1),

path(z,y,p1,c2).

1. Concrete examples: https://github.com/HaoxianChen/netspec/
blob/master/docs/active-learning-example.md

2. NetSpec is available at: https://github.com/HaoxianChen/
netspec

https://github.com/HaoxianChen/netspec/blob/master/docs/active-learning-example.md
https://github.com/HaoxianChen/netspec/blob/master/docs/active-learning-example.md
https://github.com/HaoxianChen/netspec
https://github.com/HaoxianChen/netspec
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Category Specification Features # Relations Examples Synthesis time (s) Output size (#rules)
recur. aggr. UDF In Out #Inst. #Rows NS. Fa. GS. NS. Fa. GS.

Network reachable ✓ 1 1 1 42 17 1 11 2 2 2
analysis path ✓ ✓ 1 1 1 15 23 2

path-cost ✓ ✓ 1 1 3 17 92 2
publicIP 4 1 1 17 5 5 12 1 1 1
sshTunnel ✓ 1 1 1 25 11 1 8 2 2 3
locality 3 1 5 21 2 x 14 1 1

SDN learning-switch 2 3 4 15 6 x x 3
stateless-firewall 3 2 2 9 2 1 66 3 3 3
firewall-l3 6 3 14 76 12 TO 199 5 6

Consensus paxos-acceptor 3 3 5 14 7 4
protocol paxos-quorum ✓ ✓ 2 1 2 19 36 1

paxos-maxballot ✓ 2 1 1 8 3 3
paxos-decide 2 1 2 5 1 1

Routing shortest-path ✓ ✓ ✓ 1 1 1 10 14 4
protocol least-congestion ✓ ✓ ✓ 1 1 1 15 24 4

ospf ✓ ✓ 2 1 1 14 8 3
bgp ✓ ✓ 2 1 1 11 4 3
rip ✓ ✓ 3 1 1 18 180 4

Sensor evidence 2 1 1 5 1 1 4 1 1 1
network store 2 1 1 7 1 1 6 1 1 1
Wireless dsr-rrep ✓ 2 1 2 5 2 2
routing dsr-rreq ✓ 2 2 2 6 1 1

dsr-rerr ✓ 3 1 1 6 1 1

TABLE 2: Synthesis results for benchmarks where the original examples are sufficient. For expressiveness, specifications
that use the features of recursion, aggregation, and UDFs are highlighted in the “Features” columns. The “#Relations”
shows the number of input and output relations for each specification. The effort of specifying examples is described by
the number of input-output instances and the total number of rows in all instances. Column “Time” shows the synthesis
time of each tool, measured in seconds. Column “Output size” shows output size of each tool, measured in lines of Datalog
rules. Both synthesis time and output sizes are average across 10 runs. NS., Fa., and GS. stand for NetSpec, Facon and
GenSynth respectively. In the “Time” column, × means the tool terminates and finds no solution, and TO means the tool
times out after 20 minutes. For benchmarks where the tool is inapplicable, the time and size entries are left empty.

Category Specification Features # Relations # Examples # Queries Time (s) Output size
recur. aggr. UDF In Out #Inst. #Rows med. max (#rules)

Network subnet 4 1 7 27 3 6 43 1
analysis sshTunnel ✓ 1 1 1 25 2 4 243 2

protection 3 1 2 19 3 11 45 1
locality 3 1 5 21 9.5 16 154 1

SDN learning-switch 2 3 4 15 6.5 10 65 3
l2-pairs 2 3 6 23 7.5 10 90 4
stateful-firewall 5 3 15 78 18.5 26 367 5
firewall-l3-stateful 5 3 13 68 12.5 15 189 4

Consensus 2pc ✓ 5 2 8 129 30 48 TO 2
protocol acceptor 3 3 5 14 19.5 26 430 4

proposer 4 1 7 26 31.5 35 723 2
Routing ospf ✓ ✓ 2 1 1 14 5.5 9 2,736 3
protocol bgp ✓ ✓ 2 1 1 11 6 10 2,945 3

tree ✓ ✓ 1 1 1 15 2 3 1,841 4
min-admin ✓ ✓ 2 1 1 8 6 8 1,591 3
rip ✓ ✓ 3 1 1 18 4 8 TO 4

Wireless dsdv ✓ 4 1 6 23 17.5 28 TO 4
Sensor temperature-report 6 2 10 34 42.5 52 474 2

TABLE 3: Active learning results for benchmarks that needs example augmentation. NetSpec runs active learning to
augment the input-output examples and finds the validated solutions. In the “#Queries” column, “med.” and “max” stand
for median and maximum. Column “Time” shows the average end-to-end time. “TO” means timing out after 1 hour.
Column “Output size” reports the size of the synthesized specification, measured in the number of Datalog rules.

This specification does not terminate when the input net-
work topology represented by the link relation contains a
cycle, since both :: (list prepend) and + (integer addition)
used in the recursive rule r2 generate new values every time
the rule is evaluated. NetSpec handles such specifications by
halting the specification interpreter after a timeout period,
and considers their output to be empty.

Generating constants in specifications. Many network
specifications in practice require constants. For example,

in an SDN firewall specification, the controller applica-
tion monitors and responds only to a certain port. Such
a specification cannot be synthesized without the use of
constants. On the other hand, naively adding constants into
the specification can lead to over-fitting it to the provided
input-output examples.

To distinguish specifications where constants are funda-
mentally needed from those which can be realized symboli-
cally, NetSpec employs a fail-over mechanism: it embarks by
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only searching for symbolic specifications; when it exhausts
the candidate program queue and fails to find a solution, it
switches to use constants from the input-output examples.
In experiments where NetSpec learns specifications from ex-
ecution traces (Section 7.3), all firewall applications monitor
certain ports on a dedicated switch. On their traces, the
fail-over mechanism is triggered and NetSpec synthesizes
specifications with constants on the switch and port field.

7 EVALUATION

Our evaluation aims to answer the following four questions:
1) Expressivity. Is NetSpec able to synthesize a wide range

of network specifications correctly, and how does its
coverage compare to state-of-the-art synthesis tools?

2) Efficiency. Can NetSpec synthesize a network specifica-
tion in reasonable time (on the order of seconds)?

3) Robustness. Is NetSpec robust to input-output example
quality, in particular, can it handle incomplete examples?

4) Scalability. Can NetSpec learn specifications from exam-
ples derived from a large volume of execution traces?
Note that this question goes beyond performance to also
capture NetSpec’s ability to debloat legacy applications.

Benchmarks. 3 We survey the use of declarative specifi-
cations from literature, and organize them into five cate-
gories: network analysis, SDN, sensor networks, consensus
protocols, and routing protocols. Network analysis refers to
prior work on formalizing reachability and other correctness
properties in networks [4], [26], [31]. SDN specifications
are from works on verifying correctness of controller pro-
grams [5], [31]. Sensor network specifications are based on
a declarative sensor network system [14]. Consensus pro-
tocols [3] and distributed routing are based on declarative
specifications targeted for distributed execution [25], [14],
and verification [20], [17], [41].
Input-Output example generation. To provide examples
free of bias to any synthesizer, we manually read through
the documentations for each benchmark protocol, and come
up with input-output examples that cover all the use sce-
narios described in the documentations. The example size is
measured by the number of input-output example instances
(i.e. groups of input-output tables), and the number of
total tuples (i.e., number of rows in relational tables) in all
instances, as shown in the “#Examples” column in Table 2.
Result validation. A synthesis result is correct if it is identi-
cal to the reference specification after two modifications: (1)
variable renaming, and (2) removing redundant predicates
and rules (if any). We manually validate all experiment
results. Reference [1] illustrates how each benchmark is
validated, and has synthesis results of all experiments.
Modification (1) dominates the validation process and a few
results require modification (2). In the remainder of this
section, we refer to such results as validated solutions.

The rest of the section are structured as follows. In Sec-
tion 7.1, we evaluate NetSpec’s expressivity and efficiency
by comparing with state-of-the-art program synthesis tools.
In Section 7.2, we evaluate NetSpec’s robustness to input-
output example quality, on benchmarks with insufficient

3. The full list of benchmarks: https://github.com/HaoxianChen/
netspec/tree/master/benchmarks

examples. In Section 7.3, we evaluate NetSpec’s scalability
on execution traces that consist of thousands of examples.

7.1 Synthesis Expressivity and Efficiency

We first evaluate expressivity and synthesis efficiency given
sufficient examples. We compare NetSpec to two state-of-
the-art tools, Facon [13] and GenSynth [28].
Applicable benchmarks. Like NetSpec, both Facon and
GenSynth operate on relational input-output data. However,
they are less expressive: neither tools support UDFs and
aggregation. Therefore, we only run these tools on bench-
marks that they apply to. In addition, some of the original
benchmark specifications may have insufficient examples,
i.e. missing corner cases and resulting in incorrect specifi-
cations. To evaluate synthesis efficiency and compare with
baselines that do not augment examples, this section focuses
on benchmarks with sufficient examples for this experiment
(Table 2), where NetSpec returns validated solutions for at
least 8 out of 10 repeated runs. We will revisit applications
with insufficient examples in Section 7.2.

In addition, GenSynth does not support multiple in-
stances of examples. We therefore combine the multiple
instances into a single instance by unioning tuples that
belong to the same relation into the same table. We avoid
introducing spurious correlations across the original in-
stances by renaming constants appropriately. Note that this
process is challenging to automate since certain constants
(e.g. port numbers) are global and must not be renamed.
This highlights the benefit of supporting multiple example
instances as well as constants in NetSpec.
Performance metric. We measure NetSpec’s expressivity
in terms of coverage of different network specifications
from the areas of network analysis, SDN, sensor networks,
consensus protocols, and routing protocols. To evaluate
synthesis efficiency, we measure the end-to-end synthesis
time, on a server with 32 2.6GHz cores and 125GB memory.
Both NetSpec and Facon run in single thread. GenSynth,
however, often runs indefinitely long in single thread, due
to its high degree of nondeterminism. Therefore, we run
GenSynth in 8-thread mode in order to obtain results within
20 minutes each.
Results. Table 2 summarizes our overall results. Focusing
on the first two criteria of expressivity and efficiency, our
main takeaways are as follows:
Expressivity. NetSpec successfully synthesizes all 23 bench-
marks in Table 2, spanning different types of network
protocols. On the other hand, due to limited language
feature support, competing solutions such as Facon [13]
and GenSynth [28] support only 9 benchmarks. In addition,
Facon fails to synthesize the locality benchmark because it
lies outside of Facon’s program search space, which only
contains Datalog rules where each relation appears at most
once. Both Facon and GenSynth fails to synthesize learning-
switch benchmark due to the lack of support for negation.

Efficiency. NetSpec is highly efficient. NetSpec finishes most
benchmarks within one minute, with the exception of path-
cost and the RIP protocols, which takes 92 seconds and 3
minutes respectively. On the other hand, Facon is only able
to synthesize 8 out of 10 applicable benchmarks, and in

https://github.com/HaoxianChen/netspec/tree/master/benchmarks
https://github.com/HaoxianChen/netspec/tree/master/benchmarks
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Fig. 6: NetSpec solves more benchmarks as the number of
random samples in active learning increases.

fact, two benchmarks timed out after 20 minutes. Compared
to GenSynth, NetSpec consistently finishes faster on all
applicable benchmarks, except reachable and sshTunnel,
where NetSpec takes 6 seconds and 3 seconds longer re-
spectively. This is impressive since NetSpec runs in single
thread whereas GenSynth in 8.
Benefits of component-based synthesis. Our benchmarks
also showcase the benefits of synthesis in a component-
based fashion. We describe case studies based on two pro-
tocols: PAXOS (paxos-* in the Table 2) and DSR (dsr-*) in
Table 2. The original specification of PAXOS lies contains
two layers of aggregations (first count the votes to determine
which ballot has a quorum, and then decide a value by
choosing the one with the maximum ballot value). In normal
circumstances, this is beyond NetSpec’s search capabilities
since it can only synthesize programs with at most one
layer of aggregations. However, by breaking PAXOS into
different components, synthesis is not only possible but
done efficiently.

DSR, on the other hand, can be synthesized as one mono-
lithic protocol. Yet, by breaking its synthesis into component
modules, it significantly reduce the number of examples to
sufficiently specify the protocol. DSR handles three different
kinds of input messages independently, thus it gives the op-
portunity to break down the synthesis task into independent
modules. For example, when synthesizing a rule to process
route request message, the synthesizer does not need to
consider any input value of a route error message. On the
other hand, if examples for all types of message handling
are combined together, although NetSpec can still efficiently
find a solution, but it will generate a lot of invalid solutions
(consistent with input-output examples but not equivalent
to the reference solution) due to the larger program space.
We note that component-based synthesis strategy for DSR is
not only complete, but also highly efficient.

7.2 Robustness to Insufficient Examples

We evaluate NetSpec’s robustness to insufficient examples
on two kinds of benchmarks: (1) benchmarks with insuf-
ficient examples (Table 3); (2) benchmarks with sufficient
original examples, but some of the examples are randomly
dropped to test NetSpec’s limit (Figure 7).
Handling insufficient examples. For each benchmark in Ta-
ble 3, we run NetSpec with active learning, which iteratively
queries the user with extra input examples, until it finds no
ambiguities in the examples.

To determine the number of random samples in active
learning phase (Section 5), we gradually increase the sample
number from one to a million, and measure the number of
benchmarks solved by NetSpec. Due to the randomness of
the active learning algorithm, a benchmark is determined
successful if NetSpec returns validated solutions in all 10
repeated experiment runs.

Figure 6 shows the results, where NetSpec’s performance
saturates at 100K samples, with 15 out of 18 benchmarks
succeeding. The remaining three benchmarks involve the
most complex specifications. They timed out and return
incorrect specifications (consistent with input-output ex-
amples but different from the reference). The time bound
is introduced because NetSpec is designed for interactive
use. Recall that the active-learning phase involves multiple
iterations of specification synthesis and new input example
generation, whose output is annotated by protocol design-
ers. Since increasing the sampling parameter beyond 100K
does not reduce the end-to-end time (i.e. does not helping
to solve more benchmarks within the time budget), we use
100K as the number of random samples for our remaining
experiments, and the default value for this parameter. Users
could also determine this parameter for their problem do-
mains using the same experiment procedure.

Table 3 shows the detailed statistics of the active learning
experiments. The number of queries varies across different
benchmarks, with the median ranging from 2 to 42.5. Sim-
ilarly, the end-to-end time ranges from 43 seconds to 2,945
seconds across benchmarks.

For the three benchmarks (2pc, rip, and dsdv) that
timed out, their relations compose a much larger program
space (rules with many predicates and aggregators), and
thus more examples are needed to unambiguously specify
a program. This results in too many iterations in active
learning, which is a limitation of input-output example
based interface. Synthesizing correct specifications for them
require either reducing the number of queries or improving
synthesis efficiency, which remains an interesting avenue of
future work.
Randomly omitted examples. We further stress test NetSpec
by randomly dropping examples. Three benchmarks with
at least seven examples are chosen for this experiment.
For each of them, examples are dropped incrementally until
reaching the most extreme case, where every output relation
appears in only one example instance. Otherwise, an output
relation is missed from all examples, and NetSpec would
skip synthesizing rules for the relation, thus returning an
incomplete program.

Figure 7 presents the distributions of the number of
queries and the end-to-end active learning times for each
benchmark across ten repeated runs. The number of queries
shows positive correlation with the number of dropped
examples with one exception. Benchmark “temperature-
report” shows weaker correlation because each active learn-
ing run takes more queries (40 ± 5) than the original ex-
ample set size (9). Hence, the impact of dropping examples
is weaker than benchmarks where the overall number of
queries are smaller.

For relationship between end-to-end time and the num-
ber of dropped examples, “firewall-l3” shows strong pos-
itive correlation. The “temperature-report” shows no such
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Fig. 7: Randomly drop examples.

correlation, which is expected since its query numbers is
not correlated with the number of dropped examples (Fig-
ure 7e). On the other hand, for the “subnet” benchmark,
although the number of dropped examples has strong corre-
lation with the number of queries (Figure 7a), the correlation
with time (Figure 7b) is weaker. This is because the end-to-
end time is dominated by the synthesis time of the final few
runs (where examples are almost sufficient). The earlier runs
are fast because, with just a few examples left, NetSpec can
quickly find superficial solutions and query new examples.
When examples are sufficient, the solution becomes much
more complex (more literals in a rule). This complexity,
coupled with the randomness of the synthesis algorithm,
leads to larger variation in synthesis time.

In the “subnet” and “temperate-report” benchmarks,
NetSpec recovers validated specifications consistently
(100%), even under extreme cases where only 1 is example
is left. “Firewall-l3”, on the other hand, fails when examples
for particular message types are all dropped. For instance,
if no example responds to ARP packets, then all candidate
programs would just ignore ARP packets, because NetSpec
discard rules that derive no reference output, although the
reference program actually handles ARP packets. In prac-
tice, however, it is rare that a protocol designer provides no
examples for a typical type of output at all.

Overall, NetSpec’s active learning mechanism is effec-
tive in improving example quality and finding validated
solutions. General differential testing of programs is a hard
problem. However, by separating protocol logic from im-

Program LOC #T #R #Queries Time
med. max (s)

Floodlight stateless firewall 216 895 5 8 9 188
Floodlight stateful firewall 233 121 7 23 25 468
POX l3 stateless firewall 97 185 5 10 12 79
POX l3 stateful firewall 107 4,591 6 22.5 26 505
POX learning-switch 98 334 4 6 10 2,295

TABLE 4: Learning specifications from program commu-
nication traces. Column “#T” measures the number of in-
put output messages in the execution trace, column “#R”
measures the number of rules of the reference specification,
column “#Queries” measure the median and maximum
number of queries posted by NetSpec, across 10 repeated
experiments, and column “Time” shows the average end-
to-end active learning time.

plementation details, declarative specifications drastically
reduce the search space to differentiate alternative specifi-
cations. By exploiting the simplicity of declarative specifica-
tions, NetSpec’s simple random testing mechanism is able to
effectively disambiguate alternative protocol specifications.

7.3 Learning from Program Traces
In our final experiment, we explore NetSpec’s ability to
directly synthesize from actual execution traces as input-
output examples. The benefits of this approach are two-fold.
First, for code refactoring or program analysis, the generated
specifications expose the essential logic of the program, and
can serve as a formal model for further analysis. Second, the
logic specifications can be compiled into a more compact
and less bloated program for execution.
Trace collection. We collect program communication traces
from two popular SDN platforms, POX [32] and Flood-
light [19], on which we run controller programs and collect
its communication traces with the switches in the network.
We select SDN platforms as a basis for this experiment
due to readily available open-source implementations that
match our benchmarks.

To generate input-output examples, we generate repre-
sentative traffic loads that we inject into each SDN controller
program. Based on the inputs, we capture the outputs by
observing the SDN programs. For instance, for learning
switches, all hosts send probe packets to establish full
connectivity in the network. For firewalls, we divide the
network into two zones, one protected by the firewall, and
the other serving as the external network. We then randomly
pick hosts from either side of the network to establish TCP
sessions. We validate the functionality of the firewall by
checking that only sessions initiated from internal hosts are
successfully established.

Trace collection is done by running the controller pro-
grams in both POX and Floodlight on the Mininet [29]
emulator. All Mininet topologies are setup on a 16-node, 8-
switch, tree topology network. For each run, we collect the
controller’s input-output traces as it interacts with Mininet
switches (via incoming/outgoing packets and flow modifi-
cations). In all our experiments, we observe that this setup
suffices to collect enough examples for NetSpec to learn a
validated specification, with additional queries to user.

We implemented a trace collector on both POX and
Floodlight that collects the controller’s input and output



14

messages at run-time and the state changes to the program.
The state monitor works as follows. Within each applica-
tion’s input packet handler, we inspect all the accessible
global variables. We then record any changes to such global
variables. We exclude the known global constructs that are
irrelevant to each application’s execution logic, like loggers.

Table 4 summarizes the results. We make the following
observations. First, NetSpec is able to correctly synthesize
the intended specifications for all applications. Second, even
though traces contain up to 4,500 communication messages,
additional queries are needed to augment the examples.
This observation shows the practicability of NetSpec’s ex-
ample augmentation mechanism in helping user uncover
corner cases. Third, even for non-trivial SDN applications
with hundreds of lines of code, NetSpec is able to generate
compact specifications with less than seven rules. Finally,
the synthesis times are in the order of hundreds of seconds,
except “learning-switch” at 2,295 seconds, despite the need
to analyze actual communication traces with up to 4591
examples, and generate multiple queries, indicating the
efficiency and scalability of our approach.

8 RELATED WORK

Programming by example. NetEgg [44] enables program-
ming SDN policies by example timing diagrams. NetEgg
demonstrates via actual user studies that a programming-
by-example paradigm can result in higher programming
productivity and fewer errors. The key distinction is that
NetSpec synthesizes the actual control plane program in the
target DSL, which generates the data plane configurations,
whereas NetEgg directly generates the data plane config-
urations. This target DSL can be used to verify and check
for errors in the control plane program, whereas NetEgg
can only provide counter-examples to indicate that the in-
put examples are incorrect. NetSpec mitigates one inherent
weakness of NetEgg in its reliance on the user to provide
all possible examples that meet the scenarios. Facon [13] is
a programming-by-example tool for synthesizing SDN pro-
grams. NetSpec employs a more scalable synthesis strategy,
targets a more general logical model, and can handle more
complex protocols and incomplete examples.
Network configuration synthesis. Taking high-level routing
policies as input, NetComplete [17] synthesizes BGP config-
urations that comply with these policies, and Genesis [39]
synthesizes forwarding tables in multi-tenant networks.
Avenir [10] synthesizes SDN data plane operations from
high-level forwarding specifications. Propane [7] compiles
high-level routing policies into distributed router BGP con-
figurations. In contrast, NetSpec uses input-output exam-
ples, or execution traces from legacy programs, as input,
and generate executable protocol specifications that are con-
sistent with given input-output examples.

Config2Spec [8] takes network configurations and a fail-
ure model as input, and generates network policies that
should hold for all possible concrete data planes derived
from the given configurations and failure model. On the
other hand, NetSpec generates executable specifications
(analysis rules), instead of the static policies (facts derived
from analysis rules). NetSpec can complement Config2Spec

when analysis tools for the interested policies are not avail-
able. NetSpec takes the concrete data plane and the set of
satisfied policies as input, and generates data plane analysis
rules that can be applied to all concrete data planes. For
example, in section 7.1, we show that NetSpec can generate
reachability analysis rules similar to what is used by Con-
fig2Spec when inferring reachability policies.
Datalog and logic program synthesis. A large body of
work has proposed techniques to synthesize logic pro-
grams [15] from input-output examples. With the exception
of GenSynth, existing techniques require the user to syn-
tactically constrain the search space by means of specifi-
cations such as mode declarations (e.g. ILASP [24]), meta-
rules (e.g. Metagol [16]), candidate rules (e.g. ALPS [36]
and ProSynth [33]), or templates (e.g. NTP [34] and δILP
[18]). NetSpec does not require the user to provide any such
specifications, but with the trade-off to require more input-
output examples to fully specify an intended program.
However, with the help of active-learning, as our evaluation
demonstrates, NetSpec synthesizes more general programs
than GenSynth, and is more efficient and robust.
Network verification and domain-specific languages.
There is significant prior work on network verification [22],
[20], [6], [40], [41] and DSLs for networking [31], [21], [23],
[5]. NetSpec generates a logical network specification that
can be verified using existing techniques. Hence, verifica-
tion should be viewed as a complementary technology to
NetSpec. The same benefits of having a restricted language,
such as scalable synthesis and automated example augmen-
tation, apply to other DSLs as well.

9 CONCLUSION

NetSpec addresses a long-standing problem in network
verification: the widening gap between formal models and
actual implementations. As a step towards closing the gap,
we have proposed a new specification by example (SBE) toolkit
where users can build formal models of their network
protocols from input-output examples either supplied by
the network designer or extracted from a legacy imple-
mentation. Our synthesized models are declarative logic
programs which are amenable to formal verification and
even generation of distributed implementations.

Our initial forays and experimental results are promis-
ing. The SBE approach can efficiently synthesize a wide
range of network protocols, and is robust to missing ex-
amples. NetSpec should be viewed as a first step towards
understanding the SBE paradigm and its application in
different domains of networking, with limitations in the size
of synthesized specifications and complexities. In the future,
we plan to explore how to synthesize more complex speci-
fications, methods for parallelizing the synthesis algorithms
to handle larger specifications, and how SBE can interact
with different formal verification techniques.
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APPENDIX

We first present the following lemmas, and their proof
sketches. With these lemmas, we then prove the complete-
ness property, defined in Theorem 2.

Lemma 1. Given a set of input tuples and a set of output tuples
(I,O), if all rules in a program p are output contributing rules
(Definition 3), then Score(p) > 0.

Let OutCtrb(p) denotes that all rules in program p are
output-contributing rules, the lemma is defined as:

OutCtrb(p) =⇒ Score(p) > 0 (16)

Proof sketch. By the semantics of Datalog, a program’s
output is the union of all rules’ output. Thus p(I) ∩ O ̸= ∅.
By the definition of Score, we have that Score(p) > 0.

Lemma 2. Given a set of input tuples and a set of output
tuples (I,O), if all rules in a program p are output-contributing
rules, then for every p’s predecessors, all rules are also output-
contributing rules:

∀q → p,OutCtrb(p) =⇒ OutCtrb(q) (17)

Proof. We enumerate all ways to generate offspring (q → p):
1) If p ∈ AddRule(q) (equation 4), and let r0 be the

minimal rule added in p, we have p = q ∪ r0. Given
OutCtrb(p), that is, all rules in p produces some desired
output in O, and p = q ∪ r0, we have OutCtrb(q).

2) If p ∈ ExtRule(q) (equation 7), let r be the rule in q
that have been extended as r′ in p. Let r(I) and r′(I)
denote the direct derivation output of r and r′ on input
I , respectively.

a) Given OutCtrb(p), and that r′ ∈ p, we have that
r′(I) ∩O ̸= ∅.

b) By the semantics of Datalog, adding a predicate to
a rule monotonically reduces the output of the rule.
Thus we have r′(I) ⊆ r(I).

c) Given that r′(I) ∩ O ̸= ∅, and that r′(I) ⊆ r(I), we
have that r(I) ∩O ̸= ∅.

d) Given that all other rules in q are also in p, we have
that OutCtrb(q).

3) If p ∈ MkAgg(q), given that NetSpec only introduces
argMax and argMin aggregations, p(I) ⊆ q(I).

a) For rules r ∈ q whose output are aggregated and
renamed as r′ ∈ p, because NetSpec introduces only
argMax and argMin aggregations, r′(I) ⊆ r(I).

b) Following the same reasoning from 2c) to 2d), we
have that OutCtrb(q).

Lemma 3. Given a set of input tuples and a set of output tuples
(I,O), if all rules in a program p are output-contributing rules,
then there exists a lineage of programs p0 → p1 → p2 → ... →
pn → p, such that p0 is the empty programs, and p1, ..., pn
contain only output-contributing rules:

Lineage(p) :=OutCtrb(p) =⇒
∃p1, ..., pn, [(p0 → p1 → ... → pn → p)

∧ ∀i ∈ {1, ..., n},OutCtrb(pi)]

∀p,Lineage(p) (18)

Proof sketch. We prove by well-founded induction on the
successor relation → on the program space (Definition 2). →
is a well-founded relation on program space, because rules
or literals cannot be taken away from a program indefinitely.
To prove ∀p,Lineage(p) it is suffice to show that:

∀p, [∀q → p,Lineage(q)] =⇒ Lineage(p) (19)

If OutCtrb(p) is true, then by Lemma 2, we have
that ∀q → p,OutCtrb(q). By the antecedent of the in-
duction hypothesis (equation 19), we have that there ex-
ists a lineage of programs p0 → p1 → ... → q, and
∀i ∈ 1, ..., n,OutCtrb(pi) ∧ Score(pi). Let pn+1 = q, and
given that q → p, we have that Lineage(p).

By well-founded induction, we have that ∀p,Lineage(p).

Lemma 4 (Termination). For all finite set of input tuples and
output tuples (I,O), NetSpec always terminates.

Proof sketch. We first show that the search space of NetSpec
is finite. First, suppose there are NR input relations, then
according to the syntax constraints in Section 3, each rule
contains at most 2NR literals. Second, in offspring genera-
tion, we only add a rule to a candidate program if it has
imperfect recall. In the worst case, each rule generates a
tuple in O. Therefore, a program contains at most |O| rules.

Let En be the set of all programs that have been popped
from Qn at the beginning of iteration n. Let P be the
search space of NetSpec. We construct a function on iteration
number n: f(n) = |P |− |En|. We then show that f(n) >= 0
and f(n + 1) < f(n). By the principle of well-founded
induction, NetSpec terminates.
Proof sketch for weak completeness (Theorem 2). We first
prove the case where valid solution exists. We prove by
induction on iterations in Algorithm 1. We use subscript n
to denote the state variable values at the beginning of the
nth iteration, e.g., Qn is the set of candidate programs at the
beginning of iteration n.

Given a solution p, and by Lemma 3, we have that there
exists a lineage of programs: p0 → p1 → p2 → ... → pk → p,
such that p0 is the empty programs, and p1, ..., pk contain
only output-contributing rules.
Induction hypothesis: In every iteration, either p is in the
solution set Sn, or one of p’s ancestors in the lineage from
p0 to p is in the set of candidate programs Qn:

∀n, p ∈ Sn ∨ (∃i ∈ {0, 1, 2, ..., k}, pi ∈ Qn) (20)

Base case: In iteration 0, by algorithm 1 step 1, Q is ini-
tialized with only the empty program p0. Thus induction
hypothesis holds.
Induction: Suppose in the nth iteration, the induction hy-
pothesis holds, which implies either of the following:

1) If p ∈ Sn, by algorithm 1 step 2b, we have Sn ⊆ Sn+1.
This implies that p ∈ Sn+1. Thus induction hypothesis
holds in iteration n+ 1.

2) Otherwise, ∃i ∈ {0, 1, 2, ..., k}, pi ∈ Qn. We discuss by
two cases on the value of the current program Pn:

a) If Pn ̸= pi, by step 2b, every program in Qn is
copied into Qn+1 except P , thus pi remains in Qn+1.
Induction hypothesis holds in iteration n+1.

b) Otherwise, Pn = pi.
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i) In step 2a, all offspring of pi are generated. By
the definition of the successor relation → (Defini-
tion 2), pi+1 ∈ Offspring(pi).

ii) By Lemma 1 and Lemma 3, Score(pi+1) > 0.
iii) In step 2b, all offspring with score greater than 0 is

added to Qn+1. Given Score(pi+1) > 0, we have
that pi+1 ∈ Qn+1. Induction hypothesis holds in
iteration n+1.

This induction hypothesis, in conjunction with the ter-
mination condition that Q = ∅, implies that p ∈ S when
NetSpec terminates.

For the second case, when no valid solution exists, by
Theorem 1 (soundness) and Lemma 4 (termination), we
have that NetSpec will terminate with S = ∅.
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