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CIS 371 
Computer Organization and Design 

Unit 4: Arithmetic 

Based on slides by Prof. Amir Roth & Prof. Milo Martin 
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This Unit: Arithmetic 

•  A little review 
•  Binary + 2s complement 
•  Ripple-carry addition (RCA) 

•  Fast integer addition 
•  Carry-select (CSeA) 

•  Shifters 
•  Integer Multiplication and division 
•  Floating point arithmetic 

CPU Mem I/O 
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App App App 
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Readings 

•  P&H 
•  Chapter 3 
•  You can skim Section 3.5 (Floating point)  
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Pre Class Exercise 
     43 = 00101011 

+ 29 = 00011101 

  19 = 010011 
* 12 = 001100 

3 |29 = 0011 |011101 
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The Importance of Fast Arithmetic 

•  Addition of two numbers is most common operation 
•  Programs use addition frequently 
•  Loads and stores use addition for address calculation 
•  Branches use addition to test conditions and calculate targets 
•  All insns use addition to calculate default next PC 

•  Fast addition critical to high performance 

PC Insn 
Mem 

Register 
File 

s1 s2 d 
Data 
Mem 

+ 
4 

Tinsn-mem Tregfile TALU Tdata-mem Tregfile 
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Review: Binary Integers 

•  Computers represent integers in binary (base2) 
3 = 11, 4 = 100, 5 = 101, 30 = 11110 

+  Natural since only two values are represented 
•  Addition, etc. take place as usual (carry the 1, etc.) 

17 =    10001 
+5 =      101 
22 =    10110 

•  Some old machines use decimal (base10) with only 0/1 
30 = 011 000 

–  Unnatural for digial logic, implementation complicated & slow 

CIS 371 (Martin): Arithmetic 7 

Fixed Width 

•  On pencil and paper, integers have infinite width 

•  In hardware, integers have fixed width 
•  N bits: 16, 32 or 64 
•  LSB is 20, MSB is 2N-1 

•  Range: 0 to 2N–1 

•  Numbers >2N represented using multiple fixed-width integers 
•  In software 
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What About Negative Integers? 
•  Sign/magnitude 

•  Unsigned plus one bit for sign 
10 = 000001010, -10 = 100001010 

+  Matches our intuition from “by hand” decimal arithmetic 
–  Both 0 and –0 
–  Addition is difficult 
•  Range: –(2N-1–1) to 2N-1–1 

•  Option II: two’s complement (2C) 
•  Leading 0s mean positive number, leading 1s negative 

10 = 00001010, -10 = 11110110 
+  One representation for 0 
+  Easy addition 
•  Range: –(2N-1) to 2N-1–1 
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The Tao of 2C 
•  How did 2C come about? 

•  “Let’s design a representation that makes addition easy” 
•  Think of subtracting 10 from 0 by hand 
•  Have to “borrow” 1s from some imaginary leading 1 

  0 = 100000000 
-10 =  00001010 
-10 = 011110110 

•  Now, add the conventional way… 

-10 =  11110110 
+10 =  00001010 
  0 = 100000000 
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Still More On 2C 

•  What is the interpretation of 2C? 
•  Same as binary, except MSB represents –2N–1, not 2N–1  

•  –10 = 11110110 = –27+26+25+24+22+21 

+  Extends to any width 

•  –10 = 110110 = –25+24+22+21 

•  Why? 2N = 2*2N–1 
•  –25+24+22+21 = (–26+2*25)–25+24+22+21 = –26+25+24+22+21 

•  Trick to negating a number quickly: –B = B’ + 1 
•  –(1) = (0001)’+1  = 1110+1 = 1111 = –1 
•  –(–1) = (1111)’+1  = 0000+1 = 0001 = 1 
•  –(0) = (0000)’+1  = 1111+1 = 0000 = 0 
•  Think about why this works 

Addition 
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1st Grade: Decimal Addition 
   1 

 43 
+29 
 72 

•  Repeat N times 
•  Add least significant digits and any overflow from previous add 
•  Carry “overflow” to next addition 

•  Overflow: any digit other than least significant of sum 
•  Shift two addends and sum one digit to the right 

•  Sum of two N-digit numbers can yield an N+1 digit number 
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Binary Addition: Works the Same Way 
   1     111111 

 43 = 00101011 
+29 = 00011101 
 72 = 01001000 

•  Repeat N times 
•  Add least significant bits and any overflow from previous add 
•  Carry the overflow to next addition 
•  Shift two addends and sum one bit to the right 

•  Sum of two N-bit numbers can yield an N+1 bit number 

–  More steps (smaller base) 
+  Each one is simpler (adding just 1 and 0) 

•  So simple we can do it in hardware 
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The Half Adder 

•  How to add two binary integers in hardware? 
•  Start with adding two bits 

•  When all else fails ... look at truth table 

A B = C0 S 
0 0 =  0 0 
0 1 =  0 1 
1 0 =  0 1 
1 1 =  1 0 

•  S = A^B 
•  CO (carry out) = AB 
•  This is called a half adder 

HA 

B 

B 

A 

CO 

S 

S 

CO 
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The Other Half 
•  We could chain half adders together, but to do that… 

•  Need to incorporate a carry out from previous adder 
C A B = C0 S 
0 0 0 =  0 0 
0 0 1 =  0 1 
0 1 0 =  0 1 
0 1 1 =  1 0 
1 0 0 =  0 1 
1 0 1 =  1 0 
1 1 0 =  1 0 
1 1 1 =  1 1 

•  S = C’A’B + C’AB’ + CA’B’ + CAB = C ^ A ^ B 
•  CO = C’AB + CA’B + CAB’ + CAB = CA + CB + AB 
•  This is called a full adder 

FA 
B 

S 

CO 

A 
CI A 

B 

S 

CI 
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Ripple-Carry Adder 

•  N-bit ripple-carry adder 
•  N 1-bit full adders “chained” together 

•  CO0 = CI1, CO1 = CI2, etc. 
•  CI0 = 0 
•  CON–1 is carry-out of entire adder 

•  CON–1 = 1 ! “overflow” 

•  Example: 16-bit ripple carry adder 
•  How fast is this? 
•  How fast is an N-bit ripple-carry adder? 

FA 
B1 

S1 A1 

FA 
B2 

S2 A2 

FA 
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… 
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Quantifying Adder Delay 
•  Combinational logic dominated by gate (transistor) delays 

•  Array storage dominated by wire delays 
•  Longest delay or “critical path” is what matters 

•  Can implement any combinational function in “2” logic levels 
•  1 level of AND + 1 level of OR (PLA) 
•  NOTs are “free”: push to input (DeMorgan’s) or read from latch 
•  Example: delay(FullAdder) = 2 

•  d(CarryOut) = delay(AB + AC + BC) 
•  d(Sum) = d(A ^ B ^ C) = d(AB’C’ + A’BC’ + ABC’ + ABC) = 2 
•  Note ‘^’ means Xor (just like in C & Java) 

•  Caveat: “2” assumes gates have few (<8 ?) inputs 
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Ripple-Carry Adder Delay 

•  Longest path is to CO15 (or S15) 
•  d(CO15) = 2 + MAX(d(A15),d(B15),d(CI15)) 

•  d(A15) = d(B15) = 0, d(CI15) = d(CO14) 
•  d(CO15) = 2 + d(CO14) = 2 + 2 + d(CO13) … 
•  d(CO15) = 32 

•  D(CON–1) = 2N 
–  Too slow! 
–  Linear in number of bits 

•  Number of gates is also linear 

FA 
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FA 
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Fast Addition 
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Bad idea: a PLA-based Adder? 
•  If any function can be expressed as two-level logic… 

•  …why not use a PLA for an entire 8-bit adder? 

•  Not small 
•  Approx. 215 AND gates, each with 216 inputs 
•  Then, 216 OR gates, each with 216 inputs 
•  Number of gates exponential in bit width!  

•  Not that fast, either 
•  An AND gate with 65 thousand inputs != 2-input AND gate 

•  Many-input gates made a tree of, say, 4-input gates 
•  16-input gates would have at least 8 logic levels 

•  So, at least 16 levels of logic for a 16-bit PLA 
•  Even so, delay is still logarithmic in number of bits  

•  There are better (faster, smaller) ways 
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Theme: Hardware != Software 

•  Hardware can do things that software fundamentally can’t 
•  And vice versa (of course) 

•  In hardware, it’s easier to trade resources for latency 

•  One example of this: speculation 
•  Slow computation is waiting for some slow input? 
•  Input one of two things? 
•  Compute with both (slow), choose right one later (fast) 

•  Does this make sense in software? Not on a uni-processor 
•  Difference? hardware is parallel, software is sequential 
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Carry-Select Adder 

•  Carry-select adder 
•  Do A15-8+B15-8 twice, once assuming C8 (CO7) = 0, once = 1 
•  Choose the correct one when CO7 finally becomes available 
+  Effectively cuts carry chain in half (break critical path) 
–  But adds mux 
•  Delay? 

CO 
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0 
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Multi-Segment Carry-Select Adder 

•  Multiple segments 
•  Example: 5, 5, 6 bit = 16 bit 

•  Hardware cost 
•  Still mostly linear (~2x) 
•  Compute each segment  

with 0 and 1 carry-in 
•  Serial mux chain 

•  Delay 
•  5-bit adder (10) + 

Two muxes (4) = 14 
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Carry-Select Adder Delay 
•  What is carry-select adder delay (two segment)? 

•  d(CO15) = MAX(d(CO15-8), d(CO7-0)) + 2 
•  d(CO15) = MAX(2*8, 2*8) + 2 = 18 
•  In general: 2*(N/2) + 2 = N+2    (vs 2N for RCA) 

•  What if we cut adder into 4 equal pieces?   
•  Would it be 2*(N/4) + 2 = 10? Not quite 
•  d(CO15) = MAX(d(CO15-12),d(CO11-0)) + 2 
•  d(CO15) = MAX(2*4, MAX(d(CO11-8),d(CO7-0)) + 2) + 2 
•  d(CO15) = MAX(2*4,MAX(2*4,MAX(d(CO7-4),d(CO3-0)) + 2) + 2) + 2 
•  d(CO15) = MAX(2*4,MAX(2*4,MAX(2*4,2*4) + 2) + 2) + 2 
•  d(CO15) = 2*4 + 3*2 = 14 

•  N-bit adder in M equal pieces: 2*(N/M) + (M–1)*2 
•  16-bit adder in 8 parts: 2*(16/8) + 7*2 = 18 
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Another Option: Carry Lookahead 

•  Is carry-select adder as fast as we can go?  
•  Nope 

•  Another approach to using additional resources 
•  Instead of redundantly computing sums assuming different carries 
•  Use redundancy to compute carries more quickly 

•  This approach is called carry lookahead (CLA) 
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Carry Lookahead Adder (CLA) 

•  Calculate “propagate” and “generate” based on A, B 
•  Not based on carry in 

•  Combine with tree structure 

•  Prior years: CLA covered 
in great detail  
•  Dozen slides or so 
•  Not this year 

•  Take aways 
•  Tree gives logarithmic delay 
•  Reasonable area 
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Adders In Real Processors 

•  Real processors super-optimize their adders 
•  Ten or so different versions of CLA 
•  Highly optimized versions of carry-select 
•  Other gate techniques: carry-skip, conditional-sum 
•  Sub-gate (transistor) techniques: Manchester carry chain 
•  Combinations of different techniques 

•  Alpha 21264 uses CLA+CSeA+RippleCA 
•  Used a different levels 

•  Even more optimizations for incrementers 
•  Why? 
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Subtraction: Addition’s Tricky Pal 

•  Sign/magnitude subtraction is mental reverse addition 
•  2C subtraction is addition 

•  How to subtract using an adder? 
•   sub A B = add A -B 
•  Negate B before adding (fast negation trick: –B = B’ + 1) 

•  Isn’t a subtraction then a negation and two additions? 
+  No, an adder can implement A+B+1 by setting the carry-in to 1 

~ 

B 
A 

1 
0 Shifts & Rotates 
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Shift and Rotation Instructions 

•  Left/right shifts are useful… 
•  Fast multiplication/division by small constants (next) 
•  Bit manipulation: extracting and setting individual bits in words 

•  Right shifts 
•  Can be logical (shift in 0s) or arithmetic (shift in copies of MSB) 

 srl 110011, 2 = 001100  
 sra 110011, 2 = 111100   

•  Caveat: sra is not equal to division by 2 of negative numbers 

•  Rotations are less useful… 
•  But almost “free” if shifter is there 
•  MIPS and LC4 have only shifts, x86 has shifts and rotations 
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Compiler Opt: Strength Reduction 

•  Strength reduction: compilers will do this (sort of) 
A * 4 = A << 2 
A * 5 = (A << 2) + A 
A / 8 = A >> 3       (only if A is unsigned) 

•  Useful for address calculation: all basic data types are 2M in size 
int A[100];  
&A[N] = A+(N*sizeof(int)) = A+N*4 = A+N<<2 
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A Simple Shifter 

•  The simplest 16-bit shifter: can only shift left by 1 
•  Implement using wires (no logic!) 

•  Slightly more complicated: can shift left by 1 or 0 
•  Implement using wires and a multiplexor (mux16_2to1) 

A 

A0 

A15 

0 

A <<1 A <<1 

O 

O 
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Barrel Shifter 
•  What about shifting left by any amount 0–15? 

•  16 consecutive “left-shift-by-1-or-0” blocks? 
–  Would take too long (how long?) 

•  Barrel shifter: 4 “shift-left-by-X-or-0” blocks (X = 1,2,4,8) 
•  What is the delay? 

•  Similar barrel designs for right shifts and rotations 

<<4 <<8 <<2 <<1 
A O 

shift 
shift[3] shift[2] shift[1] shift[0] 

Multiplication 
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3rd Grade: Decimal Multiplication 
      19   // multiplicand 

*  12   // multiplier 
   38 
+ 190   
  228   // product  

•  Start with product 0, repeat steps until no multiplier digits 
•  Multiply multiplicand by least significant multiplier digit 
•  Add to product 
•  Shift multiplicand one digit to the left (multiply by 10) 
•  Shift multiplier one digit to the right (divide by 10) 

•  Product of N-digit, M-digit numbers may have N+M digits 
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Binary Multiplication: Same Refrain 
   19 =       010011   // multiplicand 
*  12 =       001100   // multiplier 
    0 = 000000000000 
    0 = 000000000000 
   76 = 000001001100  
  152 = 000010011000 
    0 = 000000000000 
+   0 = 000000000000  
  228 = 000011100100  // product  

±  Smaller base ! more steps, each is simpler 
•  Multiply multiplicand by least significant multiplier digit 

+ 0 or 1 ! no actual multiplication, add multiplicand or not 
•  Add to total: we know how to do that  
•  Shift multiplicand left, multiplier right by one digit 
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Software Multiplication 

•  Can implement this algorithm in software 
•  Inputs: md (multiplicand) and mr (multiplier) 

int pd = 0;  // product 
int i = 0; 
for (i = 0; i < 16 && mr != 0; i++) { 

if (mr & 1) { 
  pd = pd + md; 
} 
md = md << 1;   // shift left 
mr = mr >> 1;   // shift right 

} 
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Hardware Multiply: Iterative  

•  Control: repeat 16 times 
•  If least significant bit of multiplier is 1… 

•  Then add multiplicand to product 
•  Shift multiplicand left by 1 
•  Shift multiplier right by 1 

Product 
(32 bit) 

32+ 
32 

we 

lsb==1? 

<< 1 >> 1 Multiplier  
(16 bit) 

Multiplicand  
(32 bit) 
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Hardware Multiply: Multiple Adders  

•  Multiply by N bits at a time using N adders 
•  Example: N=5, terms (P=product, C=multiplicand, M=multiplier) 
•  P = (M[0] ? (C) : 0) + (M[1] ? (C<<1) : 0) +  

     (M[2] ? (C<<2) : 0) + (M[3] ? (C<<3) : 0) + … 
•  Arrange like a tree to reduce gate delay critical path 

•  Delay?  N2 vs N*log N?  Not that simple, depends on adder 
•  Approx “2N” versus “N + log N”, with optimization: O(log N) 
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Consecutive Addition 

•  2 N-bit RC adders 
+  2 + d(add) gate delays 

•  M N-bit RC adders delay 
•  Naïve: O(M*N) 
•  Actual: O(M+N) 

•  M N-bit Carry Select? 
•  Delay calculation tricky 

•  Carry Save Adder (CSA) 
•  3-to-2 CSA tree + adder 
•  Delay: O(log M + log N) 
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Hardware != Software: Part Deux 

•  Recall: hardware is parallel, software is sequential 
•  Exploit: evaluate independent sub-expressions in parallel 

•  Example I: S = A + B + C + D 
•  Software? 3 steps: (1) S1 = A+B, (2) S2 = S1+C, (3) S = S2+D 
+  Hardware? 2 steps: (1) S1 = A+B, S2=C+D, (2) S = S1+S2 

•  Example II: S = A + B + C 
•  Software? 2 steps: (1) S1 = A+B, (2) S = S1+C 
•  Hardware? 2 steps: (1) S1 = A+B (2) S = S1+C 
+  Actually hardware can do this in 1.2 steps! 
•  Sub-expression parallelism exists below 16-bit addition level 

Division 
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4th Grade: Decimal Division 
        9        // quotient 

 3 |29        // divisor | dividend  
   -27  
     2        // remainder 

•  Shift divisor left (multiply by 10) until MSB lines up with dividend’s 
•  Repeat until remaining dividend (remainder) < divisor 

•  Find largest single digit q such that (q*divisor) < dividend 
•  Set LSB of quotient to q 
•  Subtract (q*divisor) from dividend 
•  Shift quotient left by one digit  (multiply by 10) 
•  Shift divisor right by one digit (divide by 10) 



CIS 371 (Martin): Arithmetic 45 

Binary Division 
                1001  = 9 
3 |29 = 0011 |011101 
  -24 =     - 011000 
    5 =       000101 
  - 3 =     - 000011 
    2 =       000010   
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Binary Division Hardware 

•  Same as decimal division, except (again) 
–  More individual steps (base is smaller) 
+  Each step is simpler 
•  Find largest bit q such that (q*divisor) < dividend 

•  q = 0 or 1 
•  Subtract (q*divisor) from dividend 

•  q = 0 or 1 ! no actual multiplication, subtract divisor or not 

•  Complication: largest q such that (q*divisor) < dividend 
•  How do you know if (1*divisor) < dividend? 
•  Human can “eyeball” this  
•  Computer does not have eyeballs 

•  Subtract and see if result is negative 
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Software Divide Algorithm 

•  Can implement this algorithm in software 
•  Inputs: dividend and divisor 

for (int i = 0; i < 32; i++) {!
  remainder = (remainder << 1) | (dividend >> 31);!
  if (remainder >= divisor) {!
    quotient = (quotient << 1) | 1;!
    remainder = remainder - divisor;!
  } else {!
    quotient = quotient << 1!
  }!
  dividend = dividend << 1;!
}!
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Divide Example 

•  Input: Divisor = 00011 , Dividend = 11101 

Step  Remainder  Quotient  Remainder  Dividend  
  0    00000      00000     00000      11101 
  1    00001      00000     00001      11010 
  2    00011      00001     00000      10100 
  3    00001      00010     00001      01000 
  4    00010      00100     00001      10000 
  5    00101      01001     00010      00000 

•  Result: Quotient: 1001, Remainder: 10 
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Divider Circuit 

Divisor 

Quotient 

Remainder 

Sub >=0 

msb 

Dividend  

Shift in 0 or 1  

Shift in 0 or 1  

Shift in 0 

•  N cycles for n-bit divide 

Floating Point 
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Floating Point (FP) Numbers 

•  Floating point numbers: numbers in scientific notation 
•  Two uses 

•  Use I: real numbers (numbers with non-zero fractions) 
•  3.1415926… 
•  2.1878… 
•  6.62 * 10–34 

•  Use II: really big numbers 
•  3.0 * 108 

•  6.02 * 1023 

•  Aside: best not used for currency values 
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Scientific Notation 
•  Scientific notation: 

•  Number [S,F,E] = S * F * 2E 
•  S: sign 
•  F: significand (fraction) 
•  E: exponent 
•  “Floating point”: binary (decimal) point has different magnitude 

+  “Sliding window” of precision using notion of significant digits 
•  Small numbers very precise, many places after decimal point 
•  Big numbers are much less so, not all integers representable 
•  But for those instances you don’t really care anyway 

–  Caveat: all representations are just approximations 
•  Sometimes wierdos like 0.9999999 or 1.0000001 come up 
+ But good enough for most purposes 
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IEEE 754 Standard Precision/Range 

•  Single precision: float in C 
•  32-bit: 1-bit sign + 8-bit exponent + 23-bit significand 
•  Range: 2.0 * 10–38 < N < 2.0 * 1038 

•  Precision: ~7 significant (decimal) digits 
•  Used when exact precision is less important (e.g., 3D games) 

•  Double precision: double in C 
•  64-bit: 1-bit sign + 11-bit exponent + 52-bit significand 
•  Range: 2.0 * 10–308 < N < 2.0 * 10308 

•  Precision: ~15 significant (decimal) digits 
•  Used for scientific computations  

•  Numbers >10308 don’t come up in many calculations 
•  1080 ~ number of atoms in universe 
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Floating Point is Inexact 
•  Accuracy problems sometimes get bad 

•  FP arithmetic not associative: (A+B)+C not same as A+(B+C) 
•  Addition of big and small numbers (summing many small numbers) 

•  Or subtraction of two big numbers 
•  Example, what’s (1*1030 + 1*100) – 1*1030? 

•  Intuitively: 1*100 = 1 
•  But: (1*1030 + 1*100) – 1*1030 = (1*1030 – 1*1030) = 0 

•  Reciprocal math: “x/y” versus ”x*(1/y)”  
•  Reciprocal & multiply is faster than divide, but less precise 

•  Compilers are generally conservative 
•  GCC flag: –ffast-math (allows assoc. opts, reciprocal math) 

•  Numerical analysis: field formed around this problem 
•  Bounding error of numerical algorithms 
•  Re-formulating algorithms in a way that bounds numerical error 

•  In your code: never test for equality between FP numbers 
•  Use something like:  if (abs(a-b) < 0.00001) then … 
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Pentium FDIV Bug 

•  Pentium shipped in August 1994 
•  Intel actually knew about the bug in July 

•  But calculated that delaying the project a month would cost ~$1M 
•  And that in reality only a dozen or so people would encounter it 
•  They were right… but one of them took the story to EE times 

•  By November 1994, firestorm was full on 
•  IBM said that typical Excel user would encounter bug every month 

•  Assumed 5K divisions per second around the clock 
•  People believed the story 
•  IBM stopped shipping Pentium PCs 

•  By December 1994, Intel promises full recall 
•  Total cost: ~$550M 

•  Recent example: Intel’s chipset (January 2011) 
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•  Latency in cycles of common arithmetic operations 
•  Source: Software Optimization Guide for AMD Family 10h 

Processors, Dec 2007 
•  Intel “Core 2” chips similar 

•  Divide is variable latency based on the size of the dividend 
•  Detect number of leading zeros, then divide 

•  Floating point divide faster than integer divide? 

Arithmetic Latencies 

Int 32 Int 64 Fp 32 Fp 64 

Add/Subtract 1 1 4 4 

Multiply 3 5 4 4 

Divide 14 to 40 23 to 87 16 20 
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Summary 

•  Integer addition 
•  Most timing-critical operation in datapath 
•  Hardware != software 

•  Exploit sub-addition parallelism 

•  Fast addition 
•  Carry-select: parallelism in sum 

•  Multiplication 
•  Chains and trees of additions 

•  Division 
•  Floating point 

•  Next: Faster datapath via pipelining 

CPU Mem I/O 

System software 

App App App 


