CIS 371 Computer Organization and Design

Unit 4: Arithmetic

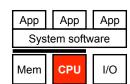
Based on slides by Prof. Amir Roth & Prof. Milo Martin

CIS 371 (Martin): Arithmetic 1 CIS 371 (Martin): Arithmetic

Readings

- P&H
 - Chapter 3
 - You can skim Section 3.5 (Floating point)

This Unit: Arithmetic



- A little review
 - Binary + 2s complement
 - Ripple-carry addition (RCA)
- Fast integer addition
 - Carry-select (CSeA)
- Shifters
- Integer Multiplication and division
- Floating point arithmetic

Pre Class Exercise

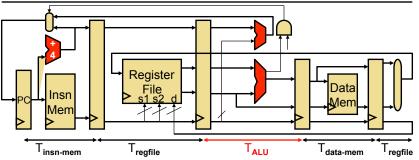
43 = 00101011+ 29 = 00011101

 $3 \mid \overline{29} = 0011 \mid \overline{011101}$

2

19 = 010011* 12 = 001100

The Importance of Fast Arithmetic



- Addition of two numbers is most common operation
 - Programs use addition frequently
 - Loads and stores use addition for address calculation
 - Branches use addition to test conditions and calculate targets
 - All insns use addition to calculate default next PC
- Fast addition critical to high performance

CIS 371 (Martin): Arithmetic 5

Fixed Width

- On pencil and paper, integers have infinite width
- In hardware, integers have fixed width
 - N bits: 16, 32 or 64
 LSB is 2⁰, MSB is 2^{N-1}
 - Range: 0 to 2N-1
 - Numbers >2N represented using multiple fixed-width integers
 - In software

Review: Binary Integers

Computers represent integers in binary (base2)

$$3 = 11, 4 = 100, 5 = 101, 30 = 11110$$

- + Natural since only two values are represented
- Addition, etc. take place as usual (carry the 1, etc.)

$$17 = 10001$$
 $+5 = 101$
 $22 = 10110$

• Some old machines use decimal (base10) with only 0/1

- Unnatural for digial logic, implementation complicated & slow

6

CIS 371 (Martin): Arithmetic

What About Negative Integers?

- Sign/magnitude
 - Unsigned plus one bit for sign

$$10 = 000001010, -10 = 100001010$$

- + Matches our intuition from "by hand" decimal arithmetic
- Both 0 and -0
- Addition is difficult
- Range: $-(2^{N-1}-1)$ to $2^{N-1}-1$
- Option II: two's complement (2C)
 - Leading 0s mean positive number, leading 1s negative

```
10 = 00001010, -10 = 11110110
```

- + One representation for 0
- + Easy addition
- Range: $-(2^{N-1})$ to $2^{N-1}-1$

The Tao of 2C

- How did 2C come about?
 - "Let's design a representation that makes addition easy"
 - Think of subtracting 10 from 0 by hand
 - Have to "borrow" 1s from some imaginary leading 1

```
0 = 100000000
-10 = 00001010
-10 = 011110110
```

Now, add the conventional way...

```
\begin{array}{rcl}
-10 & = & 11110110 \\
+10 & = & 00001010 \\
0 & = & 100000000
\end{array}
```

CIS 371 (Martin): Arithmetic

9

Addition

Still More On 2C

- What is the interpretation of 2C?
 - Same as binary, except MSB represents -2N-1, not 2N-1

$$\bullet$$
 -10 = 11110110 = -2⁷+2⁶+2⁵+2⁴+2²+2¹

+ Extends to any width

$$\bullet$$
 -10 = 110110 = -2⁵+2⁴+2²+2¹

- Why? $2^N = 2*2^{N-1}$
- $-2^5+2^4+2^2+2^1 = (-2^6+2*2^5)-2^5+2^4+2^2+2^1 = -2^6+2^5+2^4+2^2+2^1$
- Trick to negating a number quickly: -B = B' + 1
 - -(1) = (0001)'+1 = 1110+1 = 1111 = -1
 - \bullet -(-1) = (1111)'+1 = 0000+1 = 0001 = 1
 - -(0) = (0000)'+1 = 1111+1 = 0000 = 0
 - · Think about why this works

CIS 371 (Martin): Arithmetic

10

1st Grade: Decimal Addition

1

43

<u>+29</u>

- Repeat N times
 - · Add least significant digits and any overflow from previous add
 - Carry "overflow" to next addition
 - Overflow: any digit other than least significant of sum
 - Shift two addends and sum one digit to the right
- Sum of two N-digit numbers can yield an N+1 digit number

Binary Addition: Works the Same Way

$\begin{array}{rcl} 1 & 111111 \\ 43 &= 00101011 \\ +29 &= 00011101 \\ 72 &= 01001000 \end{array}$

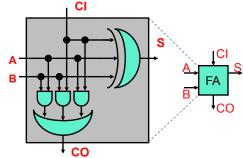
- Repeat N times
 - Add least significant bits and any overflow from previous add
 - Carry the overflow to next addition
 - Shift two addends and sum one bit to the right
- Sum of two N-bit numbers can yield an N+1 bit number
- More steps (smaller base)
- + Each one is simpler (adding just 1 and 0)
 - So simple we can do it in hardware

CIS 371 (Martin): Arithmetic

13

The Other Half

- We could chain half adders together, but to do that...
 - Need to incorporate a carry out from previous adder



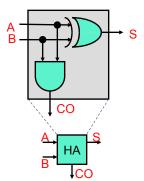
- $S = C'A'B + C'AB' + CA'B' + CAB = C \land A \land B$
- CO = C'AB + CA'B + CAB' + CAB = CA + CB + AB
- This is called a full adder

The Half Adder

- How to add two binary integers in hardware?
- Start with adding two bits
 - When all else fails ... look at truth table

A	В	=	C0	S
0	0	=	0	0
0	1	=	0	1
1	0	=	0	1
1	1	=	1	0

- S = A^B
- CO (carry out) = AB
- This is called a half adder

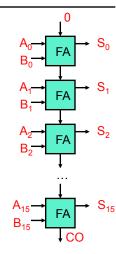


CIS 371 (Martin): Arithmetic

14

Ripple-Carry Adder

- N-bit ripple-carry adder
 - N 1-bit full adders "chained" together
 - CO₀ = CI₁, CO₁ = CI₂, etc.
 - $CI_0 = 0$
 - \bullet $\mbox{CO}_{\mbox{\scriptsize N-1}}$ is carry-out of entire adder
 - $CO_{N-1} = 1 \rightarrow "overflow"$
- Example: 16-bit ripple carry adder
 - How fast is this?
 - How fast is an N-bit ripple-carry adder?



Quantifying Adder Delay

- Combinational logic dominated by gate (transistor) delays
 - Array storage dominated by wire delays
 - Longest delay or "critical path" is what matters
- Can implement any combinational function in "2" logic levels
 - 1 level of AND + 1 level of OR (PLA)
 - NOTs are "free": push to input (DeMorgan's) or read from latch
 - Example: delay(FullAdder) = 2
 - d(CarryOut) = delay(AB + AC + BC)
 - $d(Sum) = d(A \land B \land C) = d(AB'C' + A'BC' + ABC' + ABC) = 2$
 - Note '^' means Xor (just like in C & Java)
- Caveat: "2" assumes gates have few (<8 ?) inputs

CIS 371 (Martin): Arithmetic

17

19

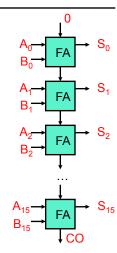
Ripple-Carry Adder Delay

• Longest path is to CO₁₅ (or S₁₅)

•
$$d(CO_{15}) = 2 + MAX(d(A_{15}), d(B_{15}), d(CI_{15}))$$

• $d(A_{15}) = d(B_{15}) = 0, d(CI_{15}) = d(CO_{14})$

- $d(CO_{15}) = 2 + d(CO_{14}) = 2 + 2 + d(CO_{13}) ...$
- $d(CO_{15}) = 32$
- $D(CO_{N-1}) = 2N$
 - Too slow!
 - Linear in number of bits
- Number of gates is also linear



CIS 371 (Martin): Arithmetic

18

Bad idea: a PLA-based Adder?

- If any function can be expressed as two-level logic...
 - ...why not use a PLA for an entire 8-bit adder?
- Not small
 - Approx. 2¹⁵ AND gates, each with 2¹⁶ inputs
 - Then, 2¹⁶ OR gates, each with 2¹⁶ inputs
 - Number of gates exponential in bit width!
- Not that fast, either
 - An AND gate with 65 thousand inputs != 2-input AND gate
 - Many-input gates made a tree of, say, 4-input gates
 - 16-input gates would have at least 8 logic levels
 - So, at least 16 levels of logic for a 16-bit PLA
 - Even so, delay is still logarithmic in number of bits
- There are better (faster, smaller) ways

Fast Addition

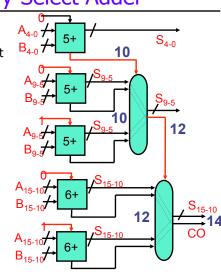
Theme: Hardware != Software

- Hardware can do things that software fundamentally can't
 - And vice versa (of course)
- In hardware, it's easier to trade **resources** for **latency**
- One example of this: speculation
 - Slow computation is waiting for some slow input?
 - Input one of two things?
 - Compute with both (slow), choose right one later (fast)
- Does this make sense in software? Not on a uni-processor
- Difference? hardware is parallel, software is sequential

CIS 371 (Martin): Arithmetic

Multi-Segment Carry-Select Adder

- Multiple segments
 - Example: 5, 5, 6 bit = 16 bit
- Hardware cost
 - Still mostly linear (~2x)
 - Compute each segment with 0 and 1 carry-in
 - · Serial mux chain
- Delay
 - 5-bit adder (10) + Two muxes (4) = 14

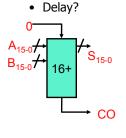


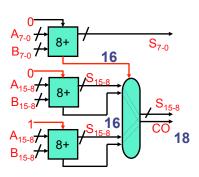
21

Carry-Select Adder

Carry-select adder

- Do $A_{15-8}+B_{15-8}$ twice, once assuming C_8 (CO₇) = 0, once = 1
- Choose the correct one when CO₇ finally becomes available
- + Effectively cuts carry chain in half (break critical path)
- But adds mux





CIS 371 (Martin): Arithmetic

22

Carry-Select Adder Delay

- What is carry-select adder delay (two segment)?
 - $d(CO_{15}) = MAX(d(CO_{15-8}), d(CO_{7-0})) + 2$
 - $d(CO_{15}) = MAX(2*8, 2*8) + 2 = 18$
 - In general: 2*(N/2) + 2 = N+2 (vs 2N for RCA)
- What if we cut adder into 4 equal pieces?
 - Would it be 2*(N/4) + 2 = 10? Not quite
 - $d(CO_{15}) = MAX(d(CO_{15-12}), d(CO_{11-0})) + 2$
 - $d(CO_{15}) = MAX(2*4, MAX(d(CO_{11-8}), d(CO_{7-0})) + 2) + 2$
 - $d(CO_{15}) = MAX(2*4,MAX(2*4,MAX(d(CO_{7-4}),d(CO_{3-0})) + 2) + 2) + 2$
 - $d(CO_{15}) = MAX(2*4,MAX(2*4,MAX(2*4,2*4) + 2) + 2) + 2$
 - $d(CO_{15}) = 2*4 + 3*2 = 14$
- N-bit adder in M equal pieces: 2*(N/M) + (M-1)*2
 - 16-bit adder in 8 parts: 2*(16/8) + 7*2 = 18

Another Option: Carry Lookahead

- Is carry-select adder as fast as we can go?
 - Nope
- Another approach to using additional resources
 - Instead of redundantly computing sums assuming different carries
 - Use redundancy to compute carries more quickly
 - This approach is called carry lookahead (CLA)

CIS 371 (Martin): Arithmetic

25

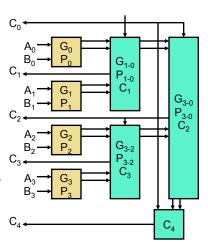
Adders In Real Processors

- Real processors super-optimize their adders
 - · Ten or so different versions of CLA
 - Highly optimized versions of carry-select
 - Other gate techniques: carry-skip, conditional-sum
 - Sub-gate (transistor) techniques: Manchester carry chain
 - · Combinations of different techniques
 - Alpha 21264 uses CLA+CSeA+RippleCA
 - Used a different levels
- Even more optimizations for incrementers
 - Why?

Carry Lookahead Adder (CLA)

- Calculate "propagate" and "generate" based on A, B
 - Not based on carry in
- Combine with tree structure
- Prior years: CLA covered in great detail
 - · Dozen slides or so
 - Not this year
- Take aways
 - Tree gives logarithmic delay
 - Reasonable area

CIS 371 (Martin): Arithmetic



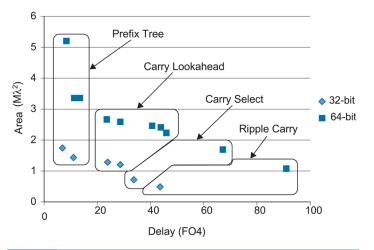
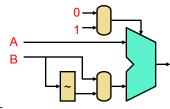


FIG 10.47 Area vs. delay of synthesized adders

CIS 371 (Martin): Arithmetic 27 CIS 371 (Martin): Arithmetic 28

Subtraction: Addition's Tricky Pal

- Sign/magnitude subtraction is mental reverse addition
 - 2C subtraction is addition
- How to subtract using an adder?
 - sub A B = add A -B
 - Negate B before adding (fast negation trick: -B = B' + 1)
- Isn't a subtraction then a negation and two additions?
 - + No, an adder can implement A+B+1 by setting the carry-in to 1



CIS 371 (Martin): Arithmetic

29

Shift and Rotation Instructions

- Left/right shifts are useful...
 - Fast multiplication/division by small constants (next)
 - Bit manipulation: extracting and setting individual bits in words
- Right shifts
 - Can be logical (shift in 0s) or arithmetic (shift in copies of MSB)

```
srl 110011, 2 = 001100
sra 110011, 2 = 111100
```

- Caveat: sra is not equal to division by 2 of negative numbers
- Rotations are less useful...
 - But almost "free" if shifter is there
 - MIPS and LC4 have only shifts, x86 has shifts and rotations

Shifts & Rotates

CIS 371 (Martin): Arithmetic

30

Compiler Opt: Strength Reduction

• Strength reduction: compilers will do this (sort of)

```
A * 4 = A << 2

A * 5 = (A << 2) + A

A / 8 = A >> 3 (only if A is unsigned)
```

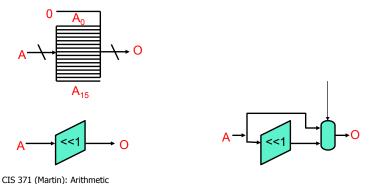
 Useful for address calculation: all basic data types are 2^M in size int A[100];

```
\&A[N] = A+(N*sizeof(int)) = A+N*4 = A+N<<2
```

CIS 371 (Martin): Arithmetic 31 CIS 371 (Martin): Arithmetic 32

A Simple Shifter

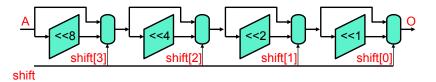
- The simplest 16-bit shifter: can only shift left by 1
 - Implement using wires (no logic!)
- Slightly more complicated: can shift left by 1 or 0
 - Implement using wires and a multiplexor (mux16_2to1)



Multiplication

Barrel Shifter

- What about shifting left by any amount 0–15?
- 16 consecutive "left-shift-by-1-or-0" blocks?
 - Would take too long (how long?)
- Barrel shifter: 4 "shift-left-by-X-or-0" blocks (X = 1,2,4,8)
 - What is the delay?



• Similar barrel designs for right shifts and rotations

CIS 371 (Martin): Arithmetic 34

3rd Grade: Decimal Multiplication

- Start with product 0, repeat steps until no multiplier digits
 - Multiply multiplicand by least significant multiplier digit
 - Add to product
 - Shift multiplicand one digit to the left (multiply by 10)
 - Shift multiplier one digit to the right (divide by 10)
- Product of N-digit, M-digit numbers may have N+M digits

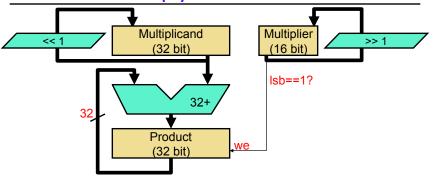
CIS 371 (Martin): Arithmetic 35 CIS 371 (Martin): Arithmetic 36

Binary Multiplication: Same Refrain

- ± Smaller base → more steps, each is simpler
 - Multiply multiplicand by least significant multiplier digit
 + 0 or 1 → no actual multiplication, add multiplicand or not
 - Add to total: we know how to do that
 - Shift multiplicand left, multiplier right by one digit

CIS 371 (Martin): Arithmetic 37

Hardware Multiply: Iterative



- Control: repeat 16 times
 - If least significant bit of multiplier is 1...
 - Then add multiplicand to product
 - Shift multiplicand left by 1
 - Shift multiplier right by 1

Software Multiplication

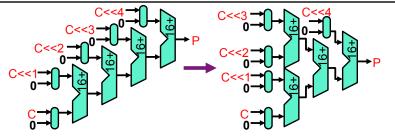
- Can implement this algorithm in software
- Inputs: md (multiplicand) and mr (multiplier)

```
int pd = 0;  // product
int i = 0;
for (i = 0; i < 16 && mr != 0; i++) {
   if (mr & 1) {
      pd = pd + md;
   }
   md = md << 1;   // shift left
   mr = mr >> 1;   // shift right
}
```

CIS 371 (Martin): Arithmetic

38

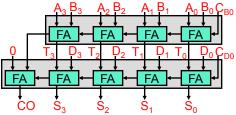
Hardware Multiply: Multiple Adders



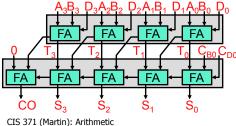
- Multiply by N bits at a time using N adders
 - Example: N=5, terms (P=product, C=multiplicand, M=multiplier)
 - P = (M[0] ? (C) : 0) + (M[1] ? (C<<1) : 0) + (M[2] ? (C<<2) : 0) + (M[3] ? (C<<3) : 0) + ...
 - Arrange like a tree to reduce gate delay critical path
- Delay? N² vs N*log N? Not that simple, depends on adder
- Approx "2N" versus "N + log N", with optimization: O(log N)
 CIS 371 (Martin): Arithmetic 4

CIS 371 (Martin): Arithmetic

Consecutive Addition



- 2 N-bit RC adders
 + 2 + d(add) gate delays
- M N-bit RC adders delay
 - Naïve: O(M*N)
 - Actual: O(M+N)



- M N-bit Carry Select?
 - Delay calculation tricky
- Carry Save Adder (CSA)
 - 3-to-2 CSA tree + adder
 - Delay: O(log M + log N)

41

Hardware != Software: Part Deux

- Recall: hardware is parallel, software is sequential
- Exploit: evaluate independent sub-expressions in parallel
- Example I: S = A + B + C + D
 - Software? 3 steps: (1) S1 = A+B, (2) S2 = S1+C, (3) S = S2+D
 - + Hardware? 2 steps: (1) S1 = A+B, S2=C+D, (2) S = S1+S2
- Example II: S = A + B + C
 - Software? 2 steps: (1) S1 = A+B, (2) S = S1+C
 - Hardware? 2 steps: (1) S1 = A+B (2) S = S1+C
 - + Actually hardware can do this in 1.2 steps!
 - Sub-expression parallelism exists below 16-bit addition level

CIS 371 (Martin): Arithmetic

42

4th Grade: Decimal Division

- Shift divisor left (multiply by 10) until MSB lines up with dividend's
- Repeat until remaining dividend (remainder) < divisor
 - Find largest single digit q such that (q*divisor) < dividend
 - Set LSB of quotient to q
 - Subtract (q*divisor) from dividend
 - Shift quotient left by one digit (multiply by 10)
 - Shift divisor right by one digit (divide by 10)

Division

CIS 371 (Martin): Arithmetic 43 CIS 371 (Martin): Arithmetic 44

Binary Division

```
\begin{array}{rcl}
 & \underline{1001} & = \underline{9} \\
3 & | 29 & = 0011 & | 011101 \\
 & \underline{-24} & = & \underline{-011000} \\
5 & = & 000101 \\
 & \underline{-3} & = & \underline{-000011} \\
2 & = & 000010
\end{array}
```

CIS 371 (Martin): Arithmetic

45

Software Divide Algorithm

- Can implement this algorithm in software
- Inputs: dividend and divisor

```
for (int i = 0; i < 32; i++) {
  remainder = (remainder << 1) | (dividend >> 31);
  if (remainder >= divisor) {
    quotient = (quotient << 1) | 1;
    remainder = remainder - divisor;
  } else {
    quotient = quotient << 1
  }
  dividend = dividend << 1;
}</pre>
```

Binary Division Hardware

- Same as decimal division, except (again)
 - More individual steps (base is smaller)
 - + Each step is simpler
 - Find largest bit q such that (q*divisor) < dividend
 - q = 0 or 1
 - Subtract (q*divisor) from dividend
 - q = 0 or $1 \rightarrow$ no actual multiplication, subtract divisor or not
- Complication: largest q such that (q*divisor) < dividend
 - How do you know if (1*divisor) < dividend?
 - Human can "eyeball" this
 - Computer does not have eyeballs
 - Subtract and see if result is negative

CIS 371 (Martin): Arithmetic

46

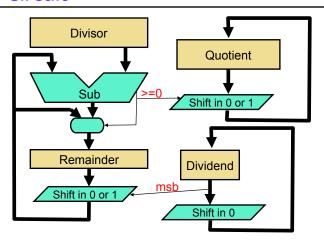
Divide Example

• Input: Divisor = 00011 , Dividend = 11101

Step	Remainder	Quotient	Remainder	Dividend
0	00000	00000	00000	11101
1	00001	00000	00001	1101 0
2	00011	00001	00000	101 00
3	00001	00010	00001	01 000
4	00010	00100	00001	1 0000
5	0010 <mark>1</mark>	0100 <mark>1</mark>	00010	00000

• Result: Quotient: 1001, Remainder: 10

Divider Circuit



• N cycles for n-bit divide

CIS 371 (Martin): Arithmetic

49

CIS 371 (Martin): Arithmetic

50

Floating Point (FP) Numbers

- Floating point numbers: numbers in scientific notation
 - Two uses
- Use I: real numbers (numbers with non-zero fractions)
 - 3.1415926...
 - 2.1878...
 - 6.62 * 10⁻³⁴
- Use II: really big numbers
 - $3.0 * 10^{8}$
 - $6.02 * 10^{23}$
- Aside: best not used for currency values

Scientific Notation

- Scientific notation.
 - Number [S,F,E] = S * F * 2^E

Floating Point

- S: **sign**
- F: significand (fraction)
- E: exponent
- "Floating point": binary (decimal) point has different magnitude
- + "Sliding window" of precision using notion of significant digits
 - Small numbers very precise, many places after decimal point
 - Big numbers are much less so, not all integers representable
 - But for those instances you don't really care anyway
- Caveat: all representations are just approximations
 - Sometimes wierdos like 0.9999999 or 1.0000001 come up
 - + But good enough for most purposes

IEEE 754 Standard Precision/Range

• Single precision: float in C

• 32-bit: 1-bit sign + 8-bit exponent + 23-bit significand

• Range: $2.0 * 10^{-38} < N < 2.0 * 10^{38}$

• Precision: ~7 significant (decimal) digits

• Used when exact precision is less important (e.g., 3D games)

• Double precision: double in C

• 64-bit: 1-bit sign + 11-bit exponent + 52-bit significand

• Range: $2.0 * 10^{-308} < N < 2.0 * 10^{308}$

• Precision: ~15 significant (decimal) digits

· Used for scientific computations

• Numbers >10³⁰⁸ don't come up in many calculations

• 1080 ~ number of atoms in universe

CIS 371 (Martin): Arithmetic

Pentium FDIV Bug

- Pentium shipped in August 1994
- Intel actually knew about the bug in July
 - But calculated that delaying the project a month would cost ~\$1M
 - And that in reality only a dozen or so people would encounter it
 - They were right... but one of them took the story to EE times
- By November 1994, firestorm was full on
 - IBM said that typical Excel user would encounter bug every month
 - Assumed 5K divisions per second around the clock
 - · People believed the story
 - IBM stopped shipping Pentium PCs
- By December 1994, Intel promises full recall
 - Total cost: ~\$550M
- Recent example: Intel's chipset (January 2011)

Floating Point is Inexact

- Accuracy problems sometimes get bad
 - FP arithmetic not associative: (A+B)+C not same as A+(B+C)
 - Addition of big and small numbers (summing many small numbers)
 - Or subtraction of two big numbers
 - Example, what's $(1*10^{30} + 1*10^{0}) 1*10^{30}$?
 - Intuitively: $1*10^0 = 1$
 - But: $(1*10^{30} + 1*10^{0}) 1*10^{30} = (1*10^{30} 1*10^{30}) = 0$
 - Reciprocal math: "x/y" versus "x*(1/y)"
 - Reciprocal & multiply is faster than divide, but less precise
- Compilers are generally conservative
 - GCC flag: -ffast-math (allows assoc. opts, reciprocal math)
- Numerical analysis: field formed around this problem
 - · Bounding error of numerical algorithms
 - Re-formulating algorithms in a way that bounds numerical error
- In your code: never test for equality between FP numbers
 - Use something like: if (abs(a-b) < 0.00001) then ...

CIS 371 (Martin): Arithmetic 54

Arithmetic Latencies

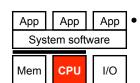
- Latency in cycles of common arithmetic operations
- Source: Software Optimization Guide for AMD Family 10h Processors, Dec 2007
 - · Intel "Core 2" chips similar

	Int 32	Int 64	Fp 32	Fp 64
Add/Subtract	1	1	4	4
Multiply	3	5	4	4
Divide	14 to 40	23 to 87	16	20

- Divide is variable latency based on the size of the dividend
 - · Detect number of leading zeros, then divide
- Floating point divide faster than integer divide?

CIS 371 (Martin): Arithmetic 55 CIS 371 (Martin): Arithmetic 56

Summary



Integer addition

- Most timing-critical operation in datapath
- Hardware != software
 - Exploit sub-addition parallelism
- Fast addition
 - Carry-select: parallelism in sum
- Multiplication
 - Chains and trees of additions
- Division
- Floating point
- Next: Faster datapath via pipelining

CIS 371 (Martin): Arithmetic