
CIS 371 (Martin): Arithmetic 1

CIS 371
Computer Organization and Design

Unit 4: Arithmetic

Based on slides by Prof. Amir Roth & Prof. Milo Martin

CIS 371 (Martin): Arithmetic 2

This Unit: Arithmetic

•  A little review
•  Binary + 2s complement
•  Ripple-carry addition (RCA)

•  Fast integer addition
•  Carry-select (CSeA)

•  Shifters
•  Integer Multiplication and division
•  Floating point arithmetic

CPU Mem I/O

System software

App App App

CIS 371 (Martin): Arithmetic 3

Readings

•  P&H
•  Chapter 3
•  You can skim Section 3.5 (Floating point)

CIS 371 (Martin): Arithmetic 4

Pre Class Exercise
 43 = 00101011

+ 29 = 00011101

 19 = 010011
* 12 = 001100

3 |29 = 0011 |011101

CIS 371 (Martin): Arithmetic 5

The Importance of Fast Arithmetic

•  Addition of two numbers is most common operation
•  Programs use addition frequently
•  Loads and stores use addition for address calculation
•  Branches use addition to test conditions and calculate targets
•  All insns use addition to calculate default next PC

•  Fast addition critical to high performance

PC Insn
Mem

Register
File

s1 s2 d
Data
Mem

+
4

Tinsn-mem Tregfile TALU Tdata-mem Tregfile

CIS 371 (Martin): Arithmetic 6

Review: Binary Integers

•  Computers represent integers in binary (base2)
3 = 11, 4 = 100, 5 = 101, 30 = 11110

+  Natural since only two values are represented
•  Addition, etc. take place as usual (carry the 1, etc.)

17 = 10001
+5 = 101
22 = 10110

•  Some old machines use decimal (base10) with only 0/1
30 = 011 000

–  Unnatural for digial logic, implementation complicated & slow

CIS 371 (Martin): Arithmetic 7

Fixed Width

•  On pencil and paper, integers have infinite width

•  In hardware, integers have fixed width
•  N bits: 16, 32 or 64
•  LSB is 20, MSB is 2N-1

•  Range: 0 to 2N–1

•  Numbers >2N represented using multiple fixed-width integers
•  In software

CIS 371 (Martin): Arithmetic 8

What About Negative Integers?
•  Sign/magnitude

•  Unsigned plus one bit for sign
10 = 000001010, -10 = 100001010

+  Matches our intuition from “by hand” decimal arithmetic
–  Both 0 and –0
–  Addition is difficult
•  Range: –(2N-1–1) to 2N-1–1

•  Option II: two’s complement (2C)
•  Leading 0s mean positive number, leading 1s negative

10 = 00001010, -10 = 11110110
+  One representation for 0
+  Easy addition
•  Range: –(2N-1) to 2N-1–1

CIS 371 (Martin): Arithmetic 9

The Tao of 2C
•  How did 2C come about?

•  “Let’s design a representation that makes addition easy”
•  Think of subtracting 10 from 0 by hand
•  Have to “borrow” 1s from some imaginary leading 1

 0 = 100000000
-10 = 00001010
-10 = 011110110

•  Now, add the conventional way…

-10 = 11110110
+10 = 00001010
 0 = 100000000

CIS 371 (Martin): Arithmetic 10

Still More On 2C

•  What is the interpretation of 2C?
•  Same as binary, except MSB represents –2N–1, not 2N–1

•  –10 = 11110110 = –27+26+25+24+22+21

+  Extends to any width

•  –10 = 110110 = –25+24+22+21

•  Why? 2N = 2*2N–1
•  –25+24+22+21 = (–26+2*25)–25+24+22+21 = –26+25+24+22+21

•  Trick to negating a number quickly: –B = B’ + 1
•  –(1) = (0001)’+1 = 1110+1 = 1111 = –1
•  –(–1) = (1111)’+1 = 0000+1 = 0001 = 1
•  –(0) = (0000)’+1 = 1111+1 = 0000 = 0
•  Think about why this works

Addition

CIS 371 (Martin): Arithmetic 11 CIS 371 (Martin): Arithmetic 12

1st Grade: Decimal Addition
 1

 43
+29
 72

•  Repeat N times
•  Add least significant digits and any overflow from previous add
•  Carry “overflow” to next addition

•  Overflow: any digit other than least significant of sum
•  Shift two addends and sum one digit to the right

•  Sum of two N-digit numbers can yield an N+1 digit number

CIS 371 (Martin): Arithmetic 13

Binary Addition: Works the Same Way
 1 111111

 43 = 00101011
+29 = 00011101
 72 = 01001000

•  Repeat N times
•  Add least significant bits and any overflow from previous add
•  Carry the overflow to next addition
•  Shift two addends and sum one bit to the right

•  Sum of two N-bit numbers can yield an N+1 bit number

–  More steps (smaller base)
+  Each one is simpler (adding just 1 and 0)

•  So simple we can do it in hardware

CIS 371 (Martin): Arithmetic 14

The Half Adder

•  How to add two binary integers in hardware?
•  Start with adding two bits

•  When all else fails ... look at truth table

A B = C0 S
0 0 = 0 0
0 1 = 0 1
1 0 = 0 1
1 1 = 1 0

•  S = A^B
•  CO (carry out) = AB
•  This is called a half adder

HA

B

B

A

CO

S

S

CO

A

CIS 371 (Martin): Arithmetic 15

The Other Half
•  We could chain half adders together, but to do that…

•  Need to incorporate a carry out from previous adder
C A B = C0 S
0 0 0 = 0 0
0 0 1 = 0 1
0 1 0 = 0 1
0 1 1 = 1 0
1 0 0 = 0 1
1 0 1 = 1 0
1 1 0 = 1 0
1 1 1 = 1 1

•  S = C’A’B + C’AB’ + CA’B’ + CAB = C ^ A ^ B
•  CO = C’AB + CA’B + CAB’ + CAB = CA + CB + AB
•  This is called a full adder

FA
B

S

CO

A
CI A

B

S

CI

CO

CIS 371 (Martin): Arithmetic 16

Ripple-Carry Adder

•  N-bit ripple-carry adder
•  N 1-bit full adders “chained” together

•  CO0 = CI1, CO1 = CI2, etc.
•  CI0 = 0
•  CON–1 is carry-out of entire adder

•  CON–1 = 1 ! “overflow”

•  Example: 16-bit ripple carry adder
•  How fast is this?
•  How fast is an N-bit ripple-carry adder?

FA
B1

S1 A1

FA
B2

S2 A2

FA
B0

S0 A0

FA
B15

S15 A15

CO

0

…

CIS 371 (Martin): Arithmetic 17

Quantifying Adder Delay
•  Combinational logic dominated by gate (transistor) delays

•  Array storage dominated by wire delays
•  Longest delay or “critical path” is what matters

•  Can implement any combinational function in “2” logic levels
•  1 level of AND + 1 level of OR (PLA)
•  NOTs are “free”: push to input (DeMorgan’s) or read from latch
•  Example: delay(FullAdder) = 2

•  d(CarryOut) = delay(AB + AC + BC)
•  d(Sum) = d(A ^ B ^ C) = d(AB’C’ + A’BC’ + ABC’ + ABC) = 2
•  Note ‘^’ means Xor (just like in C & Java)

•  Caveat: “2” assumes gates have few (<8 ?) inputs

CIS 371 (Martin): Arithmetic 18

Ripple-Carry Adder Delay

•  Longest path is to CO15 (or S15)
•  d(CO15) = 2 + MAX(d(A15),d(B15),d(CI15))

•  d(A15) = d(B15) = 0, d(CI15) = d(CO14)
•  d(CO15) = 2 + d(CO14) = 2 + 2 + d(CO13) …
•  d(CO15) = 32

•  D(CON–1) = 2N
–  Too slow!
–  Linear in number of bits

•  Number of gates is also linear

FA
B1

S1 A1

FA
B2

S2 A2

FA
B0

S0 A0

FA
B15

S15 A15

CO

0

…

Fast Addition

CIS 371 (Martin): Arithmetic 19 CIS 371 (Martin): Arithmetic 20

Bad idea: a PLA-based Adder?
•  If any function can be expressed as two-level logic…

•  …why not use a PLA for an entire 8-bit adder?

•  Not small
•  Approx. 215 AND gates, each with 216 inputs
•  Then, 216 OR gates, each with 216 inputs
•  Number of gates exponential in bit width!

•  Not that fast, either
•  An AND gate with 65 thousand inputs != 2-input AND gate

•  Many-input gates made a tree of, say, 4-input gates
•  16-input gates would have at least 8 logic levels

•  So, at least 16 levels of logic for a 16-bit PLA
•  Even so, delay is still logarithmic in number of bits

•  There are better (faster, smaller) ways

CIS 371 (Martin): Arithmetic 21

Theme: Hardware != Software

•  Hardware can do things that software fundamentally can’t
•  And vice versa (of course)

•  In hardware, it’s easier to trade resources for latency

•  One example of this: speculation
•  Slow computation is waiting for some slow input?
•  Input one of two things?
•  Compute with both (slow), choose right one later (fast)

•  Does this make sense in software? Not on a uni-processor
•  Difference? hardware is parallel, software is sequential

CIS 371 (Martin): Arithmetic 22

Carry-Select Adder

•  Carry-select adder
•  Do A15-8+B15-8 twice, once assuming C8 (CO7) = 0, once = 1
•  Choose the correct one when CO7 finally becomes available
+  Effectively cuts carry chain in half (break critical path)
–  But adds mux
•  Delay?

CO

8+
B7-0

S7-0
A7-0

0

8+
B15-8

S15-8 A15-8

0

8+ B15-8

S15-8 A15-8

1

16+

A15-0

0

B15-0
S15-0

S15-8

CO

16

16
18

CIS 371 (Martin): Arithmetic 23

Multi-Segment Carry-Select Adder

•  Multiple segments
•  Example: 5, 5, 6 bit = 16 bit

•  Hardware cost
•  Still mostly linear (~2x)
•  Compute each segment

with 0 and 1 carry-in
•  Serial mux chain

•  Delay
•  5-bit adder (10) +

Two muxes (4) = 14

5+
B4-0

S4-0
A4-0

0

5+
B9-5

S9-5 A9-5

0

5+ B9-5

S9-5 A9-5

1

S9-5

6+
B15-10

S15-10 A15-10

0

6+ B15-10

S15-10 A15-10

1

S15-10

CO

10

10

12

12

14

CIS 371 (Martin): Arithmetic 24

Carry-Select Adder Delay
•  What is carry-select adder delay (two segment)?

•  d(CO15) = MAX(d(CO15-8), d(CO7-0)) + 2
•  d(CO15) = MAX(2*8, 2*8) + 2 = 18
•  In general: 2*(N/2) + 2 = N+2 (vs 2N for RCA)

•  What if we cut adder into 4 equal pieces?
•  Would it be 2*(N/4) + 2 = 10? Not quite
•  d(CO15) = MAX(d(CO15-12),d(CO11-0)) + 2
•  d(CO15) = MAX(2*4, MAX(d(CO11-8),d(CO7-0)) + 2) + 2
•  d(CO15) = MAX(2*4,MAX(2*4,MAX(d(CO7-4),d(CO3-0)) + 2) + 2) + 2
•  d(CO15) = MAX(2*4,MAX(2*4,MAX(2*4,2*4) + 2) + 2) + 2
•  d(CO15) = 2*4 + 3*2 = 14

•  N-bit adder in M equal pieces: 2*(N/M) + (M–1)*2
•  16-bit adder in 8 parts: 2*(16/8) + 7*2 = 18

CIS 371 (Martin): Arithmetic 25

Another Option: Carry Lookahead

•  Is carry-select adder as fast as we can go?
•  Nope

•  Another approach to using additional resources
•  Instead of redundantly computing sums assuming different carries
•  Use redundancy to compute carries more quickly

•  This approach is called carry lookahead (CLA)

CIS 371 (Martin): Arithmetic 26

Carry Lookahead Adder (CLA)

•  Calculate “propagate” and “generate” based on A, B
•  Not based on carry in

•  Combine with tree structure

•  Prior years: CLA covered
in great detail
•  Dozen slides or so
•  Not this year

•  Take aways
•  Tree gives logarithmic delay
•  Reasonable area

G0
P0 G1-0

P1-0
C1

G3-2
P3-2
C3

G3-0
P3-0
C2

G1
P1

G2
P2

G3
P3

A0
B0

A1
B1

A2
B2

A3
B3

C2

C0

C3

C1

C4 C4

CIS 371 (Martin): Arithmetic 27

Adders In Real Processors

•  Real processors super-optimize their adders
•  Ten or so different versions of CLA
•  Highly optimized versions of carry-select
•  Other gate techniques: carry-skip, conditional-sum
•  Sub-gate (transistor) techniques: Manchester carry chain
•  Combinations of different techniques

•  Alpha 21264 uses CLA+CSeA+RippleCA
•  Used a different levels

•  Even more optimizations for incrementers
•  Why?

CIS 371 (Martin): Arithmetic 28

CIS 371 (Martin): Arithmetic 29

Subtraction: Addition’s Tricky Pal

•  Sign/magnitude subtraction is mental reverse addition
•  2C subtraction is addition

•  How to subtract using an adder?
•  sub A B = add A -B
•  Negate B before adding (fast negation trick: –B = B’ + 1)

•  Isn’t a subtraction then a negation and two additions?
+  No, an adder can implement A+B+1 by setting the carry-in to 1

~

B
A

1
0 Shifts & Rotates

CIS 371 (Martin): Arithmetic 30

CIS 371 (Martin): Arithmetic 31

Shift and Rotation Instructions

•  Left/right shifts are useful…
•  Fast multiplication/division by small constants (next)
•  Bit manipulation: extracting and setting individual bits in words

•  Right shifts
•  Can be logical (shift in 0s) or arithmetic (shift in copies of MSB)

 srl 110011, 2 = 001100
 sra 110011, 2 = 111100

•  Caveat: sra is not equal to division by 2 of negative numbers

•  Rotations are less useful…
•  But almost “free” if shifter is there
•  MIPS and LC4 have only shifts, x86 has shifts and rotations

CIS 371 (Martin): Arithmetic 32

Compiler Opt: Strength Reduction

•  Strength reduction: compilers will do this (sort of)
A * 4 = A << 2
A * 5 = (A << 2) + A
A / 8 = A >> 3 (only if A is unsigned)

•  Useful for address calculation: all basic data types are 2M in size
int A[100];
&A[N] = A+(N*sizeof(int)) = A+N*4 = A+N<<2

CIS 371 (Martin): Arithmetic 33

A Simple Shifter

•  The simplest 16-bit shifter: can only shift left by 1
•  Implement using wires (no logic!)

•  Slightly more complicated: can shift left by 1 or 0
•  Implement using wires and a multiplexor (mux16_2to1)

A

A0

A15

0

A <<1 A <<1

O

O
O

CIS 371 (Martin): Arithmetic 34

Barrel Shifter
•  What about shifting left by any amount 0–15?

•  16 consecutive “left-shift-by-1-or-0” blocks?
–  Would take too long (how long?)

•  Barrel shifter: 4 “shift-left-by-X-or-0” blocks (X = 1,2,4,8)
•  What is the delay?

•  Similar barrel designs for right shifts and rotations

<<4 <<8 <<2 <<1
A O

shift
shift[3] shift[2] shift[1] shift[0]

Multiplication

CIS 371 (Martin): Arithmetic 35 CIS 371 (Martin): Arithmetic 36

3rd Grade: Decimal Multiplication
 19 // multiplicand

* 12 // multiplier
 38
+ 190
 228 // product

•  Start with product 0, repeat steps until no multiplier digits
•  Multiply multiplicand by least significant multiplier digit
•  Add to product
•  Shift multiplicand one digit to the left (multiply by 10)
•  Shift multiplier one digit to the right (divide by 10)

•  Product of N-digit, M-digit numbers may have N+M digits

CIS 371 (Martin): Arithmetic 37

Binary Multiplication: Same Refrain
 19 = 010011 // multiplicand
* 12 = 001100 // multiplier
 0 = 000000000000
 0 = 000000000000
 76 = 000001001100
 152 = 000010011000
 0 = 000000000000
+ 0 = 000000000000
 228 = 000011100100 // product

±  Smaller base ! more steps, each is simpler
•  Multiply multiplicand by least significant multiplier digit

+ 0 or 1 ! no actual multiplication, add multiplicand or not
•  Add to total: we know how to do that
•  Shift multiplicand left, multiplier right by one digit

CIS 371 (Martin): Arithmetic 38

Software Multiplication

•  Can implement this algorithm in software
•  Inputs: md (multiplicand) and mr (multiplier)

int pd = 0; // product
int i = 0;
for (i = 0; i < 16 && mr != 0; i++) {

if (mr & 1) {
 pd = pd + md;
}
md = md << 1; // shift left
mr = mr >> 1; // shift right

}

CIS 371 (Martin): Arithmetic 39

Hardware Multiply: Iterative

•  Control: repeat 16 times
•  If least significant bit of multiplier is 1…

•  Then add multiplicand to product
•  Shift multiplicand left by 1
•  Shift multiplier right by 1

Product
(32 bit)

32+
32

we

lsb==1?

<< 1 >> 1 Multiplier
(16 bit)

Multiplicand
(32 bit)

CIS 371 (Martin): Arithmetic 40

Hardware Multiply: Multiple Adders

•  Multiply by N bits at a time using N adders
•  Example: N=5, terms (P=product, C=multiplicand, M=multiplier)
•  P = (M[0] ? (C) : 0) + (M[1] ? (C<<1) : 0) +

 (M[2] ? (C<<2) : 0) + (M[3] ? (C<<3) : 0) + …
•  Arrange like a tree to reduce gate delay critical path

•  Delay? N2 vs N*log N? Not that simple, depends on adder
•  Approx “2N” versus “N + log N”, with optimization: O(log N)

16
+

16
+

16
+

16
+

C

C<<1

C<<2
C<<3

C<<4

P

16
+

16
+

16
+

16
+

C

C<<1

C<<3

C<<2
P

C<<4

0

0

0
0

0 0

0

0

0

0

CIS 371 (Martin): Arithmetic 41

Consecutive Addition

•  2 N-bit RC adders
+  2 + d(add) gate delays

•  M N-bit RC adders delay
•  Naïve: O(M*N)
•  Actual: O(M+N)

•  M N-bit Carry Select?
•  Delay calculation tricky

•  Carry Save Adder (CSA)
•  3-to-2 CSA tree + adder
•  Delay: O(log M + log N)

FA FA FA FA

FA FA FA FA FA

A0 A1 A2 A3

S0 S1 S2 S3

D0 D1 D2 D3

B0 B1 B2 B3

CO

CD0

FA FA FA FA

FA FA FA FA

A0 A1 A2 A3

S0 S1 S2 S3

D0 D1 D2 D3 B0 B1 B2 B3

CO

CB0

0

0

T3 T2 T1 T0

FA

CB0 CD0 T0 T1 T2 T3

CIS 371 (Martin): Arithmetic 42

Hardware != Software: Part Deux

•  Recall: hardware is parallel, software is sequential
•  Exploit: evaluate independent sub-expressions in parallel

•  Example I: S = A + B + C + D
•  Software? 3 steps: (1) S1 = A+B, (2) S2 = S1+C, (3) S = S2+D
+  Hardware? 2 steps: (1) S1 = A+B, S2=C+D, (2) S = S1+S2

•  Example II: S = A + B + C
•  Software? 2 steps: (1) S1 = A+B, (2) S = S1+C
•  Hardware? 2 steps: (1) S1 = A+B (2) S = S1+C
+  Actually hardware can do this in 1.2 steps!
•  Sub-expression parallelism exists below 16-bit addition level

Division

CIS 371 (Martin): Arithmetic 43 CIS 371 (Martin): Arithmetic 44

4th Grade: Decimal Division
 9 // quotient

 3 |29 // divisor | dividend
 -27
 2 // remainder

•  Shift divisor left (multiply by 10) until MSB lines up with dividend’s
•  Repeat until remaining dividend (remainder) < divisor

•  Find largest single digit q such that (q*divisor) < dividend
•  Set LSB of quotient to q
•  Subtract (q*divisor) from dividend
•  Shift quotient left by one digit (multiply by 10)
•  Shift divisor right by one digit (divide by 10)

CIS 371 (Martin): Arithmetic 45

Binary Division
 1001 = 9
3 |29 = 0011 |011101
 -24 = - 011000
 5 = 000101
 - 3 = - 000011
 2 = 000010

CIS 371 (Martin): Arithmetic 46

Binary Division Hardware

•  Same as decimal division, except (again)
–  More individual steps (base is smaller)
+  Each step is simpler
•  Find largest bit q such that (q*divisor) < dividend

•  q = 0 or 1
•  Subtract (q*divisor) from dividend

•  q = 0 or 1 ! no actual multiplication, subtract divisor or not

•  Complication: largest q such that (q*divisor) < dividend
•  How do you know if (1*divisor) < dividend?
•  Human can “eyeball” this
•  Computer does not have eyeballs

•  Subtract and see if result is negative

CIS 371 (Martin): Arithmetic 47

Software Divide Algorithm

•  Can implement this algorithm in software
•  Inputs: dividend and divisor

for (int i = 0; i < 32; i++) {!
 remainder = (remainder << 1) | (dividend >> 31);!
 if (remainder >= divisor) {!
 quotient = (quotient << 1) | 1;!
 remainder = remainder - divisor;!
 } else {!
 quotient = quotient << 1!
 }!
 dividend = dividend << 1;!
}!

CIS 371 (Martin): Arithmetic 48

Divide Example

•  Input: Divisor = 00011 , Dividend = 11101

Step Remainder Quotient Remainder Dividend
 0 00000 00000 00000 11101
 1 00001 00000 00001 11010
 2 00011 00001 00000 10100
 3 00001 00010 00001 01000
 4 00010 00100 00001 10000
 5 00101 01001 00010 00000

•  Result: Quotient: 1001, Remainder: 10

CIS 371 (Martin): Arithmetic 49

Divider Circuit

Divisor

Quotient

Remainder

Sub >=0

msb

Dividend

Shift in 0 or 1

Shift in 0 or 1

Shift in 0

•  N cycles for n-bit divide

Floating Point

CIS 371 (Martin): Arithmetic 50

CIS 371 (Martin): Arithmetic 51

Floating Point (FP) Numbers

•  Floating point numbers: numbers in scientific notation
•  Two uses

•  Use I: real numbers (numbers with non-zero fractions)
•  3.1415926…
•  2.1878…
•  6.62 * 10–34

•  Use II: really big numbers
•  3.0 * 108

•  6.02 * 1023

•  Aside: best not used for currency values

CIS 371 (Martin): Arithmetic 52

Scientific Notation
•  Scientific notation:

•  Number [S,F,E] = S * F * 2E
•  S: sign
•  F: significand (fraction)
•  E: exponent
•  “Floating point”: binary (decimal) point has different magnitude

+  “Sliding window” of precision using notion of significant digits
•  Small numbers very precise, many places after decimal point
•  Big numbers are much less so, not all integers representable
•  But for those instances you don’t really care anyway

–  Caveat: all representations are just approximations
•  Sometimes wierdos like 0.9999999 or 1.0000001 come up
+ But good enough for most purposes

CIS 371 (Martin): Arithmetic 53

IEEE 754 Standard Precision/Range

•  Single precision: float in C
•  32-bit: 1-bit sign + 8-bit exponent + 23-bit significand
•  Range: 2.0 * 10–38 < N < 2.0 * 1038

•  Precision: ~7 significant (decimal) digits
•  Used when exact precision is less important (e.g., 3D games)

•  Double precision: double in C
•  64-bit: 1-bit sign + 11-bit exponent + 52-bit significand
•  Range: 2.0 * 10–308 < N < 2.0 * 10308

•  Precision: ~15 significant (decimal) digits
•  Used for scientific computations

•  Numbers >10308 don’t come up in many calculations
•  1080 ~ number of atoms in universe

CIS 371 (Martin): Arithmetic 54

Floating Point is Inexact
•  Accuracy problems sometimes get bad

•  FP arithmetic not associative: (A+B)+C not same as A+(B+C)
•  Addition of big and small numbers (summing many small numbers)

•  Or subtraction of two big numbers
•  Example, what’s (1*1030 + 1*100) – 1*1030?

•  Intuitively: 1*100 = 1
•  But: (1*1030 + 1*100) – 1*1030 = (1*1030 – 1*1030) = 0

•  Reciprocal math: “x/y” versus ”x*(1/y)”
•  Reciprocal & multiply is faster than divide, but less precise

•  Compilers are generally conservative
•  GCC flag: –ffast-math (allows assoc. opts, reciprocal math)

•  Numerical analysis: field formed around this problem
•  Bounding error of numerical algorithms
•  Re-formulating algorithms in a way that bounds numerical error

•  In your code: never test for equality between FP numbers
•  Use something like: if (abs(a-b) < 0.00001) then …

CIS 371 (Martin): Arithmetic 55

Pentium FDIV Bug

•  Pentium shipped in August 1994
•  Intel actually knew about the bug in July

•  But calculated that delaying the project a month would cost ~$1M
•  And that in reality only a dozen or so people would encounter it
•  They were right… but one of them took the story to EE times

•  By November 1994, firestorm was full on
•  IBM said that typical Excel user would encounter bug every month

•  Assumed 5K divisions per second around the clock
•  People believed the story
•  IBM stopped shipping Pentium PCs

•  By December 1994, Intel promises full recall
•  Total cost: ~$550M

•  Recent example: Intel’s chipset (January 2011)
CIS 371 (Martin): Arithmetic 56

•  Latency in cycles of common arithmetic operations
•  Source: Software Optimization Guide for AMD Family 10h

Processors, Dec 2007
•  Intel “Core 2” chips similar

•  Divide is variable latency based on the size of the dividend
•  Detect number of leading zeros, then divide

•  Floating point divide faster than integer divide?

Arithmetic Latencies

Int 32 Int 64 Fp 32 Fp 64

Add/Subtract 1 1 4 4

Multiply 3 5 4 4

Divide 14 to 40 23 to 87 16 20

CIS 371 (Martin): Arithmetic 57

Summary

•  Integer addition
•  Most timing-critical operation in datapath
•  Hardware != software

•  Exploit sub-addition parallelism

•  Fast addition
•  Carry-select: parallelism in sum

•  Multiplication
•  Chains and trees of additions

•  Division
•  Floating point

•  Next: Faster datapath via pipelining

CPU Mem I/O

System software

App App App

