
CIS 371 (Martin): Virtual Memory 1 

CIS 371 
Computer Organization and Design 

Unit 8: Virtual Memory  

Based on slides by Prof. Amir Roth & Prof. Milo Martin 

CIS 371 (Martin): Virtual Memory 2 

This Unit: Virtualization 

•  The operating system (OS) 
•  A super-application 
•  Hardware support for an OS 

•  Virtual memory 
•  Page tables and address translation 
•  TLBs and memory hierarchy issues 

CPU Mem I/O 

System software 
App App App 

CIS 371 (Martin): Virtual Memory 3 

Readings 

•  P&H 
•  Virtual Memory: 5.4 

Start-of-class Question 

•  What is a “trie” data structure 
•  Also called a “prefix tree” 

•  What is it used for? 

•  What properties does it have? 
•  How is it different from a binary tree? 
•  How is it different than a hash table 

CIS 371 (Martin): Virtual Memory 4 



CIS 371 (Martin): Virtual Memory 5 

A Computer System: Hardware 
•  CPUs and memories  

•  Connected by memory bus 

•  I/O peripherals: storage, input, display, network, … 
•  With separate or built-in DMA  
•  Connected by system bus (which is connected to memory bus) 

Memory 

Disk 
kbd 

DMA DMA 

display NIC 

I/O ctrl 

System (I/O) bus Memory bus 

CPU/$ 

bridge 

CPU/$ 

CIS 371 (Martin): Virtual Memory 6 

A Computer System: + App Software 

•  Application software: computer must do something 

Memory 

Disk 
kbd 

DMA DMA 

display NIC 

I/O ctrl 

System (I/O) bus Memory bus 

CPU/$ 

bridge 

CPU/$ 

Application sofware 

CIS 371 (Martin): Virtual Memory 7 

A Computer System: + OS 

•  Operating System (OS): virtualizes hardware for apps 
•  Abstraction: provides services (e.g., threads, files, etc.) 

+ Simplifies app programming model, raw hardware is nasty 
•  Isolation: gives each app illusion of private CPU, memory, I/O 

+ Simplifies app programming model 
+ Increases hardware resource utilization 

Memory 

Disk 
kbd 

DMA DMA 

display NIC 

I/O ctrl 

System (I/O) bus Memory bus 

CPU/$ 

bridge 

CPU/$ 

OS 
Application Application Application Application 

CIS 371 (Martin): Virtual Memory 8 

Operating System (OS) and User Apps 
•  Sane system development requires a split 

•  Hardware itself facilitates/enforces this split 

•  Operating System (OS): a super-privileged process 
•  Manages hardware resource allocation/revocation for all processes 
•  Has direct access to resource allocation features 
•  Aware of many nasty hardware details 
•  Aware of other processes 
•  Talks directly to input/output devices (device driver software) 

•  User-level apps: ignorance is bliss 
•  Unaware of most nasty hardware details 
•  Unaware of other apps (and OS) 
•  Explicitly denied access to resource allocation features 



CIS 371 (Martin): Virtual Memory 9 

System Calls 

•  Controlled transfers to/from OS 

•  System Call: a user-level app “function call” to OS 
•  Leave description of what you want done in registers 
•  SYSCALL instruction (also called TRAP or INT) 

•  Can’t allow user-level apps to invoke arbitrary OS code  
•  Restricted set of legal OS addresses to jump to (trap vector) 

•  Processor jumps to OS using trap vector 
•  Sets privileged mode 

•  OS performs operation 
•  OS does a “return from system call” 

•  Unsets privileged mode 

CIS 371 (Martin): Virtual Memory 10 

Interrupts 

•  Exceptions: synchronous, generated by running app 
•  E.g., illegal insn, divide by zero, etc. 

•  Interrupts: asynchronous events generated externally 
•  E.g., timer, I/O request/reply, etc. 

•  “Interrupt” handling: same mechanism for both 
•  “Interrupts” are on-chip signals/bits 

•  Either internal (e.g., timer, exceptions) or from I/O devices 
•  Processor continuously monitors interrupt status, when one is high… 
•  Hardware jumps to some preset address in OS code (interrupt vector) 
•  Like an asynchronous, non-programmatic SYSCALL 

•  Timer: programmable on-chip interrupt 
•  Initialize with some number of micro-seconds 
•  Timer counts down and interrupts when reaches 0 

Typical I/O Device Interface 

•  Operating system talks to the I/O device 
•  Send commands, query status, etc. 
•  Software uses special uncached load/store operations 
•  Hardware sends these reads/writes across I/O bus to device 

•  Direct Memory Access (DMA) 
•  For big transfers, the I/O device accesses the memory directly 
•  Example: DMA used to transfer an entire block to/from disk 

•  Interrupt-driven I/O 
•  The I/O device tells the software its transfer is complete 
•  Tells the hardware to raise an “interrupt” (door bell) 
•  Processor jumps into the OS 
•  Inefficient alternative: polling    

CIS 371 (Martin): Virtual Memory 11 CIS 371 (Martin): Virtual Memory 12 

Virtualizing Processors 
•  How do multiple apps (and OS) share the processors? 

•  Goal: applications think there are an infinite # of processors 

•  Solution: time-share the resource 
•  Trigger a context switch at a regular interval (~1ms) 

•  Pre-emptive: app doesn’t yield CPU, OS forcibly takes it 
+ Stops greedy apps from starving others 

•  Architected state: PC, registers 
•  Save and restore them on context switches 
•  Memory state? 

•  Non-architected state: caches, branch predictor tables, etc. 
•  Ignore or flush 

•  Operating responsible to handle context switching 
•  Hardware support is just a timer interrupt 



CIS 371 (Martin): Virtual Memory 13 

Virtualizing Main Memory 

•  How do multiple apps (and the OS) share main memory? 
•  Goal: each application thinks it has infinite memory  

•  One app may want more memory than is in the system 
•  App’s insn/data footprint may be larger than main memory 
•  Requires main memory to act like a cache  

•  With disk as next level in memory hierarchy (slow) 
•  Write-back, write-allocate, large blocks or “pages” 

•  No notion of “program not fitting” in registers or caches (why?)  

•  Solution:  
•  Part #1: treat memory as a “cache” 

•  Store the overflowed blocks in “swap” space on disk 
•  Part #2: add a level of indirection (address translation) 

CIS 371 (Martin): Virtual Memory 14 

Virtual Memory (VM) 
•  Programs use virtual addresses (VA) 

•  0…2N–1 
•  VA size also referred to as machine size 
•  E.g., 32-bit (embedded) or 64-bit (server) 

•  Memory uses physical addresses (PA) 
•  0…2M–1 (typically M<N, especially if N=64) 
•  2M is most physical memory machine supports 

•  VA!PA at page granularity (VP!PP) 
•  By “system” 
•  Mapping need not preserve contiguity 
•  VP need not be mapped to any PP 
•  Unmapped VPs live on disk (swap) 

… 

… 

  Disk 

Program 

Main Memory 

code heap stack 

CIS 371 (Martin): Virtual Memory 15 

Virtual Memory (VM) 

•  Virtual Memory (VM): 
•  Level of indirection (like register renaming) 
•  Application generated addresses are virtual addresses (VAs) 

•  Each process thinks it has its own 2N bytes of address space 
•  Memory accessed using physical addresses (PAs) 
•  VAs translated to PAs at some coarse granularity (page) 
•  OS controls VA to PA mapping for itself and all other processes 
•  Logically: translation performed before every insn fetch, load, store 
•  Physically: hardware acceleration removes translation overhead 

… 
OS 

… 
App1 

… 
App2 

VAs 

PAs (physical memory) 

OS controlled VA!PA mappings 

CIS 371 (Martin): Virtual Memory 16 

Disk 

Virtual Memory: The Basics 
•  Programs use virtual addresses (VA) 

•  VA size (N) aka machine size (e.g., Core 2 Duo: 48-bit) 

•  Memory uses physical addresses (PA) 
•  PA size (M) typically M<N, especially if N=64 
•  2M is most physical memory machine supports 

•  VA!PA at page granularity (VP!PP) 
•  Mapping need not preserve contiguity 
•  VP need not be mapped to any PP 
•  Unmapped VPs live on disk (swap) or nowhere (if not yet touched) 

… 
OS 

… 
App1 

… 
App2 



CIS 371 (Martin): Virtual Memory 17 

VM is an Old Idea: Older than Caches 
•  Original motivation: single-program compatibility 

•  IBM System 370: a family of computers with one software suite 
+  Same program could run on machines with different memory sizes 
–  Prior, programmers explicitly accounted for memory size 

•  But also: full-associativity + software replacement 
•  Memory tmiss is high: extremely important to reduce %miss 

Parameter I$/D$ L2 Main Memory 

thit 2ns 10ns 30ns 

tmiss 10ns 30ns 10ms (10M ns) 

Capacity 8–64KB 128KB–2MB 64MB–64GB 

Block size 16–32B 32–256B 4+KB 

Assoc./Repl. 1–4, LRU 4–16, LRU Full, “working set” 

CIS 371 (Martin): Virtual Memory 18 

Uses of Virtual Memory 
•  More recently: isolation and multi-programming 

•  Each app thinks it has 2N B of memory, its stack starts 0xFFFFFFFF,… 
•  Apps prevented from reading/writing each other’s memory 

•  Can’t even address the other program’s memory! 

•  Protection 
•  Each page with a read/write/execute permission set by OS 
•  Enforced by hardware 

•  Inter-process communication. 
•  Map same physical pages into multiple virtual address spaces 
•  Or share files via the UNIX mmap() call 

… 
OS 

… 
App1 

… 
App2 

CIS 371 (Martin): Virtual Memory 19 

Address Translation 

•  VA!PA mapping called address translation 
•  Split VA into virtual page number (VPN) & page offset (POFS) 
•  Translate VPN into physical page number (PPN) 
•  POFS is not translated 
•  VA!PA = [VPN, POFS] ! [PPN, POFS] 

•  Example above 
•  64KB pages ! 16-bit POFS 
•  32-bit machine ! 32-bit VA ! 16-bit VPN  
•  Maximum 256MB memory ! 28-bit PA ! 12-bit PPN 

POFS[15:0] virtual address[31:0] VPN[31:16] 

POFS[15:0] physical address[25:0] PPN[27:16] 
translate don’t touch 

CIS 371 (Martin): Virtual Memory 20 

Address Translation Mechanics I 
•  How are addresses translated? 

•  In software (for now) but with hardware acceleration (a little later) 

•  Each process allocated a page table (PT) 
•  Software data structure constructed by OS 
•  Maps VPs to PPs or to disk (swap) addresses 

•  VP entries empty if page never referenced 
•  Translation is table lookup 

struct { 
   int ppn; 
   int is_valid, is_dirty, is_swapped; 
} PTE; 
struct PTE page_table[NUM_VIRTUAL_PAGES]; 

int translate(int vpn) { 
  if (page_table[vpn].is_valid) 
     return page_table[vpn].ppn;  
} 

PT 

vp
n 

Disk(swap) 



CIS 371 (Martin): Virtual Memory 21 

Page Table Size 
•  How big is a page table on the following machine? 

•  32-bit machine 
•  4B page table entries (PTEs) 
•  4KB pages 

•  32-bit machine ! 32-bit VA ! 4GB virtual memory 
•  4GB virtual memory / 4KB page size ! 1M VPs 
•  1M VPs * 4B PTE ! 4MB 

•  How big would the page table be with 64KB pages? 
•  How big would it be for a 64-bit machine? 

•  Page tables can get big 
•  There are ways of making them smaller 

CIS 371 (Martin): Virtual Memory 22 

Multi-Level Page Table (PT) 
•  One way: multi-level page tables 

•  Tree of page tables (“trie”) 
•  Lowest-level tables hold PTEs 
•  Upper-level tables hold pointers to lower-level tables 
•  Different parts of VPN used to index different levels 

•  Example: two-level page table for machine on last slide 
•  Compute number of pages needed for lowest-level (PTEs) 

•  4KB pages / 4B PTEs ! 1K PTEs/page 
•  1M PTEs / (1K PTEs/page) ! 1K pages 

•  Compute number of pages needed for upper-level (pointers) 
•  1K lowest-level pages ! 1K pointers 
•  1K pointers * 32-bit VA ! 4KB ! 1 upper level page 

CIS 371 (Martin): Virtual Memory 23 

Multi-Level Page Table (PT) 

•  20-bit VPN 
•  Upper 10 bits index 1st-level table 
•  Lower 10 bits index 2nd-level table 

1st-level 
“pointers” 

2nd-level 
PTEs 

VPN[9:0] VPN[19:10] 

struct { 
   int ppn;  
   int is_valid, is_dirty, is_swapped; 
} PTE; 
struct { struct PTE ptes[1024]; } L2PT; 
struct L2PT *page_table[1024]; 

int translate(int vpn) { 
  index1 = (vpn >> 10);    // upper 10 bits 
  index2 = (vpn & 0x3ff);  // lower 10 bits   
  struct L2PT *l2pt = page_table[index1]; 
  if (l2pt != NULL &&  
      l2pt->ptes[index2].is_valid) 
    return l2pt->ptes[index2].ppn;  
} 

pt “root” 

CIS 371 (Martin): Virtual Memory 24 

Multi-Level Page Table (PT) 

•  Have we saved any space? 
•  Isn’t total size of 2nd level tables same as single-level 

table (i.e., 4MB)? 
•  Yes, but… 

•  Large virtual address regions unused 
•  Corresponding 2nd-level tables need not exist 
•  Corresponding 1st-level pointers are null 

•  Example: 2MB code, 64KB stack, 16MB heap 
•  Each 2nd-level table maps 4MB of virtual addresses 
•  1 for code, 1 for stack, 4 for heap, (+1 1st-level) 
•  7 total pages = 28KB (much less than 4MB) 



CIS 371 (Martin): Virtual Memory 25 

Page-Level Protection 

•  Page-level protection 
•  Piggy-back page-table mechanism 
•  Map VPN to PPN + Read/Write/Execute permission bits 
•  Attempt to execute data, to write read-only data? 

•  Exception ! OS terminates program 
•  Useful (for OS itself actually) 

struct { 
   int ppn;  
   int is_valid, is_dirty, is_swapped, permissions; 
} PTE; 
struct PTE page_table[NUM_VIRTUAL_PAGES]; 

int translate(int vpn, int action) { 
   if (page_table[vpn].is_valid &&  
       !(page_table [vpn].permissions & action)) kill;    
   … 
} 

CIS 371 (Martin): Virtual Memory 26 

Address Translation Mechanics II 
•  Conceptually 

•  Translate VA to PA before every cache access 
•  Walk the page table before every load/store/insn-fetch 
–  Would be terribly inefficient (even in hardware) 

•  In reality 
•  Translation Lookaside Buffer (TLB): cache translations  
•  Only walk page table on TLB miss 

•  Hardware truisms 
•  Functionality problem? Add indirection (e.g., VM) 
•  Performance problem? Add cache (e.g., TLB) 

CIS 371 (Martin): Virtual Memory 27 

Translation Lookaside Buffer 

•  Translation lookaside buffer (TLB) 
•  Small cache: 16–64 entries 
•  Associative (4+ way or fully associative)  
+  Exploits temporal locality in page table 
•  What if an entry isn’t found in the TLB? 

•  Invoke TLB miss handler 

VPN PPN 
VPN PPN 
VPN PPN 

“tag” “data” 

CPU 

D$ 

L2 

Main 
Memory 

I$ 

TLB 
VA 

PA 
TLB 

CIS 371 (Martin): Virtual Memory 28 

Serial TLB & Cache Access 
•  “Physical” caches 

•  Indexed and tagged by physical addresses 
+  Natural, “lazy” sharing of caches between apps/OS 

•  VM ensures isolation (via physical addresses) 
•  No need to do anything on context switches 
•  Multi-threading works too 

+  Cached inter-process communication works 
•  Single copy indexed by physical address 

–  Slow: adds at least one cycle to thit 

•  Note: TLBs are by definition “virtual” 
•  Indexed and tagged by virtual addresses 
•  Flush across context switches 
•  Or extend with process identifier tags (x86) 

CPU 

D$ 

L2 

Main 
Memory 

I$ 

TLB 
VA 

PA 
TLB 



CIS 371 (Martin): Virtual Memory 29 

Parallel TLB & Cache Access 

•  What about parallel access?  
•  Only if… 

(cache size) / (associativity) ! page size  
•  Index bits same in virt. and physical addresses! 

•  Access TLB in parallel with cache  
•  Cache access needs tag only at very end 
+  Fast: no additional thit cycles 

+  No context-switching/aliasing problems  
•  Dominant organization used today 

•  Example: Core 2, 4KB pages,  
32KB, 8-way SA L1 data cache 
•  Implication: associativity allows bigger caches 

CPU 

D$ 

L2 

Main 
Memory 

I$ TLB 
VA 
PA TLB 

[4:0]  tag [31:12] index [11:5] 
VPN [31:16] page offset [15:0] 

? 

page offset [15:0] PPN[27:16] 

CIS 371 (Martin): Virtual Memory 30 

Parallel TLB & Cache Access 

•  Two ways to look at VA 
•  Cache: tag+index+offset 
•  TLB: VPN+page offset 

•  Parallel cache/TLB… 
•  If address translation 

doesn’t change index 
•  That is, VPN/index 

must not overlap 

[4:0]                 virtual tag [31:12] 

data 

index [11:5] 

address 

== 

TLB hit/miss 

== 

== 
== 

VPN [31:16] page offset [15:0] 

cache 

TLB 

cache hit/miss 

tags data 

CIS 371 (Martin): Virtual Memory 31 

TLB Organization 

•  Like caches: TLBs also have ABCs 
•  Capacity 
•  Associativity (At least 4-way associative, fully-associative common) 
•  What does it mean for a TLB to have a block size of two? 

•  Two consecutive VPs share a single tag 
•  Like caches: there can be L2 TLBs 

•  Example: AMD Opteron 
•  32-entry fully-assoc. TLBs, 512-entry 4-way L2 TLB (insn & data) 
•  4KB pages, 48-bit virtual addresses, four-level page table 

•  Rule of thumb: TLB should “cover” L2 contents 
•  In other words: (#PTEs in TLB) * page size ! L2 size 
•  Why? Consider relative miss latency in each… 

CIS 371 (Martin): Virtual Memory 32 

TLB Misses 

•  TLB miss: translation not in TLB, but in page table 
•  Two ways to “fill” it, both relatively fast 

•  Software-managed TLB: e.g., Alpha, MIPS 
•  Short (~10 insn) OS routine walks page table, updates TLB 
+  Keeps page table format flexible 
–  Latency: one or two memory accesses + OS call (pipeline flush) 

•  Hardware-managed TLB: e.g., x86, recent SPARC, ARM 
•  Page table root in hardware register, hardware “walks” table 
+  Latency: saves cost of OS call (avoids pipeline flush) 
–  Page table format is hard-coded 

•  Trend is towards hardware TLB miss handler 



CIS 371 (Martin): Virtual Memory 33 

TB Misses and Pipeline Stalls 

•  TLB misses stall pipeline just like data hazards... 
•  …if TLB is hardware-managed 

•  If TLB is software-managed… 
•  …must generate an interrupt 
•  Hardware will not handle TLB miss 

I$ 
TLB 

Regfile D$ 
TLB 

+ 
4 

nop nop 

CIS 371 (Martin): Virtual Memory 34 

Page Faults 

•  Page fault: PTE not in TLB or page table  
•  ! page not in memory 
•  Or no valid mapping ! segmentation fault 
•  Starts out as a TLB miss, detected by OS/hardware handler 

•  OS software routine: 
•  Choose a physical page to replace 

•  “Working set”: refined LRU, tracks active page usage 
•  If dirty, write to disk 
•  Read missing page from disk 

•  Takes so long (~10ms), OS schedules another task 
•  Requires yet another data structure: frame map 

•  Maps physical pages to <process, virtual page> pairs  
•  Treat like a normal TLB miss from here 

Summary 

•  OS virtualizes memory and I/O devices 

•  Virtual memory 
•  “infinite” memory, isolation, protection, inter-process communication 
•  Page tables 
•  Translation buffers 

•  Parallel vs serial access, interaction with caching 
•  Page faults 

CIS 371 (Martin): Virtual Memory 35 


