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CIS 371 
Computer Organization and Design 

Unit 9: Superscalar Pipelines 
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A Key Theme of CIS 371: Parallelism 

•  Previously: pipeline-level parallelism 
•  Work on execute of one instruction in parallel with decode of next  

•  Next: instruction-level parallelism (ILP) 
•  Execute multiple independent instructions fully in parallel 
•  Today: multiple issue 

•  Later: 
•  Static & dynamic scheduling 

•  Extract much more ILP 
•  Data-level parallelism (DLP) 

•  Single-instruction, multiple data (one insn., four 64-bit adds) 
•  Thread-level parallelism (TLP) 

•  Multiple software threads running on multiple cores 
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This Unit: (In-Order) Superscalar Pipelines 

•  Idea of instruction-level parallelism 

•  Superscalar hardware issues 
•  Bypassing and register file 
•  Stall logic 
•  Fetch and branch prediction 

•  “Superscalar” vs VLIW/EPIC 

CPU Mem I/O 

System software 

App App App 
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Readings 

•  P&H 
•  Chapter 4.10 
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Scalar Pipeline and the Flynn Bottleneck 

•  So far we have looked at scalar pipelines 
•  One instruction per stage 

•  With control speculation, bypassing, etc. 
–  Performance limit (aka “Flynn Bottleneck”) is CPI = IPC = 1 
–  Limit is never even achieved (hazards) 
–  Diminishing returns from “super-pipelining” (hazards + overhead) 
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Multiple-Issue Pipeline 

•  Overcome this limit using multiple issue 
•  Also called superscalar 
•  Two instructions per stage at once, or three, or four, or eight… 
•  “Instruction-Level Parallelism (ILP)” [Fisher, IEEE TC’81] 

•  Today, typically “4-wide” (Intel Core i7, AMD Opteron) 
•  Some more (Power5 is 5-issue; Itanium is 6-issue) 
•  Some less (dual-issue is common for simple cores) 
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A Typical Dual-Issue Pipeline 

•  Fetch an entire 16B or 32B cache block 
•  4 to 8 instructions (assuming 4-byte average instruction length) 
•  Predict a single branch per cycle 

•  Parallel decode 
•  Need to check for conflicting instructions 
•  Output of I1 is an input to I2 
•  Other stalls, too (for example, load-use delay) 
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A Typical Dual-Issue Pipeline 

•  Multi-ported register file 
•  Larger area, latency, power, cost, complexity 

•  Multiple execution units 
•  Simple adders are easy, but bypass paths are expensive 

•  Memory unit 
•  Single load per cycle (stall at decode) probably okay for dual issue 
•  Alternative: add a read port to data cache 

•  Larger area, latency, power, cost, complexity 
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Superscalar Pipeline Diagrams - Ideal 
scalar 1 2 3 4 5 6 7 8 9 10 11 12 
lw 0(r1)!r2 F D X M W 
lw 4(r1)!r3 F D X M W 
lw 8(r1)!r4  F D X M W 
add r14,r15!r6 F D X M W 
add r12,r13!r7 F D X M W 
add r17,r16!r8 F D X M W 
lw 0(r18)!r9 F D X M W 

2-way superscalar 1 2 3 4 5 6 7 8 9 10 11 12 
lw 0(r1)!r2 F D X M W 
lw 4(r1)!r3 F D X M W 
lw 8(r1)!r4  F D X M W 
add r14,r15!r6 F D X M W 
add r12,r13!r7 F D X M W 
add r17,r16!r8 F D X M W 
lw 0(r18)!r9 F D X M W 
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Superscalar Pipeline Diagrams - Realistic 
scalar 1 2 3 4 5 6 7 8 9 10 11 12 
lw 0(r1)!r2 F D X M W 
lw 4(r1)!r3 F D X M W 
lw 8(r1)!r4  F D X M W 
add r4,r5!r6 F d* D X M W 
add r2,r3!r7 F D X M W 
add r7,r6!r8 F D X M W 
lw 0(r8)!r9 F D X M W 

2-way superscalar 1 2 3 4 5 6 7 8 9 10 11 12 
lw 0(r1)!r2 F D X M W 
lw 4(r1)!r3 F D X M W 
lw 8(r1)!r4  F D X M W 
add r4,r5!r6 F d* d* D X M W 
add r2,r3!r7 F d* D X M W 
add r7,r6!r8 F D X M W 
lw 0(r8)!r9 F d* D X M W 
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How Much ILP is There? 

•  The compiler tries to “schedule” code to avoid stalls 
•  Even for scalar machines (to fill load-use delay slot) 
•  Even harder to schedule multiple-issue (superscalar) 

•  How much ILP is common? 
•  Greatly depends on the application 

•  Consider memory copy 
•  Unroll loop, lots of independent operations 

•  Other programs, less so 

•  Even given unbounded ILP,  
superscalar has implementation limits 
•  IPC (or CPI) vs clock frequency trade-off 
•  Given these challenges, what is reasonable today?   

•  ~4 instruction per cycle maximum  
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Superscalar Challenges - Front End 

•  Superscalar instruction fetch 
•  Modest: need multiple instructions per cycle 
•  Aggressive: predict multiple branches 

•  Superscalar instruction decode 
•  Replicate decoders 

•  Superscalar instruction issue 
•  Determine when instructions can proceed in parallel 
•  Not all combinations possible 
•  More complex stall logic - order N2 for N-wide machine 

•  Superscalar register read 
•  One port for each register read 

•  Each port needs its own set of address and data wires 
•  Example, 4-wide superscalar ! 8 read ports 
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Superscalar Challenges - Back End 

•  Superscalar instruction execution 
•  Replicate arithmetic units 
•  Perhaps multiple cache ports 

•  Superscalar bypass paths 
•  More possible sources for data values 
•  Order (N2 * P) for N-wide machine with execute pipeline depth P 

•  Superscalar instruction register writeback 
•  One write port per instruction that writes a register 
•  Example, 4-wide superscalar ! 4 write ports 

•  Fundamental challenge: 
•  Amount of ILP (instruction-level parallelism) in the program 
•  Compiler must schedule code and extract parallelism 

CIS 371 (Martin): Superscalar  14 

Superscalar Decode & Register Read 

•  What is involved in decoding multiple (N) insns per cycle? 
•  Actually doing the decoding?  

•  Easy if fixed length (multiple decoders), doable if variable length 

•  Reading input registers? 
•  Nominally, 2N read + N write (2 read + 1 write per insn) 

–  Latency, area ! #ports2 

•  What about the stall logic? 

regfile 
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N2 Dependence Cross-Check 

•  Stall logic for 1-wide pipeline with full bypassing 
•  Full bypassing " load/use stalls only 

X/M.op==LOAD && (D/X.rs1==X/M.rd || D/X.rs2==X/M.rd) 
•  Two “terms”: ! 2N 

•  Now: same logic for a 2-wide pipeline 
X/M1.op==LOAD && (D/X1.rs1==X/M1.rd || D/X1.rs2==X/M1.rd) || 
X/M1.op==LOAD && (D/X2.rs1==X/M1.rd || D/X2.rs2==X/M1.rd) || 
X/M2.op==LOAD && (D/X1.rs1==X/M2.rd || D/X1.rs2==X/M2.rd) || 
X/M2.op==LOAD && (D/X2.rs1==X/M2.rd || D/X2.rs2==X/M2.rd) 

•  Eight “terms”: ! 2N2  
•  N2 dependence cross-check 

•  Not quite done, also need 
•  D/X2.rs1==D/X1.rd || D/X2.rs2==D/X1.rd 
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Superscalar Execute 

•  What is involved in executing N insns per cycle? 
•  Multiple execution units … N of every kind? 

•  N ALUs? OK, ALUs are small 
•  N floating point dividers? No, dividers are big, fdiv is uncommon 
•  How many branches per cycle? How many loads/stores per cycle? 
•  Typically some mix of functional units proportional to insn mix 

•  Intel Pentium: 1 any + 1 “simple” (such as ADD, etc.) 
•  Alpha 21164: 2 integer (including 2 loads) + 2 floating point 
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Superscalar Bypass 

•  N2 bypass network 
–  N+1 input muxes at each ALU input 
–  N2 point-to-point connections 
–  Routing lengthens wires 
–  Heavy capacitive load 
•  And this is just one bypass stage (MX)! 

•  There is also WX bypassing 
•  Even more for deeper pipelines 

•  One of the big problems of superscalar 

versus 
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Superscalar Memory Access 

•  What about multiple loads/stores per cycle? 
•  Probably only necessary on processors 4-wide or wider 

•  Core i7: is one load & one store per cycle 
•  More important to support multiple loads than multiple stores 

•  Insn mix: loads (~20–25%), stores (~10–15%) 
•  Alpha 21164: two loads or one store per cycle 

D$ 
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D$ Bandwidth 

•  How to provide additional D$ bandwidth? 
•  Have already seen split I$/D$, but that gives you just one D$ port 
•  How to provide a second (maybe even a third) D$ port? 

•  Option#1: multi-porting 
+  Most general solution, any two accesses per cycle 
–  Lots of wires; expensive in terms of latency, area (cost), and power 

•  Option#2: banking (or interleaving) 
•  Divide D$ into “banks” (by address), one access per bank per cycle 
•  Bank conflict: two accesses to same bank " one stalls 
+  No latency, area, power overheads (latency may even be lower) 
+  One access per bank per cycle, assuming no conflicts 
–  Complex stall logic " address not known until execute stage 
–  To support N accesses, need 2N+ banks to avoid frequent conflicts 
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Not All N2 Created Equal 

•  N2 bypass vs. N2 stall logic & dependence cross-check 
•  Which is the bigger problem? 

•  N2 bypass … by far 
•  64- bit quantities (vs. 5-bit) 
•  Multiple levels (MX, WX) of bypass (vs. 1 level of stall logic) 
•  Must fit in one clock period with ALU (vs. not) 

•  Dependence cross-check not even 2nd biggest N2 problem 
•  Regfile is also an N2 problem (think latency where N is #ports) 
•  And also more serious than cross-check 
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Mitigating N2 Bypass: Clustering 
•  Clustering: mitigates N2 bypass 

•  Group ALUs into K clusters 
•  Full bypassing within a cluster 
•  Limited bypassing between clusters 

•  With 1 or 2 cycle delay 
•  (N/K) + 1 inputs at each mux 
•  (N/K)2 bypass paths in each cluster 

•  Steering: key to performance 
•  Steer dependent insns to same cluster 
•  Statically (compiler) or dynamically 

•  Hurts IPC, allows wide issue at same clock 

•  E.g., Alpha 21264 
•  Bypass wouldn’t fit into clock cycle 
•  4-wide, 2 clusters 
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Mitigating N2 RegFile: Clustering++ 

•  Clustering: split N-wide execution pipeline into K clusters 
•  With centralized register file, 2N read ports and N write ports 

•  Clustered register file: extend clustering to register file 
•  Replicate the register file (one replica per cluster) 
•  Register file supplies register operands to just its cluster 
•  All register writes go to all register files (keep them in sync) 
•  Advantage: fewer read ports per register! 

•  K register files, each with 2N/K read ports and N write ports 
•  Alpha 21264: 4-way superscalar, two clusters 

DM 

RF0 

RF1 

cluster 0 

cluster 1 

Superscalar “Front End” 
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Simple Superscalar Fetch 

•  What is involved in fetching multiple instructions per cycle? 
•  In same cache block? " no problem 

•  64-byte cache block is 16 instructions (~4 bytes per instruction) 
•  Favors larger block size (independent of hit rate) 

•  What if next instruction is last instruction in a block? 
•  Fetch only one instruction that cycle 
•  Or, some processors may allow fetching from 2 consecutive blocks 

•  Compilers align code to I$ blocks (.align directive in asm) 
•  Reduces I$ capacity 
•  Increases fetch bandwidth utilization (more important) 
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Limits of Simple Superscalar Fetch 

•  How many instructions can be fetched on average? 
•  BTB predicts the next block of instructions to fetch 

•  Support multiple branch (direction) predictions per cycle 
•  Discard post-branch insns after first branch predicted as “taken” 

•  Lowers effective fetch width and IPC 
•  Average number of instructions per taken branch? 

•  Assume: 20% branches, 50% taken " ~10 instructions 
•  Consider a 5-instruction loop with an 4-issue processor 

•  Without smarter fetch, ILP is limited to 2.5 (not 4) 
•  Compiler could “unroll” the loop (reduce taken branches) 
•  How else can we increase fetch rate? 
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Increasing Superscalar Fetch Rate 

•  Option #1: over-fetch and buffer 
•  Add a queue between fetch and decode (18 entries in Intel Core2) 
•  Compensates for cycles that fetch less than maximum instructions 
•  “decouples” the “front end” (fetch) from the “back end” (execute) 

•  Option #2: predict next two blocks (extend BTB) 
•  Transmits two PCs to fetch stage: “next PC” and “next-next PC” 
•  Access I-cache twice (requires multiple ports or banks) 
•  Requires extra merging logic to select and merge correct insns 
–  Elongates pipeline, increases branch penalty 
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Increasing Superscalar Fetch Rate 

•  Option #3: “loop stream detector” (Core 2, Core i7) 
•  Put entire loop body into a small cache 

•  Core2: 18 macro-ops, up to four taken branches 
•  Core i7: 28 micro-ops (avoids re-decoding macro-ops!) 

•  Any branch mis-prediction requires normal re-fetch 

•  Option #4: trace cache (Pentium 4) 
•  Tracks “traces” of disjoint but dynamically consecutive instructions 
•  Pack (predicted) taken branch & its target into a one “trace” entry 
•  Fetch entire “trace” while predicting the “next trace” 
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Impact of Branch Prediction 
•  Base CPI for scalar pipeline is 1 
•  Base CPI for N-way superscalar pipeline is 1/N 

–  Amplifies stall penalties 
•  Assumes no data stalls (an overly optmistic assumption) 

•  Example: Branch penalty calculation 
•  20% branches, 75% taken, 2 cycle penalty, no branch prediction 

•  Scalar pipeline 
•  1 + 0.2*0.75*2 = 1.3 " 1.3/1 = 1.3 " 30% slowdown 

•  2-way superscalar pipeline 
•  0.5 + 0.2*0.75*2 = 0.8 " 0.8/0.5 = 1.6 " 60% slowdown 

•  4-way superscalar 
•  0.25 + 0.2*0.75*2 = 0.55 " 0.55/0.25 = 2.2 " 120% slowdown 
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Predication 
•  Branch mis-predictions hurt more on superscalar 

•  Replace difficult branches with something else… 
•  Convert control flow into data flow (& dependencies) 
•  Helps hard-to-predict branches (but can hurt predictable branches) 

•  Predication 
•  Conditionally executed insns unconditionally fetched 
•  Full predication (ARM, Intel Itanium) 

•  Can tag every insn with predicate, but extra bits in instruction 
•  Conditional moves (Alpha, x86) 

•  Construct appearance of full predication from one primitive 
cmoveq r1,r2,r3        // if (r1==0) r3=r2; 

– May require some code duplication to achieve desired effect 
–  Doesn’t handle conditional memory operations 
+ Only good way of adding predication to an existing ISA 

•  If-conversion: replacing control with predication 
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Predication If-Conversion Example 
0: ldf Y(r1),f2 
1: fbne f2,4 

4: stf f0,Y(r1) 

5: ldf X(r1),f4 
6: mulf f4,f2,f6 
7: stf f6,Z(r1) 

2: ldf W(r1),f2 
3: jump 5 

NT=50% T=50% 

A 

B C 

D 

0: ldf Y(r1),f2 
1: fspne f2,p1 
2: ldf.p p1,W(r1),f2 
4: stf.np p1,f0,Y(r1) 
5: ldf X(r1),f4 
6: mulf f4,f2,f6 
7: stf f6,Z(r1) 

" Using Predication 

A = Y[i]; 
if (A == 0) 
   A = W[i]; 
else 
   Y[i] = 0; 
Z[i] = A*X[i]; 

0: ldf Y(r1),f2 
1: fbne f2,4 
2: ldf W(r1),f2 
3: jump 5 
4: stf f0,Y(r1) 
5: ldf X(r1),f4 
6: mulf f4,f2,f6 
7: stf f6,Z(r1) 

Source code 

Machine code 
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ISA Support for Predication 

•  Itanium: change branch 1 to set-predicate insn fspne 
•  Change insns 2 and 4 to predicated insns  

•   ldf.p performs ldf if predicate p1 is true 
•   stf.np performs stf if predicate p1 is false 

0: ldf Y(r1),f2 
1: fspne f2,p1 
2: ldf.p p1,W(r1),f2 
4: stf.np p1,f0,Y(r1) 
5: ldf X(r1),f4 
6: mulf f4,f2,f6 
7: stf f6,Z(r1) 

CMOV Prediction Example 

•  x86 only has a “CMOV” instruction 
•  Note: in x86’s CMOV, any “load” part is non-conditional  

•  Small change in the code helps the compiler optimize 
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func:  testl  %edi, %edi 
 jg  .L2 
 movslq  %esi,%rax 
 movl  (%rdx,%rax,4), %esi 

.L2:  movl  %esi, %eax 
 ret 

int func(int a, int b, int* array)  
{    
  if (a > 0) { 
    return b;  
  } else { 
    return array[b]; 
  } 
} 

int func2(int a, int b, int* array)  
{    
  int temp = array[b];   
  if (a > 0) { 
    return b; 
  } else { 
    return temp; 
  } 
} 

func2: movslq  %esi, %rax 
 testl  %edi, %edi 
 cmovle  (%rdx,%rax,4), %esi 
 movl  %esi, %eax 
 ret 



Another CMOV Example (Part I) 

•  Baseline 
•  Same with and without –fno-in-conversion flag! 
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tree_t* search(tree_t* t, int key) 
{ 
  while (t != NULL) { 
    if (t->value == key) { 
      return t; 
    } 

    if (t->value > key) { 
      t = t->right_ptr; 
    } else { 
      t = t->left_ptr; 
    } 
  } 
  return NULL; 
} 

L3: 
 cmpl  %esi, (%rdi) 
 je  L4 
 jle  L6 
 movq  8(%rdi), %rdi 
 jmp  L12 

L6: 
 movq  16(%rdi), %rdi 

L12: 
 testq  %rdi, %rdi 
 jne  L3 

•  gcc –Os –fno-if-conversion 

Another CMOV Example (Part II) 

•  Similar assembly as before (-fno-if-converstion) 
•  Does reduce taken branches 
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tree_t* search(tree_t* t, int key) 
{ 
  while (t != NULL) { 
    if (t->value == key) { 
      return t; 
    } 
    tree_t* right = t->right_ptr; 
    tree_t* left = t->left_ptr; 
    if (t->value > key) { 
      t = right; 
    } else { 
      t = left; 
    } 
  } 
  return NULL; 
} 

L3: 
 cmpl  %esi, (%rdi) 
 je  L4 
 movq  8(%rdi), %rax 
 movq  16(%rdi), %rdi 
 jle  L12 
 movq  %rax, %rdi 

L12: 
 testq  %rdi, %rdi 
 jne  L3 

•  gcc –Os –fno-if-conversion 

Another CMOV Example (Part III) 

•  Now, with –fif-converstion  (enabled by default)  
•  Uses CMOV to avoid branch misprediction 
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tree_t* search(tree_t* t, int key) 
{ 
  while (t != NULL) { 
    if (t->value == key) { 
      return t; 
    } 
    tree_t* right = t->right_ptr; 
    tree_t* left = t->left_ptr; 
    if (t->value > key) { 
      t = right; 
    } else { 
      t = left; 
    } 
  } 
  return NULL; 
} 

L3: 
 cmpl  %esi, (%rdi) 
 je  L4 
 movq  16(%rdi), %rax 
 movq  8(%rdi), %rdi 
 cmovle %rax, %rdi 

L22: 
 testq  %rdi, %rdi 
 jne  L3 

•  gcc –Os 

Multiple Issue 
Implementations 
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Multiple-Issue Implementations 
•  Statically-scheduled (in-order) superscalar 

•  What we’ve talked about thus far 
+  Executes unmodified sequential programs 
–  Hardware must figure out what can be done in parallel 
•  E.g., Pentium (2-wide), UltraSPARC (4-wide), Alpha 21164 (4-wide) 

•  Very Long Instruction Word (VLIW) 
-  Compiler identifies independent instructions, new ISA 
+  Hardware can be dumb and low power 
•  E.g., TransMeta Crusoe (4-wide) 
•  Variant: Explicitly Parallel Instruction Computing (EPIC) 

•  A compromise: compiler does some, hardware does the rest 
•  E.g., Intel Itanium (6-wide) 

•  Dynamically-scheduled superscalar 
•  Hardware extracts more ILP by on-the-fly reordering 
•  Core 2, Core i7 (4-wide), Alpha 21264 (4-wide) 
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Very Long Instruction Word (VLIW) 
•  Hardware-centric multiple issue problems 

–  Wide fetch/branch prediction, N2 bypass, N2 dependence checks 
–  Hardware solutions have been proposed: clustering, etc. 

•  Compiler-centric: very long insn word (VLIW) 
•  Effectively, a 1-wide pipeline, but unit is an N-insn group 

•  Started with “horizontal microcode” 
•  Compiler ensures insns within a group are independent 

•  If no independent insns, slots filled with nops  
•  Group travels down pipeline as a unit 

+ Simplifies pipeline control 
+ Cross-checks within a group unnecessary 
•  Downstream cross-checks still necessary 

•  Typically “slotted”: 1st insn must be ALU, 2nd mem, etc. 
+ Further simplification 
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VLIW Advantages 

+  Simpler instruction fetch 
•  Fetch a bundle per cycle 

+  Simpler dependence check logic 
•  Compiler guarantees all instructions in bundle independent 

+  Simpler branch prediction 
•  Restrict to one branch per bundle 

•  By default, doesn’t help bypasses or register file problems 
•  Which are the much bigger problems! 
•  Although clustering and replication can help VLIW, too 

•  Compiler-visible clustering possible in VLIW 
•  Each “lane” of VLIW has “local” registers (read/written by this lane) 
•  A few “global” registers (read/written by any lane) are used to 

communicate between lanes 
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VLIW Disadvantages 

–  Code density 
•  Lots of “no-ops” in bundles 

–  Not compatible across machines of different widths 
•  “not compatible” could mean programs would execute incorrectly 
•  Or, “not compatible” can mean programs would execute slowly 
•  Is non-compatibility worth all of this? 
•  How did TransMeta deal with compatibility problem? 

•  Dynamically translates x86 to internal VLIW 
•  GPUs also use VLIW, do dynamic translation of graphics operations 

•  Finally, VLIW doesn’t solve all problems 
•  VLIW mainly targets dependence checking 

•  Which isn’t the worst N2 problem in multiple-issue 
•  Doesn’t magical create ILP 
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EPIC 

•  EPIC (Explicitly Parallel Insn Computing) 
•  Variant of VLIW (Variable Length Insn Words) 
•  Implemented as “bundles” with explicit dependence bits 

•  Helps code density 
•  Code is compatible with different “bundle” width machines 

•  E.g., Intel Itanium (IA-64) 
•  128-bit bundles (three 41-bit insns + 4 dependence bits) 

•  Still does not address bypassing or register file issues 
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Multiple Issue Redux 
•  Multiple issue 

•  Exploits insn level parallelism (ILP) beyond pipelining 
•  Improves IPC, but perhaps at some clock & energy penalty 
•  4-6 way issue is about the peak issue width currently justifiable 

•  Problem spots 
•  N2 bypass & register file " clustering 
•  Fetch + branch prediction " buffering, loop streaming, trace cache 
•  N2 dependency check " VLIW/EPIC  (but unclear how key this is) 

•  Implementations 
•  (Statically-scheduled) superscalar, VLIW/EPIC 
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Multiple Issue Summary 

•  Superscalar hardware issues 
•  Bypassing and register file 
•  Stall logic 
•  Fetch 

•  Multiple-issue designs  
•  “Superscalar” 
•  VLIW 

CPU Mem I/O 

System software 

App App App 


