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CIS 371 
Computer Organization and Design 

Unit 12: Multicore 
(Shared Memory Multiprocessors) 

Slides originally developed by Amir Roth with contributions by Milo Martin 
at University of Pennsylvania with sources that included University of 
Wisconsin slides by Mark Hill, Guri Sohi, Jim Smith, and David Wood. 
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This Unit: Shared Memory Multiprocessors 

•  Thread-level parallelism (TLP) 
•  Shared memory model 

•  Multiplexed uniprocessor 
•  Hardware multihreading 
•  Multiprocessing 

•  Synchronization 
•  Lock implementation 
•  Locking gotchas 

•  Cache coherence 

•  Memory consistency models 

CPU I/O 

System software 
App App App 

CPU CPU CPU CPU CPU 



Readings 

•  P&H 
•  Chapter 7.1-7.3, 7.5 
•  Chapter 5.8, 5.10 
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Beyond Implicit Parallelism 

•  Consider “daxpy”: 
double a, x[SIZE], y[SIZE], z[SIZE]; 
void daxpy(): 
  for (i = 0; i < SIZE; i++) 
   z[i] = a*x[i] + y[i]; 

•  Lots of instruction-level parallelism (ILP) 
•  Great! 
•  But how much can we really exploit?  4 wide?  8 wide? 

•  Limits to (efficient) super-scalar execution 

•  But, if SIZE is 10,000, the loop has 10,000-way parallelism! 
•  How do we exploit it? 
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Explicit Parallelism 

•  Consider “daxpy”: 
double a, x[SIZE], y[SIZE], z[SIZE]; 
void daxpy(): 
  for (i = 0; i < SIZE; i++) 
   z[i] = a*x[i] + y[i]; 

•  Break it up into N “chunks” on N cores! 
•  Done by the programmer (or maybe a really smart compiler) 
void daxpy(int chunk_id): 
  chuck_size = SIZE / N 
  my_start = chuck_id * chuck_size 
  my_end = my_start + chuck_size 
  for (i = my_start; i < my_end; i++) 
    z[i] = a*x[i] + y[i] 

•  Assumes 
•  Local variables are “private” and x, y, and z are “shared” 
•  Assumes SIZE is a multiple of N (that is, SIZE % N == 0) 
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Chunk ID Start End 
0 0 99 
1 100 199 
2 200 299 
3 300 399 

SIZE = 400, N=4 



Explicit Parallelism 

•  Consider “daxpy”: 
daxpy(int chunk_id, double *x, double *y, *z, double a): 
  chuck_size = SIZE / N 
  my_start = chuck_id * chuck_size 
  my_end = my_start + chuck_size 
  for (i = my_start; i < my_end; i++) 
    z[i] = a*x[i] + y[i] 

•  Main code then looks like: 
double a, x[SIZE], y[SIZE], z[SIZE]; 
parallel_daxpy(): 
  for (tid = 0; tid < CORES; tid++) { 
    spawn_task(tid, daxpy); 
  } 
  wait_for_tasks(CORES); 
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Multicore & Multiprocessor 
Hardware 
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Multiplying Performance 
•  A single processor can only be so fast 

•  Limited clock frequency 
•  Limited instruction-level parallelism 
•  Limited cache hierarchy 

•  What if we need even more computing power? 
•  Use multiple processors! 
•  But how? 

•  High-end example: Sun Ultra Enterprise 25k 
•  72 UltraSPARC IV+ processors, 1.5Ghz 
•  1024 GBs of memory 
•  Niche: large database servers 
•  $$$ 
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Multicore: Mainstream Multiprocessors 
•  Multicore chips 
•  IBM Power5 

•  Two 2+GHz PowerPC cores 
•  Shared 1.5 MB L2, L3 tags 

•  AMD Quad Phenom 
•  Four 2+ GHz cores  
•  Per-core 512KB L2 cache 
•  Shared 2MB L3 cache  

•  Intel Core i7 Quad 
•  Four cores, private L2s 
•  Shared 6 MB L3 

•  Sun Niagara 
•  8 cores, each 4-way threaded 
•  Shared 2MB L2, shared FP 
•  For servers, not desktop 

1.5MB L2 

L3 tags 

Core 1 Core 2 

Why multicore?  What else would  
you do with 1 billion transistors? 



Sun Niagara II 
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Intel Quad-Core “Core i7” 
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Application Domains for Multiprocessors 
•  Scientific computing/supercomputing 

•  Examples: weather simulation, aerodynamics, protein folding 
•  Large grids, integrating changes over time 
•  Each processor computes for a part of the grid  

•  Server workloads 
•  Example: airline reservation database 
•  Many concurrent updates, searches, lookups, queries 
•  Processors handle different requests 

•  Media workloads 
•  Processors compress/decompress different parts of image/frames 

•  Desktop workloads… 
•  Gaming workloads… 

But software must be written to expose parallelism 



“Threading” &  
The Shared Memory 
Execution Model 
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First, Uniprocessor Concurrency  

•  Software “thread”: Independent flows of execution 
•  “private” per-thread state 

•  Context state: PC, registers 
•  Stack (per-thread local variables) 

•  “shared” state: Globals, heap, etc. 
•  Threads generally share the same memory space 

•  “Process” like a thread, but different memory space 
•  Java has thread support built in, C/C++ supports P-threads library 

•  Generally, system software (the O.S.) manages threads 
•  “Thread scheduling”, “context switching” 
•  In single-core system, all threads share the one processor 

•  Hardware timer interrupt occasionally triggers O.S.  
•  Quickly swapping threads gives illusion of concurrent execution 

•  Much more in an operating systems course 
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Multithreaded Programming Model 

•  Programmer explicitly creates multiple threads 

•  All loads & stores to a single shared memory space 
•  Each thread has a private stack frame for local variables 

•  A “thread switch” can occur at any time 
•  Pre-emptive multithreading by OS 

•  Common uses: 
•  Handling user interaction (GUI programming) 
•  Handling I/O latency (send network message, wait for response) 
•  Expressing parallel work via Thread-Level Parallelism (TLP) 

•  This is our focus! 
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Simplest Multiprocessor 

•  Replicate entire processor pipeline! 
•  Instead of replicating just register file & PC 
•  Exception: share the caches (we’ll address this bottleneck later) 

•  Multiple threads execute 
•  “Shared memory” programming model 
•  Operations (loads and stores) are interleaved at random 
•  Loads returns the value written by most recent store to location 

PC 

I$ 

Regfile 

PC 

Regfile 

D$ 
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Alternative: Hardware Multithreading 

•  Hardware Multithreading (MT)  
•  Multiple threads dynamically share a single pipeline 
•  Replicate only per-thread structures: program counter & registers 
•  Hardware interleaves instructions  
+  Multithreading improves utilization and throughput 

•  Single programs utilize <50% of pipeline (branch, cache miss) 
•  Multithreading does not improve single-thread performance 

•  Individual threads run as fast or even slower 
•  Coarse-grain MT: switch on L2 misses   Why? 
•  Simultaneous MT: no explicit switching, fine-grain interleaving 

PC 

I$ Regfile0 D$ 

Regfile1 

PC 

THR 
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Shared Memory Implementations  
•  Multiplexed uniprocessor 

•  Runtime system and/or OS occasionally pre-empt & swap threads 
•  Interleaved, but no parallelism 

•  Multiprocessing 
•  Multiply execution resources, higher peak performance 
•  Same interleaved shared-memory model 
•  Foreshadowing: allow private caches, further disentangle cores 

•  Hardware multithreading 
•  Tolerate pipeline latencies, higher efficiency 
•  Same interleaved shared-memory model 

•  All support the shared memory programming model 
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Four Shared Memory Issues 
1.  Parallel programming 

•  How does the programmer express the parallelism? 

2.  Synchronization 
•  How to regulate access to shared data? 
•  How to implement “locks”? 

3.  Cache coherence 
•  If cores have private (non-shared) caches 
•  How to make writes to one cache “show up” in others? 

4.  Memory consistency models 
•  How to keep programmer sane while letting hardware optimize? 
•  How to reconcile shared memory with store buffers? 



Parallel Programming  
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Parallel Programming 

•  One use of multiprocessors: multiprogramming 
•  Running multiple programs with no interaction between them 
•  Works great for a few cores, but what next? 

•  Or, programmers must explicitly express parallelism 
•  “Coarse” parallelism beyond what the hardware can extract implicitly 
•  Even the compiler can’t extract it in most cases 

•  How? 
•  Call libraries that perform well-known computations in parallel 

•  Example: a matrix multiply routine, etc. 
•  Parallel “for” loops, task-based parallelism, … 
•  Add code annotations (“this loop is parallel”), OpenMP 
•  Explicitly spawn “tasks”, OS thread schedules them on the cores 

•  Parallel programming: key challenge in multicore revolution 
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Example: Parallelizing Matrix Multiply 

for (I = 0; I < SIZE; I++) 
   for (J = 0; J < SIZE; J++) 
      for (K = 0; K < SIZE; K++) 
        C[I][J] += A[I][K] * B[K][J]; 

•  How to parallelize matrix multiply? 
•  Replace outer “for” loop with “parallel_for”  
•  Support by many parallel programming environments   

•  Implementation: give each of N processors loop iterations 
int start = (SIZE/N) * my_id(); 
for (I = start; I < start + SIZE/N; I++) 
  for (J = 0; J < SIZE; J++) 
     for (K = 0; K < SIZE; K++) 
       C[I][J] += A[I][K] * B[K][J]; 

•  Each processor runs copy of loop above 
•  Library provides  my_id() function 

C A B 
X = 



Example: Bank Accounts 

•  Consider  
struct acct_t { int balance; … }; 
struct acct_t accounts[MAX_ACCT];     // current balances 

struct trans_t { int id; int amount; }; 
struct trans_t transactions[MAX_TRANS];  // debit amounts 

for (i = 0; i < MAX_TRANS; i++) { 
  debit(transactions[i].id, transactions[i].amount); 
} 

void debit(int id, int amount) { 
  if (accounts[id].balance >= amount) { 
    accounts[id].balance -= amount; 
  } 
} 

•  Can we do these “debit” operations in parallel? 
•  Does the order matter? 
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Example: Bank Accounts 

•  Example of Thread-level parallelism (TLP) 
•  Collection of asynchronous tasks: not started and stopped together 
•  Data shared “loosely” (sometimes yes, mostly no), dynamically 

•  Example: database/web server (each query is a thread) 
•   accts is global and thus shared, can’t register allocate 
•   id and amt are private variables, register allocated to r1, r2 

•  Running example 

struct acct_t { int bal; … }; 
shared struct acct_t accts[MAX_ACCT]; 
void debit(int id, int amt) { 
  if (accts[id].bal >= amt) 
  { 
     accts[id].bal -= amt; 
  } 
} 

0: addi r1,accts,r3 
1: ld 0(r3),r4 
2: blt r4,r2,done 
3: sub r4,r2,r4 
4: st r4,0(r3) 
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An Example Execution 

•  Two $100 withdrawals from account #241 at two ATMs 
•  Each transaction executed on different processor 
•  Track accts[241].bal (address is in r3) 

Thread 0 
0: addi r1,accts,r3 
1: ld 0(r3),r4 
2: blt r4,r2,done 
3: sub r4,r2,r4 
4: st r4,0(r3) 

Thread 1 

0: addi r1,accts,r3 
1: ld 0(r3),r4 
2: blt r4,r2,done 
3: sub r4,r2,r4 
4: st r4,0(r3) 

Mem 
500 

400 

300 

Tim
e 
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A Problem Execution 
Thread 0 

0: addi r1,accts,r3 
1: ld 0(r3),r4 
2: blt r4,r2,done 
3: sub r4,r2,r4 
<<< Switch >>> 

4: st r4,0(r3) 

Thread 1 

0: addi r1,accts,r3 
1: ld 0(r3),r4 
2: blt r4,r2,done 
3: sub r4,r2,r4 
4: st r4,0(r3) 

Mem 
500 

400 

Tim
e 

400 

•  Problem: wrong account balance!  Why? 
•  Solution: synchronize access to account balance 



Synchronization  
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Synchronization: 
•  Synchronization: a key issue for shared memory 
•  Regulate access to shared data (mutual exclusion) 
•  Low-level primitive: lock  (higher-level: “semaphore” or “mutex”)   

•  Operations: acquire(lock)and release(lock) 
•  Region between acquire and release is a critical section 
•  Must interleave acquire and release 
•  Interfering acquire will block 

•  Another option: Barrier synchronization 
•  Blocks until all threads reach barrier, used at end of “parallel_for” 

struct acct_t { int bal; … }; 
shared struct acct_t accts[MAX_ACCT]; 
shared int lock; 
void debit(int id, int amt): 
  acquire(lock); 
  if (accts[id].bal >= amt) { 
     accts[id].bal -= amt; 
  } 
  release(lock); 

critical section 
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A Synchronized Execution 
Thread 0 

   call acquire(lock) 
0: addi r1,accts,r3 
1: ld 0(r3),r4 
2: blt r4,r2,done 
3: sub r4,r2,r4 
<<< Switch >>> 

4: st r4,0(r3) 
   call release(lock) 

Thread 1 

   call acquire(lock) 
   <<< Switch >>> 

   (still in acquire) 
0: addi r1,accts,r3 
1: ld 0(r3),r4 
2: blt r4,r2,done 
3: sub r4,r2,r4 
4: st r4,0(r3) 

Mem 
500 

400 

Tim
e 

300 

•  Fixed, but how do 
we implement 
acquire & release? 

Spins! 
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Strawman Lock 

•  Spin lock: software lock implementation 
•   acquire(lock): while (lock != 0) {} lock = 1; 

•  “Spin” while lock is 1, wait for it to turn 0 
A0:  ld 0(&lock),r6 
A1:  bnez r6,A0 
A2:  addi r6,1,r6 
A3:  st r6,0(&lock) 

•   release(lock): lock = 0; 
R0:  st r0,0(&lock)     // r0 holds 0 

(Incorrect) 
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Strawman Lock 

•  Spin lock makes intuitive sense, but doesn’t actually work 
•  Loads/stores of two acquire sequences can be interleaved 
•  Lock acquire sequence also not atomic 
•  Same problem as before! 

•  Note, release is trivially atomic 

Thread 0 
A0: ld 0(&lock),r6 
A1: bnez r6,#A0 
A2: addi r6,1,r6 
A3: st r6,0(&lock) 
CRITICAL_SECTION 

Thread 1 

A0: ld r6,0(&lock) 
A1: bnez r6,#A0 
A2: addi r6,1,r6 
A3: st r6,0(&lock) 
CRITICAL_SECTION 

Mem 
0 

1 

Tim
e 

1 

(Incorrect) 
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A Correct Implementation: SYSCALL Lock 

•  Implement lock in a SYSCALL 
•  Only kernel can control interleaving by disabling interrupts 
+  Works… 
–  Large system call overhead 
–  But not in a hardware multithreading or a multiprocessor… 

ACQUIRE_LOCK: 
A1: disable_interrupts 
A2: ld r6,0(&lock) 
A3: bnez r6,#A0 
A4: addi r6,1,r6 
A5: st r6,0(&lock) 
A6: enable_interrupts 
A7: return 

atomic 
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Better Spin Lock: Use Atomic Swap 
•  ISA provides an atomic lock acquisition instruction 

•  Example: atomic swap 
swap r1,0(&lock) 
•  Atomically executes: 

•  New acquire sequence  
 (value of r1 is 1)  
 A0: swap r1,0(&lock) 
 A1: bnez r1,A0 

•  If lock was initially busy (1), doesn’t change it, keep looping 
•  If lock was initially free (0), acquires it (sets it to 1), break loop 

•  Insures lock held by at most one thread 
•  Other variants: exchange, compare-and-swap,  

test-and-set (t&s), or fetch-and-add 

mov r1->r2 
ld r1,0(&lock) 
st r2,0(&lock) 
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Atomic Update/Swap Implementation 

•  How is atomic swap implemented? 
•  Need to ensure no intervening memory operations 
•  Requires blocking access by other threads temporarily (yuck) 

•  How to pipeline it? 
•  Both a load and a store (yuck) 
•  Not very RISC-like 
•  Some ISAs provide a “load-link” and “store-conditional” insn. pair 

PC 

I$ 

Regfile 

PC 

Regfile 

D$ 
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RISC Test-And-Set 

•  swap: a load and store in one insn is not very “RISC” 
•  Broken up into micro-ops, but then how is it made atomic? 

•  ll/sc: load-locked / store-conditional 
•  Atomic load/store pair 

ll r1,0(&lock) 
// potentially other insns 
sc r2,0(&lock) 

•  On ll, processor remembers address… 
•  …And looks for writes by other processors 
•  If write is detected, next sc to same address is annulled 

•  Sets failure condition 
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Lock Correctness 

+  Lock actually works… 
•  Thread 1 keeps spinning 

•  Sometimes called a “test-and-set lock” 
•  Named after the common “test-and-set” atomic instruction 

Thread 0 
A0: swap r1,0(&lock) 
A1: bnez r1,#A0 
CRITICAL_SECTION 

Thread 1 

A0: swap r1,0(&lock) 
A1: bnez r1,#A0 
A0: swap r1,0(&lock) 
A1: bnez r1,#A0 
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“Test-and-Set” Lock Performance 

–  …but performs poorly 
•  Consider 3 processors rather than 2 
•  Processor 2 (not shown) has the lock and is in the critical section 
•  But what are processors 0 and 1 doing in the meantime? 

•  Loops of swap, each of which includes a st 
–  Repeated stores by multiple processors costly (more in a bit) 
–  Generating a ton of useless interconnect traffic 

Thread 0 
A0: swap r1,0(&lock) 
A1: bnez r1,#A0 
A0: swap r1,0(&lock) 
A1: bnez r1,#A0 

Thread 1 

A0: swap r1,0(&lock) 
A1: bnez r1,#A0 
A0: swap r1,0(&lock) 
A1: bnez r1,#A0 
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Test-and-Test-and-Set Locks 

•  Solution: test-and-test-and-set locks 
•  New acquire sequence 

A0: ld r1,0(&lock) 
A1: bnez r1,A0 
A2: addi r1,1,r1 
A3: swap r1,0(&lock) 
A4: bnez r1,A0 

•  Within each loop iteration, before doing a swap 
•  Spin doing a simple test (ld) to see if lock value has changed 
•  Only do a swap (st) if lock is actually free 

•  Processors can spin on a busy lock locally (in their own cache) 
+ Less unnecessary interconnect traffic 

•  Note: test-and-test-and-set is not a new instruction! 
•  Just different software 
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Queue Locks 

•  Test-and-test-and-set locks can still perform poorly 
•  If lock is contended for by many processors 
•  Lock release by one processor, creates “free-for-all” by others 
–  Interconnect gets swamped with swap requests 

•  Software queue lock 
•  Each waiting processor spins on a different location (a queue) 
•  When lock is released by one processor... 

•  Only the next processors sees its location go “unlocked” 
•  Others continue spinning locally, unaware lock was released 

•  Effectively, passes lock from one processor to the next, in order 
+  Greatly reduced network traffic (no mad rush for the lock) 
+  Fairness (lock acquired in FIFO order) 
–  Higher overhead in case of no contention (more instructions) 
–  Poor performance if one thread is descheduled by O.S. 
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Programming With Locks Is Tricky 

•  Multicore processors are the way of the foreseeable future 
•  thread-level parallelism anointed as parallelism model of choice 
•  Just one problem… 

•  Writing lock-based multi-threaded programs is tricky! 

•  More precisely: 
•  Writing programs that are correct is “easy” (not really) 
•  Writing programs that are highly parallel is “easy” (not really) 
–  Writing programs that are both correct and parallel is difficult 

•  And that’s the whole point, unfortunately 
•  Selecting the “right” kind of lock for performance 

•  Spin lock, queue lock, ticket lock, read/writer lock, etc. 
•  Locking granularity issues 
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Coarse-Grain Locks: Correct but Slow 

•  Coarse-grain locks: e.g., one lock for entire database 
+  Easy to make correct: no chance for unintended interference 
–  Limits parallelism: no two critical sections can proceed in parallel 

struct acct_t { int bal; … }; 
shared struct acct_t  accts[MAX_ACCT]; 
shared Lock_t lock; 
void debit(int id, int amt) { 
  acquire(lock); 
  if (accts[id].bal >= amt) { 
     accts[id].bal -= amt; 
  } 
  release(lock); 
} 
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Fine-Grain Locks: Parallel But Difficult 

•  Fine-grain locks: e.g., multiple locks, one per record 
+  Fast: critical sections (to different records) can proceed in parallel 
–  Difficult to make correct: easy to make mistakes 

•  This particular example is easy 
•  Requires only one lock per critical section 

•  What about critical sections that require two locks? 

struct acct_t { int bal, Lock_t lock; …  }; 
shared struct acct_t  accts[MAX_ACCT]; 

void debit(int id, int amt) { 
  acquire(accts[id].lock); 
  if (accts[id].bal >= amt) { 
     accts[id].bal -= amt; 
  } 
  release(accts[id].lock); 
} 
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Multiple Locks 

•  Multiple locks: e.g., acct-to-acct transfer 
•  Must acquire both id_from, id_to locks 
•  Running example with accts 241 and 37 
•  Simultaneous transfers 241 → 37 and 37 → 241 
•  Contrived… but even contrived examples must work correctly too 

struct acct_t { int bal, Lock_t lock; …}; 
shared struct acct_t  accts[MAX_ACCT]; 
void transfer(int id_from, int id_to, int amt) { 
  acquire(accts[id_from].lock); 
  acquire(accts[id_to].lock); 
  if (accts[id_from].bal >= amt) { 
     accts[id_from].bal -= amt; 
     accts[id_to].bal += amt;  
  } 
  release(accts[id_to].lock); 
  release(accts[id_from].lock); 
} 
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Multiple Locks And Deadlock 

•  Deadlock: circular wait for shared resources 
•  Thread 0 has lock 241 waits for lock 37 
•  Thread 1 has lock 37 waits for lock 241 
•  Obviously this is a problem 
•  The solution is … 

Thread 0 

id_from = 241; 
id_to = 37; 

acquire(accts[241].lock); 
// wait to acquire lock 

37 
// waiting… 
// still waiting… 

Thread 1 

id_from = 37; 
id_to = 241; 

acquire(accts[37].lock); 
// wait to acquire lock 241 
// waiting… 
// … 
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Correct Multiple Lock Program 

•  Always acquire multiple locks in same order 
•  Just another thing to keep in mind when programming 

struct acct_t { int bal, Lock_t lock; … }; 
shared struct acct_t  accts[MAX_ACCT]; 
void transfer(int id_from, int id_to, int amt) { 
  int id_first = min(id_from, id_to); 
  int id_second = max(id_from, id_to); 

  acquire(accts[id_first].lock); 
  acquire(accts[id_second].lock); 
  if (accts[id_from].bal >= amt) { 
     accts[id_from].bal -= amt; 
     accts[id_to].bal += amt;  
  } 
  release(accts[id_second].lock); 
  release(accts[id_first].lock); 
} 
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Correct Multiple Lock Execution 

•  Great, are we done? No 

Thread 0 

id_from = 241; 
id_to = 37; 
id_first = min(241,37)=37; 
id_second = max(37,241)=241; 

acquire(accts[37].lock); 
acquire(accts[241].lock); 
// do stuff 
release(accts[241].lock); 
release(accts[37].lock); 

Thread 1 

id_from = 37; 
id_to = 241; 
id_first = min(37,241)=37; 
id_second = max(37,241)=241; 

// wait to acquire lock 37 
// waiting… 
// … 
// … 
// … 
acquire(accts[37].lock); 



CIS 371 (Martin): Multicore 47 

More Lock Madness 

•  What if… 
•  Some actions (e.g., deposits, transfers) require 1 or 2 locks… 
•  …and others (e.g., prepare statements) require all of them? 
•  Can these proceed in parallel? 

•  What if… 
•  There are locks for global variables (e.g., operation id counter)? 
•  When should operations grab this lock? 

•  What if… what if… what if… 

•  So lock-based programming is difficult… 
•  …wait, it gets worse 
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And To Make It Worse… 

•  Acquiring locks is expensive… 
•  By definition requires a slow atomic instructions 

•  Specifically, acquiring write permissions to the lock 
•  Ordering constraints (see soon) make it even slower 

•  …and 99% of the time un-necessary 
•  Most concurrent actions don’t actually share data 
–  You paying to acquire the lock(s) for no reason 

•  Fixing these problem is an area of active research 
•  One proposed solution “Transactional Memory” 
•  Programmer uses construct:   “atomic { … code … }”  

•  Hardware, compiler & runtime executes the code “atomically” 
•  Uses speculation, rolls back on conflicting accesses 
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Roadmap Checkpoint 

•  Thread-level parallelism (TLP) 
•  Shared memory model 

•  Multiplexed uniprocessor 
•  Hardware multihreading 
•  Multiprocessing 

•  Synchronization 
•  Lock implementation 
•  Locking gotchas 

•  Cache coherence 
•  Bus-based protocols 
•  Directory protocols 

•  Memory consistency models 

Mem CPU I/O 

System software 
App App App 

CPU CPU CPU CPU CPU 
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Recall: Simplest Multiprocessor 

•  What if we don’t want to share the L1 caches? 
•  Bandwidth and latency issue 

•  Solution: use per-processor (“private”) caches 
•  Coordinate them with a Cache Coherence Protocol 

PC 

I$ 

Regfile 

PC 

Regfile 

D$ 
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Shared-Memory Multiprocessors 

•  Conceptual model 
•  The shared-memory abstraction 
•  Familiar and feels natural to programmers 
•  Life would be easy if systems actually looked like this… 

P0 P1 P2 P3 

Memory 
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Shared-Memory Multiprocessors 

•  …but systems actually look more like this 
•  Processors have caches 
•  Memory may be physically distributed 
•  Arbitrary interconnect 

P0 P1 P2 P3 

$ M0 

Router/interface 

Interconnect 

$ M1 

Router/interface 

$ M2 

Router/interface 

$ M3 

Router/interface 
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Revisiting Our Motivating Example 

•  Two $100 withdrawals from account #241 at two ATMs 
•  Each transaction maps to thread on different processor 
•  Track accts[241].bal (address is in $r3) 

Processor 0 
0: addi $r3,$r1,&accts 
1: lw $r4,0($r3) 
2: blt $r4,$r2,6 
3: sub $r4,$r4,$r2 
4: sw $r4,0($r3) 

Processor 1 

0: addi $r3,$r1,&accts 
1: lw $r4,0($r3) 
2: blt $r4,$r2,6 
3: sub $r4,$r4,$r2 
4: sw $r4,0($r3) 

critical section 
(locks not shown) 

critical section 
(locks not shown) 

CPU0 Mem CPU1 
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No-Cache, No-Problem 

•  Scenario I: processors have no caches 
•  No problem 

Processor 0 
0: addi $r3,$r1,&accts 
1: lw $r4,0($r3) 
2: blt $r4,$r2,6 
3: sub $r4,$r4,$r2 
4: sw $r4,0($r3) 

Processor 1 

0: addi $r3,$r1,&accts 
1: lw $r4,0($r3) 
2: blt $r4,$r2,6 
3: sub $r4,$r4,$r2 
4: sw $r4,0($r3) 

$500 
$500 

$400 

$400 

$300 

CPU0 Mem CPU1 
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Cache Incoherence 

•  Scenario II(a): processors have write-back caches   
•  Potentially 3 copies of accts[241].bal: memory, two caches 
•  Can get incoherent (inconsistent) 

Processor 0 
0: addi $r3,$r1,&accts 
1: lw $r4,0($r3) 
2: blt $r4,$r2,6 
3: sub $r4,$r4,$r2 
4: sw $r4,0($r3) 

Processor 1 

0: addi $r3,$r1,&accts 
1: lw $r4,0($r3) 
2: blt $r4,$r2,6 
3: sub $r4,$r4,$r2 
4: sw $r4,0($r3) 

$500 
$500 $500 

$400 $500 

$400 $500 $500 

$400 $500 $400 

CPU0 Mem CPU1 
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Write-Through Doesn’t Fix It 

•  Scenario II(b): processors have write-through caches   
•  This time only two (different) copies of accts[241].bal 
•  No problem? What if another withdrawal happens on processor 0? 

Processor 0 
0: addi $r3,$r1,&accts 
1: lw $r4,0($r3) 
2: blt $r4,$r2,6 
3: sub $r4,$r4,$r2 
4: sw $r4,0($r3) 

Processor 1 

0: addi $r3,$r1,&accts 
1: lw $r4,0($r3) 
2: blt $r4,$r2,6 
3: sub $r4,$r4,$r2 
4: sw $r4,0($r3) 

$500 
$500 $500 

$400 $400 

$400 $400 $400 

$400 $300 $300 

CPU0 Mem CPU1 
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What To Do? 
•  No caches?  

–  Too slow 

•  Make shared data uncachable?  
–  Faster, but still too slow 
•  Entire accts database is technically “shared” 

•  Flush all other caches on writes to shared data? 
•  Can work well in some cases, but can make caches ineffective  

•  Hardware cache coherence 
•  Rough goal: all caches have same data at all times 
+  Minimal flushing, maximum caching → best performance 
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Bus-based Multiprocessor 
•  Simple multiprocessors use a bus 

•  All processors see all requests at the same time, same order 

•  Memory 
•  Single memory module, -or- 
•  Banked memory module 

P0 P1 P2 P3 

$ 

M0 

Bus 

$ 

M1 

$ 

M2 

$ 

M3 
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Hardware Cache Coherence 
•  Coherence  

•  all copies have same data at all times 
•  Coherence controller: 

•  Examines bus traffic (addresses and data) 
•  Executes coherence protocol 

•  What to do with local copy when you see 
different things happening on bus 

•  Each processors runs a state machine 
•  Three processor-initiated events 

•  Ld: load     St: store    WB: write-back 

•  Two remote-initiated events 
•  LdMiss: read miss from another processor 
•  StMiss: write miss from another processor 

CPU 

D
$ 

da
ta

 

D
$ 

ta
gs

 

CC 

bus 
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VI (MI) Coherence Protocol 
•  VI (valid-invalid) protocol: aka “MI” 

•  Two states (per block in cache) 
•  V (valid): have block 
•  I (invalid): don’t have block 
+ Can implement with valid bit 

•  Protocol diagram (left & next slide) 
•  Summary 

•  If anyone wants to read/write block 
•  Give it up: transition to I state 
•  Write-back if your own copy is dirty 

•  This is an invalidate protocol 
•  Update protocol: copy data, don’t invalidate 

•  Sounds good, but uses too much bandwidth 

I 

V 

Lo
ad

, S
to

re
 

Ld
M

is
s,

 S
tM

is
s,

 W
B

 

Load, Store 

LdMiss/
StMiss 



VI Protocol State Transition Table 

This Processor Other Processor 

State Load Store Load Miss Store Miss 

Invalid  
(I) 

Load Miss 
 V 

Store Miss 
 V 

--- --- 

Valid  
(V) 

Hit Hit Send Data 
 I 

Send Data 
 I 
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•  Rows are “states” 
•  I vs V 

•  Columns are “events” 
•  Writeback events not shown 

•  Memory controller not shown 
•  Memory sends data when no processor responds 
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VI Protocol (Write-Back Cache) 

•   lw by processor 1 generates an “other load miss” event (LdMiss) 
•  Processor 0 responds by sending its dirty copy, transitioning to I 

Processor 0 
0: addi $r3,$r1,&accts 
1: lw $r4,0($r3) 
2: blt $r4,$r2,6 
3: sub $r4,$r4,$r2 
4: sw $r4,0($r3) 

Processor 1 

0: addi $r3,$r1,&accts 
1: lw $r4,0($r3) 
2: blt $r4,$r2,6 
3: sub $r4,$r4,$r2 
4: sw $r4,0($r3) 

500 
V:500 500 

V:400 500 

I: 400 V:400 

400 V:300 

CPU0 Mem CPU1 
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VI → MSI 

•  VI protocol is inefficient 
–  Only one cached copy allowed in entire system 
–  Multiple copies can’t exist even if read-only 

•  Not a problem in example 
•  Big problem in reality 

•  MSI (modified-shared-invalid) 
•  Fixes problem: splits “V” state into two states 

•  M (modified): local dirty copy 
•  S (shared): local clean copy 

•  Allows either 
•  Multiple read-only copies (S-state)  --OR-- 
•  Single read/write copy (M-state) 

I 

M 

St
or

e 

St
M

is
s,

 W
B

 

Load, Store 

S 
Store 

Load, LdMiss 
LdM 

LdMiss/
StMiss 



MSI Protocol State Transition Table 

This Processor Other Processor 

State Load Store Load Miss Store Miss 

Invalid  
(I) 

Load Miss 
 S 

Store Miss 
 M 

--- --- 

Shared  
(S) 

Hit Upgrade Miss 
 M 

---  I 

Modified 
(M) 

Hit Hit Send Data 
 S 

Send Data  
 I 
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•  M  S transition also updates memory 
•  After which memory willl respond (as all processors will be in S) 
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MSI Protocol (Write-Back Cache) 

•   lw by processor 1 generates a “other load miss” event (LdMiss) 
•  Processor 0 responds by sending its dirty copy, transitioning to S 

•   sw by processor 1 generates a “other store miss” event (StMiss) 
•  Processor 0 responds by transitioning to I 

Processor 0 
0: addi $r3,$r1,&accts 
1: lw $r4,0($r3) 
2: blt $r4,$r2,6 
3: sub $r4,$r4,$r2 
4: sw $r4,0($r3) 

Processor 1 

0: addi $r3,$r1,&accts 
1: lw $r4,0($r3) 
2: blt $r4,$r2,6 
3: sub $r4,$r4,$r2 
4: sw $r4,0($r3) 

500 
S:500 500 

M:400 500 

S:400 400 S:400 

I:      400 M:300 

CPU0 Mem CPU1 



Cache Coherence and Cache Misses 
•  Coherence introduces two new kinds of cache misses 

•  Upgrade miss  
•  On stores to read-only blocks 
•  Delay to acquire write permission to read-only block 

•  Coherence miss 
•  Miss to a block evicted by another processor’s requests 

•  Making the cache larger… 
•  Doesn’t reduce these type of misses 
•  So, as cache grows large, these sorts of misses dominate 

•  False sharing 
•  Two or more processors sharing parts of the same block 
•  But not the same bytes within that block (no actual sharing) 
•  Creates pathological “ping-pong” behavior 
•  Careful data placement may help, but is difficult 
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Snooping Example: Step #1 
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P0 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

Shared 
Cache 

Addr Data State 
A 1000 Modified 
B 0 Idle 

Bus 

Cache 
Addr Data State 

A 500 M 
-- -- -- 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

P1 P2 

Load A 

Miss! 

Memory A 1000 
B 0 



Snooping Example: Step #2 
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P0 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

Bus 

Cache 
Addr Data State 

A 500 M 
-- -- -- 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

P1 P2 

Load A 

LdMiss: Addr=A 

Memory A 1000 
B 0 

Shared 
Cache 

Addr Data State 
A 1000 Modified 
B 0 Idle 



Snooping Example: Step #3 
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P0 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

Bus 

Cache 
Addr Data State 

A 500 S 
-- -- -- 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

P1 P2 

Load A 

Response: Addr=A, Data=500 

Memory A 1000 
B 0 

Shared 
Cache 

Addr Data State 
A 1000 Modified 
B 0 Idle 



Snooping Example: Step #4 
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P0 

Cache 
Addr Data State 

A 500 S 
-- -- -- 

Bus 

Cache 
Addr Data State 

A 500 S 
-- -- -- 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

P1 P2 

Load A 

Response: Addr=A, Data=500 

Memory A 1000 
B 0 

Shared 
Cache 

Addr Data State 
A 500 Shared, Dirty 
B 0 Idle 



Snooping Example: Step #5 
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P0 

Cache 
Addr Data State 

A 500 S 
-- -- -- 

Bus 

Cache 
Addr Data State 

A 500 S 
-- -- -- 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

P1 P2 

Load A <- 500 

Memory A 1000 
B 0 

Shared 
Cache 

Addr Data State 
A 500 Shared, Dirty 
B 0 Idle 



Snooping Example: Step #6 
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P0 

Cache 
Addr Data State 

A 500 S 
-- -- -- 

Bus 

Cache 
Addr Data State 

A 500 S 
-- -- -- 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

P1 P2 

Store 400 -> A  

Miss! 

Memory A 1000 
B 0 

Shared 
Cache 

Addr Data State 
A 500 Shared, Dirty 
B 0 Idle 



Snooping Example: Step #7 
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P0 

Cache 
Addr Data State 

A 500 S 
-- -- -- 

Bus 

Cache 
Addr Data State 

A 500 S 
-- -- -- 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

P1 P2 

Store 400 -> A  

Miss! 

UpgradeMiss: Addr=A 

Memory A 1000 
B 0 

Shared 
Cache 

Addr Data State 
A 500 Shared, Dirty 
B 0 Idle 



Snooping Example: Step #8 
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P0 

Cache 
Addr Data State 

A 500 S 
-- -- -- 

Bus 

Cache 
Addr Data State 

A -- I 
-- -- -- 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

P1 P2 

Store 400 -> A  

Miss! 

UpgradeMiss: Addr=A 

Memory A 1000 
B 0 

Shared 
Cache 

Addr Data State 
A 500 Modified 
B 0 Idle 



Snooping Example: Step #9 
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P0 

Cache 
Addr Data State 

A 500 M 
-- -- -- 

Bus 

Cache 
Addr Data State 

A -- I 
-- -- -- 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

P1 P2 

Store 400 -> A  

Miss! 

Memory A 1000 
B 0 

Shared 
Cache 

Addr Data State 
A 500 Modified 
B 0 Idle 



Snooping Example: Step #10 
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P0 

Cache 
Addr Data State 

A 400 M 
-- -- -- 

Bus 

Cache 
Addr Data State 

A -- I 
-- -- -- 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

P1 P2 

Store 400 -> A  

Miss! 

Memory A 1000 
B 0 

Shared 
Cache 

Addr Data State 
A 500 Modified 
B 0 Idle 
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Exclusive Clean Protocol Optimization 

•  Most modern protocols also include E (exclusive) state 
•  Interpretation: “I have the only cached copy, and it’s a clean copy” 
•  Why would this state be useful? 

Processor 0 
0: addi $r3,$r1,&accts 
1: lw $r4,0($r3) 
2: blt $r4,$r2,6 
3: sub $r4,$r4,$r2 
4: sw $r4,0($r3) 

Processor 1 

0: addi $r3,$r1,&accts 
1: lw $r4,0($r3) 
2: blt $r4,$r2,6 
3: sub $r4,$r4,$r2 
4: sw $r4,0($r3) 

500 
E:500 500 

M:400 500 

S:400 400 S:400 

I:      400 M:300 

CPU0 Mem CPU1 

(No miss!) 



MESI Protocol State Transition Table 

This Processor Other Processor 

State Load Store Load Miss Store Miss 

Invalid  
(I) 

Miss 
 S or E 

Miss 
 M 

--- --- 

Shared  
(S) 

Hit Upg Miss 
 M 

---  I 

Exclusive 
(E) 

Hit Hit 
 M 

Send Data 
 S 

Send Data 
 I 

Modified 
(M) 

Hit Hit Send Data 
 S 

Send Data 
 I 
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•  Load misses lead to “E” if no other processors is caching the block 
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Snooping Bandwidth Scaling Problems 

•  Coherence events generated on… 
•  L2 misses (and writebacks) 

•  Problem#1: N2 bus traffic 
•  All N processors send their misses to all N-1 other processors 
•  Assume: 2 IPC, 2 Ghz clock, 0.01 misses/insn per processor 
•  0.01 misses/insn * 2 insn/cycle * 2 cycle/ns * 64 B blocks  

= 2.56 GB/s… per processor 
•  With 16 processors, that’s 40 GB/s!  With 128 that’s 320 GB/s!! 

•  You can use multiple buses… but that complicates the protocol 

•  Problem#2: N2 processor snooping bandwidth 
•  0.01 events/insn * 2 insn/cycle = 0.02 events/cycle per processor 
•  16 processors: 0.32 bus-side tag lookups per cycle 

•  Add 1 extra port to cache tags? Okay 
•  128 processors: 2.56 tag lookups per cycle!  3 extra tag ports? 
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“Scalable” Cache Coherence 

•  Part I: bus bandwidth 
•  Replace non-scalable bandwidth substrate (bus)… 
•  …with scalable one (point-to-point network, e.g., mesh) 

•  Part II: processor snooping bandwidth 
•  Most snoops result in no action 
•  Replace non-scalable broadcast protocol… 
•  …with scalable directory protocol (only notify processors that care) 

I 

LdM/StM 



CIS 371 (Martin): Multicore 81 

Point-to-Point Interconnects 

+  Can be arbitrarily large: 1000’s of processors 
•  Massively parallel processors (MPPs) 
•  Only scientists & government (DoD & DoE) have MPPs… 

•  Companies have much smaller systems: 32–64 processors 
•  Scalable multi-processors 

•  Distributed memory: non-uniform memory architecture (NUMA) 
•  Multicore: on-chip mesh interconnection networks 

•  Each node: a core, L1/L2 caches, and a “bank” (1/nth) of the L3 cache 
•  Multiple memory controllers (which talk to off-chip DRAM)   

CPU($) 
Mem R 

CPU($) 
Mem R 

CPU($) 
Mem R 

CPU($) 
Mem R 
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Directory Coherence Protocols 

•  Observe: address space statically partitioned 
+  Can easily determine which memory module holds a given line 

•  That memory module sometimes called “home”  
–  Can’t easily determine which processors have line in their caches 
•  Bus-based protocol: broadcast events to all processors/caches 

± Simple and fast, but non-scalable 

•  Directories: non-broadcast coherence protocol 
•  Extend memory to track caching information 
•  For each physical cache line whose home this is, track: 

•  Owner: which processor has a dirty copy (I.e., M state) 
•  Sharers: which processors have clean copies (I.e., S state) 

•  Processor sends coherence event to “home” (directory) 
•  Home directory sends events only to processors as needed 

•  For multicore with shared L3 cache, put directory info in cache tags 
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MSI Directory Protocol 

•  Processor side 
•  Directory follows its own protocol 

•  Similar to bus-based MSI 
•  Same three states 
•  Same five actions (keep BR/BW names) 
•  Minus red arcs/actions 

•  Events that would not trigger action anyway 
+ Directory won’t bother you unless you need to act 

83 

I 

M 

St
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St
M
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Load, Store 

S 
Store 

Load, LdMiss 
LdMiss 

LdMiss/
StMiss 



CIS 371 (Martin): Multicore 84 

MSI Directory Protocol 

•   ld by P1 sends BR to directory 
•  Directory sends BR to P0, P0 sends P1 data, does WB, goes to S 

•   st by P1 sends BW to directory 
•  Directory sends BW to P0, P0 goes to I 

Processor 0 
0: addi r1,accts,r3 
1: ld 0(r3),r4 
2: blt r4,r2,done 
3: sub r4,r2,r4 
4: st r4,0(r3) 

Processor 1 

0: addi r1,accts,r3 
1: ld 0(r3),r4 
2: blt r4,r2,done 
3: sub r4,r2,r4 
4: st r4,0(r3) 

–:–:500 

S:500 S:0:500 

M:400 M:0:500 

S:400 S:0,1:400 S:400 

M:1:400 M:300 

 P0       P1    Directory 

(stale) 



Point-to-Point Interconnect 

Directory Example: Step #1 
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P0 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

Shared 
Cache 

Addr Data State Sharers 
A 1000 Modified P1 
B 0 Idle -- 

Cache 
Addr Data State 

A 500 M 
-- -- -- 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

P1 P2 

Load A 

Miss! 

Memory A 1000 
B 0 



Point-to-Point Interconnect 

Directory Example: Step #2 
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P0 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

Cache 
Addr Data State 

A 500 M 
-- -- -- 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

P1 P2 

Load A 

LdMiss: Addr=A 

Memory A 1000 
B 0 

Shared 
Cache 

Addr Data State Sharers 
A 1000 Blocked P1 
B 0 Idle -- 

LdMissForward: Addr=A, Req=P0 



Point-to-Point Interconnect 

Directory Example: Step #3 
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P0 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

Cache 
Addr Data State 

A 500 S 
-- -- -- 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

P1 P2 

Load A 

Response: Addr=A, Data=500 

Memory A 1000 
B 0 

Shared 
Cache 

Addr Data State Sharers 
A 1000 Blocked P1 
B 0 Idle -- 



Point-to-Point Interconnect 

Directory Example: Step #4 
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P0 

Cache 
Addr Data State 

A 500 S 
-- -- -- 

Cache 
Addr Data State 

A 500 S 
-- -- -- 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

P1 P2 

Load A 

Response: Addr=A, Data=500 

Memory A 1000 
B 0 

Shared 
Cache 

Addr Data State Sharers 
A 1000 Blocked P1 
B 0 Idle -- 



Point-to-Point Interconnect 

Directory Example: Step #5 
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P0 

Cache 
Addr Data State 

A 500 S 
-- -- -- 

Cache 
Addr Data State 

A 500 S 
-- -- -- 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

P1 P2 

Load A <- 500 

Memory A 1000 
B 0 

Shared 
Cache 

Addr Data State Sharers 
A 500 Shared, Dirty P0, P1 
B 0 Idle -- 

Unblock: Addr=A, Data=500 



Point-to-Point Interconnect 

Directory Example: Step #6 
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P0 

Cache 
Addr Data State 

A 500 S 
-- -- -- 

Cache 
Addr Data State 

A 500 S 
-- -- -- 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

P1 P2 

Store 400 -> A  

Miss! 

Memory A 1000 
B 0 

Shared 
Cache 

Addr Data State Sharers 
A 500 Shared, Dirty P0, P1 
B 0 Idle -- 



Point-to-Point Interconnect 

Directory Example: Step #7 
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P0 

Cache 
Addr Data State 

A 500 S 
-- -- -- 

Cache 
Addr Data State 

A 500 S 
-- -- -- 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

P1 P2 

Store 400 -> A  

Memory A 1000 
B 0 

Shared 
Cache 

Addr Data State Sharers 
A 500 Blocked P0, P1 
B 0 Idle -- 

UpgradeMiss: Addr=A 

Invalidate: Addr=A, Req=P0, Acks=1 



Point-to-Point Interconnect 

Directory Example: Step #8 
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P0 

Cache 
Addr Data State 

A 500 S 
-- -- -- 

Cache 
Addr Data State 

A -- I 
-- -- -- 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

P1 P2 

Store 400 -> A  

Memory A 1000 
B 0 

Shared 
Cache 

Addr Data State Sharers 
A 500 Blocked P0, P1 
B 0 Idle -- 

Ack: Addr=A, Acks=1 

Invalidate: Addr=A, Req=P0, Acks=1 



Point-to-Point Interconnect 

Directory Example: Step #9 
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P0 

Cache 
Addr Data State 

A 500 M 
-- -- -- 

Cache 
Addr Data State 

A -- I 
-- -- -- 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

P1 P2 

Store 400 -> A  

Memory A 1000 
B 0 

Shared 
Cache 

Addr Data State Sharers 
A 500 Blocked P0, P1 
B 0 Idle -- 



Point-to-Point Interconnect 

Directory Example: Step #10 
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P0 

Cache 
Addr Data State 

A 400 M 
-- -- -- 

Cache 
Addr Data State 

A -- I 
-- -- -- 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

P1 P2 

Store 400 -> A  

Memory A 1000 
B 0 

Shared 
Cache 

Addr Data State Sharers 
A 500 Modified P0 
B 0 Idle -- 

Unblock: Addr=A 
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Directory Flip Side: Latency 
•  Directory protocols 

+  Lower bandwidth consumption → more scalable 
–  Longer latencies 

•  Two read miss situations 

•  Unshared: get data from memory 
•  Snooping: 2 hops (P0→memory→P0) 
•  Directory: 2 hops (P0→memory→P0) 

•  Shared or exclusive: get data from other processor (P1) 
•  Assume cache-to-cache transfer optimization 
•  Snooping: 2 hops (P0→P1→P0) 
–  Directory: 3 hops (P0→memory→P1→P0) 
•  Common, with many processors high probability someone has it 

P0 P1 

Dir 

3 hop miss 

P0 

Dir 

2 hop miss 



Coherence Redux 

•  Keeps caches “coherent” 
•  Load returns the most recent stored value by any processor 
•  And thus keeps caches transparent to software 

•  Directory-based protocol scale coherence 
•  Perhaps to 1000s of processors 

•  Alternatives to cache coherence 
•  #1: no caching of shared data 
•  #2: requiring software to explicitly “flush” data when done 

•  Using some new instructions 
•  #3: message passing (no shared memory) 

•  Used in clusters of machines for high-performance computing  
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Roadmap Checkpoint 

•  Thread-level parallelism (TLP) 
•  Shared memory model 

•  Multiplexed uniprocessor 
•  Hardware multihreading 
•  Multiprocessing 

•  Synchronization 
•  Lock implementation 
•  Locking gotchas 

•  Cache coherence 
•  Bus-based protocols 
•  Directory protocols 

•  Memory consistency models 

Mem CPU I/O 

System software 
App App App 

CPU CPU CPU CPU CPU 



Memory Consistency 
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•  Initially: all variables zero (that is, x is 0, y is 0) 

•  What value pairs can be read by the two loads?  
(x, y) 

Shared Memory Example #1 

thread 1 thread 2 
  store 1 → x 
  load y 

  store 1 → y 
  load x 
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•  Initially: all variables zero (that is, x is 0, y is 0) 

•  What value pairs can be read by the two loads?  
(x, y) 

Shared Memory Example #2 

thread 1 thread 2 
  store 1 → y 
  store 1 → x 

  load x 
  load y 
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•  Initially: all variables zero (flag is 0, a is 0)  

•  What value can be read by “load a”? 

Shared Memory Example #3 

  while(flag == 0) { } 
  load a 

thread 1 thread 2 
 store 1 → a 
 store 1 → flag 
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•  Initially: all variables zero (that is, x is 0, y is 0) 

•  What value pairs can be read by the two loads? 

•  What about (x=0, y=0)? 

“Answer” to Example #1 

thread 1 thread 2 
  store 1 → x 
  load y 

  store 1 → y 
  load x 

store 1 → y 
load x 
store 1 → x 
load y 
(x=0, y=1) 

store 1 → x 
load y 
store 1 → y 
load x 
(x=1, y=0) 

store 1 → y 
store 1 → x 
load x 
load y 
(x=1, y=1) 

store 1 → x 
store 1 → y 
load y 
load x 
(x=1, y=1) 

store 1 → y 
store 1 → x 
load y 
load x 
(x=1, y=1) 

store 1 → x 
store 1 → y 
load x 
load y 
(x=1, y=1) 
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•  Initially: all variables zero (that is, x is 0, y is 0) 

•  What value pairs can be read by the two loads?  
•  (x=1, y=1) 
•  (x=0, y=0) 
•  (x=0, y=1) 

•  Is (x=1, y=0) allowed? 

“Answer” to Example #2 

thread 1 thread 2 
  store 1 → y 
  store 1 → x 

  load x 
  load y 
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•  Initially: all variables zero (flag is 0, a is 0)  

•  What value can be read by “load a”? 
•  “load a” can see the value “1” 

•  Can “load a” read the value zero? 

“Answer” to Example #3 

  while(flag == 0) { } 
  load a 

thread 1 thread 2 
 store 1 → a 
 store 1 → flag 



What is Going On? 

•  Reordering of memory operations to different addresses! 

•  In the compiler 
•  Compiler is generally allowed to re-order memory operations to 

different addresses 
•  Many other compiler optimizations also cause problems 

•  In the hardware 
•  To tolerate write latency 

•  Processes don’t wait for writes to complete 
•  And why should they?  No reason on a uniprocessors 

•  To simplify out-of-order execution 
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Memory Consistency 

•  Memory coherence 
•  Creates globally uniform (consistent) view… 
•  Of a single memory location (in other words: cache line) 
–  Not enough 

•  Cache lines A and B can be individually consistent… 
•  But inconsistent with respect to each other 

•  Memory consistency 
•  Creates globally uniform (consistent) view… 
•  Of all memory locations relative to each other 

•  Who cares? Programmers 
–  Globally inconsistent memory creates mystifying behavior 
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Coherence vs. Consistency 

•  Intuition says: P1 prints A=1 
•  Coherence says: absolutely nothing 

•  P1 can see P0’s write of flag before write of A!!! How? 
•  P0 has a coalescing store buffer that reorders writes 
•  Or out-of-order load execution 
•  Or compiler reorders instructions 

•  Imagine trying to figure out why this code sometimes 
“works” and sometimes doesn’t 

•  Real systems are allowed to act in this strange manner 
•  What is allowed? defined as part of the ISA and/or language 

            A=0  flag=0 
Processor 0 
A=1; 
flag=1; 

Processor 1 
while (!flag); // spin 
print A; 



Hiding Store Miss Latency 

•  Why?  Why Allow Such Odd Behavior? 
•  Reason #1: hiding store miss latency 

•  Recall (back from caching unit) 
•  Hiding store miss latency 
•  How?  Store buffer 

•  Said it would complicate multiprocessors 
•  Yes.   It does. 
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Recall: Write Misses and Store Buffers 
•  Read miss? 

•  Load can’t go on without the data, it must stall 

•  Write miss? 
•  Technically, no instruction is waiting for data, why stall? 

•  Store buffer: a small buffer 
•  Stores put address/value to store buffer, keep going 
•  Store buffer writes stores to D$ in the background 
•  Loads must search store buffer (in addition to D$) 
+  Eliminates stalls on write misses (mostly) 
–  Creates some problems (later) 

•  Store buffer vs. writeback-buffer 
•  Store buffer: “in front” of D$, for hiding store misses 
•  Writeback buffer: “behind” D$, for hiding writebacks 

Cache 

Next-level 
cache 

WBB 

SB 

Processor 



Two Kinds of Store Buffers 

•  FIFO (First-in, First-out) store buffers 
•  All stores enter the store buffer, drain into the cache in-order 
•  In an in-order processor... 

•  Allows later loads to execute under store miss 
•  In an out-of-order processor… 

•  Instructions “commit” with older stores still in the store queue 

•  “Coalescing” store buffers 
•  Organized like a mini-cache (tags, blocks, etc.) 

•  But with per-byte valid bits 
•  At commit, stores that miss the cache placed in store buffer 

•  Stores that hit in the cache, written into cache 
•  When the store miss returns, all stores to that address drain into 

the cache 
•  That is, not necessarily in FIFO order 
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Store Buffers & Consistency 

•  Consider the following execution: 
•  Processor 0’s write to A, misses the cache.  Put in store buffer 
•  Processor 0 keeps going 
•  Processor 0 write “1” to flag hits, writes to the cache 
•  Processor 1 reads flag… sees the value “1” 
•  Processor 1 exits loop 
•  Processor 1 prints “0” for A 

•  Ramification: store buffers can cause “strange” behavior 
•  How strange depends on lots of things 

•  Out-of-order execution also can cause problems… 

            A=0  flag=0 
Processor 0 
A=1; 
flag=1; 

Processor 1 
while (!flag); // spin 
print A; 



3 Classes of Memory Consistency Models 
•  Sequential consistency (SC)  (MIPS, PA-RISC) 

•  Formal definition of memory view programmers expect 
•  1. Processors see their own loads and stores in program order 
•  2. Processors see others’ loads and stores in program order 
•  3. All processors see same global load/store ordering 

–  Last two conditions not naturally enforced by coherence 
•  Corresponds to some sequential interleaving of uniprocessor orders 
•  Indistinguishable from multi-programmed uni-processor 

•  Processor consistency (PC)  (x86, SPARC) 
•  Allows a in-order store buffer 

•  Stores can be deferred, but must be put into the cache in order 

•  Release consistency (RC) (ARM, Itanium, PowerPC)  
•  Allows an un-ordered store buffer 

•  Stores can be put into cache in any order 
•  Loads re-ordered, too. 
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•  Initially: all variables zero (that is, x is 0, y is 0) 

•  What value pairs can be read by the two loads? 

•  What about (x=0, y=0)?  Yes! (for x86, SPARC, ARM, PowerPC) 

Answer to Example #1 

thread 1 thread 2 
  store 1 → x 
  load y 

  store 1 → y 
  load x 

store 1 → y 
load x 
store 1 → x 
load y 
(x=0, y=1) 

store 1 → x 
load y 
store 1 → y 
load x 
(x=1, y=0) 

store 1 → y 
store 1 → x 
load x 
load y 
(x=1, y=1) 

store 1 → x 
store 1 → y 
load y 
load x 
(x=1, y=1) 

store 1 → y 
store 1 → x 
load y 
load x 
(x=1, y=1) 

store 1 → x 
store 1 → y 
load x 
load y 
(x=1, y=1) 
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•  Initially: all variables zero (that is, x is 0, y is 0) 

•  What value pairs can be read by the two loads?  
•  (x=1, y=1) 
•  (x=0, y=0) 
•  (x=0, y=1) 

•  Is (x=1, y=0) allowed? 
•  Yes! (for ARM, PowerPC, Itanium, and Alpha) 
•  No! (for Intel/AMD x86, Sun SPARC, IBM 370) 

•  Assuming the compiler didn’t reorder anything… 

Answer to Example #2 

thread 1 thread 2 
  store 1 → y 
  store 1 → x 

  load x 
  load y 
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•  Initially: all variables zero (flag is 0, a is 0)  

•  What value can be read by “load a”? 
•  “load a” can see the value “1” 

•  Can “load a” read the value zero? (same as last slide) 
•  Yes! (for ARM, PowerPC, Itanium, and Alpha) 
•  No! (for Intel/AMD x86, Sun SPARC, IBM 370) 

•  Assuming the compiler didn’t reorder anything… 

Answer to Example #3 

  while(flag == 0) { } 
  load a 

thread 1 thread 2 
 store 1 → a 
 store 1 → flag 
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Restoring Order (Hardware) 
•  Sometimes we need ordering (mostly we don’t) 

•  Prime example: ordering between “lock” and data 

•  How?  insert Fences (memory barriers) 
•  Special instructions, part of ISA 

•  Example 
•  Ensure that loads/stores don’t cross lock acquire/release operation 

acquire 
fence 
critical section 
fence 
release 

•  How do fences work?  
•  They stall exeuction until write buffers are empty 
•  Makes lock acquisition and release slow(er) 

•  Use synchronization library, don’t write your own 
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Restoring Order (Software) 
•  These slides have focused mostly on hardware reordering 

•  But the compiler also reorders instructions (reason #3) 

•  How do we tell the compiler to not reorder things? 
•  Depends on the language… 

•  In Java: 
•  The built-in “synchronized” constructs informs the compiler to limit 

its optimization scope (prevent reorderings across synchronization) 
•  Or, programmer uses “volatile” keyword to explicitly mark variables 
•  Java compiler also inserts the hardware-level ordering instructions 

•  In C/C++: 
•  Much more murky, as language doesn’t define synchronization 
•  Lots of hacks: “inline assembly”, volatile, atomic (newly proposed) 
•  Programmer may need to explicitly insert hardware-level fences  

•  Use synchronization library, don’t write your own 
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Summary 

•  Explicit parallelism 
•  Shared memory model 

•  Multiplexed uniprocessor 
•  Hardware multihreading 
•  Multiprocessing 

•  Synchronization 
•  Lock implementation 
•  Locking gotchas 

•  Cache coherence 
•  VI, MSI, MESI 
•  Bus-based protocols 
•  Directory protocols 

•  Memory consistency models 

Mem CPU I/O 

System software 
App App App 

CPU CPU CPU CPU CPU 


