This Unit: Putting It All Together

CIS 371
Computer Organization and Design

Unit 15: Putting It All Together:
Anatomy of the XBox 360 Game Console

- Anatomy of a game console
- Microsoft XBox 360
- Focus mostly on CPU chip
- Briefly talk about system
- Graphics processing unit (GPU)
- I/O and other devices

Sources

- Application-customized CPU design: The Microsoft Xbox $\mathbf{3 6 0}$ CPU story, Brown, IBM, Dec 2005
- http://www-128.ibm.com/developerworks/power/library/pa-fpfxbox/
- XBox 360 System Architecture, Andrews \& Baker, IEEE Micro, March/April 2006
- Microprocessor Report
- IBM Speeds XBox 360 to Market, Krewell, Oct 31, 2005
- Powering Next-Gen Game Consoles, Krewell, July 18, 2005

What is Computer Architecture?

Microsoft XBox Game Console History

- XBox
- First game console by Microsoft, released in 2001, \$299
- Glorified PC
- 733 Mhz x86 Intel CPU, 64MB DRAM, NVIDIA GPU (graphics)
- Ran modified version of Windows OS
- ~25 million sold
- XBox 360
- Second generation, released in 2005, \$299-\$399
- All-new custom hardware
- 3.2 Ghz PowerPC IBM processor (custom design for XBox 360)
- ATI graphics chip (custom design for XBox 360)
- 50+ million sold

More on Games Workload

- Graphics, graphics, graphics
- Special highly-parallel graphics processing unit (GPU)
- Much like on PCs today
- But general-purpose, too
- "The high-level game code is generally a database management problem, with plenty of object-oriented code and pointer manipulation. Such a workload needs a large L2 and high integer performance." [Andrews \& Baker]
- Wanted only a modest number of modest, fast cores
- Not one big core
- Not dozens of small cores (leave that to the GPU)
- Quote from Seymour Cray

Microsoft Turns to IBM for XBox 360

- Microsoft is mostly a software company
- Turned to IBM \& ATI for XBox 360 design
- Sony \& Nintendo also turned to IBM (for PS3 \& Wii, respectively)
- Design principles of XBox 360 [Andrews \& Baker]
- Value for 5-7 years
- \rightarrow big performance increase over last generation
- Support anti-aliased high-definition video (720*1280*4 @ 30+fps)
- \rightarrow extremely high pixel fill rate (goal: 100+ million pixels/s)
- Flexible to suit dynamic range of games
- \rightarrow balance hardware, homogenous resources
- Programmability (easy to program)
- \rightarrow listened to software developers

XBox 360 System from 30,000 Feet

XBox 360 System

XBox 360 "Xenon" Processor

- Peak performance: ~75 gigaflops
- Gigaflop = 1 billion floating points operations per second
- Pipelined superscalar processor
- 3.2 Ghz operation
- Superscalar: two-way issue
- VMX-128 instructions (four single-precision operations at a time)
- Hardware multithreading: two threads per processor
- Three processor cores per chip
- Result:
- $3.2 * 2 * 4 * 3=\sim 77$ gigaflops

XBox 360 "Xenon" Processor

- ISA: 64-bit PowerPC chip
- RISC ISA
- Like MIPS, but with condition codes
- Fixed-length 32-bit instructions
- 32 64-bit general purpose registers (GPRs)
- ISA Extended with VMX-128 operations
- 128 registers, 128-bits each
- Packed "vector" operations
- Example: four 32-bit floating point numbers
- One instruction: VR1 * VR2 \rightarrow VR3
- Four single-precision operations
- Also supports conversion to Microsoft DirectX data formats
- Similar to Altivec (and Intel's MMX, SSE, SSE2, etc.)
- Works great for 3D graphics kernels and compression

"Xenon" Processor Pipeline

CIS 371 (Martin): Xbox 360

- Four-instruction fetch
- Two-instruction "dispatch"
- Five functional units
- "VMX128" execution
"decoupled" from other units
- 14-cycle VMX dot-product
- Branch predictor:
- " 4 K " G-share predictor
- Unclear if $4 K B$ or 4 K 2 -bit counters
- Per thread

Xenon Multicore Interconnect

XBox 360 Memory Hiearchy

- 128B cache blocks throughout
- 32KB 2-way set-associative instruction cache (per core)
- 32KB 4-way set-associative data cache (per core)
- Write-through, lots of store buffering
- Parity
- 1MB 8-way set-associative second-level cache (per chip)
- Special "skip L2" prefetch instruction
- MESI cache coherence
- Error Correcting Codes (ECC)
- 512MB GDDR3 DRAM, dual memory controllers
- Total of $22.4 \mathrm{~GB} / \mathrm{s}$ of memory bandwidth
- Direct path to GPU (not supported in current PCs)

CIS 371 (Martin): Xbox 360

XBox 360 System

XBox Graphics Subsystem

CIS 371 (Martin): Xbox 360
[Andrews \& Baker, IEEE Micro, Mar/Apr 2006]

Graphics "Parent" Die (ATI)

- 232 million transistors
- 500 Mhz
- 48 unified shader ALUs
- Mini-cores for graphics

CIS 371 (Martin): Xbox 360
[Andrews \& Baker, IEEE Micro, Mar/Apr 2006]
18

GPU "daughter" die (NEC)

Putting It All Together

- Unit 0: Abstraction and design goals
- Unit 1: ISAs
- Unit 2/3: Digital logic \& single-cycle datapath
- Unit 4: Arithmetic
- Unit 5/6: Pipelining \& performance
- Unit 7/8: Caches \& virtual memory
- Unit 9: Superscalar
- Unit 10: Lab hints
- Unit 11: Static \& Dynamic Scheduling
- Unit 12: Multicore
- Unit 13/14: Vectors/Power

