
CIS 371 (Martin): Instruction Set Architectures 1

CIS 371
Computer Organization and Design

Unit 1: Instruction Set Architectures

Slides developed by Milo Martin & Amir Roth at the University of Pennsylvania
with sources that included University of Wisconsin slides

by Mark Hill, Guri Sohi, Jim Smith, and David Wood.

CIS 371 (Martin): Instruction Set Architectures 2

Instruction Set Architecture (ISA)

•  What is an ISA?
•  A functional contract

•  All ISAs similar in high-level ways
•  But many design choices in details
•  Two “philosophies”: CISC/RISC

•  Difference is blurring

•  Good ISA…
•  Enables high-performance
•  At least doesn’t get in the way

•  Compatibility is a powerful force
•  Tricks: binary translation, µISAs

CPU Mem I/O

System software

App App App

CIS 371 (Martin): Instruction Set Architectures 3

Readings

•  Readings
•  Introduction

•  P&H, Chapter 1
•  ISAs

•  P&H, Chapter 2

Recall from CIS240…

CIS 371 (Martin): Instruction Set Architectures 4

240 Review: Applications

•  Applications (Firefox, iTunes, Skype, Word, Google)
•  Run on hardware … but how?

CIS 371 (Martin): Instruction Set Architectures 5

240 Review: I/O

•  Apps interact with us & each other via I/O (input/output)
•  With us: display, sound, keyboard, mouse, touch-screen, camera
•  With each other: disk, network (wired or wireless)
•  Most I/O proper is analog-digital and domain of EE
•  I/O devices present rest of computer a digital interface (1s and 0s)

CIS 371 (Martin): Instruction Set Architectures 6

240 Review: OS

•  I/O (& other services) provided by OS (operating system)
•  A super-app with privileged access to all hardware
•  Abstracts away a lot of the nastiness of hardware
•  Virtualizes hardware to isolate programs from one another

•  Each application is oblivious to presence of others
•  Simplifies programming, makes system more robust and secure
•  Privilege is key to this

•  Commons OSes are Windows, Linux, MACOS

CIS 371 (Martin): Instruction Set Architectures 7

240 Review: ISA

•  App/OS are software … execute on hardware
•  HW/SW interface is ISA (instruction set architecture)

•  A “contract” between SW and HW
•  Encourages compatibility, allows SW/HW to evolve independently
•  Functional definition of HW storage locations & operations

•  Storage locations: registers, memory
•  Operations: add, multiply, branch, load, store, etc.

•  Precise description of how to invoke & access them
•  Instructions (bit-patterns hardware interprets as commands)

CIS 371 (Martin): Instruction Set Architectures 8

240 Review: LC4 ISA

•  LC4: a toy ISA you know
•  16-bit ISA (what does this mean?)
•  16-bit insns
•  8 registers (integer)
•  ~30 different insns
•  Simple OS support

•  Assembly language
•  Human-readable ISA representation

CIS 371 (Martin): Instruction Set Architectures 9

371 Preview: A Real ISA

•  MIPS: example of real ISA
•  32/64-bit operations
•  32-bit insns
•  64 registers

•  32 integer, 32 floating point
•  ~100 different insns
•  Full OS support

CIS 371 (Martin): Instruction Set Architectures 10

Example code is MIPS, but
all ISAs are similar at some level

240 Review: Program Compilation

•  Program written in a “high-level” programming language
•  C, C++, Java, C#
•  Hierarchical, structured control: loops, functions, conditionals
•  Hierarchical, structured data: scalars, arrays, pointers, structures

•  Compiler: translates program to assembly
•  Parsing and straight-forward translation
•  Compiler also optimizes
•  Compiler itself another application … who compiled compiler?

CIS 371 (Martin): Instruction Set Architectures 11

int array[100], sum;!
void array_sum() {!
 for (int i=0; i<100;i++) {!
 sum += array[i];!
 }!
}!

240 Review: Assembly Language

•  Assembly language
•  Human-readable representation

•  Machine language
•  Machine-readable representation
•  1s and 0s (often displayed in “hex”)

•  Assembler
•  Translates assembly to machine

CIS 371 (Martin): Instruction Set Architectures 12

240 Review: Insn Execution Model
•  The computer is just finite state machine

•  Registers (few of them, but fast)
•  Memory (lots of memory, but slower)
•  Program counter (next insn to execute)

•  Sometimes called “instruction pointer”

•  A computer executes instructions
•  Fetches next instruction from memory
•  Decodes it (figure out what it does)
•  Reads its inputs (registers & memory)
•  Executes it (adds, multiply, etc.)
•  Write its outputs (registers & memory)
•  Next insn (adjust the program counter)

•  Program is just “data in memory”
•  Makes computers programmable (“universal”)

CIS 371 (Martin): Instruction Set Architectures 13 CIS 371 (Martin): Instruction Set Architectures 14

The Sequential Model

•  Basic structure of all modern ISAs
•  Often called VonNeuman, but in ENIAC before

•  Program order: total order on dynamic insns
•  Order and named storage define computation

•  Convenient feature: program counter (PC)
•  Insn itself stored in memory at location pointed to by PC
•  Next PC is next insn unless insn says otherwise

•  Processor logically executes loop at left

•  Atomic: insn finishes before next insn starts
•  Implementations can break this constraint physically
•  But must maintain illusion to preserve correctness

What is an ISA?

CIS 371 (Martin): Instruction Set Architectures 15 CIS 371 (Martin): Instruction Set Architectures 16

What Is An ISA?

•  ISA (instruction set architecture)
•  A well-defined hardware/software interface
•  The “contract” between software and hardware

•  Functional definition of storage locations & operations
•  Storage locations: registers, memory
•  Operations: add, multiply, branch, load, store, etc

•  Precise description of how to invoke & access them

•  Not in the “contract”: non-functional aspects
•  How operations are implemented
•  Which operations are fast and which are slow and when
•  Which operations take more power and which take less

•  Instructions
•  Bit-patterns hardware interprets as commands
•  Instruction → Insn (instruction is too long to write in slides)

CIS 371 (Martin): Instruction Set Architectures 17

A Language Analogy for ISAs

•  Communication
•  Person-to-person → software-to-hardware

•  Similar structure
•  Narrative → program
•  Sentence → insn
•  Verb → operation (add, multiply, load, branch)
•  Noun → data item (immediate, register value, memory value)
•  Adjective → addressing mode

•  Many different languages, many different ISAs
•  Similar basic structure, details differ (sometimes greatly)

•  Key differences between languages and ISAs
•  Languages evolve organically, many ambiguities, inconsistencies
•  ISAs are explicitly engineered and extended, unambiguous

CIS 371 (Martin): Instruction Set Architectures 18

LC4 vs Real ISAs
•  LC4 has the basic features of a real-world ISAs

±  LC4 lacks a good bit of realism
•  Address size is only 16 bits
•  Only one data type (16-bit signed integer)
•  Little support for system software, none for multiprocessing (later)

•  Many real-world ISAs to choose from:
•  Intel x86
•  MIPS (used throughout in book)
•  ARM
•  PowerPC
•  SPARC
•  Intel’s Itanium
•  Historical: IBM 370, VAX, Alpha, PA-RISC, 68k, …

ISA Design Goals

CIS 371 (Martin): Instruction Set Architectures 19 CIS 371 (Martin): Instruction Set Architectures 20

What Makes a Good ISA?

•  Programmability
•  Easy to express programs efficiently?

•  Performance/Implementability
•  Easy to design high-performance implementations?
•  More recently

•  Easy to design low-power implementations?
•  Easy to design low-cost implementations?

•  Compatibility
•  Easy to maintain as languages, programs, and technology evolve?
•  x86 (IA32) generations: 8086, 286, 386, 486, Pentium, PentiumII,

PentiumIII, Pentium4, Core2, Core i7, …

CIS 371 (Martin): Instruction Set Architectures 21

Programmability

•  Easy to express programs efficiently?
•  For whom?

•  Before 1985: human
•  Compilers were terrible, most code was hand-assembled
•  Want high-level coarse-grain instructions

•  As similar to high-level language as possible

•  After 1985: compiler
•  Optimizing compilers generate much better code that you or I
•  Want low-level fine-grain instructions

•  Compiler can’t tell if two high-level idioms match exactly or not

•  More on this later in this set of slides…

Performance, Performance, Performance

•  How long does it take for a program to execute?
•  Three factors

1. How many insn must execute to complete program?
•  Instructions per program during execution
•  “Dynamic insn count” (not number of “static” insns in program)

2. How quickly does the processor “cycle”?
•  Clock frequency (cycles per second) 1 gigahertz (Ghz)
•  or expressed as reciprocal, Clock period nanosecond (ns)
•  Worst-case delay through circuit for a particular design

3. How many cycles does each instruction take to execute?
•  Cycles per Instruction (CPI) or reciprocal, Insn per Cycle (IPC)

CIS 371 (Martin): Instruction Set Architectures 22

Maximizing Performance

•  Instructions per program:
•  Determined by program, compiler, instruction set architecture (ISA)

•  Cycles per instruction: “CPI”
•  Typical range today: 2 to 0.5
•  Determined by program, compiler, ISA, micro-architecture

•  Seconds per cycle: “clock period”
•  Typical range today: 2ns to 0.25ns
•  Reciprocal is frequency: 0.5 Ghz to 4 Ghz (1 Htz = 1 cycle per sec)
•  Determined by micro-architecture, technology parameters

•  For minimum execution time, minimize each term
•  Difficult: often pull against one another

CIS 371 (Martin): Instruction Set Architectures 23 CIS 371 (Martin): Instruction Set Architectures 24

Example: Instruction Granularity

•  CISC (Complex Instruction Set Computing) ISAs
•  Big heavyweight instructions (lots of work per instruction)
+  Low “insns/program”
–  Higher “cycles/insn” and “seconds/cycle”

•  We have the technology to get around this problem

•  RISC (Reduced Instruction Set Computer) ISAs
•  Minimalist approach to an ISA: simple insns only
+  Low “cycles/insn” and “seconds/cycle”
–  Higher “insn/program”, but hopefully not as much

•  Rely on compiler optimizations

CIS 371 (Martin): Instruction Set Architectures 25

Compiler Optimizations
•  Primarily goal: reduce instruction count

•  Eliminate redundant computation, keep more things in registers
+ Registers are faster, fewer loads/stores
–  An ISA can make this difficult by having too few registers

•  But also…
•  Reduce branches and jumps (later)
•  Reduce cache misses (later)
•  Reduce dependences between nearby insns (later)

–  An ISA can make this difficult by having implicit dependences

•  How effective are these?
+  Can give 4X performance over unoptimized code
–  Collective wisdom of 40 years (“Proebsting’s Law”): 4% per year
•  Funny but … shouldn’t leave 4X performance on the table

Compiler Optimization Example (LC4)

•  Left: common sub-expression elimination
•  Remove calculations whose results are already in some register

•  Right: register allocation
•  Keep temporary in register across statements, avoid stack spill/fill

CIS 371 (Martin): Instruction Set Architectures 26

ISA Code Example

CIS 371 (Martin): Instruction Set Architectures 27

Array Sum Loop: LC4

CIS 371 (Martin): Instruction Set Architectures 28

 .DATA!
array .BLKW #100!
sum .FILL #0!
 .CODE!
 .FALIGN!
array_sum!
 CONST R5, #0!
 LEA R1, array!
 LEA R2, sum!
L1!
 LDR R3, R1, #0!
 LDR R4, R2, #0!
 ADD R4, R3, R4!
 STR R4, R2, #0!
 ADD R1, R1, #1!
 ADD R5, R5, #1!
 CMPI R5, #100!
 BRn L1!

int array[100];!
int sum;!
void array_sum() {!
 for (int i=0; i<100;i++)

{!
 sum += array[i];!
 }!
}!

Array Sum Loop: LC4 MIPS

CIS 371 (Martin): Instruction Set Architectures 29

 .DATA!
array .BLKW #100!
sum .FILL #0!
 .CODE!
 .FALIGN!
array_sum!
 CONST R5, #0!
 LEA R1, array!
 LEA R2, sum!
L1!
 LDR R3, R1, #0!
 LDR R4, R2, #0!
 ADD R4, R3, R4!
 STR R4, R2, #0!
 ADD R1, R1, #1!
 ADD R5, R5, #1!
 CMPI R5, #100!
 BRn L1!

 .data!
array: .space 100!
sum: .word 0!

 .text!
array_sum:!
 li $5, 0!
 la $1, array!
 la $2, sum!
L1:!
 lw $3, 0($1)!
 lw $4, 0($2)!
 add $4, $3, $4!
 sw $4, 0($2)!
 addi $1, $1, 1!
 addi $5, $5, 1!
 li $6, 100!
 blt $5, $6, L1!

Array Sum Loop: LC4 x86

CIS 371 (Martin): Instruction Set Architectures 30

 .DATA!
array .BLKW #100!
sum .FILL #0!
 .CODE!
 .FALIGN!
array_sum!
 CONST R5, #0!
 LEA R1, array!
 LEA R2, sum!
L1!
 LDR R3, R1, #0!
 LDR R4, R2, #0!
 ADD R4, R3, R4!
 STR R4, R2, #0!
 ADD R1, R1, #1!
 ADD R5, R5, #1!
 CMPI R5, #100!
 BRn L1!

 .LFE2!
 .comm array,400,32!
 .comm sum,4,4!

 .globl array_sum!
array_sum:!
 movl $0, -4(%rbp)!

.L1:!
 movl -4(%rbp), %eax!
 movl array(,%eax,4), %edx!
 movl sum(%rip), %eax !
 addl %edx, %eax!
 movl %eax, sum(%rip)!
 addl $1, -4(%rbp)!
 cmpl $99,-4(%rbp)!
 jle .L1!

x86 Operand Model

•  x86 uses explicit accumulators
•  Both register and memory
•  Distinguished by addressing mode

CIS 371 (Martin): Instruction Set Architectures 31

Array Sum Loop: x86 Optimized x86

32

.LFE2!
 .comm array,400,32!
 .comm sum,4,4!

 .globl array_sum!
array_sum:!
 movl $0, -4(%rbp)!

.L1:!
 movl -4(%rbp), %eax!
 movl array(,%eax,4), %edx!
 movl sum(%rip), %eax !
 addl %edx, %eax!
 movl %eax, sum(%rip)!
 addl $1, -4(%rbp)!
 cmpl $99,-4(%rbp)!
 jle .L1!

CIS 371 (Martin): Instruction Set Architectures

Aspects of ISAs

CIS 371 (Martin): Instruction Set Architectures 33 CIS 371 (Martin): Instruction Set Architectures 34

Length and Format

•  Length
•  Fixed length

•  Most common is 32 bits
+ Simple implementation (next PC often just PC+4)
–  Code density: 32 bits to increment a register by 1

•  Variable length
+ Code density

•  x86 can do increment in one 8-bit instruction
–  Complex fetch (where does next instruction begin?)

•  Compromise: two lengths
•  E.g., MIPS16 or ARM’s Thumb

•  Encoding
•  A few simple encodings simplify decoder

•  x86 decoder one nasty piece of logic

Fetch[PC]
Decode

Read Inputs
Execute

Write Output
Next PC

CIS 371 (Martin): Instruction Set Architectures 35

LC4/MIPS/x86 Length and Encoding

•  LC4: 2-byte insns, 3 formats

•  MIPS: 4-byte insns, 3 formats

•  x86: 1–16 byte insns, many formats

CIS 371 (Martin): Instruction Set Architectures 36

Operations and Datatypes
•  Datatypes

•  Software: attribute of data
•  Hardware: attribute of operation, data is just 0/1’s

•  All processors support
•  Integer arithmetic/logic (8/16/32/64-bit)
•  IEEE754 floating-point arithmetic (32/64-bit)

•  More recently, most processors support
•  “Packed-integer” insns, e.g., MMX
•  “Packed-floating point” insns, e.g., SSE/SSE2
•  For multimedia, more about these later

•  Other, infrequently supported, data types
•  Decimal, other fixed-point arithmetic

Fetch
Decode

Read Inputs
Execute

Write Output
Next Insn

CIS 371 (Martin): Instruction Set Architectures 37

LC4/MIPS/x86 Operations and Datatypes
•  LC4

•  16-bit integer: add, and, not, sub, mul, div, or, xor, shifts
•  No floating-point

•  MIPS
•  32(64) bit integer: add, sub, mul, div, shift, rotate, and, or, not, xor
•  32(64) bit floating-point: add, sub, mul, div

•  x86
•  32(64) bit integer: add, sub, mul, div, shift, rotate, and, or, not, xor
•  80-bit floating-point: add, sub, mul, div, sqrt
•  64-bit packed integer (MMX): padd, pmul…
•  64(128)-bit packed floating-point (SSE/2): padd, pmul…

CIS 371 (Martin): Instruction Set Architectures 38

Where Does Data Live?

•  Registers
•  Named directly in instructions
•  “short term memory”
•  Faster than memory, quite handy

•  Memory
•  Fundamental storage space
•  “longer term memory”

•  Immediates
•  Values spelled out as bits in instructions
•  Input only

Fetch
Decode

Read Inputs
Execute

Write Output
Next Insn

CIS 371 (Martin): Instruction Set Architectures 39

How Many Registers?

•  Registers faster than memory, have as many as possible?
•  No

•  One reason registers are faster: there are fewer of them
•  Small is fast (hardware truism)

•  Another: they are directly addressed (no address calc)
–  More registers, means more bits per register in instruction
–  Thus, fewer registers per instruction or larger instructions

•  Not everything can be put in registers
•  Structures, arrays, anything pointed-to
•  Although compilers are getting better at putting more things in

–  More registers means more saving/restoring
•  Across function calls, traps, and context switches

•  Trend: more registers: 8 (x86) → 32 (MIPS) → 128 (IA64)
•  64-bit x86 has 16 64-bit integer and 16 128-bit FP registers

CIS 371 (Martin): Instruction Set Architectures 40

LC4/MIPS/x86 Registers

•  LC4
•  8 16-bit integer registers
•  No floating-point registers

•  MIPS
•  32 32-bit integer registers ($0 hardwired to 0)
•  32 32-bit floating-point registers (or 16 64-bit registers)

•  x86
•  8 8/16/32-bit integer registers (not general purpose)
•  No floating-point registers!

•  64-bit x86
•  16 64-bit integer registers
•  16 128-bit floating-point registers

CIS 371 (Martin): Instruction Set Architectures 41

How Much Memory? Address Size
•  What does “64-bit” in a 64-bit ISA mean?

•  Each program can address (i.e., use) 264 bytes

•  64 is the virtual address (VA) size
•  Alternative (wrong) definition: width of arithmetic operations

•  Most critical, inescapable ISA design decision
•  Too small? Will limit the lifetime of ISA
•  May require nasty hacks to overcome (E.g., x86 segments)

•  x86 evolution:
•  4-bit (4004), 8-bit (8008), 16-bit (8086), 24-bit (80286),
•  32-bit + protected memory (80386)
•  64-bit (AMD’s Opteron & Intel’s Pentium4)

•  All ISAs moving to 64 bits (if not already there)

CIS 371 (Martin): Instruction Set Architectures 42

LC4/MIPS/x86 Memory Size

•  LC4
•  16-bit (216 16-bit words) x 2 (split data and instruction memory)

•  MIPS
•  32-bit
•  64-bit

•  x86
•  8086: 16-bit
•  80286: 24-bit
•  80386: 32-bit
•  AMD Opteron/Athlon64, Intel’s newer Pentium4, Core 2: 64-bit

CIS 371 (Martin): Instruction Set Architectures 43

How Are Memory Locations Specified?

•  Registers are specified directly
•  Register names are short, can be encoded in instructions
•  Some instructions implicitly read/write certain registers

•  How are addresses specified?
•  Addresses are as big or bigger than insns
•  Addressing mode: how are insn bits converted to addresses?
•  Think about: what high-level idiom addressing mode captures

CIS 371 (Martin): Instruction Set Architectures 44

Memory Addressing

•  Addressing mode: way of specifying address
•  Used in memory-memory or load/store instructions in register ISA

•  Examples
•  Displacement: R1=mem[R2+immed]
•  Index-base: R1=mem[R2+R3]
•  Memory-indirect: R1=mem[mem[R2]]
•  Auto-increment: R1=mem[R2], R2= R2+1
•  Auto-indexing: R1=mem[R2+immed], R2=R2+immed
•  Scaled: R1=mem[R2+R3*immed1+immed2]
•  PC-relative: R1=mem[PC+imm]

•  What high-level program idioms are these used for?
•  What implementation impact? What impact on insn count?

CIS 371 (Martin): Instruction Set Architectures 45

LC4/MIPS/x86 Addressing Modes
•  LC4

•  Displacement: R1+offset (6-bit)

•  MIPS
•  Displacement: R1+offset (16-bit)

•  Experiments showed this covered 80% of accesses on VAX

•  x86 (MOV instructions)
•  Absolute: zero + offset (8/16/32-bit)
•  Displacement: R1+offset (8/16/32-bit)
•  Indexed: R1+R2
•  Scaled: R1 + (R2*Scale) + offset (8/16/32-bit) Scale = 1, 2, 4, 8
•  PC-relative: PC + offset (32-bit)

x86 Addressing Modes

CIS 371 (Martin): Instruction Set Architectures 46

CIS 371 (Martin): Instruction Set Architectures 47

Two More Addressing Issues
•  Access alignment: address % size == 0?

•  Aligned: load-word @XXXX00, load-half @XXXXX0
•  Unaligned: load-word @XXXX10, load-half @XXXXX1
•  Question: what to do with unaligned accesses (uncommon case)?

•  Support in hardware? Makes all accesses slow
•  Trap to software routine? Possibility
•  Use regular instructions

•  Load, shift, load, shift, and
•  MIPS? ISA support: unaligned access using two instructions

lwl @XXXX10; lwr @XXXX10

•  Endian-ness: arrangement of bytes in a word
•  Big-endian: sensible order (e.g., MIPS, PowerPC)

•  A 4-byte integer: “00000000 00000000 00000010 00000011” is 515
•  Little-endian: reverse order (e.g., x86)

•  A 4-byte integer: “00000011 00000010 00000000 00000000 ” is 515
•  Why little endian? To be different? To be annoying? Nobody knows

CIS 371 (Martin): Instruction Set Architectures 48

How Many Explicit Register Operands
•  Operand model: how many explicit operands

•  3: general-purpose
add R1,R2,R3 means: R1 = R2 + R3 (MIPS uses this)

•  2: multiple explicit accumulators (output doubles as input)
add R1,R2 means: R1 = R1 + R2 (x86 uses this)

•  1: one implicit accumulator
add R1 means: ACC = ACC + [R1]

•  4+: useful only in special situations
•  Fused multiply & accumulate instruction

•  Why have fewer?
•  Primarily code density (size of each instruction in program binary)

CIS 371 (Martin): Instruction Set Architectures 49

Operand Model: Register or Memory?
•  “Load/store” architectures

•  Memory access instructions (loads and stores) are distinct
•  Separate addition, subtraction, divide, etc. operations
•  Examples: MIPS, ARM, SPARC, PowerPC

•  Alternative: mixed operand model (x86, VAX)
•  Operand can be from register or memory
•  x86 example: addl 100, 4(%eax)

•  1. Loads from memory location [4 + %eax]
•  2. Adds “100” to that value
•  3. Stores to memory location [4 + %eax]
•  Would requires three instructions in MIPS, for example.

CIS 371 (Martin): Instruction Set Architectures 50

LC4/MIPS/x86 Operand Models

•  LC4
•  Integer: 8 general-purpose registers, load-store
•  Floating-point: none

•  MIPS
•  Integer/floating-point: 32 general-purpose registers, load-store

•  x86
•  Integer (8 registers) reg-reg, reg-mem, mem-reg, but no mem-mem
•  Floating point: stack (why x86 floating-point lagged for years)

•  SSE introduced 16 general purpose floating-point registers
•  Note: integer push, pop for managing software stack
•  Note: also reg-mem and mem-mem string functions in hardware

•  x86-64
•  Integer/floating-point: 16 registers

x86 Operand Model: Accumulators

•  x86 uses explicit accumulators
•  Both register and memory
•  Distinguished by addressing mode

CIS 371 (Martin): Instruction Set Architectures 51 CIS 371 (Martin): Instruction Set Architectures 52

Operand Model & Compiler Optimizations

•  How do operand model & addressing mode affect compiler?

•  Again, what does a compiler try to do?
•  Reduce insn count, reduce load/store count (important), schedule

•  What features enable or limit these?
+  (Many) general-purpose registers let you reduce stack accesses
−  Implicit operands clobber values

• addl %edx, %eax destroys initial value in %eax!
•  Requires additional insns to preserve if needed

−  Implicit operands also restrict scheduling
•  Classic example, condition codes (flags)

•  Result: you want a general-purpose register load-store ISA (MIPS)

CIS 371 (Martin): Instruction Set Architectures 53

Control Transfers

•  Default next-PC is PC + sizeof(current insn)

•  Branches and jumps can change that
•  Otherwise dynamic program == static program

•  Computing targets: where to jump to
•  For all branches and jumps
•  PC-relative: for branches and jumps with function
•  Absolute: for function calls
•  Register indirect: for returns, switches & dynamic calls

•  Testing conditions: whether to jump at all
•  For (conditional) branches only

Fetch
Decode

Read Inputs
Execute

Write Output
Next Insn

CIS 371 (Martin): Instruction Set Architectures 54

Control Transfers I: Computing Targets

•  The issues
•  How far (statically) do you need to jump?

•  Not far within procedure, further from one procedure to another
•  Do you need to jump to a different place each time?

•  PC-relative
•  Position-independent within procedure
•  Used for branches and jumps within a procedure

•  Absolute
•  Position independent outside procedure
•  Used for procedure calls

•  Indirect (target found in register)
•  Needed for jumping to dynamic targets
•  Used for returns, dynamic procedure calls, switch statements

CIS 371 (Martin): Instruction Set Architectures 55

Control Transfers II: Testing Conditions
•  Compare and branch insns

branch-less-than R1,10,target
+  Fewer instructions
–  Two ALUs: one for condition, one for target address
–  Less room for target in insn
–  Extra latency

•  Implicit condition codes or “flags” (x86, LC4)
cmp R1,10 // sets “negative” flag
branch-neg target

+  More room for target in insn, condition codes often set “for free”
+  Branch insn simple and fast
–  Implicit dependence is tricky

•  Condition registers, separate branch insns (MIPS)
set-less-than R2,R1,10
branch-not-equal-zero R2,target

±  A compromise

CIS 371 (Martin): Instruction Set Architectures 56

LC4, MIPS, x86 Control Transfers
•  LC4

•  9-bit offset PC-relative branches (condition codes)
•  11-bit offset PC-relative jumps
•  11-bit absolute 16-byte aligned calls

•  MIPS
•  16-bit offset PC-relative conditional branches

•  Uses register for condition
•  Compare 2 regs: beq, bne or reg to 0: bgtz, bgez, bltz, blez

+ Don’t need adder for these, cover 80% of cases
•  Explicit condition registers: slt, sltu, slti, sltiu, etc.

•  26-bit target absolute jumps and calls

•  x86
•  8-bit offset PC-relative branches

•  Uses condition codes
•  Explicit compare instructions (and others) to set condition codes

ISAs Also Include Support For…

•  Function calling conventions
•  Which registers are saved across calls, how parameters are passed

•  Operating systems & memory protection
•  Privileged mode
•  System call (TRAP)
•  Exceptions & interrupts
•  Interacting with I/O devices

•  Multiprocessor support
•  “Atomic” operations for synchronization

•  Data-level parallelism
•  Pack many values into a wide register

•  Intel’s SSE2: four 32-bit float-point values into 128-bit register
•  Define parallel operations (four “adds” in one cycle)

CIS 371 (Martin): Instruction Set Architectures 57

The RISC vs. CISC Debate

CIS 371 (Martin): Instruction Set Architectures 58

CIS 371 (Martin): Instruction Set Architectures 59

RISC and CISC
•  RISC: reduced-instruction set computer

•  Coined by Patterson in early 80’s
•  RISC-I (Patterson), MIPS (Hennessy), IBM 801 (Cocke)
•  Examples: PowerPC, ARM, SPARC, Alpha, PA-RISC

•  CISC: complex-instruction set computer
•  Term didn’t exist before “RISC”
•  Examples: x86, VAX, Motorola 68000, etc.

•  Philosophical war (one of several) started in mid 1980’s
•  RISC “won” the technology battles
•  CISC won the high-end commercial war (1990s to today)

•  Compatibility a stronger force than anyone (but Intel) thought
•  RISC won the embedded computing war

CIS 371 (Martin): Instruction Set Architectures 60

The Context

•  Pre 1980
•  Bad compilers (so assembly written by hand)
•  Complex, high-level ISAs (easier to write assembly)
•  Slow multi-chip micro-programmed implementations

•  Vicious feedback loop

•  Around 1982
•  Moore’s Law makes single-chip microprocessor possible…

•  …but only for small, simple ISAs
•  Performance advantage of this “integration” was compelling
•  Compilers had to get involved in a big way

•  RISC manifesto: create ISAs that…
•  Simplify single-chip implementation
•  Facilitate optimizing compilation

CIS 371 (Martin): Instruction Set Architectures 61

Role of Compilers
•  Who is generating assembly code?

•  Humans like high-level “CISC” ISAs (close to prog. langs)
+  Can “concretize” (“drill down”): move down a layer
+  Can “abstract” (“see patterns”): move up a layer
–  Can deal with few things at a time → like things at a high level

•  Computers (compilers) like low-level “RISC” ISAs
+  Can deal with many things at a time → can do things at any level
+  Can “concretize”: 1-to-many lookup functions (databases)
–  Difficulties with abstraction: many-to-1 lookup functions (AI)

•  Translation should move strictly “down” levels

•  Stranger than fiction
•  People once thought computers would execute prog. lang. directly

CIS 371 (Martin): Instruction Set Architectures 62

Early 1980s: The Tipping Point
•  Moore’s Law makes single-chip microprocessor possible…

•  …but only for small, simple ISAs

•  Performance advantage of “integration” was compelling

•  RISC manifesto: create ISAs that…
•  Simplify implementation
•  Facilitate optimizing compilation
•  Some guiding principles (“tenets”)

•  Single cycle execution/hard-wired control
•  Fixed instruction length, format
•  Lots of registers, load-store architecture

•  No equivalent “CISC manifesto”

CIS 371 (Martin): Instruction Set Architectures 63

The RISC Design Tenets
•  Single-cycle execution

•  CISC: many multicycle operations
•  Hardwired (simple) control

•  CISC: “microcode” for multi-cycle operations

•  Load/store architecture
•  CISC: register-memory and memory-memory

•  Few memory addressing modes
•  CISC: many modes

•  Fixed-length instruction format
•  CISC: many formats and lengths

•  Reliance on compiler optimizations
•  CISC: hand assemble to get good performance

•  Many registers (compilers are better at using them)
•  CISC: few registers

CIS 371 (Martin): Instruction Set Architectures 64

CISCs and RISCs

•  The CISCs: x86, VAX (Virtual Address eXtension to PDP-11)
•  Variable length instructions: 1-321 bytes!!!
•  14 registers + PC + stack-pointer + condition codes
•  Data sizes: 8, 16, 32, 64, 128 bit, decimal, string
•  Memory-memory instructions for all data sizes
•  Special insns: crc, insque, polyf, and a cast of hundreds
•  x86: “Difficult to explain and impossible to love”

•  The RISCs: MIPS, PA-RISC, SPARC, PowerPC, Alpha, ARM
•  32-bit instructions
•  32 integer registers, 32 floating point registers, load-store
•  64-bit virtual address space
•  Few addressing modes
•  Why so many basically similar ISAs? Everyone wanted their own

CIS 371 (Martin): Instruction Set Architectures 65

The Debate
•  RISC argument

•  CISC is fundamentally handicapped
•  For a given technology, RISC implementation will be better (faster)

•  Current technology enables single-chip RISC
•  When it enables single-chip CISC, RISC will be pipelined
•  When it enables pipelined CISC, RISC will have caches
•  When it enables CISC with caches, RISC will have next thing...

•  CISC rebuttal
•  CISC flaws not fundamental, can be fixed with more transistors
•  Moore’s Law will narrow the RISC/CISC gap (true)

•  Good pipeline: RISC = 100K transistors, CISC = 300K
•  By 1995: 2M+ transistors had evened playing field

•  Software costs dominate, compatibility is paramount

CIS 371 (Martin): Instruction Set Architectures 66

Compatibility

•  In many domains, ISA must remain compatible
•  IBM’s 360/370 (the first “ISA family”)
•  Another example: Intel’s x86 and Microsoft Windows

•  x86 one of the worst designed ISAs EVER, but survives

•  Backward compatibility
•  New processors supporting old programs

•  Can’t drop features (caution in adding new ISA features)
•  Or, update software/OS to emulate dropped features (slow)

•  Forward (upward) compatibility
•  Old processors supporting new programs

•  Include a “CPU ID” so the software can test of features
•  Add ISA hints by overloading no-ops (example: x86’s PAUSE)
•  New firmware/software on old processors to emulate new insn

CIS 371 (Martin): Instruction Set Architectures 67

Intel’s Compatibility Trick: RISC Inside
•  1993: Intel wanted “out-of-order execution” in Pentium Pro

•  Hard to do with a coarse grain ISA like x86
•  Solution? Translate x86 to RISC micro-ops (µops) in hardware

push $eax
becomes (we think, uops are proprietary)
store $eax, -4($esp)
addi $esp,$esp,-4

+  Processor maintains x86 ISA externally for compatibility
+  But executes RISC µISA internally for implementability
•  Given translator, x86 almost as easy to implement as RISC

•  Intel implemented “out-of-order” before any RISC company
•  “out-of-order” also helps x86 more (because ISA limits compiler)

•  Also used by other x86 implementations (AMD)
•  Different µops for different designs

•  Not part of the ISA specification, not publically disclosed

Potential Micro-op Scheme

•  Most instructions are a single micro-op
•  Add, xor, compare, branch, etc.
•  Loads example: mov -4(%rax), %ebx
•  Stores example: mov %ebx, -4(%rax)

•  Each memory access adds a micro-op
•  “addl -4(%rax), %ebx” is two micro-ops (load, add)
•  “addl %ebx, -4(%rax)” is three micro-ops (load, add, store)

•  Function call (CALL) – 4 uops
•  Get program counter, store program counter to stack,

adjust stack pointer, unconditional jump to function start

•  Return from function (RET) – 3 uops
•  Adjust stack pointer, load return address from stack, jump register

•  Again, just a basic idea, micro-ops are specific to each chip

CIS 371 (Martin): Instruction Set Architectures 68

CIS 371 (Martin): Instruction Set Architectures 69

Translation and Virtual ISAs

•  New compatibility interface: ISA + translation software
•  Binary-translation: transform static image, run native
•  Emulation: unmodified image, interpret each dynamic insn

•  Typically optimized with just-in-time (JIT) compilation
•  Examples: FX!32 (x86 on Alpha), Rosetta (PowerPC on x86)
•  Performance overheads reasonable (many recent advances)

•  Virtual ISAs: designed for translation, not direct execution
•  Target for high-level compiler (one per language)
•  Source for low-level translator (one per ISA)
•  Goals: Portability (abstract hardware nastiness), flexibility over time
•  Examples: Java Bytecodes, C# CLR (Common Language Runtime)

NVIDIA’s “PTX”

CIS 371 (Martin): Instruction Set Architectures 70

Ultimate Compatibility Trick

•  Support old ISA by…
•  …having a simple processor for that ISA somewhere in the system
•  How first Itanium supported x86 code

•  x86 processor (comparable to Pentium) on chip
•  How PlayStation2 supported PlayStation games

•  Used PlayStation processor for I/O chip & emulation

CIS 371 (Martin): Instruction Set Architectures 71

Current Winner (Revenue): CISC
•  x86 was first 16-bit microprocessor by ~2 years

•  IBM put it into its PCs because there was no competing choice
•  Rest is historical inertia and “financial feedback”

•  x86 is most difficult ISA to implement and do it fast but…
•  Because Intel sells the most non-embedded processors…
•  It has the most money…
•  Which it uses to hire more and better engineers…
•  Which it uses to maintain competitive performance …
•  And given competitive performance, compatibility wins…
•  So Intel sells the most non-embedded processors…

•  AMD as a competitor keeps pressure on x86 performance

•  Moore’s law has helped Intel in a big way
•  Most engineering problems can be solved with more transistors

CIS 371 (Martin): Instruction Set Architectures 72

Current Winner (Volume): RISC

•  ARM (Acorn RISC Machine → Advanced RISC Machine)
•  First ARM chip in mid-1980s (from Acorn Computer Ltd).
•  3 billion units sold in 2009 (>60% of all 32/64-bit CPUs)
•  Low-power and embedded devices (phones, for example)

•  Significance of embedded? ISA Compatibility less powerful force

•  32-bit RISC ISA
•  16 registers, PC is one of them
•  Many addressing modes, e.g., auto increment
•  Condition codes, each instruction can be conditional

•  Multiple implementations
•  X-scale (design was DEC’s, bought by Intel, sold to Marvel)
•  Others: Freescale (was Motorola), Texas Instruments,

STMicroelectronics, Samsung, Sharp, Philips, etc.

CIS 371 (Martin): Instruction Set Architectures 73

Redux: Are ISAs Important?

•  Does “quality” of ISA actually matter?
•  Not for performance (mostly)

•  Mostly comes as a design complexity issue
•  Insn/program: everything is compiled, compilers are good
•  Cycles/insn and seconds/cycle: µISA, many other tricks

•  What about power efficiency? Maybe
•  ARMs are most power efficient today…

•  …but Intel is moving x86 that way (e.g, Intel’s Atom)
•  Open question: can x86 be as power efficient as ARM?

•  Does “nastiness” of ISA matter?
•  Mostly no, only compiler writers and hardware designers see it

•  Even compatibility is not what it used to be
•  Software emulation
•  Open question: will “ARM compatibility” be the next x86?

CIS 371 (Martin): Instruction Set Architectures 74

Summary

•  What is an ISA?
•  A functional contract

•  All ISAs similar in high-level ways
•  But many design choices in details
•  Two “philosophies”: CISC/RISC

•  Difference is blurring

•  Good ISA…
•  Enables high-performance
•  At least doesn’t get in the way

•  Compatibility is a powerful force
•  Tricks: binary translation, µISAs

CPU Mem I/O

System software

App App App

