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with sources that included University of Wisconsin slides 
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CIS 371 (Martin): Instruction Set Architectures 2 

Instruction Set Architecture (ISA) 

•  What is an ISA? 
•  A functional contract 

•  All ISAs similar in high-level ways 
•  But many design choices in details 
•  Two “philosophies”: CISC/RISC 

•  Difference is blurring 

•  Good ISA… 
•  Enables high-performance 
•  At least doesn’t get in the way 

•  Compatibility is a powerful force 
•  Tricks: binary translation, µISAs 

CPU Mem I/O 

System software 

App App App 

CIS 371 (Martin): Instruction Set Architectures 3 

Readings 

•  Readings 
•  Introduction 

•  P&H, Chapter 1 
•  ISAs 

•  P&H, Chapter 2 

Recall from CIS240… 
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240 Review: Applications 

•  Applications (Firefox, iTunes, Skype, Word, Google) 
•  Run on hardware … but how?  
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240 Review: I/O 

•  Apps interact with us & each other via I/O (input/output) 
•  With us: display, sound, keyboard, mouse, touch-screen, camera 
•  With each other: disk, network (wired or wireless) 
•  Most I/O proper is analog-digital and domain of EE 
•  I/O devices present rest of computer a digital interface (1s and 0s)  
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240 Review: OS 

•  I/O (& other services) provided by OS (operating system) 
•  A super-app with privileged access to all hardware 
•  Abstracts away a lot of the nastiness of hardware 
•  Virtualizes hardware to isolate programs from one another 

•  Each application is oblivious to presence of others 
•  Simplifies programming, makes system more robust and secure 
•  Privilege is key to this 

•  Commons OSes are Windows, Linux, MACOS 

CIS 371 (Martin): Instruction Set Architectures 7 

240 Review: ISA 

•  App/OS are software … execute on hardware 
•  HW/SW interface is ISA (instruction set architecture) 

•  A “contract” between SW and HW 
•  Encourages compatibility, allows SW/HW to evolve independently 
•  Functional definition of HW storage locations & operations 

•  Storage locations: registers, memory 
•  Operations: add, multiply, branch, load, store, etc. 

•  Precise description of how to invoke & access them 
•  Instructions (bit-patterns hardware interprets as commands) 
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240 Review: LC4 ISA 

•  LC4: a toy ISA you know 
•  16-bit ISA (what does this mean?) 
•  16-bit insns 
•  8 registers (integer) 
•  ~30 different insns 
•  Simple OS support 

•  Assembly language 
•  Human-readable ISA representation 
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371 Preview: A Real ISA 

•  MIPS: example of real ISA 
•  32/64-bit operations 
•  32-bit insns 
•  64 registers  

•  32 integer, 32 floating point 
•  ~100 different insns 
•  Full OS support 
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Example code is MIPS, but  
all ISAs are similar at some level 

240 Review: Program Compilation 

•  Program written in a “high-level” programming language 
•  C, C++, Java, C# 
•  Hierarchical, structured control: loops, functions, conditionals 
•  Hierarchical, structured data: scalars, arrays, pointers, structures  

•  Compiler: translates program to assembly 
•  Parsing and straight-forward translation 
•  Compiler also optimizes 
•  Compiler itself another application … who compiled compiler? 
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int array[100], sum;!
void array_sum() {!
   for (int i=0; i<100;i++) {!
      sum += array[i];!
   }!
}!

240 Review: Assembly Language 

•  Assembly language 
•  Human-readable representation 

•  Machine language 
•  Machine-readable representation 
•  1s and 0s (often displayed in “hex”) 

•  Assembler 
•  Translates assembly to machine 
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240 Review: Insn Execution Model 
•  The computer is just finite state machine 

•  Registers (few of them, but fast) 
•  Memory (lots of memory, but slower) 
•  Program counter (next insn to execute) 

•  Sometimes called “instruction pointer” 

•  A computer executes instructions 
•  Fetches next instruction from memory 
•  Decodes it (figure out what it does) 
•  Reads its inputs (registers & memory) 
•  Executes it (adds, multiply, etc.) 
•  Write its outputs (registers & memory) 
•  Next insn (adjust the program counter) 

•  Program is just “data in memory” 
•  Makes computers programmable (“universal”) 
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The Sequential Model 

•  Basic structure of all modern ISAs 
•  Often called VonNeuman, but in ENIAC before 

•  Program order: total order on dynamic insns 
•  Order and named storage define computation 

•  Convenient feature: program counter (PC) 
•  Insn itself stored in memory at location pointed to by PC 
•  Next PC is next insn unless insn says otherwise  

•  Processor logically executes loop at left 

•  Atomic: insn finishes before next insn starts 
•  Implementations can break this constraint physically 
•  But must maintain illusion to preserve correctness 

What is an ISA? 
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What Is An ISA? 

•  ISA (instruction set architecture) 
•  A well-defined hardware/software interface 
•  The “contract” between software and hardware 

•  Functional definition of storage locations & operations 
•  Storage locations: registers, memory 
•  Operations: add, multiply, branch, load, store, etc 

•  Precise description of how to invoke & access them 

•  Not in the “contract”: non-functional aspects 
•  How operations are implemented 
•  Which operations are fast and which are slow and when 
•  Which operations take more power and which take less 

•  Instructions  
•  Bit-patterns hardware interprets as commands 
•  Instruction → Insn (instruction is too long to write in slides) 
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A Language Analogy for ISAs 

•  Communication 
•  Person-to-person → software-to-hardware 

•  Similar structure 
•  Narrative → program 
•  Sentence → insn 
•  Verb → operation (add, multiply, load, branch) 
•  Noun → data item (immediate, register value, memory value) 
•  Adjective → addressing mode 

•  Many different languages, many different ISAs 
•  Similar basic structure, details differ (sometimes greatly) 

•  Key differences between languages and ISAs 
•  Languages evolve organically, many ambiguities, inconsistencies 
•  ISAs are explicitly engineered and extended, unambiguous 
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LC4 vs Real ISAs 
•  LC4 has the basic features of a real-world ISAs 

±  LC4 lacks a good bit of realism 
•  Address size is only 16 bits  
•  Only one data type (16-bit signed integer) 
•  Little support for system software, none for multiprocessing (later) 

•  Many real-world ISAs to choose from: 
•  Intel x86 
•  MIPS (used throughout in book) 
•  ARM 
•  PowerPC 
•  SPARC 
•  Intel’s Itanium 
•  Historical: IBM 370, VAX, Alpha, PA-RISC, 68k, … 

ISA Design Goals  
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What Makes a Good ISA? 

•  Programmability 
•  Easy to express programs efficiently? 

•  Performance/Implementability 
•  Easy to design high-performance implementations? 
•  More recently 

•  Easy to design low-power implementations? 
•  Easy to design low-cost implementations? 

•  Compatibility 
•  Easy to maintain as languages, programs, and technology evolve? 
•  x86 (IA32) generations: 8086, 286, 386, 486, Pentium, PentiumII, 

PentiumIII, Pentium4, Core2, Core i7, … 
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Programmability 

•  Easy to express programs efficiently? 
•  For whom? 

•  Before 1985: human 
•  Compilers were terrible, most code was hand-assembled 
•  Want high-level coarse-grain instructions 

•  As similar to high-level language as possible 

•  After 1985: compiler 
•  Optimizing compilers generate much better code that you or I 
•  Want low-level fine-grain instructions 

•  Compiler can’t tell if two high-level idioms match exactly or not 

•  More on this later in this set of slides… 

Performance, Performance, Performance 

•  How long does it take for a program to execute? 
•  Three factors 

1. How many insn must execute to complete program? 
•  Instructions per program during execution 
•  “Dynamic insn count” (not number of “static” insns in program) 

2. How quickly does the processor “cycle”? 
•  Clock frequency (cycles per second)         1 gigahertz (Ghz) 
•  or expressed as reciprocal, Clock period     nanosecond (ns) 
•  Worst-case delay through circuit for a particular design 

3. How many cycles does each instruction take to execute? 
•  Cycles per Instruction (CPI) or reciprocal, Insn per Cycle (IPC) 
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Maximizing Performance 

•  Instructions per program: 
•  Determined by program, compiler, instruction set architecture (ISA) 

•  Cycles per instruction: “CPI” 
•  Typical range today: 2 to 0.5 
•  Determined by program, compiler, ISA, micro-architecture 

•  Seconds per cycle: “clock period” 
•  Typical range today: 2ns to 0.25ns 
•  Reciprocal is frequency: 0.5 Ghz to 4 Ghz (1 Htz = 1 cycle per sec) 
•  Determined by micro-architecture, technology parameters 

•  For minimum execution time, minimize each term 
•  Difficult: often pull against one another 
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Example: Instruction Granularity 

•  CISC (Complex Instruction Set Computing) ISAs 
•  Big heavyweight instructions (lots of work per instruction) 
+  Low “insns/program” 
–  Higher “cycles/insn” and “seconds/cycle”  

•  We have the technology to get around this problem  

•  RISC (Reduced Instruction Set Computer) ISAs 
•  Minimalist approach to an ISA: simple insns only 
+  Low “cycles/insn” and “seconds/cycle”  
–  Higher “insn/program”, but hopefully not as much 

•  Rely on compiler optimizations 
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Compiler Optimizations 
•  Primarily goal: reduce instruction count 

•  Eliminate redundant computation, keep more things in registers 
+ Registers are faster, fewer loads/stores 
–  An ISA can make this difficult by having too few registers 

•  But also… 
•  Reduce branches and jumps (later) 
•  Reduce cache misses (later) 
•  Reduce dependences between nearby insns (later) 

–  An ISA can make this difficult by having implicit dependences 

•  How effective are these? 
+  Can give 4X performance over unoptimized code 
–  Collective wisdom of 40 years (“Proebsting’s Law”): 4% per year 
•  Funny but … shouldn’t leave 4X performance on the table 

Compiler Optimization Example (LC4) 

•  Left: common sub-expression elimination 
•  Remove calculations whose results are already in some register 

•  Right: register allocation 
•  Keep temporary in register across statements, avoid stack spill/fill 
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ISA Code Example 
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Array Sum Loop: LC4 
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   .DATA!
array .BLKW #100!
sum   .FILL #0!
   .CODE!
   .FALIGN!
array_sum!
    CONST R5, #0!
    LEA R1, array!
    LEA R2, sum!
L1!
    LDR R3, R1, #0!
    LDR R4, R2, #0!
    ADD R4, R3, R4!
    STR R4, R2, #0!
    ADD R1, R1, #1!
    ADD R5, R5, #1!
    CMPI R5, #100!
    BRn L1!

int array[100];!
int sum;!
void array_sum() {!
   for (int i=0; i<100;i++) 

{!
      sum += array[i];!
   }!
}!



Array Sum Loop: LC4  MIPS 
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   .DATA!
array .BLKW #100!
sum   .FILL #0!
   .CODE!
   .FALIGN!
array_sum!
    CONST R5, #0!
    LEA R1, array!
    LEA R2, sum!
L1!
    LDR R3, R1, #0!
    LDR R4, R2, #0!
    ADD R4, R3, R4!
    STR R4, R2, #0!
    ADD R1, R1, #1!
    ADD R5, R5, #1!
    CMPI R5, #100!
    BRn L1!

    .data!
array: .space 100!
sum:   .word 0!

    .text!
array_sum:!
    li $5, 0!
    la $1, array!
    la $2, sum!
L1:!
    lw $3, 0($1)!
    lw $4, 0($2)!
    add $4, $3, $4!
    sw $4, 0($2)!
    addi $1, $1, 1!
    addi $5, $5, 1!
    li $6, 100!
    blt $5, $6, L1!

Array Sum Loop: LC4  x86 

CIS 371 (Martin): Instruction Set Architectures 30 

   .DATA!
array .BLKW #100!
sum   .FILL #0!
   .CODE!
   .FALIGN!
array_sum!
    CONST R5, #0!
    LEA R1, array!
    LEA R2, sum!
L1!
    LDR R3, R1, #0!
    LDR R4, R2, #0!
    ADD R4, R3, R4!
    STR R4, R2, #0!
    ADD R1, R1, #1!
    ADD R5, R5, #1!
    CMPI R5, #100!
    BRn L1!

    .LFE2!
    .comm array,400,32!
    .comm sum,4,4!

    .globl array_sum!
array_sum:!
    movl $0, -4(%rbp)!

.L1:!
    movl -4(%rbp), %eax!
    movl array(,%eax,4), %edx!
    movl sum(%rip), %eax !
    addl %edx, %eax!
    movl %eax, sum(%rip)!
    addl $1, -4(%rbp)!
    cmpl $99,-4(%rbp)!
    jle .L1!

x86 Operand Model 

•  x86 uses explicit accumulators 
•  Both register and memory 
•  Distinguished by addressing mode 
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Array Sum Loop: x86  Optimized x86 

32 

.LFE2!
    .comm array,400,32!
    .comm sum,4,4!

    .globl array_sum!
array_sum:!
    movl $0, -4(%rbp)!

.L1:!
    movl -4(%rbp), %eax!
    movl array(,%eax,4), %edx!
    movl sum(%rip), %eax !
    addl %edx, %eax!
    movl %eax, sum(%rip)!
    addl $1, -4(%rbp)!
    cmpl $99,-4(%rbp)!
    jle .L1!
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Aspects of ISAs 
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Length and Format 

•  Length 
•  Fixed length 

•  Most common is 32 bits 
+ Simple implementation (next PC often just PC+4) 
–  Code density: 32 bits to increment a register by 1 

•  Variable length 
+ Code density 

•  x86 can do increment in one 8-bit instruction 
–  Complex fetch (where does next instruction begin?) 

•  Compromise: two lengths 
•  E.g., MIPS16 or ARM’s Thumb 

•  Encoding 
•  A few simple encodings simplify decoder 

•  x86 decoder one nasty piece of logic  

Fetch[PC] 
Decode 

Read Inputs 
Execute 

Write Output 
Next PC 
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LC4/MIPS/x86 Length and Encoding 

•  LC4: 2-byte insns, 3 formats 

•  MIPS: 4-byte insns, 3 formats 

•  x86: 1–16 byte insns, many formats 
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Operations and Datatypes 
•  Datatypes 

•  Software: attribute of data 
•  Hardware: attribute of operation, data is just 0/1’s 

•  All processors support 
•  Integer arithmetic/logic (8/16/32/64-bit) 
•  IEEE754 floating-point arithmetic (32/64-bit) 

•  More recently, most processors support 
•  “Packed-integer” insns, e.g., MMX 
•  “Packed-floating point” insns, e.g., SSE/SSE2 
•  For multimedia, more about these later 

•  Other, infrequently supported, data types 
•  Decimal, other fixed-point arithmetic 

Fetch 
Decode 

Read Inputs 
Execute 

Write Output 
Next Insn 
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LC4/MIPS/x86 Operations and Datatypes 
•  LC4 

•  16-bit integer: add, and, not, sub, mul, div, or, xor, shifts 
•  No floating-point 

•  MIPS 
•  32(64) bit integer: add, sub, mul, div, shift, rotate, and, or, not, xor 
•  32(64) bit floating-point: add, sub, mul, div 

•  x86 
•  32(64) bit integer: add, sub, mul, div, shift, rotate, and, or, not, xor 
•  80-bit floating-point: add, sub, mul, div, sqrt 
•  64-bit packed integer (MMX): padd, pmul… 
•  64(128)-bit packed floating-point (SSE/2): padd, pmul… 
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Where Does Data Live? 

•  Registers 
•  Named directly in instructions 
•  “short term memory” 
•  Faster than memory, quite handy 

•  Memory 
•  Fundamental storage space 
•  “longer term memory” 

•  Immediates 
•  Values spelled out as bits in instructions 
•  Input only 

Fetch 
Decode 

Read Inputs 
Execute 

Write Output 
Next Insn 
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How Many Registers? 

•  Registers faster than memory, have as many as possible? 
•  No 

•  One reason registers are faster: there are fewer of them 
•  Small is fast (hardware truism) 

•  Another: they are directly addressed (no address calc) 
–  More registers, means more bits per register in instruction 
–  Thus, fewer registers per instruction or larger instructions 

•  Not everything can be put in registers 
•  Structures, arrays, anything pointed-to 
•  Although compilers are getting better at putting more things in 

–  More registers means more saving/restoring 
•  Across function calls, traps, and context switches 

•  Trend: more registers: 8 (x86) → 32 (MIPS) → 128 (IA64) 
•  64-bit x86 has 16 64-bit integer and 16 128-bit FP registers  
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LC4/MIPS/x86 Registers 

•  LC4 
•  8 16-bit integer registers 
•  No floating-point registers 

•  MIPS 
•  32 32-bit integer registers ($0 hardwired to 0) 
•  32 32-bit floating-point registers (or 16 64-bit registers) 

•  x86 
•  8 8/16/32-bit integer registers (not general purpose) 
•  No floating-point registers! 

•  64-bit x86 
•  16 64-bit integer registers 
•  16 128-bit floating-point registers 
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How Much Memory? Address Size 
•  What does “64-bit” in a 64-bit ISA mean? 

•  Each program can address (i.e., use) 264 bytes 

•  64 is the virtual address (VA) size 
•  Alternative (wrong) definition: width of arithmetic operations 

•  Most critical, inescapable ISA design decision 
•  Too small? Will limit the lifetime of ISA 
•  May require nasty hacks to overcome (E.g., x86 segments) 

•  x86 evolution: 
•  4-bit (4004), 8-bit (8008), 16-bit (8086), 24-bit (80286),  
•  32-bit + protected memory (80386) 
•  64-bit (AMD’s Opteron & Intel’s Pentium4) 

•  All ISAs moving to 64 bits (if not already there) 
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LC4/MIPS/x86 Memory Size 

•  LC4 
•  16-bit (216 16-bit words) x 2 (split data and instruction memory) 

•  MIPS 
•  32-bit 
•  64-bit 

•  x86 
•  8086: 16-bit 
•  80286: 24-bit 
•  80386: 32-bit 
•  AMD Opteron/Athlon64, Intel’s newer Pentium4, Core 2: 64-bit 
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How Are Memory Locations Specified? 

•  Registers are specified directly 
•  Register names are short, can be encoded in instructions 
•  Some instructions implicitly read/write certain registers  

•  How are addresses specified? 
•  Addresses are as big or bigger than insns 
•  Addressing mode: how are insn bits converted to addresses? 
•  Think about: what high-level idiom addressing mode captures 
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Memory Addressing 

•  Addressing mode: way of specifying address 
•  Used in memory-memory or load/store instructions in register ISA 

•  Examples 
•  Displacement:  R1=mem[R2+immed]  
•  Index-base:  R1=mem[R2+R3]  
•  Memory-indirect: R1=mem[mem[R2]]  
•  Auto-increment: R1=mem[R2], R2= R2+1 
•  Auto-indexing: R1=mem[R2+immed], R2=R2+immed 
•  Scaled:  R1=mem[R2+R3*immed1+immed2] 
•  PC-relative: R1=mem[PC+imm] 

•  What high-level program idioms are these used for? 
•  What implementation impact? What impact on insn count? 
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LC4/MIPS/x86 Addressing Modes 
•  LC4 

•  Displacement: R1+offset (6-bit) 

•  MIPS 
•  Displacement: R1+offset (16-bit) 

•  Experiments showed this covered 80% of accesses on VAX 

•  x86 (MOV instructions) 
•  Absolute: zero + offset (8/16/32-bit) 
•  Displacement: R1+offset (8/16/32-bit) 
•  Indexed: R1+R2 
•  Scaled: R1 + (R2*Scale) + offset (8/16/32-bit)      Scale = 1, 2, 4, 8 
•  PC-relative: PC + offset (32-bit) 

x86 Addressing Modes 
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Two More Addressing Issues 
•  Access alignment: address % size == 0? 

•  Aligned: load-word @XXXX00, load-half @XXXXX0 
•  Unaligned: load-word @XXXX10, load-half @XXXXX1 
•  Question: what to do with unaligned accesses (uncommon case)? 

•  Support in hardware? Makes all accesses slow 
•  Trap to software routine? Possibility 
•  Use regular instructions 

•  Load, shift, load, shift, and 
•  MIPS? ISA support: unaligned access using two instructions 

lwl @XXXX10; lwr @XXXX10 

•  Endian-ness: arrangement of bytes in a word 
•  Big-endian: sensible order (e.g., MIPS, PowerPC)  

•  A 4-byte integer: “00000000 00000000 00000010 00000011” is 515  
•  Little-endian: reverse order (e.g., x86) 

•  A 4-byte integer: “00000011 00000010 00000000 00000000 ” is 515 
•  Why little endian? To be different? To be annoying? Nobody knows 
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How Many Explicit Register Operands 
•  Operand model: how many explicit operands 

•  3: general-purpose 
add R1,R2,R3 means: R1 = R2 + R3    (MIPS uses this) 

•  2: multiple explicit accumulators (output doubles as input) 
add R1,R2 means: R1 = R1 + R2   (x86 uses this) 

•  1: one implicit accumulator 
add R1 means: ACC = ACC + [R1] 

•  4+: useful only in special situations 
•  Fused multiply & accumulate instruction 

•  Why have fewer? 
•  Primarily code density (size of each instruction in program binary) 
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Operand Model: Register or Memory? 
•  “Load/store” architectures 

•  Memory access instructions (loads and stores) are distinct 
•  Separate addition, subtraction, divide, etc. operations 
•  Examples: MIPS, ARM, SPARC, PowerPC 

•  Alternative: mixed operand model (x86, VAX) 
•  Operand can be from register or memory 
•  x86 example:  addl 100, 4(%eax)  

•  1. Loads from memory location [4 + %eax] 
•  2. Adds “100” to that value 
•  3. Stores to memory location [4 + %eax] 
•  Would requires three instructions in MIPS, for example.   
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LC4/MIPS/x86 Operand Models 

•  LC4 
•  Integer: 8 general-purpose registers, load-store 
•  Floating-point: none 

•  MIPS 
•  Integer/floating-point: 32 general-purpose registers, load-store 

•  x86 
•  Integer (8 registers) reg-reg, reg-mem, mem-reg, but no mem-mem 
•  Floating point: stack (why x86 floating-point lagged for years) 

•  SSE introduced 16 general purpose floating-point registers 
•  Note: integer push, pop for managing software stack 
•  Note: also reg-mem and mem-mem string functions in hardware 

•  x86-64 
•  Integer/floating-point: 16 registers 

x86 Operand Model: Accumulators 

•  x86 uses explicit accumulators 
•  Both register and memory 
•  Distinguished by addressing mode 
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Operand Model & Compiler Optimizations 

•  How do operand model & addressing mode affect compiler? 

•  Again, what does a compiler try to do? 
•  Reduce insn count, reduce load/store count (important), schedule 

•  What features enable or limit these? 
+  (Many) general-purpose registers let you reduce stack accesses 
−  Implicit operands clobber values 

• addl %edx, %eax destroys initial value in %eax!
•  Requires additional insns to preserve if needed 

−  Implicit operands also restrict scheduling 
•  Classic example, condition codes (flags) 

•  Result: you want a general-purpose register load-store ISA (MIPS) 
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Control Transfers 

•  Default next-PC is PC + sizeof(current insn) 

•  Branches and jumps can change that 
•  Otherwise dynamic program == static program  

•  Computing targets: where to jump to 
•  For all branches and jumps 
•  PC-relative: for branches and jumps with function 
•  Absolute: for function calls 
•  Register indirect: for returns, switches & dynamic calls 

•  Testing conditions: whether to jump at all 
•  For (conditional) branches only 

Fetch 
Decode 

Read Inputs 
Execute 

Write Output 
Next Insn 
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Control Transfers I: Computing Targets 

•  The issues 
•  How far (statically) do you need to jump? 

•  Not far within procedure, further from one procedure to another 
•  Do you need to jump to a different place each time? 

•  PC-relative 
•  Position-independent within procedure 
•  Used for branches and jumps within a procedure 

•  Absolute 
•  Position independent outside procedure 
•  Used for procedure calls 

•  Indirect (target found in register) 
•  Needed for jumping to dynamic targets 
•  Used for returns, dynamic procedure calls, switch statements 
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Control Transfers II: Testing Conditions 
•  Compare and branch insns 

branch-less-than R1,10,target 
+  Fewer instructions 
–  Two ALUs: one for condition, one for target address 
–  Less room for target in insn 
–  Extra latency 

•  Implicit condition codes or “flags” (x86, LC4) 
cmp R1,10   // sets “negative” flag 
branch-neg target 

+  More room for target in insn, condition codes often set “for free” 
+  Branch insn simple and fast 
–  Implicit dependence is tricky 

•  Condition registers, separate branch insns (MIPS) 
set-less-than R2,R1,10 
branch-not-equal-zero R2,target 

±  A compromise 
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LC4, MIPS, x86 Control Transfers 
•  LC4 

•  9-bit offset PC-relative branches (condition codes) 
•  11-bit offset PC-relative jumps 
•  11-bit absolute 16-byte aligned calls 

•  MIPS 
•  16-bit offset PC-relative conditional branches 

•  Uses register for condition 
•  Compare 2 regs: beq, bne or reg to 0: bgtz, bgez, bltz, blez 

+ Don’t need adder for these, cover 80% of cases 
•  Explicit condition registers: slt, sltu, slti, sltiu, etc. 

•  26-bit target absolute jumps and calls 

•  x86 
•  8-bit offset PC-relative branches 

•  Uses condition codes 
•  Explicit compare instructions (and others) to set condition codes 



ISAs Also Include Support For… 

•  Function calling conventions 
•  Which registers are saved across calls, how parameters are passed 

•  Operating systems & memory protection 
•  Privileged mode 
•  System call (TRAP) 
•  Exceptions & interrupts 
•  Interacting with I/O devices 

•  Multiprocessor support 
•  “Atomic” operations for synchronization 

•  Data-level parallelism 
•  Pack many values into a wide register 

•  Intel’s SSE2: four 32-bit float-point values into 128-bit register 
•  Define parallel operations (four “adds” in one cycle) 
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The RISC vs. CISC Debate 
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RISC and CISC 
•  RISC: reduced-instruction set computer 

•  Coined by Patterson in early 80’s 
•  RISC-I (Patterson), MIPS (Hennessy), IBM 801 (Cocke) 
•  Examples: PowerPC, ARM, SPARC, Alpha, PA-RISC 

•  CISC: complex-instruction set computer 
•  Term didn’t exist before “RISC” 
•  Examples: x86, VAX, Motorola 68000, etc. 

•  Philosophical war (one of several) started in mid 1980’s 
•  RISC “won” the technology battles 
•  CISC won the high-end commercial war (1990s to today) 

•  Compatibility a stronger force than anyone (but Intel) thought 
•  RISC won the embedded computing war 
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The Context 

•  Pre 1980 
•  Bad compilers (so assembly written by hand) 
•  Complex, high-level ISAs (easier to write assembly) 
•  Slow multi-chip micro-programmed implementations 

•  Vicious feedback loop 

•  Around 1982 
•  Moore’s Law makes single-chip microprocessor possible… 

•  …but only for small, simple ISAs 
•  Performance advantage of this “integration” was compelling 
•  Compilers had to get involved in a big way 

•  RISC manifesto: create ISAs that… 
•  Simplify single-chip implementation 
•  Facilitate optimizing compilation 
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Role of Compilers 
•  Who is generating assembly code? 

•  Humans like high-level “CISC” ISAs (close to prog. langs) 
+  Can “concretize” (“drill down”): move down a layer 
+  Can “abstract” (“see patterns”): move up a layer 
–  Can deal with few things at a time → like things at a high level 

•  Computers (compilers) like low-level “RISC” ISAs 
+  Can deal with many things at a time → can do things at any level 
+  Can “concretize”: 1-to-many lookup functions (databases) 
–  Difficulties with abstraction: many-to-1 lookup functions (AI) 

•  Translation should move strictly “down” levels 

•  Stranger than fiction 
•  People once thought computers would execute prog. lang. directly 
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Early 1980s: The Tipping Point 
•  Moore’s Law makes single-chip microprocessor possible… 

•  …but only for small, simple ISAs 

•  Performance advantage of “integration” was compelling 

•  RISC manifesto: create ISAs that… 
•  Simplify implementation 
•  Facilitate optimizing compilation 
•  Some guiding principles (“tenets”) 

•  Single cycle execution/hard-wired control 
•  Fixed instruction length, format 
•  Lots of registers, load-store architecture 

•  No equivalent “CISC manifesto” 
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The RISC Design Tenets 
•  Single-cycle execution 

•  CISC: many multicycle operations 
•  Hardwired (simple) control 

•  CISC: “microcode” for multi-cycle operations 

•  Load/store architecture 
•  CISC: register-memory and memory-memory 

•  Few memory addressing modes 
•  CISC: many modes 

•  Fixed-length instruction format 
•  CISC: many formats and lengths 

•  Reliance on compiler optimizations 
•  CISC: hand assemble to get good performance 

•  Many registers (compilers are better at using them) 
•  CISC: few registers 
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CISCs and RISCs 

•  The CISCs: x86, VAX (Virtual Address eXtension to PDP-11) 
•  Variable length instructions: 1-321 bytes!!! 
•  14 registers + PC + stack-pointer + condition codes 
•  Data sizes: 8, 16, 32, 64, 128 bit, decimal, string 
•  Memory-memory instructions for all data sizes 
•  Special insns: crc, insque, polyf, and a cast of hundreds 
•  x86: “Difficult to explain and impossible to love” 

•  The RISCs: MIPS, PA-RISC, SPARC, PowerPC, Alpha, ARM 
•  32-bit instructions 
•  32 integer registers, 32 floating point registers, load-store 
•  64-bit virtual address space 
•  Few addressing modes 
•  Why so many basically similar ISAs?  Everyone wanted their own  
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The Debate 
•  RISC argument 

•  CISC is fundamentally handicapped 
•  For a given technology, RISC implementation will be better (faster) 

•  Current technology enables single-chip RISC 
•  When it enables single-chip CISC, RISC will be pipelined 
•  When it enables pipelined CISC, RISC will have caches 
•  When it enables CISC with caches, RISC will have next thing... 

•  CISC rebuttal  
•  CISC flaws not fundamental, can be fixed with more transistors 
•  Moore’s Law will narrow the RISC/CISC gap (true) 

•  Good pipeline: RISC = 100K transistors, CISC = 300K 
•  By 1995: 2M+ transistors had evened playing field 

•  Software costs dominate, compatibility is paramount 
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Compatibility 

•  In many domains, ISA must remain compatible 
•  IBM’s 360/370 (the first “ISA family”) 
•  Another example: Intel’s x86 and Microsoft Windows 

•  x86 one of the worst designed ISAs EVER, but survives 

•  Backward compatibility 
•  New processors supporting old programs 

•  Can’t drop features (caution in adding new ISA features) 
•  Or, update software/OS to emulate dropped features (slow)  

•  Forward (upward) compatibility 
•  Old processors supporting new programs 

•  Include a “CPU ID” so the software can test of features 
•  Add ISA hints by overloading no-ops (example: x86’s PAUSE) 
•  New firmware/software on old processors to emulate new insn 
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Intel’s Compatibility Trick: RISC Inside 
•  1993: Intel wanted “out-of-order execution” in Pentium Pro 

•  Hard to do with a coarse grain ISA like x86 
•  Solution? Translate x86 to RISC micro-ops (µops) in hardware 

push $eax  
becomes (we think, uops are proprietary) 
store $eax, -4($esp)  
addi $esp,$esp,-4 

+  Processor maintains x86 ISA externally for compatibility 
+  But executes RISC µISA internally for implementability 
•  Given translator, x86 almost as easy to implement as RISC 

•  Intel implemented “out-of-order” before any RISC company 
•  “out-of-order” also helps x86 more (because ISA limits compiler) 

•  Also used by other x86 implementations (AMD) 
•  Different µops for different designs 

•  Not part of the ISA specification, not publically disclosed 

Potential Micro-op Scheme 

•  Most instructions are a single micro-op 
•  Add, xor, compare, branch, etc. 
•  Loads   example:    mov -4(%rax), %ebx 
•  Stores   example:   mov %ebx, -4(%rax) 

•  Each memory access adds a micro-op 
•  “addl -4(%rax), %ebx” is two micro-ops (load, add) 
•  “addl %ebx, -4(%rax)” is three micro-ops (load, add, store) 

•  Function call (CALL) – 4 uops 
•  Get program counter, store program counter to stack,  

adjust stack pointer, unconditional jump to function start  

•  Return from function (RET) – 3 uops  
•  Adjust stack pointer, load return address from stack, jump register 

•  Again, just a basic idea, micro-ops are specific to each chip 
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Translation and Virtual ISAs 

•  New compatibility interface: ISA + translation software 
•  Binary-translation: transform static image, run native 
•  Emulation: unmodified image, interpret each dynamic insn 

•  Typically optimized with just-in-time (JIT) compilation 
•  Examples: FX!32 (x86 on Alpha), Rosetta (PowerPC on x86) 
•  Performance overheads reasonable (many recent advances) 

•  Virtual ISAs: designed for translation, not direct execution 
•  Target for high-level compiler (one per language) 
•  Source for low-level translator (one per ISA) 
•  Goals: Portability (abstract hardware nastiness), flexibility over time 
•  Examples: Java Bytecodes, C# CLR (Common Language Runtime) 

NVIDIA’s “PTX” 
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Ultimate Compatibility Trick 

•  Support old ISA by… 
•  …having a simple processor for that ISA somewhere in the system 
•  How first Itanium supported x86 code 

•  x86 processor (comparable to Pentium) on chip 
•  How PlayStation2 supported PlayStation games 

•  Used PlayStation processor for I/O chip & emulation 
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Current Winner (Revenue): CISC 
•  x86 was first 16-bit microprocessor by ~2 years 

•  IBM put it into its PCs because there was no competing choice 
•  Rest is historical inertia and “financial feedback” 

•  x86 is most difficult ISA to implement and do it fast but… 
•  Because Intel sells the most non-embedded processors… 
•  It has the most money…  
•  Which it uses to hire more and better engineers… 
•  Which it uses to maintain competitive performance … 
•  And given competitive performance, compatibility wins… 
•  So Intel sells the most non-embedded processors… 

•  AMD as a competitor keeps pressure on x86 performance 

•  Moore’s law has helped Intel in a big way 
•  Most engineering problems can be solved with more transistors 
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Current Winner (Volume): RISC 

•  ARM (Acorn RISC Machine → Advanced RISC Machine) 
•  First ARM chip in mid-1980s (from Acorn Computer Ltd). 
•  3 billion units sold in 2009 (>60% of all 32/64-bit CPUs) 
•  Low-power and embedded devices (phones, for example) 

•  Significance of embedded? ISA Compatibility less powerful force 

•  32-bit RISC ISA 
•  16 registers, PC is one of them 
•  Many addressing modes, e.g., auto increment 
•  Condition codes, each instruction can be conditional 

•  Multiple implementations 
•  X-scale (design was DEC’s, bought by Intel, sold to Marvel) 
•  Others: Freescale (was Motorola), Texas Instruments, 

STMicroelectronics, Samsung, Sharp, Philips, etc. 
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Redux: Are ISAs Important? 

•  Does “quality” of ISA actually matter? 
•  Not for performance (mostly) 

•  Mostly comes as a design complexity issue 
•  Insn/program: everything is compiled, compilers are good   
•  Cycles/insn and seconds/cycle: µISA, many other tricks 

•  What about power efficiency?  Maybe 
•  ARMs are most power efficient today… 

•  …but Intel is moving x86 that way (e.g, Intel’s Atom) 
•  Open question: can x86 be as power efficient as ARM?  

•  Does “nastiness” of ISA matter? 
•  Mostly no, only compiler writers and hardware designers see it 

•  Even compatibility is not what it used to be 
•  Software emulation 
•  Open question: will “ARM compatibility” be the next x86? 
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Summary 

•  What is an ISA? 
•  A functional contract 

•  All ISAs similar in high-level ways 
•  But many design choices in details 
•  Two “philosophies”: CISC/RISC 

•  Difference is blurring 

•  Good ISA… 
•  Enables high-performance 
•  At least doesn’t get in the way 

•  Compatibility is a powerful force 
•  Tricks: binary translation, µISAs  

CPU Mem I/O 

System software 
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