
CIS 371 (Martin): Digital Logic & Hardware Description 1

CIS 371
Computer Organization and Design

Unit 2: Digital Logic & Hardware Description

Based on slides by Prof. Amir Roth & Prof. Milo Martin

CIS 371 (Martin): Digital Logic & Hardware Description 2

This Unit: Digital Logic & Hdw Description

•  Transistors & frabrication
•  Digital logic basics

•  Focus on useful components

•  Hardware design methods
•  Introduction to Verilog

CPU Mem I/O

System software

App App App

CIS 371 (Martin): Digital Logic & Hardware Description 3

Readings

•  Digital logic
•  P&H, Appendix C

•  Manufacturing
•  P&H, Section 1.7

•  See webpage for Verilog HDL resources

CIS 371 (Martin): Digital Logic & Hardware Description 4

Motivation: Implementing an ISA

•  Datapath: performs computation (registers, ALUs, etc.)
•  ISA specific: can implement every insn (single-cycle: in one pass!)

•  Control: determines which computation is performed
•  Routes data through datapath (which regs, which ALU op)

•  Fetch: get insn, translate opcode into control
•  Fetch → Decode → Execute “cycle”

PC
Insn

memory
Register

File
Data

Memory

control

datapath

fetch

CIS 371 (Martin): Digital Logic & Hardware Description 5

Two Types of Components

•  Purely combinational: stateless computation
•  ALUs, muxes, control
•  Arbitrary Boolean functions

•  Combinational/sequential: storage
•  PC, insn/data memories, register file
•  Internally contain some combinational components

PC
Insn

memory
Register

File
Data

Memory

control

datapath

fetch

Example Datapath

CIS 371 (Martin): Digital Logic & Hardware Description 6

Transistors & Fabrication

CIS 371 (Martin): Digital Logic & Hardware Description 7 CIS 371 (Martin): Digital Logic & Hardware Description 8

Intel
Pentium M
Wafer

CIS 371 (Martin): Digital Logic & Hardware Description 9

Semiconductor Technology

•  Basic technology element: MOSFET
•  Solid-state component acts like electrical switch
•  MOS: metal-oxide-semiconductor

•  Conductor, insulator, semi-conductor

•  FET: field-effect transistor
•  Channel conducts source→drain only when voltage applied to gate

•  Channel length: characteristic parameter (short → fast)
•  Aka “feature size” or “technology”
•  Currently: 0.022 micron (µm), 22 nanometers (nm)
•  Continued miniaturization (scaling) known as “Moore’s Law”

•  Won’t last forever, physical limits approaching (or are they?)

channel source drain
insulator

gate

Substrate
channel

source drain

gate

Gate dielectric today is only a few
molecular layers thick

CIS 371 (Martin): Digital Logic & Hardware Description 10

CIS 371 (Martin): Digital Logic & Hardware Description 11

Transistors
©

IB
M

IBM Power6 CIS 371 (Martin): Digital Logic & Hardware Description 12

Transistor Geometry: Length & Scaling

•  Transistor length: characteristic of “process generation”
•  “22nm” refers to the transistor gate length

•  Each process generation shrinks transistor length by 1.4x
•  “Moore’s law” -> roughly 2x improvement transistor density
•  Roughly linear improvement in switching speeds (lower resistance)

Gate
Source

Drain

Bulk Si

Width

Length

Length"

Width"Source Drain

Gate

Diagrams © Krste Asanovic, MIT

CIS 371 (Martin): Digital Logic & Hardware Description 13

Manufacturing Steps

Source: P&H

CIS 371 (Martin): Digital Logic & Hardware Description 14

Manufacturing Steps
•  Multi-step photo-/electro-chemical process

•  More steps, higher unit cost

+  Fixed cost mass production ($1 million+ for “mask set”)

CIS 371 (Martin): Digital Logic & Hardware Description 15

Integrated Circuit (IC) Costs

•  Chips built in multi-step chemical processes on wafers
•  Cost / wafer is constant, f(wafer size, number of steps)

•  Chip (die) cost is related to area
•  Larger chips means fewer of them

•  Cost is more than linear in area
•  Why? random defects
•  Larger chips means fewer working ones
•  Chip cost ~ chip areaα"

•  α = 2 to 3"

•  Wafer yield: % wafer that is chips
•  Die yield: % chips that work
•  Yield is increasingly non-binary - fast vs slow chips

CIS 371 (Martin): Digital Logic & Hardware Description 16

Manufacturing Defects

•  Defects can arise
•  Under-/over-doping
•  Over-/under-dissolved insulator
•  Mask mis-alignment
•  Particle contaminants

•  Try to minimize defects
•  Process margins
•  Design rules

•  Minimal transistor size, separation

•  Or, tolerate defects
•  Redundant or “spare” memory cells
•  Can substantially improve yield

Defective:

Defective:

Slow:

Correct:

CIS 371 (Martin): Digital Logic & Hardware Description 17

Wires
Pitch

Width

Length Height

•  Transistors 1-dimensional for design purposes: width
•  Wires 4-dimensional: length, width, height, “pitch”

•  Longer wires have more resistance (slower)
•  “Thinner” wires have more resistance (slower)
•  Closer wire spacing (“pitch”) increases capacitance (slower)

From slides © Krste Asanovic, MIT

IBM CMOS7, 6 layers of copper wiring

CIS 371 (Martin): Digital Logic & Hardware Description 18

Transistors and Wires

©
IB

M

From slides © Krste Asanović, MIT

CIS 371 (Martin): Digital Logic & Hardware Description 19

Complementary MOS (CMOS)

•  Voltages as values
•  Power (VDD) = “1”, Ground = “0”

•  Two kinds of MOSFETs
•  N-transistors

•  Conduct when gate voltage is 1
•  Good at passing 0s

•  P-transistors
•  Conduct when gate voltage is 0
•  Good at passing 1s

•  CMOS
•  Complementary n-/p- networks form boolean logic (i.e., gates)
•  And some non-gate elements too (important example: RAMs)

power (1)

ground (0)

input output
(“node”)

n-transistor

p-transistor

CIS 371 (Martin): Digital Logic & Hardware Description 20

Basic CMOS Logic Gate
•  Inverter: NOT gate

•  One p-transistor, one n-transistor
•  Basic operation
•  Input = 0

•  P-transistor closed, n-transistor open
•  Power charges output (1)

•  Input = 1
•  P-transistor open, n-transistor closed
•  Output discharges to ground (0)

0
1

1 0

CIS 371 (Martin): Digital Logic & Hardware Description

21

Another CMOS Gate Example

•  What is this? Look at truth table
•  0, 0 → 1
•  0, 1 → 1
•  1, 0 → 1
•  1, 1 → 0
•  Result: NAND (NOT AND)
•  NAND is “universal”

•  What function is this?

B A

A

B

output

B

A

A B

output

CIS 371 (Martin): Digital Logic & Hardware Description 22

Digital Building Blocks: Logic Gates

•  Logic gates: implement Boolean functions
•  Basic gates: NOT, NAND, NOR

•  Underlying CMOS transistors are naturally inverting (= NOT)

•  NAND, NOR are “Boolean complete”

NAND NOR

XOR

NOT (Inverter)

A A’ A
B (AB)’ (A+B)’ A

B

BUF OR AND

ANDNOT AND3

A A A
B

A
B

A
B

A
B

A
B
C

AB

AB’ AB’+A’B
(A^B)

A+B

CIS 371 (Martin): Digital Logic & Hardware Description 23

Alternative to Fabrication: FPGA
•  We’ll use FPGAs (Field Programmable Gate Array)

•  Also called Programmable Logic Devices (PLDs)

•  An FPGA is a special type of programmable chip
•  Conceptually, contains a grid of gates
•  The wiring connecting them can be reconfigured electrically

•  Using more transistors as switches
•  Once configured, the FPGA can emulate any digital logic design
•  Tool converts gate-level design to configuration

•  Uses
•  Hardware prototyping (what “we” are doing)
•  Low-volume special-purpose hardware
•  New: computational offload

CIS 371 (Martin): Digital Logic & Hardware Description 24

In Our Lab: Digilent XUP-V2P Boards

•  Program FPGA to run LC4
•  “The project”

•  Hook up keyboard
•  And VGA
•  Game on!

•  Boards have many features
•  Use some for debugging

•  LEDs, switches

•  Other features
•  Ethernet, flash reader
•  256MB SDRAM, audio in/out
•  Can boot Linux!

Digital Logic Review

CIS 371 (Martin): Digital Logic & Hardware Description 25 CIS 371 (Martin): Digital Logic & Hardware Description 26

Digital Building Blocks: Logic Gates

•  Logic gates: implement Boolean functions
•  Basic gates: NOT, NAND, NOR

•  Underlying CMOS transistors are naturally inverting (= NOT)

•  NAND, NOR are “Boolean complete”

NAND NOR

XOR

NOT (Inverter)

A A’ A
B (AB)’ (A+B)’ A

B

BUF OR AND

ANDNOT AND3

A A A
B

A
B

A
B

A
B

A
B
C

AB

AB’ AB’+A’B
(A^B)

A+B

CIS 371 (Martin): Digital Logic & Hardware Description 27

Boolean Functions and Truth Tables

•  Any Boolean function can be represented as a truth table
•  Truth table: point-wise input → output mapping
•  Function is disjunction of all rows in which “Out” is 1

A,B,C → Out
0,0,0 → 0
0,0,1 → 0
0,1,0 → 0
0,1,1 → 0
1,0,0 → 0
1,0,1 → 1
1,1,0 → 1
1,1,1 → 1

•  Example above: Out = AB’C + ABC’ + ABC

CIS 371 (Martin): Digital Logic & Hardware Description 28

Truth Tables and PLAs
•  Implement Boolean function by implementing its truth table

•  Takes two levels of logic
•  Assumes inputs and inverses of inputs are available (usually are)

•  First level: ANDs (product terms)
•  Second level: ORs (sums of product terms)

•  PLA (programmable logic array)
•  Flexible circuit for doing this

CIS 371 (Martin): Digital Logic & Hardware Description 29

PLA Example

•  PLA with 3 inputs, 2 outputs, and 4 product terms
•  Out0 = AB’C + ABC’ + ABC

A

B

C

Out0

Out1

Permanent
connections

Programmable
connections
(unconnected)

CIS 371 (Martin): Digital Logic & Hardware Description 30

Boolean Algebra

•  Boolean Algebra: rules for rewriting Boolean functions
•  Useful for simplifying Boolean functions

•  Simplifying = reducing gate count, reducing gate “levels”
•  Rules: similar to logic (0/1 = F/T)

•  Identity: A1 = A, A+0 = A
•  0/1: A0 = 0, A+1 = 1
•  Inverses: (A’)’ = A
•  Idempotency: AA = A, A+A = A
•  Tautology: AA’ = 0, A+A’ = 1
•  Commutativity: AB = BA, A+B = B+A
•  Associativity: A(BC) = (AB)C, A+(B+C) = (A+B)+C
•  Distributivity: A(B+C) = AB+AC, A+(BC) = (A+B)(A+C)
•  DeMorgan’s: (AB)’ = A’+B’, (A+B)’ = A’B’

CIS 371 (Martin): Digital Logic & Hardware Description 31

Logic Minimization
•  Logic minimization

•  Iterative application of rules to reduce function to simplest form
•  There are tools for automatically doing this

Out = AB’C + ABC’ + ABC
Out = A(B’C + BC’ + BC) // distributivity
Out = A(B’C + (BC’ + BC)) // associativity
Out = A(B’C + B(C’+C)) // distributivity (on B)
Out = A(B’C + B1) // tautology
Out = A(B’C + B) // 0/1
Out = A((B’+B)(C+B)) // distributivity (on +B)
Out = A(1(B+C)) // tautology
Out = A(B+C) // 0/1

CIS 371 (Martin): Digital Logic & Hardware Description 32

Non-Arbitrary Boolean Functions

•  PLAs implement Boolean functions point-wise
•  E.g., represent f(X) = X+5 as [0→5, 1→6, 2→7, 3→8, …]
•  Mainly useful for “arbitrary” functions, no compact representation

•  Many useful Boolean functions are not arbitrary
•  Have a compact implementation
•  Examples

•  Multiplexer
•  Adder

CIS 371 (Martin): Digital Logic & Hardware Description 33

Multiplexer (Mux)

•  Multiplexer (mux): selects output from N inputs
•  Example: 1-bit 4-to-1 mux
•  Not shown: N-bit 4-to-1 mux = N 1-bit 4-to-1 muxes + 1 decoder

A

O B

C

D

S (binary)

S (binary)

A
B
C
D

O

S (1-hot)

CIS 371 (Martin): Digital Logic & Hardware Description 34

Adder

•  Adder: adds/subtracts two 2C binary integers
•  Half adder: adds two 1-bit “integers”, no carry-in
•  Full adder: adds three 1-bit “integers”, includes carry-in
•  Ripple-carry adder: N chained full adders add 2 N-bit integers
•  To subtract: negate B input, set bit 0 carry-in to 1

CIS 371 (Martin): Digital Logic & Hardware Description 35

Full Adder
•  What is the logic for a full adder?

•  Look at truth table

CI A B → C0 S
0 0 0 → 0 0
0 0 1 → 0 1
0 1 0 → 0 1
0 1 1 → 1 0
1 0 0 → 0 1
1 0 1 → 1 0
1 1 0 → 1 0
1 1 1 → 1 1

•  S = C’A’B + C’AB’ + CA’B’ + CAB = C ^ A ^ B
•  CO = C’AB + CA’B + CAB’ + CAB = CA + CB + AB

FA
B

S

CO

A
CI A

B

S

CI

CO

CIS 371 (Martin): Digital Logic & Hardware Description 36

N-bit Adder/Subtracter

S +/- FA
B1

S1 A1

FA
B0

S0 A0

FA BN-1

SN-1 AN-1

1

…

0

+/–

+/–
B

A

•  More later when we cover arithmetic

Hardware Design Methods

CIS 371 (Martin): Digital Logic & Hardware Description 37 CIS 371 (Martin): Digital Logic & Hardware Description 38

Hardware Design Methodologies

•  Fabricating a chip requires a detailed layout
•  All transistors & wires

•  How does a hardware designer describe such design?
•  (Bad) Option #1: draw all the masks “by hand”

•  All 1 billion transistors? Umm…
•  Option #2: use computer-aided design (CAD) tools to help

•  Layout done by engineers with CAD tools or automatically

•  Design levels – uses abstraction
•  Transistor-level design – designer specifies transistors (not layout)
•  Gate-level design – designer specifics gates, wires (not transistors)
•  Higher-level design – designer uses higher-level building blocks

•  Adders, memories, etc.
•  Or logic in terms of and/or/not, and tools translates into gate

Describing Hardware

•  Two general options

•  Schematics
•  Pictures of gates & wires

•  Hardware description languages
•  Use textural descriptions to specify hardware

•  Translation process called “synthesis”
•  Textural description -> gates -> full layout

•  Tries to minimizes the delay and/or number of gates
•  Much like process of compilation of software

CIS 371 (Martin): Digital Logic & Hardware Description 39 CIS 371 (Martin): Digital Logic & Hardware Description 40

Schematics

•  Draw pictures
•  Use a schematic entry program to draw wires, logic blocks, gates
•  Support hierarchical design (arbitrary nesting)
+  Good match for hardware which is inherently spatial, purty
–  Time consuming, “non-scalable” (large designs are unreadable)
•  Rarely used in practice (“real-world” designs are big)

S

O
B

A

CIS 371 (Martin): Digital Logic & Hardware Description 41

Hardware Description Languages (HDLs)
•  Write “code” to describe hardware

•  HDL vs. SDL
•  Specify wires, gates, modules (also hierarchical)
+  Easier to create, edit, modify, scales well
–  Disconnect: must still “think” visually (gets easier with practice)

module mux2to1(S, A, B, Out);!
!input S, A, B;!
!output Out;!
!wire S_, AnS_, BnS;!

!not (S_, S);!
!and (AnS_, A, S_);!
!and (BnS, B, S);!
!or (Out, AnS_, BnS);!

endmodule!

S

Out
B

A

CIS 371 (Martin): Digital Logic & Hardware Description 42

(Hierarchical) HDL Example

•  Build up more complex modules using simpler modules
•  Example: 4-bit wide mux from four 1-bit muxes

module mux2to1_4(S, A, B, Out);!
 input [3:0] A;!
 input [3:0] B;!
 input S;!
 output [3:0] Out;!

 mux2to1 mux0 (S, A[0], B[0], Out[0]);!
 mux2to1 mux1 (S, A[1], B[1], Out[1]);!!
 mux2to1 mux2 (S, A[2], B[2], Out[2]);!
 mux2to1 mux3 (S, A[3], B[3], Out[3]);!
endmodule!

  S
  4

  4
  4  A

  B
  Out

CIS 371 (Martin): Digital Logic & Hardware Description 43

Verilog HDL

•  Verilog: HDL we will be using
•  Syntactically similar to C (by design)
±  Ease of syntax hides fact that this isn’t C (or any SDL)
•  We will use a few lectures to learn Verilog

module mux2to1_4(S, A, B, Out);!
 input [3:0] A;!
 input [3:0] B;!
 input S;!
 output [3:0] Out;!

 mux2to1 mux0 (S, A[0], B[0], Out[0]);!
 mux2to1 mux1 (S, A[1], B[1], Out[1]);!!
 mux2to1 mux2 (S, A[2], B[2], Out[2]);!
 mux2to1 mux3 (S, A[3], B[3], Out[3]);!
endmodule!

These aren’t variables

These aren’t function calls

CIS 371 (Martin): Digital Logic & Hardware Description 44

HDLs are not SDLs (PLs)

•  Similar in some (intentional) ways …
•  Syntax

•  Named entities, constants, scoping, etc.
•  Tool chain: synthesis tool analogous to compiler

•  Multiple levels of representation
•  “Optimization”
•  Multiple targets (portability)

•  “Software” engineering
•  Modular structure and parameterization
•  Libraries and code repositories

•  … but different in many others
•  One of the most difficult conceptual leaps of this course

CIS 371 (Martin): Digital Logic & Hardware Description 45

Hardware is not Software

•  Just two different beasts (or two parts of the same beast)
•  Things that make sense in hardware, don’t in software, vice versa
•  One of the main themes of 371

•  Software is sequential
•  Hardware is inherently parallel, at multiple levels
•  Have to work to get hardware to not do things in parallel

•  Software atoms are purely functional (“digital”)
•  Hardware atoms have quantitative (“analog”) properties too
•  Including correctness properties!

•  Software mostly about quality (“functionality”)
•  Hardware mostly about quantity: performance, area, power, etc.

•  One reason that HDLs are not SDLs
CIS 371 (Martin): Digital Logic & Hardware Description 46

HDL: Behavioral Constructs

•  HDLs have low-level structural constructs
•  Specify hardware structures directly
•  Transistors, gates (and, not) and wires, hierarchy via modules

•  Also have mid-level behavioral constructs
•  Specify operations, not hardware to perform them
•  Low-to-medium-level: &, ~, +, *

•  Also higher-level behavioral constructs
•  High-level: if-then-else, for loops
•  Some of these are synthesizable (some are not)

•  Tools try to guess what you want, often highly inefficient
–  Higher-level → more difficult to know what it will synthesize to!

•  HDLs are both high- and low-level languages in one!
•  And the boundary is not clear!

CIS 371 (Martin): Digital Logic & Hardware Description 47

HDL: Simulation

•  Another use of HDL: simulating & testing a hardware design
•  Cheaper & faster turnaround (no need to fabricate)
•  More visibility into design (“debugger” interface)

•  HDLs have features just for simulation
•  Higher level data types: integers, FP-numbers, timestamps
•  Higher level control structures: for-loops, conditionals
•  Routines for I/O: error messages, file operations
•  Obviously, these cannot be synthesized into circuits

•  Also another reason for HDL/SDL confusion
•  HDLs have “SDL” features for simulation

Verilog HDL

CIS 371 (Martin): Digital Logic & Hardware Description 48

CIS 371 (Martin): Digital Logic & Hardware Description 49

HDL History
•  1970s:

•  First HDLs

•  Late 1970s: VHDL
•  VHDL = VHSIC HDL = Very High Speed Integrated Circuit HDL
•  VHDL inspired by programming languages of the day (Ada)

•  1980s:
•  Verilog first introduced
•  Verilog inspired by the C programming language
•  VHDL standardized

•  1990s:
•  Verilog standardized (Verilog-1995 standard)

•  2000s:
•  Continued evolution (Verilog-2001 standard)

•  Both VHDL and Verilog evolving, still in use today

CIS 371 (Martin): Digital Logic & Hardware Description 50

Verilog HDL

•  Verilog is a (surprisingly) big language
•  Structural constructs at both gate and transistor level
•  Facilities for specifying memories
•  Precise timing specification and simulation
•  Lots of “behavioral” constructs
•  C-style procedural variables, including arrays
•  A pre-processor
•  VPI: Verilog programming interface
•  …

CIS 371 (Martin): Digital Logic & Hardware Description 51

371 Verilog HDL

•  We’re going to learn a focused subset of Verilog
•  Focus on synthesizable constructs
•  Focus on avoiding subtle synthesis errors
•  Use as an educational tool

•  For synthesis
•  Structural constructs at gate-level only
•  A few behavioral constructs

•  Some testing and debugging features

Rule 1: if you haven’t seen it in lecture, you can’t use it!

Rule 1a: when in doubt, ask!

CIS 371 (Martin): Digital Logic & Hardware Description 52

Basic Verilog Syntax

•  Have already seen basic syntax, looks like C
•  C/C++/Java style comments
•  Names are case sensitive, and can use _ (underscore)
•  Avoid: clock, clk, power, pwr, ground, gnd, vdd, vcc, init, reset, rst

•  Some of these are “special” and will silently cause errors

/* this is a module */!
module mux2to1(S, A, B, Out);!

!input S, A, B;!
!output Out;!
!wire S_, AnS_, BnS;!
!// these are gates!
!not (S_, S);!
!and (AnS_, A, S_);!
!and (BnS, B, S);!
!or (Out, AnS_, BnS);!

endmodule!

CIS 371 (Martin): Digital Logic & Hardware Description 53

(Gate-Level) Structural Verilog

module mux2to1(S, A, B, Out);!
 input S, A, B;!
 output Out;!
 wire S_, AnS_, BnS;!
 not (S_, S);!
 and (AnS_, A, S_);!
 and (BnS, B, S);!
 or (Out, AnS_, BnS);!
endmodule!

S

Out
B

A

•  Primitive “data type”: wire
•  Have to declare it

Structural

CIS 371 (Martin): Digital Logic & Hardware Description 54

(Gate-Level) Structural Verilog

module mux2to1(S, A, B, Out);!
 input S, A, B;!
 output Out;!
 wire S_, AnS_, BnS;!
 not (S_, S);!
 and (AnS_, A, S_);!
 and (BnS, B, S);!
 or (Out, AnS_, BnS);!
endmodule!

•  Primitive “operators”: gates
•  Specifically: and, or, xor, nand, nor, xnor, not, buf
•  Can be multi-input: e.g., or (C, A, B, D) (C= A+B+D)
•  “Operator” buf just repeats input signal (may amplify it)

S

Out
B

A

Structural

CIS 371 (Martin): Digital Logic & Hardware Description 55

(Gate-Level) Behavioral Verilog
•  Primitive “operators”: boolean operators

•  Specifically: &, |, ^, ~
•  Can be combined into expressions
•  Can be mixed with structural Verilog

module mux2to1(S, A, B, Out);!
 input S, A, B;!
 output Out;!
 wire S_, AnS_, BnS;!
 assign S_ = ~S;!
 assign AnS_ = A & S_;!
 assign BnS = B & S;!
 assign Out = AnS_ | BnS;!
endmodule!

S

Out
B

A

“Behavioral” (Synthesizable)

CIS 371 (Martin): Digital Logic & Hardware Description 56

Wire Assignment

•  Wire assignment:
•  Connect combinational logic block or other wire to wire input
•  Order of statements not important, executed totally in parallel
•  When right-hand-side changes, it is re-evaluated and re-assigned
•  Designated by the keyword assign!

module mux2to1(S, A, B, Out);!
 input S, A, B;!
 output Out;!
 wire S_, AnS_, BnS;!
 assign S_ = ~S;!
 assign AnS_ = A & S_;!
 assign BnS = B & S;!
 assign Out = AnS_ | BnS;!
endmodule!

S

Out
B

A

“Behavioral” (Synthesizable)

CIS 371 (Martin): Digital Logic & Hardware Description 57

Wire Assignment
•  Assignment can be combined with declaration

wire c = a | b;!

module mux2to1(S, A, B, Out);!
 input S, A, B;!
 output Out;!

 wire S_ = ~S;!
 wire AnS_ = A & S_;!
 wire BnS = B & S;!
 assign Out = AnS_ | BnS;!
endmodule!

S

Out
B

A

“Behavioral” (Synthesizable)

CIS 371 (Martin): Digital Logic & Hardware Description 58

(Gate-Level) Behavioral Verilog

S

Out
B

A

•  Primitive “operators”: boolean operators
•  Specifically: &, |, ^, ~
•  Can be combined into expressions
•  Can be mixed with structural Verilog

“Behavioral” (Synthesizable)

module mux2to1(S, A, B, Out);!
 input S, A, B;!
 output Out;!

 assign Out = (~S & A) | (S & B);!
endmodule!

CIS 371 (Martin): Digital Logic & Hardware Description 59

Easiest Way to do a Mux?

•  Verilog supports ?: conditional assignment operator
•  Much more useful (and common) in Verilog than in C/Java

S

Out
B

A
module mux2to1(S, A, B, Out);!
 input S, A, B;!
 output Out;!

 assign Out = S ? B : A; !
endmodule!

“Behavioral” (Synthesizable)

CIS 371 (Martin): Digital Logic & Hardware Description 60

Wires Are Not C-like Variables!

•  Order of assignment doesn’t matter
•  This works fine
module mux2to1(S, A, B, Out);!
 input S, A, B;!
 output Out;!
 wire S_, AnS_, BnS;!
 assign Out = AnS_ | BnS;!
 assign BnS = B & S;!
 assign AnS_ = A & S_;!
 assign S_ = ~S;!
endmodule!

•  Can’t “reuse” a wire
assign temp = a & b;!
assign temp = a | b;!
•  Actually, you can; but doesn’t do what you think it does

CIS 371 (Martin): Digital Logic & Hardware Description 61

Wire Vectors
•  Wire vectors: also called “arrays” or “buses”!

wire [7:0] w1; // 8 bits, w1[7] is most significant bit!
wire [0:7] w2; // 8 bits, w2[0] is most significant bit!

•  Example:
module 8bit_mux2to1 (S, A, B, Out);!
 input S;!
 input [7:0] A, B;!
 output [7:0] Out;!
 assign Out = S ? B : A; !
endmodule!

•  Operations
•  Bit select: vec[3]
•  Range select: vec[3:2]
•  Concatenate: assign vec = {x, y, z};!

Unlike C, array range is
part of type, not variable!

CIS 371 (Martin): Digital Logic & Hardware Description 62

Repeated Signals

•  Concatenation
 wire vec[2:0] = {x, y, z};!
•  Can also repeat a signal n times
 wire vec[15:0] = {16{x}}; // 16 copies of x!
•  Example uses (what does this do?):
 wire [7:0] out;!
 wire [3:0] A;
 assign out = {{4{1’d0}}, A[3:0]};!
•  What about this?
 assign out = {{4{A[3]}}, A[3:0]};!

CIS 371 (Martin): Digital Logic & Hardware Description 63

Gate-Level Vector Operators
•  Verilog also supports behavioral vector operators

•  Logical bitwise and reduction: ~,&,|,^
wire [7:0] vec1, vec2;!
wire [7:0] vec3 = vec1 & vec2; // bitwise AND!
wire w1 = ~|vec1; // NOR reduction !

•  Integer arithmetic comparison: +,–,*,/,%,==,!=,<,>
wire [7:0] vec4 = vec1 + vec2; // vec1 + vec2!
•  Important: all arithmetic is unsigned, want signed? “roll your own”
•  Good: in signed/unsigned integers: +, –, * produces same output

•  Just a matter of interpretation
•  Bad: in signed/unsigned integers: /, % is not the same
•  Ugly: Xilinx will not synthesize /, % anyway!

•  Our LC4 won’t support DIV and MOD instructions

CIS 371 (Martin): Digital Logic & Hardware Description 64

Why Use a High-Level Operator?
•  Abstraction

•  Why write assembly, when you can write C? (not a great example)

•  Take advantage of built-in high level implementation
•  Virtex-IIPro FPGAs have integer multipliers on them
•  Xilinx will use these rather than synthesizing a multiplier from gates

•  Much faster and more efficient
•  How hard is it for Xilinx to figure out you were doing a multiply?

•  If you use “*”: easy
•  If you “roll your own” using gates: nearly impossible

•  Why not use high-level operators?
•  Less certain what they will synthesize to
•  Or even if it will synthesize at all: e.g., /, %

CIS 371 (Martin): Digital Logic & Hardware Description 65

Wire and Wire Vector Constants
wire [3:0] w = 4’b0101;!
•  The “4” is the number of bits ﻿
•  The “b” means “binary” - “h” for hex, “o” for octal, “d” for decimal
•  The “0101” are the digits (in binary in this case)
wire [3:0] w = 4’d5; // same thing, effectively!
•  Here is a single wire constant
wire w = 1’b0; !

•  A useful example of wire-vector constants:
module mux4to1(Sel, A, B, C, D, Out);!
 input [1:0] Sel;!
 input A, B, C, D;!
 output Out = (Sel == 2’d0) ? A : !
 (Sel == 2’d1) ? B :!
 (Sel == 2’d2) ? C : D; !
endmodule!

CIS 371 (Martin): Digital Logic & Hardware Description 66

Hierarchical Design using Modules

•  Interface specification
module mux2to1(Sel, A, B, Out); !
!input Sel, A, B; !
!output Out;

•  Can also have inout: bidirectional wire (we will not need)

•  Alternative: Verilog 2001 interface specification
module mux2to1(input Sel, A, B, output Out); !

•  Declarations!
•  Internal wires, i.e., “locals”
•  Wires also known as “nets” or “signals”
!wire S_, AnS_, BnS;!

•  Implementation: primitive and module instantiations!
!and (AnS_, A, S_);!

CIS 371 (Martin): Digital Logic & Hardware Description 67

module mux2to1(S, A, B, O);!
!input S, A, B;!
!output O;!
!wire S_, AnS_, BnS;!

!not (S_, S);!
!and (AnS_, A, S_);!
!and (BnS, B, S);!
!or (O, AnS_, BnS);!

endmodule!

S

O
B

A

Verilog Module Example

•  Instantiation: mux2to1 mux0 (cond, in1, in2, out);
•  Non-primitive module instances must be named (helps debugging)

•  Operators and expressions can be used with modules
•  ﻿mux2to1 mux0 (cond1 & cond2, in1, in2, out);!

CIS 371 (Martin): Digital Logic & Hardware Description 68

Hierarchical Verilog Example

•  Build up more complex modules using simpler modules
•  Example: 4-bit wide mux from four 1-bit muxes

•  Again, just “drawing” boxes and wires

module mux2to1_4(Sel, A, B, O);!
!input [3:0] A;!

 input [3:0] B;!
!input Sel;!
!output [3:0] O;!

!mux2to1 mux0 (Sel, A[0], B[0], O[0]);!
!mux2to1 mux1 (Sel, A[1], B[1], O[1]); !!
!mux2to1 mux2 (Sel, A[2], B[2], O[2]);!
!mux2to1 mux3 (Sel, A[3], B[3], O[3]);!

endmodule!

CIS 371 (Martin): Digital Logic & Hardware Description 69

Connections by Name

•  Can (should?) specify module connections by name
•  Helps keep the bugs away
•  Example
mux2to1 mux0 (.S(Sel), .A(A[0]), .B(B[0]), .O(O[0]));!
•  Also, then order doesn’t matter!
mux2to1 mux1 (.A(A[1]), .B(B[1]), .O(O[1]), .S(Sel));!

CIS 371 (Martin): Digital Logic & Hardware Description 70

Per-Instance Module Parameters
•  Module parameters: useful for defines varying bus widths

•  But for widths, not “types” (in HDL “width” == “type”)!

module Nbit_mux2to1 (Sel, A, B, Out);!
! parameter N = 1;!
! input [N-1:0] A, B; !

 input Sel; !
 output [N-1:0] Out;!
 assign Out = Sel ? B : A;!
endmodule!

•  Two ways to instantiate: implicit!
!!Nbit_mux2to1 #(4) mux1 (S, in1, in2, out); !

•  And explicit
!!Nbit_mux2to1 mux1 (S, in1, in2, out);!
!!defparam mux1.N = 4;

•  Multiple parameters per module allowed

CIS 371 (Martin): Digital Logic & Hardware Description 71

Verilog Pre-Processor

•  Like the C pre-processor
•  But uses ` (back-tick) instead of #
•  Constants: `define!

•  No parameterized macros
•  Use ` before expanding constant macro
`define letter_A 8’h41!
wire w[7:0] = `letter_A;!

•  Conditional compilation: `ifdef, `endif!
•  File inclusion: `include!

•  Parameter vs `define
•  Parameter only for “per instance” constants
•  `define for “global” constants

Sequential Logic

CIS 371 (Martin): Digital Logic & Hardware Description 72

CIS 371 (Martin): Digital Logic & Hardware Description 73

Two Types of Digital Circuits
•  Combinational Logic

•  Logic without state variables
•  Examples: adders, multiplexers, decoders, encoders
•  No clock involved

•  Sequential Logic
•  Logic with state variables
•  State variables: latches, flip-flops, registers, memories
•  Clocked
•  State machines, multi-cycle arithmetic, processors

•  Sequential Logic in Verilog
•  Special idioms using behavioral constructs that synthesize into

latches, memories

CIS 371 (Martin): Digital Logic & Hardware Description 74

Sequential Logic & Synchronous Systems

•  Processors are complex fine state machines (FSMs)
•  Combinational (compute) blocks separated by storage elements

•  State storage: memories, registers, etc.
•  Synchronous systems

•  Clock: global signal acts as write enable for all storage elements
•  Typically marked as triangle

•  All state elements write together, values move forward in lock-step
+  Simplifies design: design combinational blocks independently

•  Aside: asynchronous systems
•  Same thing, but … no clock
•  Values move forward using explicit handshaking
±  May have some advantages, but difficult to design

Combinational
Logic

Storage
Element

Clock

CIS 371 (Martin): Digital Logic & Hardware Description 75

Datapath Storage Elements

•  Three main types of storage elements
•  Singleton registers: PC
•  Register files: ISA registers
•  Memories: insn/data memory

PC Insn
memory

Register
File

Data
Memory

control

datapath

fetch

CIS 371 (Martin): Digital Logic & Hardware Description 76

Cross-Coupled Inverters (CCIs)

•  Cross-coupled inverters (CCIs)
•  Primitive “storage element” for storing state
•  Most storage arrays (regfile, caches) implemented this way
•  Where is the input and where is the output?

Q’ Q

CIS 371 (Martin): Digital Logic & Hardware Description 77

S-R Latch

•  S-R (set-reset) latch
•  Cross-coupled NOR gates
•  Distinct inputs/outputs

S,R → Q
0,0 → oldQ
0,1 → 0
1,0 → 1
1,1 → 0

•  S=0, R=0? circuit degenerates to cross-coupled INVs
•  S=1, R=1? not very useful
•  Not really used … except as component in something else

Q R

S

SR
R

S

Q

Q’

CIS 371 (Martin): Digital Logic & Hardware Description 78

D Latch

•  D latch: S-R latch + …
•  control that makes S=R=1 impossible

E,D → Q
0,0 → oldQ
0,1 → oldQ
1,0 → 0
1,1 → 1

•  In other words
0,D → oldQ
1,D → D

•  In words
•  When E is 1, Q gets D
•  When E is 0, Q retains old value

Q

E

D

DL
D

E

Q

CIS 371 (Martin): Digital Logic & Hardware Description 79

Timing Diagrams

•  Voltage {0,1} diagrams for different nodes in system
•  “Digitally stylized”: changes are vertical lines (instantaneous?)
•  Reality is analog, changes are continuous and smooth

•  Timing diagram for a D latch

E

D

Q

CIS 371 (Martin): Digital Logic & Hardware Description 80

Triggering: Level vs. Edge

•  The D-latch is level-triggered
•  The latch is open for writing as long as E is 1
•  If D changes continuously, so does Q
–  May not be the functionality we want

•  Often easier to reason about an edge-triggered latch
•  The latch is open for writing only on E transition (0 → 1 or 1 → 0)
+  Don’t need to worry about fluctuations in value of D

E

D

Q

CIS 371 (Martin): Digital Logic & Hardware Description 81

D Flip-Flop

•  D Flip-Flop:
•  Sequential D-latches
•  Enabled by inverse signals
•  First latch open when E = 0
•  Second latch open when E = 1
•  Overall effect?

•  D flipflop latches D on 0→1 transition
•  E is the “clock” signal input

E

D

Q

DL
D

E

Q
DL

FF
D

E

Q

CIS 371 (Martin): Digital Logic & Hardware Description 82

FFWE: FF with Separate Write Enable
•  FFWE: FF with separate write enable

•  FF D(ata) input is MUX of D and Q, WE selects

•  Bad idea: why not just AND the CLK and WE?
+ Fewer gates
–  Creates timing problems

  Do not try to do logic on CLK in Verilog
  No, really. Never do this.

FFWE
D

Q

WE

FF

D Q

WE

CIS 371 (Martin): Digital Logic & Hardware Description 83

N-bit Register

•  Register: one n-bit storage word
•  Non-multiplexed input/output: data buses write/read same word

•  Implementation: FFWE array with shared write-enable (WE)
•  FFs written on CLK edge if WE is 1 (or if there is no WE)

D Q
n n

WE

FFWE

FFWE

FFWE

D0

DN-1

D1

WE

Q0

Q1

QN-1

Sequential Logic in Verilog

CIS 371 (Martin): Digital Logic & Hardware Description 84

CIS 371 (Martin): Digital Logic & Hardware Description 85

Designing Sequential Logic

•  CIS371 design rule: separate combinational logic from
sequential state elements
•  Not enforced by Verilog, but a very good idea
•  Possible exceptions: counters, shift registers

•  We’ll give you a flip-flop module (see next slide)
•  Edge-triggered, not a transparent latch
•  Parameterized to create a n-bit register

•  Example use: state machine

Combinational
Logic

State
Register

Output

Next State

Current
State

Clock

CIS 371 (Martin): Digital Logic & Hardware Description 86

Sequential Logic In Verilog

•  How are state-holding variables specified in Verilog?
•  First instinct: structurally
•  After all, real latches and flip-flops are made from gates…

module latch(out, in, we);!
output out; input in, we;!
wire not_out = ~(out | (we & ~in));!
assign out = ~(not_out | (we & in));!

endmodule !

•  This should work, right? RIGHT?
•  Logically, yes… in practice, no

•  Storage elements are highly analog
•  FPGAs have dedicated storage

we!

in!
out!

CIS 371 (Martin): Digital Logic & Hardware Description 87

Verilog Flipflop (Behavioral Magic)
•  How do we specify state-holding constructs in Verilog?
module dff (out, in, wen, rst, clk); !

 output out; !
 input in; !
 input wen, rst, clk; !

 reg out; !
 always @(posedge clk)!
 begin!
 if (rst)!
 out = 0;!
 else if (wen)!
 out = in;!
 end !
endmodule !

wen = write enable
rst = reset
clk = clock

•  reg: interface-less storage bit
•  always @ (): synthesizable

behavioral sequential Verilog
•  Tricky: hard to know exactly what it

will synthesize to
•  We will give this to you,

don’t write your own
•  “Creativity is a poor substitute for

knowing what you’re doing”!

CIS 371 (Martin): Digital Logic & Hardware Description 88

Verilog Register (Behavioral Magic)
•  How do we specify state-holding constructs in Verilog?
module register (out, in, wen, rst, clk); !
 parameter n = 1; !
 output [n-1:0] out; !
 input [n-1:0] in; !
 input wen, rst, clk; !

 reg [n-1:0] out; !
 always @(posedge clk)!
 begin!
 if (rst)!
 out = 0;!
 else if (wen)!
 out = in;!
 end !
endmodule !

wen = write enable
rst = reset
clk = clock

•  reg: interface-less storage bit
•  always @ (): synthesizable

behavioral sequential Verilog
•  Tricky: hard to know exactly what it

will synthesize to
•  We will give this to you,

don’t write your own
•  “Creativity is a poor substitute for

knowing what you’re doing”!

CIS 371 (Martin): Digital Logic & Hardware Description 89

Clocks Signals
•  Clocks & reset signals are not normal signals

•  Travel on dedicated “clock” wires
•  Reach all parts of the chip
•  Special “low-skew” routing

•  Ramifications:
•  Never do logic operations on the clocks
•  If you want to add a “write enable” to a flip-flop:

•  Use a mux to route the old value back into it
•  (or use the flip-flop with write enable we give you!)
•  Do not just “and” the write-enable signal with the clock!

•  Messing with the clock can cause a errors
•  Often can only be found using detail low-level simulation

CIS 371 (Martin): Digital Logic & Hardware Description 90

Simulation

•  One way to test and debug designs
•  Graphical output via waveforms

CIS 371 (Martin): Digital Logic & Hardware Description 91

Testbenches

•  A more effective way to test & debug designs

•  In C/Java?
•  Write test code in C/Java to test C/Java
•  “Test harness”, “unit testing”

•  For Verilog/VHDL?
•  Write test code in Verilog to test Verilog
•  Verilog has advanced “behavioral” commands to facilitate this:

•  Delay for n units of time
•  Full high-level constructs: if, while, sequential assignment, ints
•  Input/output: file I/O, output to display, etc.

CIS 371 (Martin): Digital Logic & Hardware Description 92

Common Errors

•  Tools are from a less gentle time
•  More like C, less like Java
•  Assume that you mean what you say

•  Common errors:
•  Not assigning a wire a value
•  Assigning a wire a value more than once
•  Implicit wire declarations (default to type “wire” 1-bit wide)

•  ﻿Avoid names such as:
•  clock, clk, power, pwr, ground, gnd, vdd, vcc, init, reset, rst
•  Some of these are “special” and will silently cause errors

CIS 371 (Martin): Digital Logic & Hardware Description 93

Additional Verilog Resources

•  Elements of Logic Design Style by Shing Kong, 2001
•  Dos, do-nots, tips
•  http://www.cis.upenn.edu/~milom/elements-of-logic-design-style/

•  Verilog HDL Synthesis: A Practical Primer
•  By J. Bhasker, 1998
•  To the point (<200 pages)

•  Advanced Digital Design with the Verilog HDL
•  By Michael D. Ciletti, 2003
•  Verilog plus lots of digital logic design (~1000 pages)

•  Verilog tutorial from textbook (posted on course web page)

CIS 371 (Martin): Digital Logic & Hardware Description 94

•  Transistors & frabrication
•  Digital logic basics

•  Focus on useful components

•  Hardware design methods
•  Introduction to Verilog

•  Next unit: single-cycle datapath

CPU Mem I/O

System software

App App App

Summary

