
Unit 7: Performance Metrics

Based on slides by Prof. Amir Roth & Prof. Milo Martin

CIS 371 (Martin): Performance 1

CIS 371
Computer Organization and Design

CIS 371 (Martin): Performance 2

This Unit

•  CPU performance equation
•  Clock vs CPI
•  Performance metrics
•  Benchmarking

CPU Mem I/O

System software

App App App

CIS 371 (Martin): Performance 3

Readings

•  P&H
•  Revisit Chapter 1.4, 1.8, 1.9

As You Get Settled…

•  You drive two miles
•  30 miles per hour for the first mile
•  90 miles per hour for the second mile

•  Question: what was your average speed?
•  Hint: the answer is not 60 miles per hour
•  Why?

•  Would the answer be different if each segment was equal
time (versus equal distance)?

CIS 371 (Martin): Performance 4

Answer

•  You drive two miles
•  30 miles per hour for the first mile
•  90 miles per hour for the second mile

•  Question: what was your average speed?
•  Hint: the answer is not 60 miles per hour
•  0.03333 hours per mile for 1 mile
•  0.01111 hours per mile for 1 mile
•  0.02222 hours per mile on average
•  = 45 miles per hour

CIS 371 (Martin): Performance 5

Reasoning About
Performance

CIS 371 (Martin): Performance 6

CIS 371 (Martin): Performance 7

Recall: Latency vs. Throughput

•  Latency (execution time): time to finish a fixed task
•  Throughput (bandwidth): number of tasks in fixed time

•  Different: exploit parallelism for throughput, not latency (e.g., bread)
•  Often contradictory (latency vs. throughput)

•  Will see many examples of this
•  Choose definition of performance that matches your goals

•  Scientific program? Latency, web server: throughput?

•  Example: move people 10 miles
•  Car: capacity = 5, speed = 60 miles/hour
•  Bus: capacity = 60, speed = 20 miles/hour
•  Latency: car = 10 min, bus = 30 min
•  Throughput: car = 15 PPH (count return trip), bus = 60 PPH

•  Fastest way to send 1TB of data? (100+ mbits/second)

CIS 371 (Martin): Performance 8

Comparing Performance

•  A is X times faster than B if
•  Latency(A) = Latency(B) / X
•  Throughput(A) = Throughput(B) * X

•  A is X% faster than B if
•  Latency(A) = Latency(B) / (1+X/100)
•  Throughput(A) = Throughput(B) * (1+X/100)

•  Car/bus example
•  Latency? Car is 3 times (and 200%) faster than bus
•  Throughput? Bus is 4 times (and 300%) faster than car

CIS 371 (Martin): Performance 9

CPI Example

•  Assume a processor with instruction frequencies and costs
•  Integer ALU: 50%, 1 cycle
•  Load: 20%, 5 cycle
•  Store: 10%, 1 cycle
•  Branch: 20%, 2 cycle

•  Which change would improve performance more?
•  A. “Branch prediction” to reduce branch cost to 1 cycle?
•  B. Faster data memory to reduce load cost to 3 cycles?

•  Compute CPI
•  Base = 0.5*1 + 0.2*5 + 0.1*1 + 0.2*2 = 2 CPI
•  A = 0.5*1 + 0.2*5 + 0.1*1+ 0.2*1 = 1.8 CPI (1.11x or 11% faster)
•  B = 0.5*1 + 0.2*3 + 0.1*1 + 0.2*2 = 1.6 CPI (1.25x or 25% faster)

•  B is the winner

CIS 371 (Martin): Performance 10

Mean (Average) Performance Numbers
•  Arithmetic: (1/N) * ∑P=1..N Latency(P)

•  For units that are proportional to time (e.g., latency)

•  You can add latencies, but not throughputs
•  Latency(P1+P2,A) = Latency(P1,A) + Latency(P2,A)
•  Throughput(P1+P2,A) != Throughput(P1,A) + Throughput(P2,A)

•  1 mile @ 30 miles/hour + 1 mile @ 90 miles/hour
•  Average is not 60 miles/hour

•  Harmonic: N / ∑P=1..N (1/Throughput(P))
•  For units that are inversely proportional to time (e.g., throughput)

•  Geometric: N√∏P=1..N Speedup(P)
•  For unitless quantities (e.g., speedups)

Benchmarking

CIS 371 (Martin): Performance 11 CIS 371 (Martin): Performance 12

Processor Performance and Workloads

•  Q: what does performance of a chip mean?
•  A: nothing, there must be some associated workload

•  Workload: set of tasks someone (you) cares about

•  Benchmarks: standard workloads
•  Used to compare performance across machines
•  Either are or highly representative of actual programs people run

•  Micro-benchmarks: non-standard non-workloads
•  Tiny programs used to isolate certain aspects of performance
•  Not representative of complex behaviors of real applications
•  Examples: binary tree search, towers-of-hanoi, 8-queens, etc.

CIS 371 (Martin): Performance 13

SPEC Benchmarks

•  SPEC (Standard Performance Evaluation Corporation)
•  http://www.spec.org/
•  Consortium that collects, standardizes, and distributes benchmarks
•  Post SPECmark results for different processors

•  1 number that represents performance for entire suite
•  Benchmark suites for CPU, Java, I/O, Web, Mail, etc.
•  Updated every few years: so companies don’t target benchmarks

•  SPEC CPU 2006
•  12 “integer”: bzip2, gcc, perl, hmmer (genomics), h264, etc.
•  17 “floating point”: wrf (weather), povray, sphynx3 (speech), etc.
•  Written in C/C++ and Fortran

CIS 371 (Martin): Performance 14

SPECmark 2006

•  Reference machine: Sun UltraSPARC II (@ 296 MHz)
•  Latency SPECmark

•  For each benchmark
•  Take odd number of samples
•  Choose median
•  Take latency ratio (reference machine / your machine)

•  Take “average” (Geometric mean) of ratios over all benchmarks

•  Throughput SPECmark
•  Run multiple benchmarks in parallel on multiple-processor system

•  Leaders (a few years out of date, but Intel still at top)
•  SPECint: Intel 3.3 GHz Xeon W5590 (34.2)
•  SPECfp: Intel 3.2 GHz Xeon W3570 (39.3)

CIS 371 (Martin): Performance 15

Other Benchmarks

•  Parallel benchmarks
•  SPLASH2: Stanford Parallel Applications for Shared Memory
•  NAS: another parallel benchmark suite
•  SPECopenMP: parallelized versions of SPECfp 2000)
•  SPECjbb: Java multithreaded database-like workload

•  Transaction Processing Council (TPC)
•  TPC-C: On-line transaction processing (OLTP)
•  TPC-H/R: Decision support systems (DSS)
•  TPC-W: E-commerce database backend workload
•  Have parallelism (intra-query and inter-query)
•  Heavy I/O and memory components

Pitfalls of Partial
Performance Metrics

CIS 371 (Martin): Performance 16

CIS 371 (Martin): Performance 17

Recall: CPU Performance Equation

•  Multiple aspects to performance: helps to isolate them

•  Latency = seconds / program =
•  (insns / program) * (cycles / insn) * (seconds / cycle)
•  Insns / program: dynamic insn count = f(program, compiler, ISA)
•  Cycles / insn: CPI = f(program, compiler, ISA, micro-arch)
•  Seconds / cycle: clock period = f(micro-arch, technology)

•  For low latency (better performance) minimize all three
–  Difficult: often pull against one another
•  Example we have seen: RISC vs. CISC ISAs

± RISC: low CPI/clock period, high insn count
± CISC: low insn count, high CPI/clock period

CIS 371 (Martin): Performance 18

MIPS (performance metric, not the ISA)
•  (Micro) architects often ignore dynamic instruction count

•  Typically work in one ISA/one compiler → treat it as fixed

•  CPU performance equation becomes
•  Latency: seconds / insn = (cycles / insn) * (seconds / cycle)
•  Throughput: insn / second = (insn / cycle) * (cycles / second)

•  MIPS (millions of instructions per second)
•  Cycles / second: clock frequency (in MHz)
•  Example: CPI = 2, clock = 500 MHz → 0.5 * 500 MHz = 250 MIPS

•  Pitfall: may vary inversely with actual performance
–  Compiler removes insns, program gets faster, MIPS goes down
–  Work per instruction varies (e.g., multiply vs. add, FP vs. integer)

CIS 371 (Martin): Performance 19

Mhz (MegaHertz) and Ghz (GigaHertz)
•  1 Hertz = 1 cycle per second

1 Ghz is 1 cycle per nanosecond, 1 Ghz = 1000 Mhz
•  (Micro-)architects often ignore dynamic instruction count…
•  … but general public (mostly) also ignores CPI

•  Equates clock frequency with performance!

•  Which processor would you buy?
•  Processor A: CPI = 2, clock = 5 GHz
•  Processor B: CPI = 1, clock = 3 GHz
•  Probably A, but B is faster (assuming same ISA/compiler)

•  Classic example
•  800 MHz PentiumIII faster than 1 GHz Pentium4!
•  More recent example: Core i7 faster clock-per-clock than Core 2
•  Same ISA and compiler!

•  Meta-point: danger of partial performance metrics!
CIS 371 (Martin): Performance 20

CPI and Clock Frequency
•  Clock frequency implies processor “core” clock frequency

•  Other system components have their own clocks (or not)
•  E.g., increasing processor clock doesn’t accelerate memory latency

•  Example: a 1 Ghz processor with (1ns clock period)
•  80% non-memory instructions @ 1 cycle (1ns)
•  20% memory instructions @ 6 cycles (6ns)
•  (80%*1) + (20%*6) = 2ns per instruction (also 500 MIPS)

•  Impact of double the core clock frequency?
•  Without speeding up the memory

•  Non-memory instructions latency is now 0.5ns (but 1 cycle)
•  Memory instructions keep 6ns latency (now 12 cycles)

•  (80% * 0.5) + (20% * 6) = 1.6ns per instruction (also 625 MIPS)
•  Speedup = 2/1.6 = 1.25, which is << 2

•  What about an infinite clock frequency? (non-memory free)
•  Only a factor of 1.66 speedup (example of Amdahl’s Law)

CIS 371 (Martin): Performance 21

Measuring CPI

•  How are CPI and execution-time actually measured?
•  Execution time? stopwatch timer (Unix “time” command)
•  CPI = CPU time / (clock frequency * dynamic insn count)
•  How is dynamic instruction count measured?

•  More useful is CPI breakdown (CPICPU, CPIMEM, etc.)
•  So we know what performance problems are and what to fix
•  Hardware event counters

•  Available in most processors today
•  One way to measure dynamic instruction count
•  Calculate CPI using counter frequencies / known event costs

•  Cycle-level micro-architecture simulation
+ Measure exactly what you want … and impact of potential fixes!
•  Method of choice for many micro-architects

Simulator Performance Breakdown

CIS 371 (Martin): Performance 22 From Romer et al, ASPLOS 1996

CIS 371 (Martin): Performance 23

Performance Rules of Thumb
•  Amdahl’s Law

•  Literally: total speedup limited by non-accelerated piece
•  Speedup(n, p, s) = (s+p) / (s + (p/n))

•  p is “parallel percentage”, s is “serial
•  Example: can optimize 50% of program A

•  Even “magic” optimization that makes this 50% disappear…
•  …only yields a 2X speedup

•  Corollary: build a balanced system
•  Don’t optimize 1% to the detriment of other 99%
•  Don’t over-engineer capabilities that cannot be utilized

•  Design for actual performance, not peak performance
•  Peak performance: “Performance you are guaranteed not to exceed”
•  Greater than “actual” or “average” or “sustained” performance

•  Why? Caches misses, branch mispredictions, limited ILP, etc.
•  For actual performance X, machine capability must be > X

CIS 371 (Martin): Performance 24

Summary

•  CPU performance equation
•  Clock vs CPI
•  Performance metrics
•  Benchmarking

CPU Mem I/O

System software

App App App

