
CIS 371 (Martin): Caches 1

CIS 371
Computer Organization and Design

Unit 8: Caches

CIS 371 (Martin): Caches 2

This Unit: Caches
•  “Cache”: hardware managed

•  Hardware automatically retrieves missing data
•  Built from fast SRAM, usually on-chip today
•  In contrast to off-chip, DRAM “main memory”

•  Cache organization
•  Speed vs. Capacity
•  ABC
•  Miss classification

•  Some example performance calculations

CPU

D$

L2

Main
Memory

I$

Disk

CIS 371 (Martin): Caches 3

Readings

•  P&H
•  5.1-5.3, 5.5

Start-of-class Exercise

•  You’re a researcher
•  You frequently use books from the library
•  Your productivity is reduced while waiting for books

•  How do you:
•  Coordinate/organize/manage the books?

•  Fetch the books from the library when needed
•  How do you reduce overall waiting?

•  What techniques can you apply?
•  Consider both simple & more clever approaches

CIS 371 (Martin): Caches 4

Analogy Partly Explained

•  You’re a processor designer
•  The processor frequently use data from the memory
•  The processor’s performance is reduced while waiting for data

•  How does the processor:
•  Coordinate/organize/manage the data

•  Fetch the data from the memory when needed
•  How do you reduce overall memory latency?

•  What techniques can you apply?
•  Consider both simple & more clever approaches

CIS 371 (Martin): Caches 5 CIS 371 (Martin): Caches 6

Big Picture Motivation

•  Processor can compute only as fast as memory
•  A 3Ghz processor can execute an “add” operation in 0.33ns
•  Today’s “Main memory” latency is more than 33ns
•  Naïve implementation: loads/stores can be 100x slower than other

operations

•  Unobtainable goal:
•  Memory that operates at processor speeds
•  Memory as large as needed for all running programs
•  Memory that is cost effective

•  Can’t achieve all of these goals at once

Memories (SRAM & DRAM)

CIS 371 (Martin): Caches 7 CIS 371 (Martin): Caches 8

Types of Memory
•  Static RAM (SRAM)

•  6 or 8 transistors per bit
•  Two inverters (4 transistors) + transistors for reading/writing

•  Optimized for speed (first) and density (second)
•  Fast (sub-nanosecond latencies for small SRAM)

•  Speed roughly proportional to its area (~ sqrt(number of bits))
•  Mixes well with standard processor logic

•  Dynamic RAM (DRAM)
•  1 transistor + 1 capacitor per bit
•  Optimized for density (in terms of cost per bit)
•  Slow (>30ns internal access, ~50ns pin-to-pin)
•  Different fabrication steps (does not mix well with logic)

•  Nonvolatile storage: Magnetic disk, Flash RAM

CIS 371 (Martin): Caches 9

Memory & Storage Technologies
•  Cost - what can $200 buy (2009)?

•  SRAM: 16MB
•  DRAM: 4,000MB (4GB) – 250x cheaper than SRAM
•  Flash: 64,000MB (64GB) – 16x cheaper than DRAM
•  Disk: 2,000,000MB (2TB) – 32x vs. Flash (512x vs. DRAM)

•  Latency
•  SRAM: <1 to 2ns (on chip)
•  DRAM: ~50ns – 100x or more slower than SRAM
•  Flash: 75,000ns (75 microseconds) – 1500x vs. DRAM
•  Disk: 10,000,000ns (10ms) – 133x vs Flash (200,000x vs DRAM)

•  Bandwidth
•  SRAM: 300GB/sec (e.g., 12-port 8-byte register file @ 3Ghz)
•  DRAM: ~25GB/s
•  Flash: 0.25GB/s (250MB/s), 100x less than DRAM
•  Disk: 0.1 GB/s (100MB/s), 250x vs DRAM, sequential access only

CIS 371 (Martin): Caches 10

Memory Technology Trends

Cost

Access Time
Copyright Elsevier Scientific 2003

CIS 371 (Martin): Caches 11

The “Memory Wall”

•  Processors get faster more quickly than memory (note log scale)
•  Processor speed improvement: 35% to 55%
•  Memory latency improvement: 7%

Copyright Elsevier Scientific 2003

Log scale

+35 to 55%

+7%

The Memory Hierarchy

CIS 371 (Martin): Caches 12

CIS 371 (Martin): Caches 13

Known From the Beginning

 “Ideally, one would desire an infinitely large memory
capacity such that any particular word would be
immediately available … We are forced to recognize the
possibility of constructing a hierarchy of memories, each
of which has a greater capacity than the preceding but
which is less quickly accessible.”

Burks, Goldstine, VonNeumann
“Preliminary discussion of the logical design of an

electronic computing instrument”
 IAS memo 1946

CIS 371 (Martin): Caches 14

Big Observation: Locality & Caching

•  Locality of memory references
•  Empirical property of real-world programs, few exceptions

•  Temporal locality
•  Recently referenced data is likely to be referenced again soon
•  Reactive: “cache” recently used data in small, fast memory

•  Spatial locality
•  More likely to reference data near recently referenced data
•  Proactive: “cache” large chunks of data to include nearby data

•  Both properties hold for data and instructions

•  Cache: finite-sized hashtable of recently used data blocks
•  In hardware, transparent to software

Spatial and Temporal Locality Example

•  Which memory accesses demonstrate spatial locality?
•  Which memory accesses demonstrate temporal locality?

CIS 371 (Martin): Caches 15

int sum = 0;
int X[1000];

for(int c = 0; c < 1000; c++){
 sum += c;

 X[c] = 0;
}

Library Analogy

•  Consider books in a library

•  Library has lots of books, but it is slow to access
•  Far away (time to walk to the library)
•  Big (time to walk within the library)

•  How can you avoid these latencies?
•  Check out books, take them home with you

•  Put them on desk, on bookshelf, etc.
•  But desks & bookshelves have limited capacity

•  Keep recently used books around (temporal locality)
•  Grab books on related topic at the same time (spatial locality)
•  Guess what books you’ll need in the future (prefetching)

CIS 371 (Martin): Caches 16

Library Analogy Explained

•  Registers ↔ books on your desk
•  Actively being used, small capacity

•  Caches ↔ bookshelves
•  Moderate capacity, pretty fast to access

•  Main memory ↔ library
•  Big, holds almost all data, but slow

•  Disk (virtual memory) ↔ inter-library loan
•  Very slow, but hopefully really uncommon

CIS 371 (Martin): Caches 17 CIS 371 (Martin): Caches 18

Exploiting Locality: Memory Hierarchy

•  Hierarchy of memory components
•  Upper components

•  Fast ↔ Small ↔ Expensive
•  Lower components

•  Slow ↔ Big ↔ Cheap

•  Connected by “buses”
•  Which also have latency and bandwidth issues

•  Most frequently accessed data in M1
•  M1 + next most frequently accessed in M2, etc.
•  Move data up-down hierarchy

•  Optimize average access time
•  latencyavg=latencyhit + (%miss*latencymiss)
•  Attack each component

CPU

M1

M2

M3

M4

CIS 371 (Martin): Caches 19

Concrete Memory Hierarchy

•  0th level: Registers
•  1st level: Primary caches

•  Split instruction (I$) and data (D$)
•  Typically 8KB to 64KB each

•  2nd level: 2nd and 3rd cache (L2, L3)
•  On-chip, typically made of SRAM
•  2nd level typically ~256KB to 512KB
•  “Last level cache” typically 4MB to 16MB

•  3rd level: main memory
•  Made of DRAM (“Dynamic” RAM)
•  Typically 1GB to 4GB for desktops/laptops

•  Servers can have 100s of GB

•  4th level: disk (swap and files)
•  Uses magnetic disks or flash drives

Processor

D$

L2, L3

Main
Memory

I$

Disk

Compiler
Managed

Hardware
Managed

Software
Managed
(by OS)

Regs

CIS 371 (Martin): Caches 20

Evolution of Cache Hierarchies

Intel 486

8KB
I/D$

1.5MB L2

L3 tags

64KB D$
64KB I$

Intel Core i7 (quad core)

•  Chips today are 30–70% cache by area

8MB L3
(shared)

256KB L2
(private)

Caches

CIS 371 (Martin): Caches 21

Warmup

•  What is a “hash table”?
•  What is it used for?
•  How does it work?

•  Short answer:
•  Maps a “key” to a “value”

•  Constant time lookup/insert
•  Have a table of some size, say N, of “buckets”
•  Take a “key” value, apply a hash function to it
•  Insert and lookup a “key” at “hash(key) modulo N”

•  Need to store the “key” and “value” in each bucket
•  Need to check to make sure the “key” matches

•  Need to handle conflicts/overflows somehow (chaining, re-hashing)

CIS 371 (Martin): Caches 22

CIS 371 (Martin): Caches 23

Logical Cache Organization

•  Cache is a hardware hashtable
•  The setup

•  32-bit ISA → 4B words/addresses, 232 B address space

•  Logical cache organization
•  4KB, organized as 1K 4B blocks
•  Each block can hold a 4-byte word

•  Physical cache implementation
•  1K (1024 bit) by 4B SRAM
•  Called data array
•  10-bit address input
•  32-bit data input/output

10 10
24

data

32

32

addr
CIS 371 (Martin): Caches 24

Looking Up A Block

•  Q: which 10 of the 32 address bits to use?
•  A: bits [11:2]

•  2 least significant (LS) bits [1:0] are the offset bits
•  Locate byte within word
•  Don’t need these to locate word

•  Next 10 LS bits [11:2] are the index bits
•  These locate the word
•  Nothing says index must be these bits
•  But these work best in practice

•  Why? (think about it)

[11:2]

data 11:2 addr

CIS 371 (Martin): Caches 25

Knowing that You Found It

•  Each cache row corresponds to 220 blocks
•  How to know which if any is currently there?
•  Tag each cache word with remaining address bits [31:12]

•  Build separate and parallel tag array
•  1K by 21-bit SRAM
•  20-bit (next slide) tag + 1 valid bit

•  Lookup algorithm
•  Read tag indicated by index bits
•  If tag matches & valid bit set:

then: Hit → data is good
else: Miss → data is garbage, wait… ==

hit

[11:2]

data 11:2 31:12 addr

[31:12]

A Concrete Example

•  Lookup address x000C14B8!
•  Index = addr [11:2] = (addr >> 2) & x7FF = x12E!
•  Tag = addr [31:12] = (addr >> 12) = x000C1!

CIS 371 (Martin): Caches 26

==

hit data 11:2 31:12 addr

[31:12]

1 C 0 0

0000 0000 0000 1100 0001 00 0100 1011 10

1 0000 0000 0000 1100 0001

CIS 371 (Martin): Caches

Handling a Cache Miss

•  What if requested data isn’t in the cache?
•  How does it get in there?

•  Cache controller: finite state machine
•  Remembers miss address
•  Accesses next level of memory
•  Waits for response
•  Writes data/tag into proper locations

•  All of this happens on the fill path
•  Sometimes called backside

27 CIS 371 (Martin): Caches 28

Cache Misses and Pipeline Stalls

•  I$ and D$ misses stall pipeline just like data hazards
•  Stall logic driven by miss signal

•  Cache “logically” re-evaluates hit/miss every cycle
•  Block is filled → miss signal de-asserts → pipeline restarts

I$ Regfile
D$

a

d

+
4

nop nop

CIS 371 (Martin): Caches 29

Cache Performance Equation

•  For a cache
•  Access: read or write to cache
•  Hit: desired data found in cache
•  Miss: desired data not found in cache

•  Must get from another component
•  No notion of “miss” in register file

•  Fill: action of placing data into cache

•  %miss (miss-rate): #misses / #accesses
•  thit: time to read data from (write data to) cache
•  tmiss: time to read data into cache

•  Performance metric: average access time
tavg = thit + (%miss * tmiss)

Cache

thit

tmiss

%miss

CIS 371 (Martin): Caches 30

CPI Calculation with Cache Misses

•  Parameters
•  Simple pipeline with base CPI of 1
•  Instruction mix: 30% loads/stores
•  I$: %miss = 2%, tmiss = 10 cycles
•  D$: %miss = 10%, tmiss = 10 cycles

•  What is new CPI?
•  CPII$ = %missI$*tmiss = 0.02*10 cycles = 0.2 cycle
•  CPID$ = %load/store*%missD$*tmissD$ = 0.3 * 0.1*10 cycles = 0.3 cycle
•  CPInew = CPI + CPII$ + CPID$ = 1+0.2+0.3 = 1.5

CIS 371 (Martin): Caches 31

Measuring Cache Performance

•  Ultimate metric is tavg
•  Cache capacity and circuits roughly determines thit
•  Lower-level memory structures determine tmiss

•  Measure %miss

•  Hardware performance counters
•  Simulation

CIS 371 (Martin): Caches 32

Cache Examples
•  4-bit addresses → 16B memory

•  Simpler cache diagrams than 32-bits

•  8B cache, 2B blocks
•  Figure out number of sets: 4 (capacity / block-size)
•  Figure out how address splits into offset/index/tag bits

•  Offset: least-significant log2(block-size) = log2(2) = 1 → 0000
•  Index: next log2(number-of-sets) = log2(4) = 2 → 0000
•  Tag: rest = 4 – 1 – 2 = 1 → 0000

1 bit tag (1 bit) index (2 bits)

4-bit Address, 8B Cache, 2B Blocks
0000 A

0001 B

0010 C

0011 D

0100 E

0101 F

0110 G

0111 H

1000 I

1001 J

1010 K

1011 L

1100 M

1101 N

1110 P

1111 Q

CIS 371 (Martin): Caches 33

Data
Set Tag 0 1

00 0 A B

01 0 C D

10 0 E F

11 0 G H

1 bit tag (1 bit) index (2 bits) Main memory

4-bit Address, 8B Cache, 2B Blocks
0000 A

0001 B

0010 C

0011 D

0100 E

0101 F

0110 G

0111 H

1000 I

1001 J

1010 K

1011 L

1100 M

1101 N

1110 P

1111 Q

CIS 371 (Martin): Caches 34

Data
Set Tag 0 1

00 0 A B

01 0 C D

10 0 E F

11 0 G H

1 bit tag (1 bit) index (2 bits) Main memory

Load: 1110 Miss

4-bit Address, 8B Cache, 2B Blocks
0000 A

0001 B

0010 C

0011 D

0100 E

0101 F

0110 G

0111 H

1000 I

1001 J

1010 K

1011 L

1100 M

1101 N

1110 P

1111 Q

CIS 371 (Martin): Caches 35

Data
Set Tag 0 1

00 0 A B

01 0 C D

10 0 E F

11 1 P Q

1 bit tag (1 bit) index (2 bits) Main memory

Load: 1110 Miss

CIS 371 (Martin): Caches 36

Capacity and Performance
•  Simplest way to reduce %miss: increase capacity

+  Miss rate decreases monotonically
•  “Working set”: insns/data program is actively using
•  Diminishing returns

–  However thit increases
•  Latency proportional to

sqrt(capacity)
•  tavg ?

•  Given capacity, manipulate %miss by changing organization

Cache Capacity

%miss
“working set” size

CIS 371 (Martin): Caches 37

Block Size

•  Given capacity, manipulate %miss by changing organization
•  One option: increase block size

•  Exploit spatial locality
•  Notice index/offset bits change
•  Tag remain the same

•  Ramifications
+  Reduce %miss (up to a point)
+  Reduce tag overhead (why?)
–  Potentially useless data transfer
–  Premature replacement of useful data
–  Fragmentation

0

1

510

511

2

[5:0] [31:15]

data

[14:6]

address

=

hit?

<<

512*512bit
SRAM

9-bit

block size↑

CIS 371 (Martin): Caches 38

Block Size and Tag Overhead

•  4KB cache with 1024 4B blocks?
•  4B blocks → 2-bit offset, 1024 frames → 10-bit index
•  32-bit address – 2-bit offset – 10-bit index = 20-bit tag
•  20-bit tag / 32-bit block = 63% overhead

•  4KB cache with 512 8B blocks
•  8B blocks → 3-bit offset, 512 frames → 9-bit index
•  32-bit address – 3-bit offset – 9-bit index = 20-bit tag
•  20-bit tag / 64-bit block = 32% overhead
•  Notice: tag size is same, but data size is twice as big

•  A realistic example: 64KB cache with 64B blocks
•  16-bit tag / 512-bit block = ~ 2% overhead

•  Note: Tags are not optional

4-bit Address, 8B Cache, 4B Blocks
0000 A

0001 B

0010 C

0011 D

0100 E

0101 F

0110 G

0111 H

1000 I

1001 J

1010 K

1011 L

1100 M

1101 N

1110 P

1111 Q

CIS 371 (Martin): Caches 39

Data
Set Tag 00 01 10 11

0 0 A B C D

1 0 E F G H

2 bit tag (1 bit) index (1 bits) Main memory

Load: 1110 Miss

4-bit Address, 8B Cache, 4B Blocks
0000 A

0001 B

0010 C

0011 D

0100 E

0101 F

0110 G

0111 H

1000 I

1001 J

1010 K

1011 L

1100 M

1101 N

1110 P

1111 Q

CIS 371 (Martin): Caches 40

Data
Set Tag 00 01 10 11

0 0 A B C D

1 1 M N P Q

2 bit tag (1 bit) index (1 bits) Main memory

Load: 1110 Miss

CIS 371 (Martin): Caches 41

Effect of Block Size on Miss Rate
•  Two effects on miss rate

+  Spatial prefetching (good)
•  For blocks with adjacent addresses
•  Turns miss/miss into miss/hit pairs

–  Interference (bad)
•  For blocks with non-adjacent

addresses (but in adjacent frames)
•  Turns hits into misses by disallowing

simultaneous residence
•  Consider entire cache as one big block

•  Both effects always present
•  Spatial prefetching dominates initially

•  Depends on size of the cache
•  Good block size is 32–256B

•  Program dependent

Block Size

%miss

CIS 371 (Martin): Caches 42

Block Size and Miss Penalty

•  Does increasing block size increase tmiss?
•  Don’t larger blocks take longer to read, transfer, and fill?
•  They do, but…

•  tmiss of an isolated miss is not affected
•  Critical Word First / Early Restart (CRF/ER)
•  Requested word fetched first, pipeline restarts immediately
•  Remaining words in block transferred/filled in the background

•  tmiss’es of a cluster of misses will suffer
•  Reads/transfers/fills of two misses can’t happen at the same time
•  Latencies can start to pile up
•  This is a bandwidth problem

Cache Conflicts
0000 A

0001 B

0010 C

0011 D

0100 E

0101 F

0110 G

0111 H

1000 I

1001 J

1010 K

1011 L

1100 M

1101 N

1110 P

1111 Q

CIS 371 (Martin): Caches 43

Data
Set Tag 0 1

00

01

10

11

1 bit tag (1 bit) index (2 bits) Main memory

•  Pairs like “0010” and “1010” conflict
•  Same index!

•  Can such pairs to simultaneously reside in cache?
•  A: Yes, if we reorganize cache to do so

CIS 371 (Martin): Caches 44

Associativity
•  Set-associativity

•  Block can reside in one of few frames
•  Frame groups called sets
•  Each frame in set called a way
•  This is 2-way set-associative (SA)
•  1-way → direct-mapped (DM)
•  1-set → fully-associative (FA)

+  Reduces conflicts
–  Increases latencyhit:

•  additional tag match & muxing ==

hit

[10:2]

data 10:2 31:11 addr

[31:11]

4B

==

4B

associativity↑

CIS 371 (Martin): Caches 45

Associativity

•  Lookup algorithm
•  Use index bits to find set
•  Read data/tags in all frames in parallel
•  Any (match and valid bit), Hit

•  Notice tag/index/offset bits
•  Only 9-bit index (versus 10-bit

for direct mapped)

==

hit

[10:2]

data 10:2 31:11 addr

[31:11]

4B

==

4B

associativity↑

CIS 371 (Martin): Caches 46

Replacement Policies
•  Set-associative caches present a new design choice

•  On cache miss, which block in set to replace (kick out)?

•  Some options
•  Random
•  FIFO (first-in first-out)
•  LRU (least recently used)

•  Fits with temporal locality, LRU = least likely to be used in future
•  NMRU (not most recently used)

•  An easier to implement approximation of LRU
•  Is LRU for 2-way set-associative caches

•  Belady’s: replace block that will be used furthest in future
•  Unachievable optimum

CIS 371 (Martin): Caches 47

LRU and Miss Handling
•  Add LRU field to each set

•  “Least recently used”
•  LRU data is encoded “way”
•  Hit? update MRU

•  LRU bits updated on each
access

512

513

1023

data

<<

address

=

hit?

0

1

511

= W
E

data from memory

[4:0] [31:15] [14:5]

4-bit Address, 8B Cache, 2B Blocks, 2-way
0000 A

0001 B

0010 C

0011 D

0100 E

0101 F

0110 G

0111 H

1000 I

1001 J

1010 K

1011 L

1100 M

1101 N

1110 P

1111 Q

CIS 371 (Martin): Caches 48

Way 0 LRU Way 1
Data Data

Set Tag 0 1 Tag 0 1

0 00 A B 0 01 E F

1 00 C D 1 01 G H

1 bit tag (2 bit) index (1 bits) Main memory

4-bit Address, 8B Cache, 2B Blocks, 2-way
0000 A

0001 B

0010 C

0011 D

0100 E

0101 F

0110 G

0111 H

1000 I

1001 J

1010 K

1011 L

1100 M

1101 N

1110 P

1111 Q

CIS 371 (Martin): Caches 49

Way 0 LRU Way 1
Data Data

Set Tag 0 1 Tag 0 1

0 00 A B 0 01 E F

1 00 C D 1 01 G H

1 bit tag (2 bit) index (1 bits) Main memory

Load: 1110 Miss

4-bit Address, 8B Cache, 2B Blocks, 2-way
0000 A

0001 B

0010 C

0011 D

0100 E

0101 F

0110 G

0111 H

1000 I

1001 J

1010 K

1011 L

1100 M

1101 N

1110 P

1111 Q

CIS 371 (Martin): Caches 50

Way 0 LRU Way 1
Data Data

Set Tag 0 1 Tag 0 1

0 00 A B 0 01 E F

1 00 C D 0 11 P Q

1 bit tag (2 bit) index (1 bits) Main memory

Load: 1110 Miss

LRU updated on each access
(not just misses)

CIS 371 (Martin): Caches 51

Associativity and Performance
•  Higher associative caches

+  Have better (lower) %miss

•  Diminishing returns
–  However thit increases

•  The more associative, the slower
•  What about tavg?

•  Block-size and number of sets should be powers of two
•  Makes indexing easier (just rip bits out of the address)

•  3-way set-associativity? No problem

Associativity

%miss ~5

Improving Effectiveness of
Memory Hierarchy

CIS 371 (Martin): Caches 52

CIS 371 (Martin): Caches 53

Classifying Misses: 3C Model
•  Divide cache misses into three categories

•  Compulsory (cold): never seen this address before
•  Would miss even in infinite cache

•  Capacity: miss caused because cache is too small
•  Would miss even in fully associative cache
•  Identify? Consecutive accesses to block separated by access to

at least N other distinct blocks (N is number of frames in cache)
•  Conflict: miss caused because cache associativity is too low

•  Identify? All other misses
•  (Coherence): miss due to external invalidations

•  Only in shared memory multiprocessors (later)

CIS 371 (Martin): Caches 54

Miss Rate: ABC
•  Why do we care about 3C miss model?

•  So that we know what to do to eliminate misses
•  If you don’t have conflict misses, increasing associativity won’t help

•  Associativity
+  Decreases conflict misses
–  Increases latencyhit

•  Block size
–  Increases conflict/capacity misses (fewer frames)
+  Decreases compulsory/capacity misses (spatial locality)
•  No significant effect on latencyhit

•  Capacity
+  Decreases capacity misses

–  Increases latencyhit

CIS 371 (Martin): Caches 55

Reducing Conflict Misses: Victim Buffer

•  Conflict misses: not enough associativity
•  High-associativity is expensive, but also rarely needed

•  3 blocks mapping to same 2-way set and accessed (XYZ)+

•  Victim buffer (VB): small fully-associative cache
•  Sits on I$/D$ miss path
•  Small so very fast (e.g., 8 entries)
•  Blocks kicked out of I$/D$ placed in VB
•  On miss, check VB: hit? Place block back in I$/D$
•  8 extra ways, shared among all sets

+ Only a few sets will need it at any given time
+  Very effective in practice

I$/D$

L2

VB

CIS 371 (Martin): Caches 56

Prefetching
•  Bring data into cache proactively/speculatively

•  If successful, reduces number of caches misses

•  Key: anticipate upcoming miss addresses accurately
•  Can do in software or hardware

•  Simple hardware prefetching: next block prefetching
•  Miss on address X → anticipate miss on X+block-size
+  Works for insns: sequential execution
+  Works for data: arrays

•  Table-driven hardware prefetching
•  Use predictor to detect strides, common patterns

•  Effectiveness determined by:
•  Timeliness: initiate prefetches sufficiently in advance
•  Coverage: prefetch for as many misses as possible
•  Accuracy: don’t pollute with unnecessary data

I$/D$

L2

prefetch logic

CIS 371 (Martin): Caches 57

Software Prefetching

•  Use a special “prefetch” instruction
•  Tells the hardware to bring in data, doesn’t actually read it
•  Just a hint

•  Inserted by programmer or compiler
•  Example

int tree_add(tree_t* t) {
 if (t == NULL) return 0;
 __builtin_prefetch(t->left);
 __builtin_prefetch(t->right);
 return t->val + tree_add(t->right) + tree_add(t->left);
}

•  Multiple prefetches bring multiple blocks in parallel
•  More “Memory-level” parallelism (MLP)

CIS 371 (Martin): Caches 58

Software Restructuring: Data

•  Capacity misses: poor spatial or temporal locality
•  Several code restructuring techniques to improve both
–  Compiler must know that restructuring preserves semantics

•  Loop interchange: spatial locality
•  Example: row-major matrix: X[i][j] followed by X[i][j+1]
•  Poor code: X[I][j] followed by X[i+1][j]

for (j = 0; j<NCOLS; j++)
 for (i = 0; i<NROWS; i++)
 sum += X[i][j];

•  Better code
for (i = 0; i<NROWS; i++)
 for (j = 0; j<NCOLS; j++)
 sum += X[i][j];

CIS 371 (Martin): Caches 59

Software Restructuring: Data
•  Loop blocking: temporal locality

•  Poor code
for (k=0; k<NUM_ITERATIONS; k++)
 for (i=0; i<NUM_ELEMS; i++)
 X[i] = f(X[i]); // say

•  Better code
•  Cut array into CACHE_SIZE chunks
•  Run all phases on one chunk, proceed to next chunk
for (i=0; i<NUM_ELEMS; i+=CACHE_SIZE)
 for (k=0; k<NUM_ITERATIONS; k++)
 for (j=0; j<CACHE_SIZE; j++)
 X[i+j] = f(X[i+j]);

–  Assumes you know CACHE_SIZE, do you?
•  Loop fusion: similar, but for multiple consecutive loops

CIS 371 (Martin): Caches 60

Software Restructuring: Code
•  Compiler an layout code for temporal and spatial locality

•  If (a) { code1; } else { code2; } code3;
•  But, code2 case never happens (say, error condition)

•  Fewer taken branches, too

Better
locality

Better
locality

What About Stores?
Handling Cache Writes

CIS 371 (Martin): Caches 61 CIS 371 (Martin): Caches 62

Write Issues

•  So far we have looked at reading from cache
•  Instruction fetches, loads

•  What about writing into cache
•  Stores, not an issue for instruction caches

•  Several new issues
•  Tag/data access
•  Write-through vs. write-back
•  Write-allocate vs. write-not-allocate
•  Hiding write miss latency

CIS 371 (Martin): Caches 63

Tag/Data Access

•  Reads: read tag and data in parallel
•  Tag mis-match → data is wrong (OK, just stall until good data arrives)

•  Writes: read tag, write data in parallel? No. Why?
•  Tag mis-match → clobbered data (oops)
•  For associative caches, which way was written into?

•  Writes are a pipelined two step (multi-cycle) process
•  Step 1: match tag
•  Step 2: write to matching way
•  Bypass (with address check) to avoid load stalls
•  May introduce structural hazards

CIS 371 (Martin): Caches 64

Write Propagation
•  When to propagate new value to (lower level) memory?

•  Option #1: Write-through: immediately
•  On hit, update cache
•  Immediately send the write to the next level

•  Option #2: Write-back: when block is replaced
•  Requires additional “dirty” bit per block

•  Replace clean block: no extra traffic
•  Replace dirty block: extra “writeback” of block

+  Writeback-buffer (WBB):
•  Hide latency of writeback (keep off critical path)
•  Step#1: Send “fill” request to next-level
•  Step#2: While waiting, write dirty block to buffer
•  Step#3: When new blocks arrives, put it into cache
•  Step#4: Write buffer contents to next-level

2
1

4

$

Next-level-$

WBB
3

CIS 371 (Martin): Caches 65

Write Propagation Comparison
•  Write-through

–  Requires additional bus bandwidth
•  Consider repeated write hits

–  Next level must handle small writes (1, 2, 4, 8-bytes)
+  No need for dirty bits in cache
+  No need to handle “writeback” operations

•  Simplifies miss handling (no write-back buffer)
•  Sometimes used for L1 caches (for example, by IBM)

•  Write-back
+  Key advantage: uses less bandwidth
•  Reverse of other pros/cons above
•  Used by Intel, AMD, and ARM
•  Second-level and beyond are generally write-back caches

CIS 371 (Martin): Caches 66

Write Miss Handling

•  How is a write miss actually handled?

•  Write-allocate: fill block from next level, then write it
+  Decreases read misses (next read to block will hit)
–  Requires additional bandwidth
•  Commonly used (especially with write-back caches)

•  Write-non-allocate: just write to next level, no allocate
–  Potentially more read misses
+  Uses less bandwidth
•  Use with write-through

CIS 371 (Martin): Caches 67

Write Misses and Store Buffers
•  Read miss?

•  Load can’t go on without the data, it must stall

•  Write miss?
•  Technically, no instruction is waiting for data, why stall?

•  Store buffer: a small buffer
•  Stores put address/value to store buffer, keep going
•  Store buffer writes stores to D$ in the background
•  Loads must search store buffer (in addition to D$)
+  Eliminates stalls on write misses (mostly)
–  Creates some problems (later)

•  Store buffer vs. writeback-buffer
•  Store buffer: “in front” of D$, for hiding store misses
•  Writeback buffer: “behind” D$, for hiding writebacks

Cache

Next-level
cache

WBB

SB

Processor

Cache Hierarchies

CIS 371 (Martin): Caches 68

CIS 371 (Martin): Caches 69

Designing a Cache Hierarchy
•  For any memory component: thit vs. %miss tradeoff

•  Upper components (I$, D$) emphasize low thit
•  Frequent access → thit important
•  tmiss is not bad → %miss less important
•  Lower capacity and lower associativity (to reduce thit)
•  Small-medium block-size (to reduce conflicts)

•  Moving down (L2, L3) emphasis turns to %miss
•  Infrequent access → thit less important
•  tmiss is bad → %miss important
•  High capacity, associativity, and block size (to reduce %miss)

CIS 371 (Martin): Caches 70

Memory Hierarchy Parameters

•  Some other design parameters
•  Split vs. unified insns/data
•  Inclusion vs. exclusion vs. nothing

Parameter I$/D$ L2 L3 Main Memory

thit 2ns 10ns 30ns 100ns

tmiss 10ns 30ns 100ns 10ms (10M ns)

Capacity 8KB–64KB 256KB–8MB 2–16MB 1-4GBs

Block size 16B–64B 32B–128B 32B-256B NA

Associativity 2-8 4–16 4-16 NA

CIS 371 (Martin): Caches 71

Split vs. Unified Caches

•  Split I$/D$: insns and data in different caches
•  To minimize structural hazards and thit
•  Larger unified I$/D$ would be slow, 2nd port even slower
•  Optimize I$ and D$ separately

•  Not writes for I$, smaller reads for D$
•  Why is 486 I/D$ unified?

•  Unified L2, L3: insns and data together
•  To minimize %miss
+  Fewer capacity misses: unused insn capacity can be used for data
–  More conflict misses: insn/data conflicts

•  A much smaller effect in large caches
•  Insn/data structural hazards are rare: simultaneous I$/D$ miss
•  Go even further: unify L2, L3 of multiple cores in a multi-core

CIS 371 (Martin): Caches 72

Hierarchy: Inclusion versus Exclusion

•  Inclusion
•  Bring block from memory into L2 then L1

•  A block in the L1 is always in the L2
•  If block evicted from L2, must also evict it from L1

•  Why? more on this when we talk about multicore

•  Exclusion
•  Bring block from memory into L1 but not L2

•  Move block to L2 on L1 eviction
•  L2 becomes a large victim cache

•  Block is either in L1 or L2 (never both)
•  Good if L2 is small relative to L1

•  Example: AMD’s Duron 64KB L1s, 64KB L2

•  Non-inclusion
•  No guarantees

CIS 371 (Martin): Caches 73

Memory Performance Equation

•  For memory component M
•  Access: read or write to M
•  Hit: desired data found in M
•  Miss: desired data not found in M

•  Must get from another (slower) component
•  Fill: action of placing data in M

•  %miss (miss-rate): #misses / #accesses
•  thit: time to read data from (write data to) M
•  tmiss: time to read data into M

•  Performance metric
•  tavg: average access time

tavg = thit + (%miss * tmiss)

CPU

M

thit

tmiss

%miss

CIS 371 (Martin): Caches 74

Hierarchy Performance

tavg
tavg-M1

thit-M1 + (%miss-M1*tmiss-M1)
thit-M1 + (%miss-M1*tavg-M2)
thit-M1 + (%miss-M1*(thit-M2 + (%miss-M2*tmiss-M2)))
thit-M1 + (%miss-M1* (thit-M2 + (%miss-M2*tavg-M3)))
…

tmiss-M3 = tavg-M4

CPU

M1

M2

M3

M4

tmiss-M2 = tavg-M3

tmiss-M1 = tavg-M2

tavg = tavg-M1

CIS 371 (Martin): Caches 75

Performance Calculation I

•  In a pipelined processor, I$/D$ thit is “built in” (effectively 0)

•  Parameters
•  Base pipeline CPI = 1
•  Instruction mix: 30% loads/stores
•  I$: %miss = 2%, tmiss = 10 cycles
•  D$: %miss = 10%, tmiss = 10 cycles

•  What is new CPI?
•  CPII$ = %missI$*tmiss = 0.02*10 cycles = 0.2 cycle
•  CPID$ = %memory*%missD$*tmissD$ = 0.30*0.10*10 cycles = 0.3 cycle
•  CPInew = CPI + CPII$ + CPID$ = 1+0.2+0.3= 1.5

CIS 371 (Martin): Caches 76

Miss Rates: per “access” vs “instruction”

•  Miss rates can be expressed two ways:
•  Misses per “instruction” (or instructions per miss), -or-
•  Misses per “cache access” (or accesses per miss)

•  For first-level caches, use instruction mix to convert
•  If memory ops are 1/3rd of instructions..
•  2% of instructions miss (1 in 50) is 6% of “accesses” miss (1 in 17)

•  What about second-level caches?
•  Misses per “instruction” still straight-forward (“global” miss rate)
•  Misses per “access” is trickier (“local” miss rate)

•  Depends on number of accesses (which depends on L1 rate)

CIS 371 (Martin): Caches 77

Multilevel Performance Calculation II

•  Parameters
•  30% of instructions are memory operations
•  L1: thit = 1 cycles (included in CPI of 1), %miss = 5% of accesses
•  L2: thit = 10 cycles, %miss = 20% of L2 accesses
•  Main memory: thit = 50 cycles

•  Calculate CPI
•  CPI = 1 + 30% * 5% * tmissD$
•  tmissD$ = tavgL2 = thitL2+(%missL2*thitMem)= 10 + (20%*50) = 20 cycles
•  Thus, CPI = 1 + 30% * 5% * 20 = 1.3 CPI

•  Alternate CPI calculation:
•  What % of instructions miss in L1 cache? 30%*5% = 1.5%
•  What % of instructions miss in L2 cache? 20%*1.5% = 0.3% of insn
•  CPI = 1 + (1.5% * 10) + (0.3% * 50) = 1 + 0.15 + 0.15 = 1.3 CPI

CIS 371 (Martin): Caches 78

Foreshadow: Main Memory As A Cache

•  How would you internally organize main memory
•  tmiss is outrageously long, reduce %miss at all costs
•  Full associativity: isn’t that difficult to implement?

•  Yes … in hardware, main memory is “software-managed”

Parameter I$/D$ L2 L3 Main Memory

thit 2ns 10ns 30ns 100ns

tmiss 10ns 30ns 100ns 10ms (10M ns)

Capacity 8–64KB 128KB–2MB 1–9MB 64MB–64GB

Block size 16–32B 32–256B 256B 4KB+

Associativity 1–4 4–16 16 full

Replacement LRU LRU LRU “working set”

Prefetching? Maybe Probably Probably Either

CIS 371 (Martin): Caches 79

Summary

•  Average access time of a memory component
•  latencyavg = latencyhit + %miss * latencymiss
•  Hard to get low latencyhit and %miss in one structure

→ hierarchy
•  Memory hierarchy

•  Cache (SRAM) → memory (DRAM) → swap (Disk)
•  Smaller, faster, more expensive → bigger, slower,

cheaper
•  Cache ABCs (capacity, associativity, block size)

•  3C miss model: compulsory, capacity, conflict
•  Performance optimizations

•  %miss: prefetching
•  latencymiss: victim buffer, critical-word-first

•  Write issues
•  Write-back vs. write-through/write-allocate vs. write-

no-allocate

CPU Mem I/O

System software

App App App

