
CIS 371 (Martin): Superscalar 1

CIS 371
Computer Organization and Design

Unit 10: Superscalar Pipelines

CIS 371 (Martin): Superscalar 2

A Key Theme of CIS 371: Parallelism

•  Previously: pipeline-level parallelism
•  Work on execute of one instruction in parallel with decode of next

•  Next: instruction-level parallelism (ILP)
•  Execute multiple independent instructions fully in parallel
•  Today: multiple issue

•  Later:
•  Static & dynamic scheduling

•  Extract much more ILP
•  Data-level parallelism (DLP)

•  Single-instruction, multiple data (one insn., four 64-bit adds)
•  Thread-level parallelism (TLP)

•  Multiple software threads running on multiple cores

CIS 371 (Martin): Superscalar 3

This Unit: (In-Order) Superscalar Pipelines

•  Idea of instruction-level parallelism

•  Superscalar hardware issues
•  Bypassing and register file
•  Stall logic
•  Fetch and branch prediction

•  “Superscalar” vs VLIW/EPIC

CPU Mem I/O

System software

App App App

CIS 371 (Martin): Superscalar 4

Readings

•  P&H
•  Chapter 4.10

CIS 371 (Martin): Superscalar 5

“Scalar” Pipeline & the Flynn Bottleneck

•  So far we have looked at scalar pipelines
•  One instruction per stage

•  With control speculation, bypassing, etc.
–  Performance limit (aka “Flynn Bottleneck”) is CPI = IPC = 1
–  Limit is never even achieved (hazards)
–  Diminishing returns from “super-pipelining” (hazards + overhead)

regfile

D$ I$

B
P

An Opportunity…

•  But consider:
ADD r1, r2 -> r3
ADD r4, r5 -> r6
•  Why not execute them at the same time? (We can!)

•  What about:
ADD r1, r2 -> r3
ADD r4, r3 -> r6
•  In this case, dependences prevent parallel execution

•  What about three instructions at a time?
•  Or four instructions at a time?

CIS 371 (Martin): Superscalar 6

What Checking Is Required?

•  For two instructions: 2 checks
ADD src11, src21 -> dest1
ADD src12, src22 -> dest2 (2 checks)

•  For three instructions: 6 checks
ADD src11, src21 -> dest1
ADD src12, src22 -> dest2 (2 checks)
ADD src13, src23 -> dest3 (4 checks)

•  For four instructions: 6 checks
ADD src11, src21 -> dest1
ADD src12, src22 -> dest2 (2 checks)
ADD src13, src23 -> dest3 (4 checks)
ADD src14, src24 -> dest4 (6 checks)

•  Plus checking for load-to-use stalls from prior n loads

CIS 371 (Martin): Superscalar 7

What Checking Is Required?

•  For two instructions: 2 checks
ADD src11, src21 -> dest1
ADD src12, src22 -> dest2 (2 checks)

•  For three instructions: 6 checks
ADD src11, src21 -> dest1
ADD src12, src22 -> dest2 (2 checks)
ADD src13, src23 -> dest3 (4 checks)

•  For four instructions: 6 checks
ADD src11, src21 -> dest1
ADD src12, src22 -> dest2 (2 checks)
ADD src13, src23 -> dest3 (4 checks)
ADD src14, src24 -> dest4 (6 checks)

•  Plus checking for load-to-use stalls from prior n loads

CIS 371 (Martin): Superscalar 8

How do we build such
“superscalar” hardware?

CIS 371 (Martin): Superscalar 9 CIS 371 (Martin): Superscalar 10

Multiple-Issue or “Superscalar” Pipeline

•  Overcome this limit using multiple issue
•  Also called superscalar
•  Two instructions per stage at once, or three, or four, or eight…
•  “Instruction-Level Parallelism (ILP)” [Fisher, IEEE TC’81]

•  Today, typically “4-wide” (Intel Core i7, AMD Opteron)
•  Some more (Power5 is 5-issue; Itanium is 6-issue)
•  Some less (dual-issue is common for simple cores)

regfile

D$ I$

B
P

CIS 371 (Martin): Superscalar 11

A Typical Dual-Issue Pipeline (1 of 2)

•  Fetch an entire 16B or 32B cache block
•  4 to 8 instructions (assuming 4-byte average instruction length)
•  Predict a single branch per cycle

•  Parallel decode
•  Need to check for conflicting instructions

•  Is output register of I1 is an input register to I2?
•  Other stalls, too (for example, load-use delay)

regfile

D$ I$

B
P

CIS 371 (Martin): Superscalar 12

A Typical Dual-Issue Pipeline (2 of 2)

•  Multi-ported register file
•  Larger area, latency, power, cost, complexity

•  Multiple execution units
•  Simple adders are easy, but bypass paths are expensive

•  Memory unit
•  Single load per cycle (stall at decode) probably okay for dual issue
•  Alternative: add a read port to data cache

•  Larger area, latency, power, cost, complexity

regfile

D$ I$

B
P

CIS 371 (Martin): Superscalar 13

Superscalar Pipeline Diagrams - Ideal
scalar 1 2 3 4 5 6 7 8 9 10 11 12
lw 0(r1)r2 F D X M W
lw 4(r1)r3 F D X M W
lw 8(r1)r4 F D X M W
add r14,r15r6 F D X M W
add r12,r13r7 F D X M W
add r17,r16r8 F D X M W
lw 0(r18)r9 F D X M W

2-way superscalar 1 2 3 4 5 6 7 8 9 10 11 12
lw 0(r1)r2 F D X M W
lw 4(r1)r3 F D X M W
lw 8(r1)r4 F D X M W
add r14,r15r6 F D X M W
add r12,r13r7 F D X M W
add r17,r16r8 F D X M W
lw 0(r18)r9 F D X M W

CIS 371 (Martin): Superscalar 14

Superscalar Pipeline Diagrams - Realistic
scalar 1 2 3 4 5 6 7 8 9 10 11 12
lw 0(r1)r2 F D X M W
lw 4(r1)r3 F D X M W
lw 8(r1)r4 F D X M W
add r4,r5r6 F d* D X M W
add r2,r3r7 F D X M W
add r7,r6r8 F D X M W
lw 0(r8)r9 F D X M W

2-way superscalar 1 2 3 4 5 6 7 8 9 10 11 12
lw 0(r1)r2 F D X M W
lw 4(r1)r3 F D X M W
lw 8(r1)r4 F D X M W
add r4,r5r6 F d* d* D X M W
add r2,r3r7 F d* D X M W
add r7,r6r8 F D X M W
lw 0(r8)r9 F d* D X M W

CIS 371 (Martin): Superscalar 15

How Much ILP is There?

•  The compiler tries to “schedule” code to avoid stalls
•  Even for scalar machines (to fill load-use delay slot)
•  Even harder to schedule multiple-issue (superscalar)

•  How much ILP is common?
•  Greatly depends on the application

•  Consider memory copy
•  Unroll loop, lots of independent operations

•  Other programs, less so

•  Even given unbounded ILP,
superscalar has implementation limits
•  IPC (or CPI) vs clock frequency trade-off
•  Given these challenges, what is reasonable today?

•  ~4 instruction per cycle maximum

Superscalar Implementation
Challenges

CIS 371 (Martin): Superscalar 16

CIS 371 (Martin): Superscalar 17

Superscalar Challenges - Front End

•  Superscalar instruction fetch
•  Modest: need multiple instructions per cycle
•  Aggressive: predict multiple branches

•  Superscalar instruction decode
•  Replicate decoders

•  Superscalar instruction issue
•  Determine when instructions can proceed in parallel
•  Not all combinations possible
•  More complex stall logic - order N2 for N-wide machine

•  Superscalar register read
•  One port for each register read

•  Each port needs its own set of address and data wires
•  Example, 4-wide superscalar  8 read ports

CIS 371 (Martin): Superscalar 18

Superscalar Challenges - Back End

•  Superscalar instruction execution
•  Replicate arithmetic units
•  Perhaps multiple cache ports

•  Superscalar bypass paths
•  More possible sources for data values
•  Order (N2 * P) for N-wide machine with execute pipeline depth P

•  Superscalar instruction register writeback
•  One write port per instruction that writes a register
•  Example, 4-wide superscalar  4 write ports

•  Fundamental challenge:
•  Amount of ILP (instruction-level parallelism) in the program
•  Compiler must schedule code and extract parallelism

CIS 371 (Martin): Superscalar 19

Superscalar Decode & Register Read

•  What is involved in decoding multiple (N) insns per cycle?
•  Actually doing the decoding?

•  Easy if fixed length (multiple decoders), doable if variable length

•  Reading input registers?
•  Nominally, 2N read + N write (2 read + 1 write per insn)

–  Latency, area ∝ #ports2

•  What about the stall logic?

regfile

CIS 371 (Martin): Superscalar 20

N2 Dependence Cross-Check

•  Stall logic for 1-wide pipeline with full bypassing
•  Full bypassing → load/use stalls only

X.op==LOAD && (D.rs1==X.rd || D.rs2==X.rd)
•  Two “terms”: ∝ 2N

•  Now: same logic for a 2-wide pipeline
X1.op==LOAD && (D1.rs1==X1.rd || D1.rs2==X1.rd) ||
X1.op==LOAD && (D2.rs1==X1.rd || D2.rs2==X1.rd) ||
X2.op==LOAD && (D1.rs1==X2.rd || D1.rs2==X2.rd) ||
X2.op==LOAD && (D2.rs1==X2.rd || D2.rs2==X2.rd)

•  Eight “terms”: ∝ 2N2
•  N2 dependence cross-check

•  Not quite done, also need
•  D2.rs1==D1.rd || D2.rs2==D1.rd

CIS 371 (Martin): Superscalar 21

Superscalar Execute

•  What is involved in executing N insns per cycle?
•  Multiple execution units … N of every kind?

•  N ALUs? OK, ALUs are small
•  N floating point dividers? No, dividers are big, fdiv is uncommon
•  How many branches per cycle? How many loads/stores per cycle?
•  Typically some mix of functional units proportional to insn mix

•  Intel Pentium: 1 any + 1 “simple” (such as ADD, etc.)
•  Alpha 21164: 2 integer (including 2 loads) + 2 floating point

CIS 371 (Martin): Superscalar 22

Superscalar Bypass

•  N2 bypass network
–  N+1 input muxes at each ALU input
–  N2 point-to-point connections
–  Routing lengthens wires
–  Heavy capacitive load
•  And this is just one bypass stage (MX)!

•  There is also WX bypassing
•  Even more for deeper pipelines

•  One of the big problems of superscalar

versus

CIS 371 (Martin): Superscalar 23

Superscalar Memory Access

•  What about multiple loads/stores per cycle?
•  Probably only necessary on processors 4-wide or wider

•  Core i7: is one load & one store per cycle
•  More important to support multiple loads than multiple stores

•  Insn mix: loads (~20–25%), stores (~10–15%)
•  Alpha 21164: two loads or one store per cycle

D$

CIS 371 (Martin): Superscalar 24

D$ Bandwidth

•  How to provide additional D$ bandwidth?
•  Have already seen split I$/D$, but that gives you just one D$ port
•  How to provide a second (maybe even a third) D$ port?

•  Option#1: multi-porting
+  Most general solution, any two accesses per cycle
–  Lots of wires; expensive in terms of latency, area (cost), and power

•  Option#2: banking (or interleaving)
•  Divide D$ into “banks” (by address), one access per bank per cycle
•  Bank conflict: two accesses to same bank → one stalls
+  Small latency, area, power overheads
+  One access per bank per cycle, assuming no conflicts
–  Complex stall logic → address not known until execute stage
–  To support N accesses, need 2N+ banks to avoid frequent conflicts

CIS 371 (Martin): Superscalar 25

Not All N2 Created Equal

•  N2 bypass vs. N2 stall logic & dependence cross-check
•  Which is the bigger problem?

•  N2 bypass … by far
•  64- bit quantities (vs. 5-bit)
•  Multiple levels (MX, WX) of bypass (vs. 1 level of stall logic)
•  Must fit in one clock period with ALU (vs. not)

•  Dependence cross-check not even 2nd biggest N2 problem
•  Regfile is also an N2 problem (think latency where N is #ports)
•  And also more serious than cross-check

CIS 371 (Martin): Superscalar 26

Mitigating N2 Bypass: Clustering
•  Clustering: mitigates N2 bypass

•  Group ALUs into K clusters
•  Full bypassing within a cluster
•  Limited bypassing between clusters

•  With 1 or 2 cycle delay
•  (N/K) + 1 inputs at each mux
•  (N/K)2 bypass paths in each cluster

•  Steering: key to performance
•  Steer dependent insns to same cluster
•  Statically (compiler) or dynamically

•  Hurts IPC, allows wide issue at same clock

•  E.g., Alpha 21264
•  Bypass wouldn’t fit into clock cycle
•  4-wide, 2 clusters

CIS 371 (Martin): Superscalar 27

Mitigating N2 RegFile: Clustering++

•  Clustering: split N-wide execution pipeline into K clusters
•  With centralized register file, 2N read ports and N write ports

•  Clustered register file: extend clustering to register file
•  Replicate the register file (one replica per cluster)
•  Register file supplies register operands to just its cluster
•  All register writes go to all register files (keep them in sync)
•  Advantage: fewer read ports per register!

•  K register files, each with 2N/K read ports and N write ports
•  Alpha 21264: 4-way superscalar, two clusters

DM

RF0

RF1

cluster 0

cluster 1

Superscalar “Front End”

CIS 371 (Martin): Superscalar 28

Simple Superscalar Fetch

•  What is involved in fetching multiple instructions per cycle?
•  In same cache block? → no problem

•  64-byte cache block is 16 instructions (~4 bytes per instruction)
•  Favors larger block size (independent of hit rate)

•  What if next instruction is last instruction in a block?
•  Fetch only one instruction that cycle
•  Or, some processors may allow fetching from 2 consecutive blocks

•  Compilers align code to I$ blocks (.align directive in asm)
•  Reduces I$ capacity
•  Increases fetch bandwidth utilization (more important)

CIS 371 (Martin): Superscalar 29

I$
B
P

Limits of Simple Superscalar Fetch

•  How many instructions can be fetched on average?
•  BTB predicts the next block of instructions to fetch

•  Support multiple branch (direction) predictions per cycle
•  Discard post-branch insns after first branch predicted as “taken”

•  Lowers effective fetch width and IPC
•  Average number of instructions per taken branch?

•  Assume: 20% branches, 50% taken → ~10 instructions
•  Consider a 5-instruction loop with an 4-issue processor

•  Without smarter fetch, ILP is limited to 2.5 (not 4)
•  Compiler could “unroll” the loop (reduce taken branches)
•  How else can we increase fetch rate?
CIS 371 (Martin): Superscalar 30

I$
B
P

Increasing Superscalar Fetch Rate

•  Option #1: over-fetch and buffer
•  Add a queue between fetch and decode (18 entries in Intel Core2)
•  Compensates for cycles that fetch less than maximum instructions
•  “decouples” the “front end” (fetch) from the “back end” (execute)

•  Option #2: predict next two blocks (extend BTB)
•  Transmits two PCs to fetch stage: “next PC” and “next-next PC”
•  Access I-cache twice (requires multiple ports or banks)
•  Requires extra merging logic to select and merge correct insns
–  Elongates pipeline, increases branch penalty

CIS 371 (Martin): Superscalar 31

regfile

D$
I$
B
P

insn queue

Increasing Superscalar Fetch Rate

•  Option #3: “loop stream detector” (Core 2, Core i7)
•  Put entire loop body into a small cache

•  Core2: 18 macro-ops, up to four taken branches
•  Core i7: 28 micro-ops (avoids re-decoding macro-ops!)

•  Any branch mis-prediction requires normal re-fetch

•  Option #4: trace cache (Pentium 4)
•  Tracks “traces” of disjoint but dynamically consecutive instructions
•  Pack (predicted) taken branch & its target into a one “trace” entry
•  Fetch entire “trace” while predicting the “next trace”

CIS 371 (Martin): Superscalar 32

regfile

D$

Traces

B
P

insn queue
also loop stream detector

Implementations of
“Multiple Issue”

CIS 371 (Martin): Superscalar 33 CIS 371 (Martin): Superscalar 34

Multiple-Issue Implementations
•  Statically-scheduled (in-order) superscalar

•  What we’ve talked about thus far
+  Executes unmodified sequential programs
–  Hardware must figure out what can be done in parallel
•  E.g., Pentium (2-wide), UltraSPARC (4-wide), Alpha 21164 (4-wide)

•  Very Long Instruction Word (VLIW)
-  Compiler identifies independent instructions, new ISA
+  Hardware can be simple and perhaps lower power
•  E.g., TransMeta Crusoe (4-wide)
•  Variant: Explicitly Parallel Instruction Computing (EPIC)

•  A bit more flexible encoding & some hardware to help compiler
•  E.g., Intel Itanium (6-wide)

•  Dynamically-scheduled superscalar
•  Hardware extracts more ILP by on-the-fly reordering
•  Core 2, Core i7 (4-wide), Alpha 21264 (4-wide)

CIS 371 (Martin): Superscalar 35

Multiple Issue Redux
•  Multiple issue

•  Exploits insn level parallelism (ILP) beyond pipelining
•  Improves IPC, but perhaps at some clock & energy penalty
•  4-6 way issue is about the peak issue width currently justifiable

•  Problem spots
•  N2 bypass & register file → clustering
•  Fetch + branch prediction → buffering, loop streaming, trace cache
•  N2 dependency check → VLIW/EPIC (but unclear how key this is)

•  Implementations
•  Superscalar vs. VLIW/EPIC

CIS 371 (Martin): Superscalar 36

Multiple Issue Summary

•  Superscalar hardware issues
•  Bypassing and register file
•  Stall logic
•  Fetch

•  Multiple-issue designs
•  “Superscalar” vs VLIW

CPU Mem I/O

System software

App App App

