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CIS 371 
Computer Organization and Design 

Unit 10: Superscalar Pipelines 

CIS 371 (Martin): Superscalar  2 

A Key Theme of CIS 371: Parallelism 

•  Previously: pipeline-level parallelism 
•  Work on execute of one instruction in parallel with decode of next  

•  Next: instruction-level parallelism (ILP) 
•  Execute multiple independent instructions fully in parallel 
•  Today: multiple issue 

•  Later: 
•  Static & dynamic scheduling 

•  Extract much more ILP 
•  Data-level parallelism (DLP) 

•  Single-instruction, multiple data (one insn., four 64-bit adds) 
•  Thread-level parallelism (TLP) 

•  Multiple software threads running on multiple cores 
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This Unit: (In-Order) Superscalar Pipelines 

•  Idea of instruction-level parallelism 

•  Superscalar hardware issues 
•  Bypassing and register file 
•  Stall logic 
•  Fetch and branch prediction 

•  “Superscalar” vs VLIW/EPIC 

CPU Mem I/O 

System software 

App App App 
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Readings 

•  P&H 
•  Chapter 4.10 
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“Scalar” Pipeline & the Flynn Bottleneck 

•  So far we have looked at scalar pipelines 
•  One instruction per stage 

•  With control speculation, bypassing, etc. 
–  Performance limit (aka “Flynn Bottleneck”) is CPI = IPC = 1 
–  Limit is never even achieved (hazards) 
–  Diminishing returns from “super-pipelining” (hazards + overhead) 
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An Opportunity… 

•  But consider:  
ADD r1, r2 -> r3 
ADD r4, r5 -> r6 
•  Why not execute them at the same time?  (We can!) 

•  What about: 
ADD r1, r2 -> r3 
ADD r4, r3 -> r6 
•  In this case, dependences prevent parallel execution 

•  What about three instructions at a time?   
•  Or four instructions at a time? 
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What Checking Is Required? 

•  For two instructions: 2 checks 
ADD src11, src21 -> dest1 
ADD src12, src22 -> dest2    (2 checks) 

•  For three instructions: 6 checks 
ADD src11, src21 -> dest1 
ADD src12, src22 -> dest2    (2 checks) 
ADD src13, src23 -> dest3    (4 checks) 

•  For four instructions: 6 checks 
ADD src11, src21 -> dest1 
ADD src12, src22 -> dest2    (2 checks) 
ADD src13, src23 -> dest3    (4 checks) 
ADD src14, src24 -> dest4    (6 checks) 

•  Plus checking for load-to-use stalls from prior n loads 
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How do we build such 
“superscalar” hardware? 
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Multiple-Issue or “Superscalar” Pipeline 

•  Overcome this limit using multiple issue 
•  Also called superscalar 
•  Two instructions per stage at once, or three, or four, or eight… 
•  “Instruction-Level Parallelism (ILP)” [Fisher, IEEE TC’81] 

•  Today, typically “4-wide” (Intel Core i7, AMD Opteron) 
•  Some more (Power5 is 5-issue; Itanium is 6-issue) 
•  Some less (dual-issue is common for simple cores) 

regfile 

D$ I$ 

B 
P 

CIS 371 (Martin): Superscalar  11 

A Typical Dual-Issue Pipeline (1 of 2) 

•  Fetch an entire 16B or 32B cache block 
•  4 to 8 instructions (assuming 4-byte average instruction length) 
•  Predict a single branch per cycle 

•  Parallel decode 
•  Need to check for conflicting instructions 

•  Is output register of I1 is an input register to I2? 
•  Other stalls, too (for example, load-use delay) 

regfile 

D$ I$ 

B 
P 

CIS 371 (Martin): Superscalar  12 

A Typical Dual-Issue Pipeline (2 of 2) 

•  Multi-ported register file 
•  Larger area, latency, power, cost, complexity 

•  Multiple execution units 
•  Simple adders are easy, but bypass paths are expensive 

•  Memory unit 
•  Single load per cycle (stall at decode) probably okay for dual issue 
•  Alternative: add a read port to data cache 

•  Larger area, latency, power, cost, complexity 
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Superscalar Pipeline Diagrams - Ideal 
scalar 1 2 3 4 5 6 7 8 9 10 11 12 
lw 0(r1)r2 F D X M W 
lw 4(r1)r3 F D X M W 
lw 8(r1)r4  F D X M W 
add r14,r15r6 F D X M W 
add r12,r13r7 F D X M W 
add r17,r16r8 F D X M W 
lw 0(r18)r9 F D X M W 

2-way superscalar 1 2 3 4 5 6 7 8 9 10 11 12 
lw 0(r1)r2 F D X M W 
lw 4(r1)r3 F D X M W 
lw 8(r1)r4  F D X M W 
add r14,r15r6 F D X M W 
add r12,r13r7 F D X M W 
add r17,r16r8 F D X M W 
lw 0(r18)r9 F D X M W 
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Superscalar Pipeline Diagrams - Realistic 
scalar 1 2 3 4 5 6 7 8 9 10 11 12 
lw 0(r1)r2 F D X M W 
lw 4(r1)r3 F D X M W 
lw 8(r1)r4  F D X M W 
add r4,r5r6 F d* D X M W 
add r2,r3r7 F D X M W 
add r7,r6r8 F D X M W 
lw 0(r8)r9 F D X M W 

2-way superscalar 1 2 3 4 5 6 7 8 9 10 11 12 
lw 0(r1)r2 F D X M W 
lw 4(r1)r3 F D X M W 
lw 8(r1)r4  F D X M W 
add r4,r5r6 F d* d* D X M W 
add r2,r3r7 F d* D X M W 
add r7,r6r8 F D X M W 
lw 0(r8)r9 F d* D X M W 
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How Much ILP is There? 

•  The compiler tries to “schedule” code to avoid stalls 
•  Even for scalar machines (to fill load-use delay slot) 
•  Even harder to schedule multiple-issue (superscalar) 

•  How much ILP is common? 
•  Greatly depends on the application 

•  Consider memory copy 
•  Unroll loop, lots of independent operations 

•  Other programs, less so 

•  Even given unbounded ILP,  
superscalar has implementation limits 
•  IPC (or CPI) vs clock frequency trade-off 
•  Given these challenges, what is reasonable today?   

•  ~4 instruction per cycle maximum  

Superscalar Implementation 
Challenges 
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Superscalar Challenges - Front End 

•  Superscalar instruction fetch 
•  Modest: need multiple instructions per cycle 
•  Aggressive: predict multiple branches 

•  Superscalar instruction decode 
•  Replicate decoders 

•  Superscalar instruction issue 
•  Determine when instructions can proceed in parallel 
•  Not all combinations possible 
•  More complex stall logic - order N2 for N-wide machine 

•  Superscalar register read 
•  One port for each register read 

•  Each port needs its own set of address and data wires 
•  Example, 4-wide superscalar  8 read ports 
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Superscalar Challenges - Back End 

•  Superscalar instruction execution 
•  Replicate arithmetic units 
•  Perhaps multiple cache ports 

•  Superscalar bypass paths 
•  More possible sources for data values 
•  Order (N2 * P) for N-wide machine with execute pipeline depth P 

•  Superscalar instruction register writeback 
•  One write port per instruction that writes a register 
•  Example, 4-wide superscalar  4 write ports 

•  Fundamental challenge: 
•  Amount of ILP (instruction-level parallelism) in the program 
•  Compiler must schedule code and extract parallelism 
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Superscalar Decode & Register Read 

•  What is involved in decoding multiple (N) insns per cycle? 
•  Actually doing the decoding?  

•  Easy if fixed length (multiple decoders), doable if variable length 

•  Reading input registers? 
•  Nominally, 2N read + N write (2 read + 1 write per insn) 

–  Latency, area ∝ #ports2 

•  What about the stall logic? 

regfile 
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N2 Dependence Cross-Check 

•  Stall logic for 1-wide pipeline with full bypassing 
•  Full bypassing → load/use stalls only 

X.op==LOAD && (D.rs1==X.rd || D.rs2==X.rd) 
•  Two “terms”: ∝ 2N 

•  Now: same logic for a 2-wide pipeline 
X1.op==LOAD && (D1.rs1==X1.rd || D1.rs2==X1.rd) || 
X1.op==LOAD && (D2.rs1==X1.rd || D2.rs2==X1.rd) || 
X2.op==LOAD && (D1.rs1==X2.rd || D1.rs2==X2.rd) || 
X2.op==LOAD && (D2.rs1==X2.rd || D2.rs2==X2.rd) 

•  Eight “terms”: ∝ 2N2  
•  N2 dependence cross-check 

•  Not quite done, also need 
•  D2.rs1==D1.rd || D2.rs2==D1.rd 
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Superscalar Execute 

•  What is involved in executing N insns per cycle? 
•  Multiple execution units … N of every kind? 

•  N ALUs? OK, ALUs are small 
•  N floating point dividers? No, dividers are big, fdiv is uncommon 
•  How many branches per cycle? How many loads/stores per cycle? 
•  Typically some mix of functional units proportional to insn mix 

•  Intel Pentium: 1 any + 1 “simple” (such as ADD, etc.) 
•  Alpha 21164: 2 integer (including 2 loads) + 2 floating point 
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Superscalar Bypass 

•  N2 bypass network 
–  N+1 input muxes at each ALU input 
–  N2 point-to-point connections 
–  Routing lengthens wires 
–  Heavy capacitive load 
•  And this is just one bypass stage (MX)! 

•  There is also WX bypassing 
•  Even more for deeper pipelines 

•  One of the big problems of superscalar 

versus 

CIS 371 (Martin): Superscalar  23 

Superscalar Memory Access 

•  What about multiple loads/stores per cycle? 
•  Probably only necessary on processors 4-wide or wider 

•  Core i7: is one load & one store per cycle 
•  More important to support multiple loads than multiple stores 

•  Insn mix: loads (~20–25%), stores (~10–15%) 
•  Alpha 21164: two loads or one store per cycle 

D$ 
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D$ Bandwidth 

•  How to provide additional D$ bandwidth? 
•  Have already seen split I$/D$, but that gives you just one D$ port 
•  How to provide a second (maybe even a third) D$ port? 

•  Option#1: multi-porting 
+  Most general solution, any two accesses per cycle 
–  Lots of wires; expensive in terms of latency, area (cost), and power 

•  Option#2: banking (or interleaving) 
•  Divide D$ into “banks” (by address), one access per bank per cycle 
•  Bank conflict: two accesses to same bank → one stalls 
+  Small latency, area, power overheads 
+  One access per bank per cycle, assuming no conflicts 
–  Complex stall logic → address not known until execute stage 
–  To support N accesses, need 2N+ banks to avoid frequent conflicts 
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Not All N2 Created Equal 

•  N2 bypass vs. N2 stall logic & dependence cross-check 
•  Which is the bigger problem? 

•  N2 bypass … by far 
•  64- bit quantities (vs. 5-bit) 
•  Multiple levels (MX, WX) of bypass (vs. 1 level of stall logic) 
•  Must fit in one clock period with ALU (vs. not) 

•  Dependence cross-check not even 2nd biggest N2 problem 
•  Regfile is also an N2 problem (think latency where N is #ports) 
•  And also more serious than cross-check 
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Mitigating N2 Bypass: Clustering 
•  Clustering: mitigates N2 bypass 

•  Group ALUs into K clusters 
•  Full bypassing within a cluster 
•  Limited bypassing between clusters 

•  With 1 or 2 cycle delay 
•  (N/K) + 1 inputs at each mux 
•  (N/K)2 bypass paths in each cluster 

•  Steering: key to performance 
•  Steer dependent insns to same cluster 
•  Statically (compiler) or dynamically 

•  Hurts IPC, allows wide issue at same clock 

•  E.g., Alpha 21264 
•  Bypass wouldn’t fit into clock cycle 
•  4-wide, 2 clusters 
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Mitigating N2 RegFile: Clustering++ 

•  Clustering: split N-wide execution pipeline into K clusters 
•  With centralized register file, 2N read ports and N write ports 

•  Clustered register file: extend clustering to register file 
•  Replicate the register file (one replica per cluster) 
•  Register file supplies register operands to just its cluster 
•  All register writes go to all register files (keep them in sync) 
•  Advantage: fewer read ports per register! 

•  K register files, each with 2N/K read ports and N write ports 
•  Alpha 21264: 4-way superscalar, two clusters 

DM 

RF0 

RF1 

cluster 0 

cluster 1 

Superscalar “Front End” 
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Simple Superscalar Fetch 

•  What is involved in fetching multiple instructions per cycle? 
•  In same cache block? → no problem 

•  64-byte cache block is 16 instructions (~4 bytes per instruction) 
•  Favors larger block size (independent of hit rate) 

•  What if next instruction is last instruction in a block? 
•  Fetch only one instruction that cycle 
•  Or, some processors may allow fetching from 2 consecutive blocks 

•  Compilers align code to I$ blocks (.align directive in asm) 
•  Reduces I$ capacity 
•  Increases fetch bandwidth utilization (more important) 
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Limits of Simple Superscalar Fetch 

•  How many instructions can be fetched on average? 
•  BTB predicts the next block of instructions to fetch 

•  Support multiple branch (direction) predictions per cycle 
•  Discard post-branch insns after first branch predicted as “taken” 

•  Lowers effective fetch width and IPC 
•  Average number of instructions per taken branch? 

•  Assume: 20% branches, 50% taken → ~10 instructions 
•  Consider a 5-instruction loop with an 4-issue processor 

•  Without smarter fetch, ILP is limited to 2.5 (not 4) 
•  Compiler could “unroll” the loop (reduce taken branches) 
•  How else can we increase fetch rate? 
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Increasing Superscalar Fetch Rate 

•  Option #1: over-fetch and buffer 
•  Add a queue between fetch and decode (18 entries in Intel Core2) 
•  Compensates for cycles that fetch less than maximum instructions 
•  “decouples” the “front end” (fetch) from the “back end” (execute) 

•  Option #2: predict next two blocks (extend BTB) 
•  Transmits two PCs to fetch stage: “next PC” and “next-next PC” 
•  Access I-cache twice (requires multiple ports or banks) 
•  Requires extra merging logic to select and merge correct insns 
–  Elongates pipeline, increases branch penalty 
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Increasing Superscalar Fetch Rate 

•  Option #3: “loop stream detector” (Core 2, Core i7) 
•  Put entire loop body into a small cache 

•  Core2: 18 macro-ops, up to four taken branches 
•  Core i7: 28 micro-ops (avoids re-decoding macro-ops!) 

•  Any branch mis-prediction requires normal re-fetch 

•  Option #4: trace cache (Pentium 4) 
•  Tracks “traces” of disjoint but dynamically consecutive instructions 
•  Pack (predicted) taken branch & its target into a one “trace” entry 
•  Fetch entire “trace” while predicting the “next trace” 
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Implementations of  
“Multiple Issue” 
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Multiple-Issue Implementations 
•  Statically-scheduled (in-order) superscalar 

•  What we’ve talked about thus far 
+  Executes unmodified sequential programs 
–  Hardware must figure out what can be done in parallel 
•  E.g., Pentium (2-wide), UltraSPARC (4-wide), Alpha 21164 (4-wide) 

•  Very Long Instruction Word (VLIW) 
-  Compiler identifies independent instructions, new ISA 
+  Hardware can be simple and perhaps lower power 
•  E.g., TransMeta Crusoe (4-wide) 
•  Variant: Explicitly Parallel Instruction Computing (EPIC) 

•  A bit more flexible encoding & some hardware to help compiler 
•  E.g., Intel Itanium (6-wide) 

•  Dynamically-scheduled superscalar 
•  Hardware extracts more ILP by on-the-fly reordering 
•  Core 2, Core i7 (4-wide), Alpha 21264 (4-wide) 
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Multiple Issue Redux 
•  Multiple issue 

•  Exploits insn level parallelism (ILP) beyond pipelining 
•  Improves IPC, but perhaps at some clock & energy penalty 
•  4-6 way issue is about the peak issue width currently justifiable 

•  Problem spots 
•  N2 bypass & register file → clustering 
•  Fetch + branch prediction → buffering, loop streaming, trace cache 
•  N2 dependency check → VLIW/EPIC  (but unclear how key this is) 

•  Implementations 
•  Superscalar vs. VLIW/EPIC 
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Multiple Issue Summary 

•  Superscalar hardware issues 
•  Bypassing and register file 
•  Stall logic 
•  Fetch 

•  Multiple-issue designs  
•  “Superscalar” vs VLIW 

CPU Mem I/O 

System software 

App App App 


