
GPU Architecture

Patrick Cozzi
University of Pennsylvania
CIS 371 Guest Lecture
Spring 2012

Who is this guy?

Analytical
Graphics, Inc.

See http://www.seas.upenn.edu/~pcozzi/

developer lecturer author editor

How did this happen?

http://proteneer.com/blog/?p=263

Graphics Workloads

 Triangles/vertices and pixels/fragments

Right image from http://http.developer.nvidia.com/GPUGems3/gpugems3_ch14.html

Early 90s – Pre GPU

Slide from http://s09.idav.ucdavis.edu/talks/01-BPS-SIGGRAPH09-mhouston.pdf

Why GPUs?

 Graphics workloads are embarrassingly
parallel
 Data-parallel
 Pipeline-parallel

 CPU and GPU execute in parallel
 Hardware: texture filtering, rasterization,

etc.

Data Parallel

 Beyond Graphics
 Cloth simulation
 Particle system
 Matrix multiply

Image from: https://plus.google.com/u/0/photos/100838748547881402137/albums/5407605084626995217/5581900335460078306

NVIDIA GeForce 6 (2004)

Image from http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter30.html

6 vertex
shader processors

16 fragment
shader processors

NVIDIA G80 Architecture

Slide from http://s08.idav.ucdavis.edu/luebke-nvidia-gpu-architecture.pdf

Why Unify Shader Processors?

Slide from http://s08.idav.ucdavis.edu/luebke-nvidia-gpu-architecture.pdf

Why Unify Shader Processors?

Slide from http://s08.idav.ucdavis.edu/luebke-nvidia-gpu-architecture.pdf

GPU Architecture Big Ideas

 GPUs are specialized for
 Compute-intensive, highly parallel computation
 Graphics is just the beginning.

 Transistors are devoted to:
 Processing
 Not:

  Data caching
  Flow control

Slide from: http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf Slide from: http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

Slide from: http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf Slide from: http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

Slide from: http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf Slide from: http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

Slide from: http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf Slide from: http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

Slide from: http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf Slide from: http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

Slide from: http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf Slide from: http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

Slide from: http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

NVIDIA G80

NVIDIA G80

Streaming Processing (SP)

NVIDIA G80

Streaming Multi-Processor (SM)

NVIDIA G80

Slide from David Luebke: http://s08.idav.ucdavis.edu/luebke-nvidia-gpu-architecture.pdf

  16 SMs
  Each with 8 SPs

  128 total SPs

  Each SM hosts up
to 768 threads

  Up to 12,288
threads in flight

NVIDIA GT200

Slide from David Luebke: http://s08.idav.ucdavis.edu/luebke-nvidia-gpu-architecture.pdf

  30 SMs
  Each with 8 SPs

  240 total SPs

  Each SM hosts
up to
  1024 threads

  In flight, up to
  30,720 threads

Let’s program
this thing!

GPU Computing History

  2001/2002 – researchers see GPU as data-
parallel coprocessor
 The GPGPU field is born

  2007 – NVIDIA releases CUDA
 CUDA – Compute Uniform Device Architecture
 GPGPU shifts to GPU Computing

  2008 – Khronos releases OpenCL
specification

CUDA Abstractions

 A hierarchy of thread groups
 Shared memories
 Barrier synchronization

CUDA Kernels

 Executed N times in parallel by N different
CUDA threads

Thread ID

Execution
Configuration

Declaration
Specifier

CUDA Program Execution

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Thread Hierarchies

 Grid – one or more thread blocks
 1D or 2D

 Block – array of threads
 1D, 2D, or 3D
 Each block in a grid has the same number of

threads
 Each thread in a block can

  Synchronize
  Access shared memory

Thread Hierarchies

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Thread Hierarchies

 Thread Block
 Group of threads

  G80 and GT200: Up to 512 threads
  Fermi: Up to 1024 threads

 Reside on same processor core
 Share memory of that core

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Thread Hierarchies

Image from: http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf

Thread Hierarchies

 Threads in a block
 Share (limited) low-latency memory
 Synchronize execution

  To coordinate memory accesses
 __syncThreads()

 Barrier – threads in block wait until all threads reach this
  Lightweight

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Scheduling Threads

 Warp – threads from a block
 G80 / GT200 – 32 threads
 Run on the same SM
 Unit of thread scheduling
 Consecutive threadIdx values
 An implementation detail – in theory

 warpSize

Scheduling Threads

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter3-CudaThreadingModel.pdf

  Warps for three
blocks scheduled
on the same SM.

Image from: http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

Scheduling Threads

Remember this:

Scheduling Threads

Slide from: http://courses.engr.illinois.edu/ece498/al/Syllabus.html

Scheduling Threads

 What happens if branches in a warp
diverge?

Image from: http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

Scheduling Threads

Remember this:

Scheduling Threads

  32 threads per warp but 8 SPs per
SM. What gives?

Scheduling Threads

  32 threads per warp but 8 SPs per
SM. What gives?

 When an SM schedules a warp:
 Its instruction is ready
 8 threads enter the SPs on the 1st cycle
 8 more on the 2nd, 3rd, and 4th cycles
 Therefore, 4 cycles are required to

dispatch a warp

Scheduling Threads

 Question
 A kernel has

 1 global memory read (200 cycles)
 4 non-dependent multiples/adds

 How many warps are required to hide the
memory latency?

Scheduling Threads

 Solution
 Each warp has 4 multiples/adds

 16 cycles

 We need to cover 200 cycles
 200 / 16 = 12.5
 ceil(12.5) = 13

 13 warps are required

Memory Model

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Recall:

Thread Synchronization

 Threads in a block can synchronize
 call __syncthreads to create a barrier
 A thread waits at this call until all threads in

the block reach it, then all threads continue

Mds[i] = Md[j];
__syncthreads();
func(Mds[i], Mds[i + 1]);

Thread Synchronization

Mds[i] = Md[j];
__syncthreads();
func(Mds[i], Mds[i+1]);

Mds[i] = Md[j];
__syncthreads();
func(Mds[i], Mds[i+1]);

Mds[i] = Md[j];
__syncthreads();
func(Mds[i], Mds[i+1]);

Mds[i] = Md[j];
__syncthreads();
func(Mds[i], Mds[i+1]);

Time: 0

Thread 0 Thread 1

Thread 2 Thread 3

Thread Synchronization

Mds[i] = Md[j];
__syncthreads();
func(Mds[i], Mds[i+1]);

Mds[i] = Md[j];
__syncthreads();
func(Mds[i], Mds[i+1]);

Mds[i] = Md[j];
__syncthreads();
func(Mds[i], Mds[i+1]);

Mds[i] = Md[j];
__syncthreads();
func(Mds[i], Mds[i+1]);

Time: 1

Thread 0 Thread 1

Thread 2 Thread 3

Thread Synchronization

Mds[i] = Md[j];
__syncthreads();
func(Mds[i], Mds[i+1]);

Mds[i] = Md[j];
__syncthreads();
func(Mds[i], Mds[i+1]);

Mds[i] = Md[j];
__syncthreads();
func(Mds[i], Mds[i+1]);

Mds[i] = Md[j];
__syncthreads();
func(Mds[i], Mds[i+1]);

Time: 1

Thread 0 Thread 1

Thread 2 Thread 3

Threads 0 and 1 are blocked at barrier

Thread Synchronization

Mds[i] = Md[j];
__syncthreads();
func(Mds[i], Mds[i+1]);

Mds[i] = Md[j];
__syncthreads();
func(Mds[i], Mds[i+1]);

Mds[i] = Md[j];
__syncthreads();
func(Mds[i], Mds[i+1]);

Mds[i] = Md[j];
__syncthreads();
func(Mds[i], Mds[i+1]);

Time: 2

Thread 0 Thread 1

Thread 2 Thread 3

Thread Synchronization

Mds[i] = Md[j];
__syncthreads();
func(Mds[i], Mds[i+1]);

Mds[i] = Md[j];
__syncthreads();
func(Mds[i], Mds[i+1]);

Mds[i] = Md[j];
__syncthreads();
func(Mds[i], Mds[i+1]);

Mds[i] = Md[j];
__syncthreads();
func(Mds[i], Mds[i+1]);

Time: 3

Thread 0 Thread 1

Thread 2 Thread 3

Thread Synchronization

Mds[i] = Md[j];
__syncthreads();
func(Mds[i], Mds[i+1]);

Mds[i] = Md[j];
__syncthreads();
func(Mds[i], Mds[i+1]);

Mds[i] = Md[j];
__syncthreads();
func(Mds[i], Mds[i+1]);

Mds[i] = Md[j];
__syncthreads();
func(Mds[i], Mds[i+1]);

Time: 3

Thread 0 Thread 1

Thread 2 Thread 3

All threads in block have reached barrier, any thread
can continue

Thread Synchronization

Mds[i] = Md[j];
__syncthreads();
func(Mds[i], Mds[i+1]);

Mds[i] = Md[j];
__syncthreads();
func(Mds[i], Mds[i+1]);

Mds[i] = Md[j];
__syncthreads();
func(Mds[i], Mds[i+1]);

Mds[i] = Md[j];
__syncthreads();
func(Mds[i], Mds[i+1]);

Time: 4

Thread 0 Thread 1

Thread 2 Thread 3

Thread Synchronization

Mds[i] = Md[j];
__syncthreads();
func(Mds[i], Mds[i+1]);

Mds[i] = Md[j];
__syncthreads();
func(Mds[i], Mds[i+1]);

Mds[i] = Md[j];
__syncthreads();
func(Mds[i], Mds[i+1]);

Mds[i] = Md[j];
__syncthreads();
func(Mds[i], Mds[i+1]);

Time: 5

Thread 0 Thread 1

Thread 2 Thread 3

Thread Synchronization

 Why is it important that execution time be
similar among threads?

 Why does it only synchronize within a
block?

Thread Synchronization

Image from http://courses.engr.illinois.edu/ece498/al/textbook/Chapter3-CudaThreadingModel.pdf

Thread Synchronization

 Can __syncthreads() cause a thread
to hang?

Thread Synchronization

if (someFunc())
{
 __syncthreads();
}
// ...

Thread Synchronization

if (someFunc())
{
 __syncthreads();
}
else
{
 __syncthreads();
}

