Who is this guy?

GPU Architecture A

. . Analytical
Patrick Cozzi Graphics, Inc.

University of Pennsylvania developer fcturer athor o
CIS 371 Guest Lecture
Spring 2012

See http://www.seas.upenn.edu/~pcozzi/

How did this happen? Graphics Workloads

Theoretical
GFLOP/s
1750

NVIDIA GPU Single Predision
w=p==NVIDIA GPU Double Predsion
=g ntel CPU Single Pred sion
~=s=Intel CPU Dauble Precision

1500

m Triangles/vertices and pixels/fragments

1250

1000

750

Tesla C2050

500

250

0 " Harpertown
Sep-017°"8R%3 Jun-04 Oct-05 Mar-07 Jul-08 Dec-09

http://proteneer.com/blog/?p=263 Right image from http:/http.developer.nvidia.com/GPUGems3/gpugems3_ch14.html

Early 90s — Pre GPU Why GPUs?

parallel
Data-parallel
Pipeline-parallel
m CPU and GPU execute in parallel

Doom I, 1993 m Hardware: texture filtering, rasterization,
= Interactive software rendering (no GPUs yet) etc.

?: m Graphics workloads are embarrassingly
B

FLOOR| SCORE |LIVES A Mmo

5 102500 & 2
Wolfenstein 3D, 1992

= NOTE: SGI was building interactive rendering supercomputers, but
this was beginning of interactive 3D graphics on PC

Slide from http://s09.idav.ucdavis.edu/talks/01-BPS-SIGGRAPHO09-mhouston.pdf

" J "
Data Parallel NVIDIA GeForce 6 (2004)
u e P T . / shadesr\;)?:)ts:ssors
Cloth simulation - Cu:‘/s:::t:un
Particle system T i
Matrix multiply L] + ‘ ‘ }J s o

¥
Fragment Crossbar |

I T T B I S O] S 9) . § T T [O Y |
TNV
]] 1]
| — | — | [
{ { } ! 16 fragment
ORAM(S) DRAM(5) \"@" | shader processors

DRAM(s)

Image from: https://plus.google.com/u/0/photos/100838748547881402137/albums/5407605084626995217/5581900335460078306 Image from http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter30.html

NVIDIA G80 Architecture Why Unify Shader Processors?

GeForce 8: Modern GPU Architecturg Why unify? =

Vertex Shader

-

Input Assembler Pixel Shader

Vertex Thread Issue Geom Thread Issue Pixel Thread Issue ..Eﬁﬂ.. IV o
p. (]
]]]
sn|= Heavy Geometry

Workload Perf = 4

Thread Processor

| L o
bﬁt
] i !]
FEEEE] N T I D O D N D O) -
H H] $] H i H H
Framebuffer Heavy Pixel

'
]
L1
! ! Pixel Shader . ‘&a
oo eopsion Workload Perf = 8

Slide from http://s08.idav.ucdavis.edu/luebke-nvidia-gpu-architecture.pdf

Slide from http://s08.idav.ucdavis.edu/luebke-nvidia-gpu-architecture.pdf

" JE
Why Unify Shader Processors? GPU Architecture Big Ideas

Why unify?

Unified Shader

Unified Shader

m GPUs are specialized for
Compute-intensive, highly parallel computation
¢ . e Graphics is just the beginning.
Heavy Geometry m Transistors are devoted to:
Processing

Not:
m Data caching
= Flow control

Heavy Pixel
Workload Perf = 11

Slide from http://s08.idav.ucdavis.edu/luebke-nvidia-gpu-architecture.pdf

" "

“CPU-style” cores @ Slimming down @

Fetch/
Decode

Fetch/
Decode
Data cache
(a big one)

Execution
Context

==

Out-of-order control logic

Fancy branch predictor

E E Memory pre-fetcher

Execution
Context

07/29/10 Beyond Programmable Shading Course, ACM SIGGRAPH 2010 14 07/29/10 Beyond Programmable Shading Course, ACM SIGGRAPH 2010 15

Slide from: http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf Slide from: http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

" "

Sixteen cores (sixteen fragments in parallel) ﬁ@ Add ALUs 4@

o 9o 0 a I | | |

¢ & @ o Idea #2: |

o 9 9 o — — Amortl.zecost(complgxﬁyof
[aw] managing an instruction

® 0 ® © E= == stream across many ALUs

° e e 9 ===

& © @ o = = SIMD processing

R "

6 b b

16 cores = 16 simultaneous instruction streams

07/29/10 Beyond Programmable Shading Course, ACM SIGGRAPH 2010 s N 0
07/29/10 Beyond Programmable Shading Course, ACM SIGGRAPH 2010

Slide from: http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf Slide from: http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

"

128 fragments in parallel

jalalsle) 0000 00O Qooo
D\:iDD DDfD 0000 0O00O0

II’II -Ln
®000 ®ces
cooo goog
0000 ©ooo
+ +
¥ 4
cgee eeee o000 ooee
coce ®eEeC ©Oeec ecee

00
00
00
[as]

“00
00
00
00
Q0
00
00
00
00
00

4 ¥ ¥ ¥

2988 8858 8888 8888

8838 8888 8888 8888
4 4 + +
4 +

2838 2888

16 cores = 128 ALUs, 16 simultaneous instruction streams
07/29/10 Beyond Programmable Shading Course, ACM SIGGRAPH 2010

Slide from: http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

"

But what about branches?
Time (clocks) II]E'E'DDDE'

ALU1T ALU2 ALUB

<unconditional
shader code>

if (x > @) {

<resume unconditional
shader code>

Not all ALUs do useful work!
Worst case: 1/8 peak performance

07/29/10 Beyond Programmable Shading Course, ACM SIGGRAPH 2010

Slide from: http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

"

But what about branches? 4@
Time (clocks) EIZ”QI:IDDE'

07/29/10

ALUT ALU2 ALUB

<unconditional
shader code>

if (x > 0) {
y = pow(x, exp);
y *= Ks;
refl = y + Ka;

} else {
X = 0;

refl = Ka;

}

<resume unconditional
shader code>

Beyond Programmable Shading Course, ACM SIGGRAPH 2010 z

Slide from: http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

"

Throughput! &

Time (clocks)

07/29/10

Frag1...8 Frag9...16 Frag17...24 Frag 25...32

i o o o [o [Doo

Increase run time of one group Done!
V toincrease throughput of many groups

oooo Dooooooo Oooooooo

e e e e
- Start
- Stall = “
>
- > Stall Yg
Runnable
- Runnable
Done! - Runnable
Done! - Runnable

Done! 38

Beyond Programmable Shading Course, ACM SIGGRAPH 2010

Slide from: http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

"
Storing contexts &

EIEEE]

Pool of context storage
128 KB

07/29/10 Beyond Programmable Shading Course, ACM SIGGRAPH 2010

Slide from: http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

"

Twelve medium contexts A@

07/29/10 Beyond Programmable Shading Course, ACM SIGGRAPH 2010

Slide from: http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

"

Eighteen small contexts vaximaliatency hiding) L@

07/29/10 Beyond Programmable Shading Course, ACM SIGGRAPH 2010

Slide from: http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

"
(low latency hiding ability) @

Four large contexts

07/29/10 Beyond Programmable Shading Course, ACM SIGGRAPH 2010 2

Slide from: http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

" "

My chip! NVIDIA G80

16 cores

8 mul-add ALUs per core
(128 total)

16 simultaneous
instruction streams

64 concurrent (but interleaved)
instruction streams

512 concurrent fragments

=256 GFLOPs (@ 1GHz)

07/29/10 Beyond Programmable Shading Course, ACM SIGGRAPH 2010

Slide from: http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

" S " EE————
NVIDIA G80 NVIDIA G80

4{ Streaming Processing (SP) ‘
O

‘—{ Streaming Multi-Processor (SM) ‘

=

NVIDIA G80

m 16 SMs GeForce 8: Modern GPU Architecturg
m Each with 8 SPs
128 total SPs B \
= Each SM hosts up [llS
to 768 threads
m Up to 12,288 | II“IIIIIMII |
threads in flight e e S B
| | |

e e e R e

Slide from David Luebke: http://s08.idav.ucdavis.edu/luebke-nvidia-gpu-architecture.pdf

Let’'s program
this thing!

NVIDIA GT200

30 SMs era 90/

Each with 8 SPs
240 total SPs <12kl

Each SM hosts

up to REREE BEEE 4 j_‘_
1024 threads

In ﬂlght, up to Atomic e Atomic o Atomic. o Atomic
30,720 threads

333

Slide from David Luebke: http://s08.idav.ucdavis.edu/luebke-nvidia-gpu-architecture.pdf

" S
GPU Computing History

m 2001/2002 — researchers see GPU as data-
parallel coprocessor

The GPGPU field is born

m 2007 — NVIDIA releases CUDA
CUDA — Compute Uniform Device Architecture
GPGPU shifts to GPU Computing

m 2008 — Khronos releases OpenCL
specification

" SN "
CUDA Abstractions CUDA Kernels

m A hierarchy of thread groups m Executed N times in parallel by N different
m Shared memories CUDA threads

m Barrier synchronization

oa B, float* C)
Declaration)
Specifier int main()
{
i Execution
Configuration
" JEE " JEE
CUDA Program Execution Thread Hierarchies
m Grid — one or more thread blocks
CPU Serial Code 5 1D or 2D
Grid 0
GPU Paraiel Kernel m Block — array of threads
KernelA<<< nBlk, nTid >>>(args); || w
1D, 2D, or 3D
CPU Serial Code g . .
Grid 1 Each block in a grid has the same number of
Kernelsfi :aBrIakl,Ier:Tli(:T:l(args); : th read S

Each thread in a block can
= Synchronize
= Access shared memory

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Thread Hierarchies

» Athread blockis a Host Device
batch of threads that Gra 1
can cooperate with Ke;ne'1——»’ Blook | Bl ‘ Bk

each other by:
— Synchronizing their

Block|| Block | Block
(0,1f 1) (21
7 7 \

execution
+ For hazard-free shared ol < Y
memory accesses F EDDE
— Efficiently sharing data . S
through a low latency Block (1, 1) ‘_'

shared memory
* Two threads from two
different blocks cannot
cooperate

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Thread Hierarchies

Multithreaded CUDA Program

|
!

GPU with 4 Cores

GPU with 2 Cores

O

oo o J!ﬁiﬁﬁ
(oees ok | s ks ks k7
s moas.
s onar

other, so that a GPU with more cores will automatically execute the program in less time than a GPU
vilth fewier cores.

Figure 1-4. Automatic Scalability

Image from: http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf

" JEE
Thread Hierarchies

m Thread Block

C1Group of threads

= G80 and GT200: Up to 512 threads
s Fermi: Up to 1024 threads

1Reside on same processor core
r1Share memory of that core

(Device) Grid

Block (0, 0)

el

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

" JEE
Thread Hierarchies

m Threads in a block
“1Share (limited) low-latency memory

r1Synchronize execution
= To coordinate memory accesses

m syncThreads()

(Device) Grid

Block (0, 0)

0 Barrier — threads in block wait until all threads reach this

o Lightweight

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Scheduling Threads Scheduling Threads

m Warp — threads from a block . \é\I’arES forhthéef . s [y [romies
OC S SC e u e Rosiseon el I B B BRCLSA S AARAREARN
11G80 / GT200 — 32 threads on the same SM. %
CJRun on the same SM B
71Unit of thread scheduling
: [KX
r1Consecutive threadIdx values ||
CJAn implementation detail — in theory g g

mwarpSize

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter3-CudaThreadingModel.pdf

Scheduling Threads Scheduling Threads

+ SM implements zero-overhead warp scheduling

o — Atanytime, only one of the warps is executed by SM
Remember th IS: — Warps whose nextinstruction has its operands ready for
consumption are eligible for execution

e) Bomm, COODUSDD COGGEODD CUBELLES — Eligible Warps are selected for execution on a prioritized

@ L () @ scheduling policy

:;j} son — Allthreads in a warp execute the same instruction when selected
stall -
FV Y lﬁ Start

Runnable /‘s:','\
Runnable 7 salk
A ————TB1, W1 stall—|

Done! Runnable |—TBE V1 stall——————TB3, W2 stall——|

Done! Runnable Instruction: | 1 - 6 2 2 8
Increase run time of one group Done! —Time-» T8 = Thread Block, W = Warp

¥V _toincrease throughput of many groups © David Kirk/NVIDIAand Wen-mei W. Hwu, 2007-2009

Done! ECE498AL, University of lllinois, Urbana-Champaign

Image from: http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf Slide from: http://courses.engr.illinois.edu/ece498/al/Syllabus.html

Scheduling Threads

m What happens if branches in a warp

diverge?

Scheduling Threads

m 32 threads per warp but 8 SPs per

SM. What gives?

REEE
(R

" JE
Scheduling Threads

Remember this:
Time (clocks) DDDDDDD

ALUT ALU2 ... «oo ALU

o

SEEREERE | e
[T|T|F|T|F]F]F]F]

Dl T] [%ok x|y = poutx, exe); |
ke] % ox x|y]
HEIEEEE R L
xx x| | ||| H [x-e]
x % u 3 |—”_“_.”_.I refl = Kaj;
\/ <resume uncon ditional
Not all ALUs do useful work! shader code>

¥ Worst case: 1/8 peak performance

Image from: http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

" JE
Scheduling Threads

m 32 threads per warp but 8 SPs per
SM. What gives?

m When an SM schedules a warp:
C1lts instruction is ready
718 threads enter the SPs on the 15t cycle
718 more on the 2", 314 and 4t cycles

“1Therefore, 4 cycles are required to
dispatch a warp

Scheduling Threads Scheduling Threads

m Question m Solution
1A kernel has r1Each warp has 4 multiples/adds
= 1 global memory read (200 cycles) m16 cycles
= 4 non-dependent multiples/adds IWe need to cover 200 cycles
1How many warps are required to hide the 200 / 16 = 12.5
memory latency? mceil(12.5) = 13

113 warps are required

" O "
Memory Model Thread Synchronization
Recall:

m Threads in a block can synchronize
+ Device code can: (@ovice) Gria Ccall syncthreads to create a barrier
- Wipertiread registers Block0.0 1A thread waits at this call until all threads in

- R/W -thread | |
e o ey ﬂ the block reach it, then all threads continue

— R/W per-block shared memory
Thread (0, 0)

Block (1, 0)

— R/W per-grid global memory
— Read only per-grid constant
memory

+ Host code can 1111 Mds[1i] = Md[]J];
— R/W per grid global and Syncthreads () .
constant memories N ’

func (Mds[i], Mds[i + 11);

Thread (1, 0)

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

Thread Synchronization

=

Thread 0

Mds[i] = Md[F];
__syncthreads() ;
func (Mds[i], Mds[i+1]);

Thread 2

Mds[i] = Md[]j];
~_syncthreads () ;
func (Mds[i], Mds[i+1]);

=

Thread 1

Mds[i] = Md[]];
__syncthreads() ;

func (Mds[i], Mds[i+1]);

Thread 3

Mds[i] = Md[j];

~_syncthreads () ;

func (Mds[i], Mds[i+1]);

Time: 0O

Thread Synchronization

Thread 0

=

Mds[i] = Md[F];
__syncthreads() ;
func (Mds[i], Mds[i+1]);

Thread 2

Mds [1i] = Md[]];
~_syncthreads () ;
func (Mds[i], Mds[i+1]);

Thread 1

=

Mds [1] Md[3];
__syncthreads() ;

func (Mds[i], Mds[i+1]);

Thread 3

Mds [1] Md[j];

~_syncthreads () ;

func (Mds[i], Mds[i+1]);

Threads 0 and 1 are blocked at barrier

Time: 1

Thread Synchronization

=

Thread 0

Thread 1

Mds[i] = Md[F];
__syncthreads() ;
func (Mds[i], Mds[i+1]);

=

Mds[i] = Md[j];
__syncthreads() ;
func (Mds[i], Mds[i+1]);

Thread 2

Thread 3

Mds [1i] = Md[]]:
~_syncthreads () ;
func (Mds[i], Mds[i+1]);

Mds[i] = Md[]];
~_syncthreads () ;
func (Mds[i], Mds[i+1]);

Time: 1

Thread Synchronization

Thread 0

Thread 1

=

Mds[i] = Md[F];
__syncthreads() ;
func (Mds[i], Mds[i+1]);

=

Mds[i] = Md[j];
__syncthreads() ;
func (Mds[i], Mds[i+1]);

Thread 2

Thread 3

Mds[i] = Md[]j];
__syncthreads () ;
func (Mds[i], Mds[i+1]);

Mds[1i] = Md[]];
~_syncthreads () ;
func (Mds[i], Mds[i+1]);

Time: 2

Thread Synchronization

Thread 0 Thread 1
Mds[i] = Md[]]; Mds[i] = Md[j];
[i> __syncthreads () ; [i> __syncthreads () ;
func (Mds[i], Mds[i+1]); func (Mds[i], Mds[i+1]);
Thread 2 Thread 3
Mds[i] = Md[j]; Mds[i] = Md[]];
[i> __syncthreads () ; [i> __syncthreads () ;
func (Mds[i], Mds[i+1]); func (Mds[i], Mds[i+1]);

Time: 3

Thread Synchronization

Thread 0 Thread 1
Mds[i] = Md[]j]; Mds[i] = Md[j];
[i> __syncthreads () ; [i> __syncthreads () ;
func (Mds[i], Mds[i+1]); func (Mds[i], Mds[i+1]);
Thread 2 Thread 3
Mds[i] = Md[j]; Mds[i] = Md[]];

~_syncthreads () ; ~_syncthreads () ;

E> func (Mds[i], Mds[i+1]); E> func (Mds[i], Mds[i+1]);

Time: 4

Thread Synchronization

Thread 0 Thread 1
Mds[i] = Md[]]; Mds[i] = Md[]];
[i> __syncthreads () ; [i> __syncthreads () ;
func (Mds[i], Mds[i+1]); func (Mds[i], Mds[i+1]);
Thread 2 Thread 3
Mds[i] = Md[j]; Mds[i] = Md[]];

[i> __syncthreads () ;

[i> __syncthreads () ;

func (Mds[i], Mds[i+1]); func(Mds[i], Mds[i+1]);

All threads in block have reached barrier, any thread

can continue

Time: 3

Thread Synchronization

Thread 0

Thread 1

Mds[i] = Md[]];

__syncthreads() ;

E> func (Mds[i], Mds[i+1]); E> func (Mds[i], Mds[i+1]);

Mds[i] = Md[]];

__syncthreads() ;

Thread 2

Thread 3

Mds[i] = Md[j];

__syncthreads () ;

Mds[i] = Md[]];

~_syncthreads () ;

func (Mds[i], Mds[i+1]); func(Mds[i], Mds[i+1]);

Time: 5

" SN "
Thread Synchronization Thread Synchronization

m Why is it important that execution time be
similar among threads? -

m Why does it only synchronize within a oo ot “/ ——
block? ==

me

l |Block4 | Block5 Block6 Block? \
Eachblock canexecute in any order relative to
other blocks.

Figure 3.5 Lack of synchronization across blocks enables
transparent scalability of CUDA programs

Image from http://courses.engr.illinois.edu/ece498/al/textbook/Chapter3-CudaThreadingModel.pdf

" SN "
Thread Synchronization Thread Synchronization

m Can syncthreads () cause a thread
to hang? if

{
__syncthreads () ;

(someFunc ())

" S
Thread Synchronization

if (someFunc())
{
__syncthreads () ;
}
else
{
__syncthreads() ;

}

