CIS 501 Computer Architecture

Unit 3: Technology & Energy

Slides developed by Milo Martin & Amir Roth at the University of Pennsylvania with sources that included University of Wisconsin slides by Mark Hill, Guri Sohi, Jim Smith, and David Wood.

CIS 501 (Martin): Technology & Energy

1

This Unit

- Technology basis
 - Transistors & wires
 - Cost & fabrication
 - Implications of transistor scaling (Moore's Law)
- Energy & power

CIS 501 (Martin): Technology & Energy

2

4

Readings

- MA:FSPTCM
 - Section 1.1 (technology)
 - Section 9.1 (power & energy)
- Paper
 - G. Moore, "Cramming More Components onto Integrated Circuits"
 - T. Mudge, "Power: a first-class architectural design constraint"

Review: Simple Datapath

- How are instruction executed?
 - Fetch instruction (Program counter into instruction memory)
 - Read registers
 - Calculate values (adds, subtracts, address generation, etc.)
 - Access memory (optional)
 - Calculate next program counter (PC)
 - Repeat
- Clock period = longest delay through datapath

Recall: Processor Performance

- Programs consist of simple operations (instructions)
 - Add two numbers, fetch data value from memory, etc.
- Program runtime = "seconds per program" =
 (instructions/program) * (cycles/instruction) * (seconds/cycle)
- Instructions per program: "dynamic instruction count"
 - Runtime count of instructions executed by the program
 - Determined by program, compiler, instruction set architecture (ISA)
- Cycles per instruction: "CPI" (typical range: 2 to 0.5)
 - On average, how many cycles does an instruction take to execute?
 - Determined by program, compiler, ISA, micro-architecture
- Seconds per cycle: clock period, length of each cycle
 - Inverse metric: cycles per second (Hertz) or cycles per ns (Ghz)
 - Determined by micro-architecture, technology parameters
- This unit: transistors & semiconductor technology

CIS 501 (Martin): Technology & Energy

5

From slides © Krste Asanović, MIT

7

Semiconductor Technology

- Basic technology element: MOSFET
 - Solid-state component acts like electrical switch
 - MOS: metal-oxide-semiconductor
 - Conductor, insulator, semi-conductor
- FET: field-effect transistor
 - Channel conducts source→drain only when voltage applied to gate
- **Channel length**: characteristic parameter (short → fast)
 - Aka "feature size" or "technology"
 - Currently: 0.032 micron (μm), 32 nanometers (nm)
 - Continued miniaturization (scaling) known as "Moore's Law"
 - Won't last forever, physical limits approaching (or are they?)

CIS 501 (Martin): Technology & Energy

6

Transistors and Wires

Fabrication & Cost

Cost

• Metric: \$

- In grand scheme: CPU accounts for fraction of cost
 - Some of that is profit (Intel's, Dell's)

	Desktop	Laptop	Netbook	Phone		
\$	\$100-\$300	\$150-\$350	\$50-\$100	\$10-\$20		
% of total	10–30%	10–20%	20–30%	20-30%		
Other costs	Memory, display, power supply/battery, storage, software					

- We are concerned about chip cost
 - Unit cost: costs to manufacture individual chips
 - Startup cost: cost to design chip, build the manufacturing facility

CIS 501 (Martin): Technology & Energy

9

Cost versus Price

- Cost: cost to manufacturer, cost to produce
- What is the relationship of cost to price?
 - Complicated, has to with volume and competition
- **Commodity**: high-volume, un-differentiated, un-branded
 - "Un-differentiated": copper is copper, wheat is wheat
 - "Un-branded": consumers aren't allied to manufacturer brand
 - Commodity prices tracks costs closely
 - Example: DRAM (used for main memory) is a commodity
 Do you even know who manufactures DRAM?
- Microprocessors are not commodities
 - Specialization, compatibility, different cost/performance/power
 - Complex relationship between price and cost

CIS 501 (Martin): Technology & Energy

10

Manufacturing Steps

- Multi-step photo-/electro-chemical process
 - More steps, higher unit cost
- + Fixed cost mass production (\$1 million+ for "mask set")

Manufacturing Defects

_		_		_

Defective:

Defective:

CIS 501 (Martin): Technology & Energy

- Defects can arise
 - Under-/over-doping
 - Over-/under-dissolved insulator
 - Mask mis-alignment
 - Particle contaminants
- Try to minimize defects
 - Process margins
 - Design rules
 - Minimal transistor size, separation
- Or, tolerate defects
 - Redundant or "spare" memory cells
 - Can substantially improve yield

13

Unit Cost: Integrated Circuit (IC)

- Chips built in multi-step chemical processes on wafers
 - Cost / wafer is constant, f(wafer size, number of steps)
- Chip (die) cost is related to area
 - Larger chips means fewer of them
- Cost is more than linear in area
 - Why? random defects
 - Larger chips means fewer working ones
 - Chip cost ~ chip area^{α}
 - α = 2 to 3
- Wafer yield: % wafer that is chips
- **Die yield**: % chips that work
- Yield is increasingly non-binary fast vs slow chips CIS 501 (Martin): Technology & Energy

14

Additional Unit Cost

- After manufacturing, there are additional unit costs
 - Testing: how do you know chip is working?
 - Packaging: high-performance packages are expensive
 - Determined by maximum operating temperature
 - And number of external pins (off-chip bandwidth)
 - Burn-in: stress test chip (detects unreliability chips early)
 - Re-testing: how do you know packaging/burn-in didn't damage chip?

Fixed Costs

- For new chip design
 - Design & verification: ~\$100M (500 person-years @ \$200K per)
 - Amortized over "proliferations", e.g., Core i3, i5, i7 variants
- For new (smaller) technology generation
 - ~\$3B for a new fab
 - Amortized over multiple designs
 - Amortized by "rent" from companies that don't fab themselves
- Moore's Law generally increases startup cost
 - More expensive fabrication equipment
 - More complex chips take longer to design and verify

All Roads Lead To Multi-Core

- + Multi-cores reduce unit costs
 - Higher yield than same-area single-cores
 - Why? Defect on one of the cores? Sell remaining cores for less
 - IBM manufactures CBE ("cell processor") with eight cores
 - But PlayStation3 software is written for seven cores
 - Yield for eight working cores is too low
 - Sun manufactures Niagaras (UltraSparc T1) with eight cores
 - Also sells six- and four- core versions (for less)
- + Multi-cores can reduce design costs too
 - Replicate existing designs rather than re-design larger single-cores

Technology Basis of Clock Frequency

CIS 501 (Martin): Technology & Energy

17

power(1)

ground (0)

input

p-transistor

output

("node")

n-transistor

CIS 501 (Martin): Technology & Energy

18

Complementary MOS (CMOS)

- Voltages as values
 - Power (V_{DD}) = "1", Ground = "0"
- Two kinds of MOSFETs
 - N-transistors
 - Conduct when gate voltage is 1
 - Good at passing 0s
 - P-transistors
 - Conduct when gate voltage is 0
 - Good at passing 1s
- CMOS
 - Complementary n-/p- networks form boolean logic (i.e., gates)
 - And some non-gate elements too (important example: RAMs)

Basic CMOS Logic Gate

- **Inverter**: NOT gate
 - One p-transistor, one n-transistor
 - Basic operation
 - Input = 0
 - P-transistor closed, n-transistor open
 - Power charges output (1)
 - Input = 1
 - P-transistor open, n-transistor closed
 - Output discharges to ground (0)

Another CMOS Gate Example

- What is this? Look at truth table
 - 0, 0 \rightarrow 1
 - 0, 1 → 1
 - 1, $0 \rightarrow 1$
 - 1, 1 \rightarrow 0
 - Result: NAND (NOT AND)
 - NAND is "universal"
 - What function is this?

CIS 501 (Martin): Technology & Energy

Resistance

- Channel resistance
- Wire resistance
 - Negligible for short wires

Technology Basis of Transistor Speed

- Physics 101: delay through an electrical component ~ RC
 - Resistance (R) -/- ~ length / cross-section area
 Slows rate of charge flow
 - Capacitance (C) ~ length * area / distance-to-other-plate
 Stores charge
 - Voltage (V)
 - Electrical pressure
 - Threshold Voltage (V_t)
 - Voltage at which a transistor turns "on"
 - Property of transistor based on fabrication technology
 - Switching time ~ to (R * C) / (V V_t)
- Two kinds of electrical components
 - CMOS transistors (gates)
 - Wires

CIS 501 (Martin): Technology & Energy

22

Capacitance

- Gate capacitance
- Source/drain capacitance
- Wire capacitance
 - Negligible for short wires

• Implication: number of "outputs" of gate matters

Transistor Geometry: Width

- Transistor width, set by designer for each transistor
- Wider transistors:
 - Lower resistance of channel (increases drive strength) good!
 - But, increases capacitance of gate/source/drain bad!
- Result: set width to balance these conflicting effects

CIS 501 (Martin): Technology & Energy

25

Transistor Geometry: Length & Scaling

- Transistor length: characteristic of "process generation"
 - 45nm refers to the transistor gate length, same for all transistors
- Shrink transistor length:
 - Lower resistance of channel (shorter) good!
 - Lower gate/source/drain capacitance good!
- Result: switching speed improves linearly as gate length shrinks

CIS 501 (Martin): Technology & Energy

26

Wire Geometry

- Transistors 1-dimensional for design purposes: width
- Wires 4-dimensional: length, width, height, "pitch"
 - Longer wires have more resistance
 - "Thinner" wires have more resistance
 - Closer wire spacing ("pitch") increases capacitance

CIS 501 (Martin): Technology & Energy

Increasing Problem: Wire Delay

- RC Delay of wires
 - **Resistance** proportional to: resistivity * length / (cross section)
 - Wires with smaller cross section have higher resistance
 - Resistivity (type of metal, copper vs aluminum)
 - Capacitance proportional to length
 - And wire spacing (closer wires have large capacitance)
 - Permittivity or "dielectric constant" (of material between wires)
- Result: delay of a wire is **quadratic** in length
 - Insert "inverter" repeaters for long wires
 - Why? To bring it back to linear delay... but repeaters still add delay
- Trend: wires are getting relatively slow to transistors
 - And relatively longer time to cross relatively larger chips

Technology Scaling

Moore's Law: Technology Scaling

- Moore's Law: aka "technology scaling"
 - Continued miniaturization (esp. reduction in channel length)
 - + Improves switching speed, power/transistor, area(cost)/transistor
 - Reduces transistor reliability
 - Literally: DRAM density (transistors/area) doubles every 18 months
 - Public interpretation: performance doubles every 18 months
 - Not quite right, but helps performance in three ways

CIS 501 (Martin): Technology & Energy

30

Moore's Effect #1: Transistor Count

• Linear shrink in each dimension

CIS 501 (Martin): Technology & Energy

- 180nm, 130nm, 90nm, 65nm, 45nm, 32nm, ...
- Each generation is a 1.414 linear shrink
 - Shrink each dimension (2D)
- Results in 2x more transistors (1.414*1.414)
- Reduces cost per transistor
- More transistors can increase performance
 - Job of a computer architect: use the ever-increasing number of transistors
 - Examples: caches, exploiting parallelism at all levels

Moore's Effect #2: RC Delay

- First-order: speed scales proportional to gate length
 - Has provided much of the performance gains in the past
- Scaling helps wire and gate delays in some ways...
 - + Transistors become shorter (Resistance↓), narrower (Capacitance↓)
 - + Wires become shorter (Length $\downarrow \rightarrow \text{Resistance} \downarrow$)
 - + Wire "surface areas" become smaller (Capacitance 1)
- Hurts in others...
 - Transistors become narrower (Resistance↑)
 - Gate insulator thickness becomes smaller (Capacitance↑)
 - Wires becomes thinner (Resistance↑)
- What to do?
 - Take the good, use wire/transistor sizing & repeaters to counter bad
 - Exploit new materials: Aluminum \rightarrow Copper, metal gate, high-K

29

Moore's Effect #3: Cost

- Mixed impact on unit integrated circuit cost
 - + Either lower cost for same functionality...
 - + Or same cost for more functionality
 - Difficult to achieve high yields
- Increases startup cost
 - More expensive fabrication equipment
 - Takes longer to design, verify, and test chips
- Process variation across chip increasing
 - Some transistors slow, some fast
 - Increasingly active research area: dealing with this problem

CIS 501 (Martin): Technology & Energy

33

Moore's Effect #4: Psychological

- Moore's Curve: common interpretation of Moore's Law
 - "CPU performance doubles every 18 months"
 - Self fulfilling prophecy: 2X every 18 months is $\sim 1\%$ per week
 - Q: Would you add a feature that improved performance 20% if it would delay the chip 8 months?
 - Processors under Moore's Curve (arrive too late) fail spectacularly
 - E.g., Intel's Itanium, Sun's Millennium

34

Moore's Law in the Future

- Won't last forever, approaching physical limits
 - "If something must eventually stop, it can't go on forever"
 - But betting against it has proved foolish in the past
 - Perhaps will "slow" rather than stop abruptly
- Transistor count will likely continue to scale
 - "Die stacking" is on the cusp of becoming main stream
 - Uses the third dimension to increase transistor count
- But transistor performance scaling?
 - Running into physical limits
 - Example: gate oxide is less than 10 silicon atoms thick!
 - Can't decrease it much further
 - Power is becoming a limiting factor

Power & Energy

Power/Energy Are Increasingly Important

- Battery life for mobile devices
 - Laptops, phones, cameras
- Tolerable temperature for devices without active cooling
 - Power means temperature, active cooling means cost
 - No room for a fan in a cell phone, no market for a hot cell phone
- Electric bill for compute/data centers
 - Pay for power twice: once in, once out (to cool)
- Environmental concerns
 - "Computers" account for growing fraction of energy consumption

CIS 501 (Martin): Technology & Energy

37

Energy & Power

- Energy: measured in Joules or Watt-seconds
 - Total amount of energy stored/used
 - Battery life, electric bill, environmental impact
 - Joules per Instruction (car analogy: gallons per mile)
- Power: energy per unit time (measured in Watts)
 - Joules per second (car analogy: gallons per hour)
 - Related to "performance" (which is also a "per unit time" metric)
 - Power impacts power supply and cooling requirements (cost)
 - Power-density (Watt/mm²): important related metric
 - Peak power vs average power
 - E.g., camera, power "spikes" when you actually take a picture
- Two sources:
 - Dynamic power: active switching of transistors
 - Static power: leakage of transistors even while inactive

CIS 501 (Martin): Technology & Energy

38

Recall: Tech. Basis of Transistor Speed

- Physics 101: delay through an electrical component ~ RC
 - Resistance (R) ~ length / cross-section area
 - Slows rate of charge flow
 - Capacitance (C) ~ length * area / distance-to-other-plate
 Stores charge
 - Voltage (V)
 - Electrical pressure
 - Threshold Voltage (V_f)
 - Voltage at which a transistor turns "on"
 - Property of transistor based on fabrication technology
 - Switching time \sim to (R * C) / (V V_f)

Dynamic Power

- Dynamic power (P_{dynamic}): aka switching or active power
 - Energy to switch a gate (0 to 1, 1 to 0)
 - Each gate has capacitance (C)
 - Charge stored is ~ C * V
 - Energy to charge/discharge a capacitor is \sim to C * V^2
 - Time to charge/discharge a capacitor is \sim to V
 - Result: frequency ~ to V
 - P_{dynamic} ~ N * C * V² * f * A
 - N: number of transistors
 - C: capacitance per transistor (size of transistors)
 - V: voltage (supply voltage for gate)
 - f: frequency (transistor switching freq. is \sim to clock freq.)
 - A: activity factor (not all transistors may switch this cycle)

Reducing Dynamic Power

- Target each component: P_{dynamic} ~ N * C * V² * f * A
- Reduce number of transistors (N)
 - Use fewer transistors/gates (better design; specialized hardware)
- Reduce capacitance (C)
 - Smaller transistors (Moore's law)
- Reduce voltage (V)
 - Quadratic reduction in energy consumption!
 - But also slows transistors (transistor speed is \sim to V)
- Reduce frequency (f)
 - Slower clock frequency (reduces power but not energy) Why?
- Reduce activity (A)
 - "Clock gating" disable clocks to unused parts of chip
 - Don't switch gates unnecessarily

CIS 501 (Martin): Technology & Energy

41

Static Power

- Static power (P_{static}): aka idle or leakage power
 - Transistors don't turn off all the way
 - Transistors "leak"
 - Analogy: leaky valve
 - $P_{static} \sim N * V * e^{-V_t}$
 - N: number of transistors
 - V: voltage
 - V_t (threshold voltage): voltage at which transistor conducts (begins to switch)
- Switching speed vs leakage trade-off
- The lower the V_t:
 - Faster transistors (linear)
 - Transistor speed ~ to V V_t
- Leakier transistors (exponential) CIS 501 (Martin): Technology & Energy

42

Reducing Static Power

- Target each component: P_{static} ~ N * V * e^{-Vt}
- Reduce number of transistors (N)
 - Use fewer transistors/gates
- Disable transistors (also targets N)
 - "Power gating" disable power to unused parts (long latency to power up)
 - Power down units (or entire cores) not being used
- Reduce voltage (V)
 - Linear reduction in static energy consumption
 - But also slows transistors (transistor speed is \sim to V)
- **Dual V**_t use a mixture of high and low V_t transistors
 - Use slow, low-leak transistors in SRAM arrays
 - Requires extra fabrication steps (cost)
- Low-leakage transistors
 - High-K/Metal-Gates in Intel's 45nm process
- Note: reducing frequency can actually hurt static energy. Why? CIS 501 (Martin): Technology & Energy

43

Continuation of Moore's Law

Process Name	P856	P858	Px60	P1262	P1264	P1266	P1268	P1270
1st Production	1997	1999	2001	2003	2005	2007	2009	2011
Process Generation	0.25 μm	0.18 μm	0.13 μm	90 nm	65 nm	45 nm	32 nm	22 nm
Wafer Size (mm)	200	200	200/300	300	300	300	300	300
Inter-connect	AI	AI	Cu	Cu	Cu	Cu	Cu	?
Channel	Si	Si	Si	Strained Si	Strained Si	Strained Si	Strained Si	Strained Si
Gate dielectric	SiO ₂	High-k	High-k	High-k				
Gate electrode	Poly- silicon	Poly- silicon	Poly- silicon	Poly- silicon	Poly- silicon	Metal	Metal	Metal

Introduction targeted at this time

Intel found a solution for High-k and metal gate

High-k Dielectric reduces leakage

Dynamic Voltage/Frequency Scaling

• Dynamically trade-off power for performance

- Change the voltage and frequency at runtime
- Under control of operating system
- Recall: P_{dynamic} ~ N * C * V² * **f** * A
 - Because frequency ~ to V...
 - P_{dynamic} ~ to V³
- Reduce both voltage and frequency linearly
 - Cubic decrease in dynamic power
 - Linear decrease in performance (actually sub-linear)
 - Thus, only about quadratic in energy
 - Linear decrease in static power
 - Thus, only modest static energy improvement
- Newer chips can adjust frequency on a per-core basis

47

CIS 501 (Martin): Technology & Energy

Dynamic Voltage/Frequency Scaling

	Mobile PentiumIII " SpeedStep "	Transmeta 5400 "LongRun"	Intel X-Scale (StrongARM2)
f (MHz)	300–1000 (step=50)	200–700 (step=33)	50-800 (step=50)
V (V)	0.9–1.7 (step=0.1)	1.1–1.6V (cont)	0.7–1.65 (cont)
High-speed	3400MIPS @ 34W	1600MIPS @ 2W	800MIPS @ 0.9W
Low-power	1100MIPS @ 4.5W	300MIPS @ 0.25W	62MIPS @ 0.01W

- Dynamic voltage/frequency scaling
 - Favors parallelism
- Example: Intel Xscale
 - 1 GHz \rightarrow 200 MHz reduces energy used by 30x
 - But around 5x slower
 - 5 x 200 MHz in parallel, use 1/6th the energy
 - Power is driving the trend toward multi-core

Moore's Effect on Power

- + Moore's Law reduces power/transistor...
 - Reduced sizes and surface areas reduce capacitance (C)
- ...but increases power density and total power
 - By increasing transistors/area and total transistors
 - Faster transistors \rightarrow higher frequency \rightarrow more power
 - Hotter transistors leak more (thermal runaway)
- What to do? Reduce voltage (V)
 - + Reduces dynamic power quadratically, static power linearly Already happening: Intel 486 (5V) → Core2 (1.3V)
 - Trade-off: reducing V means either...
 - Keeping V_t the same and reducing frequency (f)
 - Lowering V_t and increasing leakage exponentially
 - Use techniques like high-K and dual- V_{T}
- The end of voltage scaling & "dark silicon"

CIS 501 (Martin): Technology & Energy

49

Trends in Power

	386	486	Pentium	Pentium II	Pentium4	Core2	Core i7
Year	1985	1989	1993	1998	2001	2006	2009
Technode (nm)	1500	800	350	180	130	65	45
Transistors (M)	0.3	1.2	3.1	5.5	42	291	731
Voltage (V)	5	5	3.3	2.9	1.7	1.3	1.2
Clock (MHz)	16	25	66	200	1500	3000	3300
Power (W)	1	5	16	35	80	75	130
Peak MIPS	6	25	132	600	4500	24000	52800
MIPS/W	6	5	8	17	56	320	406

- Supply voltage decreasing over time
 - But "voltage scaling" is perhaps reaching its limits
- Emphasis on power starting around 2000
 - Resulting in slower frequency increases

• Also note number of cores increasing (2 in Core 2, 4 in Core i7) CIS 501 (Martin): Technology & Energy

Processor Power Breakdown

- Power breakdown for IBM POWER4
 - Two 4-way superscalar, 2-way multi-threaded cores, 1.5MB L2
 - Big power components are L2, data cache, scheduler, clock, I/O
 - Implications on "complicated" versus "simple" cores

CIS 501 (Martin): Technology & Energy

Implications on Software

- Software-controlled dynamic voltage/frequency scaling
 - OS? Application?
 - Example: video decoding
 - Too high a clock frequency wasted energy (battery life)
 - Too low a clock frequency quality of video suffers
- Managing low-power modes
 - Don't want to "wake up" the processor every millisecond
- Tuning software
 - Faster algorithms can be converted to lower-power algorithms
 - Via dynamic voltage/frequency scaling
- Exploiting parallelism & heterogeneous cores
 - NVIDIA Tegra 3: 5 cores (4 "normal" cores & 1 "low power" core)
- Specialized hardware accelerators

Summary

Technology Summary

- Has a first-order impact on computer architecture
 - Cost (die area)
 - Performance (transistor delay, wire delay)
 - Changing rapidly
- Most significant trends for architects (and thus CIS501)
 - More and more transistors
 - What to do with them? \rightarrow integration \rightarrow **parallelism** Rest of semester
 - Logic is improving faster than memory & cross-chip wires
 - "Memory wall" \rightarrow caches, more integration
- Power and energy
 - Voltage vs frequency, parallelism, special-purpose hardware
- This unit: a quick overview, just scratching the surface

CIS 501 (Martin): Technology & Energy

53

CIS 501 (Martin): Technology & Energy

54