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CIS 501 
Computer Architecture 

Unit 9: Multicore 
(Shared Memory Multiprocessors) 

Slides developed by Milo Martin & Amir Roth at the University of Pennsylvania  
with sources that included University of Wisconsin slides 

by Mark Hill, Guri Sohi, Jim Smith, and David Wood. 
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This Unit: Shared Memory Multiprocessors 

•  Thread-level parallelism (TLP) 
•  Shared memory model 

•  Multiplexed uniprocessor 
•  Hardware multihreading 
•  Multiprocessing 

•  Synchronization 
•  Lock implementation 
•  Locking gotchas 

•  Cache coherence 
•  Bus-based protocols 
•  Directory protocols 

•  Memory consistency 

CPU I/O 

System software 
App App App 

CPU CPU CPU CPU CPU 



Readings 

•  Textbook (MA:FSPTCM) 
•  Sections 7.0, 7.1.3, 7.2-7.4 
•  Section 8.2 
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Beyond Implicit Parallelism 

•  Consider “daxpy”: 
double a, x[SIZE], y[SIZE], z[SIZE]; 
void daxpy(): 
  for (i = 0; i < SIZE; i++) 
   z[i] = a*x[i] + y[i]; 

•  Lots of instruction-level parallelism (ILP) 
•  Great! 
•  But how much can we really exploit?  4 wide?  8 wide? 

•  Limits to (efficient) super-scalar execution 

•  But, if SIZE is 10,000, the loop has 10,000-way parallelism! 
•  How do we exploit it? 
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Explicit Parallelism 

•  Consider “daxpy”: 
double a, x[SIZE], y[SIZE], z[SIZE]; 
void daxpy(): 
  for (i = 0; i < SIZE; i++) 
   z[i] = a*x[i] + y[i]; 

•  Break it up into N “chunks” on N cores! 
•  Done by the programmer (or maybe a really smart compiler) 
void daxpy(int chunk_id): 
  chuck_size = SIZE / N 
  my_start = chuck_id * chuck_size 
  my_end = my_start + chuck_size 
  for (i = my_start; i < my_end; i++) 
    z[i] = a*x[i] + y[i] 

•  Assumes 
•  Local variables are “private” and x, y, and z are “shared” 
•  Assumes SIZE is a multiple of N (that is, SIZE % N == 0) 
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Chunk ID Start End 
0 0 99 
1 100 199 
2 200 299 
3 300 399 

SIZE = 400, N=4 



Explicit Parallelism 

•  Consider “daxpy”: 
double a, x[SIZE], y[SIZE], z[SIZE]; 
void daxpy(int chunk_id): 
  chuck_size = SIZE / N 
  my_start = chuck_id * chuck_size 
  my_end = my_start + chuck_size 
  for (i = my_start; i < my_end; i++) 
    z[i] = a*x[i] + y[i] 

•  Main code then looks like: 
parallel_daxpy(): 
  for (tid = 0; tid < CORES; tid++) { 
    spawn_task(daxpy, tid); 
  } 
  wait_for_tasks(CORES); 
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Explicit (Loop-Level) Parallelism 

•  Another way: “OpenMP” annotations to inform the compiler 

double a, x[SIZE], y[SIZE], z[SIZE]; 
void daxpy() { 
  #pragma omp parallel for 
  for (i = 0; i < SIZE; i++) { 
   z[i] = a*x[i] + y[i]; 

  } 

•  Look familiar? 
•  Hint: homework #1 

•  But only works if loop is actually parallel 
•  If not parallel, incorrect behavior may result in unpredictable ways 
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Multicore & Multiprocessor 
Hardware 
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Multiplying Performance 
•  A single processor can only be so fast 

•  Limited clock frequency 
•  Limited instruction-level parallelism 
•  Limited cache hierarchy 

•  What if we need even more computing power? 
•  Use multiple processors! 
•  But how? 

•  High-end example: Sun Ultra Enterprise 25k 
•  72 UltraSPARC IV+ processors, 1.5Ghz 
•  1024 GBs of memory 
•  Niche: large database servers 
•  $$$ 
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Multicore: Mainstream Multiprocessors 
•  Multicore chips 
•  IBM Power5 

•  Two 2+GHz PowerPC cores 
•  Shared 1.5 MB L2, L3 tags 

•  AMD Quad Phenom 
•  Four 2+ GHz cores  
•  Per-core 512KB L2 cache 
•  Shared 2MB L3 cache  

•  Intel Core i7 Quad 
•  Four cores, private L2s 
•  Shared 6 MB L3 

•  Sun Niagara 
•  8 cores, each 4-way threaded 
•  Shared 2MB L2, shared FP 
•  For servers, not desktop 

1.5MB L2 

L3 tags 

Core 1 Core 2 

Why multicore?  What else would  
you do with 1 billion transistors? 
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Recall Another Reason: Energy 
•  Explicit parallelism (multicore) is highly energy efficient 

•  Recall: dynamic voltage and frequency scaling 
•  Performance vs power is NOT linear 
•  Example: Intel’s Xscale  

•  1 GHz → 200 MHz reduces energy used by 30x 

•  Consider the impact of parallel execution 
•  What if we used 5 Xscales at 200Mhz? 
•  Similar performance as a 1Ghz Xscale, but 1/6th the energy 

•  5 cores * 1/30th = 1/6th 

•  Assumes parallel speedup (a difficult task) 
•  Remember Ahmdal’s law 



Sun Niagara II 
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Intel Quad-Core “Core i7” 
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Application Domains for Multiprocessors 
•  Scientific computing/supercomputing 

•  Examples: weather simulation, aerodynamics, protein folding 
•  Large grids, integrating changes over time 
•  Each processor computes for a part of the grid  

•  Server workloads 
•  Example: airline reservation database 
•  Many concurrent updates, searches, lookups, queries 
•  Processors handle different requests 

•  Media workloads 
•  Processors compress/decompress different parts of image/frames 

•  Desktop workloads… 
•  Gaming workloads… 

But software must be written to expose parallelism 



“Threading” &  
The Shared Memory 
Execution Model 
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First, Uniprocessor Concurrency  

•  Software “thread”: Independent flows of execution 
•  “private” per-thread state 

•  Context state: PC, registers 
•  Stack (per-thread local variables) 

•  “shared” state: Globals, heap, etc. 
•  Threads generally share the same memory space 

•  “Process” like a thread, but different memory space 
•  Java has thread support built in, C/C++ using a thread library 

•  Generally, system software (the O.S.) manages threads 
•  “Thread scheduling”, “context switching” 
•  In single-core system, all threads share the one processor 

•  Hardware timer interrupt occasionally triggers O.S.  
•  Quickly swapping threads gives illusion of concurrent execution 

•  Much more in an operating systems course 
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Multithreaded Programming Model 

•  Programmer explicitly creates multiple threads 

•  All loads & stores to a single shared memory space 
•  Each thread has a private stack frame for local variables 

•  A “thread switch” can occur at any time 
•  Pre-emptive multithreading by OS 

•  Common uses: 
•  Handling user interaction (GUI programming) 
•  Handling I/O latency (send network message, wait for response) 
•  Expressing parallel work via Thread-Level Parallelism (TLP) 

•  This is our focus! 
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Simplest Multiprocessor 

•  Replicate entire processor pipeline! 
•  Instead of replicating just register file & PC 
•  Exception: share the caches (we’ll address this bottleneck later) 

•  Multiple threads execute 
•  “Shared memory” programming model 
•  Operations (loads and stores) are interleaved at random 
•  Loads returns the value written by most recent store 

PC 

I$ 

Regfile 

PC 

Regfile 

D$ 
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Alternative: Hardware Multithreading 

•  Hardware Multithreading (MT)  
•  Multiple threads dynamically share a single pipeline 
•  Replicate only per-thread structures: program counter & registers 
•  Hardware interleaves instructions  
+  Multithreading improves utilization and throughput 

•  Single programs utilize <50% of pipeline (branch, cache miss) 
•  Multithreading does not improve single-thread performance 

•  Individual threads run as fast or even slower 
•  Coarse-grain MT: switch on L2 misses   Why? 
•  Simultaneous MT: no explicit switching, fine-grain interleaving 

PC 

I$ Regfile0 D$ 

Regfile1 

PC 

THR 
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Shared Memory Implementations  
•  Multiplexed uniprocessor 

•  Runtime system and/or OS occasionally pre-empt & swap threads 
•  Interleaved, but no parallelism 

•  Multiprocessing 
•  Multiply execution resources, higher peak performance 
•  Same interleaved shared-memory model 
•  Foreshadowing: allow private caches, further disentangle cores 

•  Hardware multithreading 
•  Tolerate pipeline latencies, higher efficiency 
•  Same interleaved shared-memory model 

•  All support the shared memory programming model 
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Four Shared Memory Issues 
1.  Parallel programming 

•  How does the programmer express the parallelism? 

2.  Synchronization 
•  How to regulate access to shared data? 
•  How to implement “locks”? 

3.  Cache coherence 
•  If cores have private (non-shared) caches 
•  How to make writes to one cache “show up” in others? 

4.  Memory consistency models 
•  How to keep programmer sane while letting hardware optimize? 
•  How to reconcile shared memory with store buffers? 



Parallel Programming  
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Parallel Programming 

•  One use of multiprocessors: multiprogramming 
•  Running multiple programs with no interaction between them 
•  Works great for a few cores, but what next? 

•  Or, programmers must explicitly express parallelism 
•  “Coarse” parallelism beyond what the hardware can extract implicitly 
•  Even the compiler can’t extract it in most cases 

•  How? Several options: 
•  Call libraries that perform well-known computations in parallel 

•  Example: a matrix multiply routine, etc. 
•  Parallel “for” loops, task-based parallelism, … 
•  Add code annotations (“this loop is parallel”), OpenMP 
•  Explicitly spawn “tasks”, OS thread schedules them on the cores 

•  Parallel programming: key challenge in multicore revolution 

CIS 501 (Martin): Multicore 23 



CIS 501 (Martin): Multicore 24 

Example: Parallelizing Matrix Multiply 

for (I = 0; I < SIZE; I++) 
   for (J = 0; J < SIZE; J++) 
      for (K = 0; K < SIZE; K++) 
        C[I][J] += A[I][K] * B[K][J]; 

•  How to parallelize matrix multiply? 
•  Replace outer “for” loop with “parallel_for” or OpenMP annotation 
•  Supported by many parallel programming environments 

•  Implementation: give each of N processors loop iterations 
int start = (SIZE/N) * my_id(); 
for (I = start; I < start + SIZE/N; I++) 
  for (J = 0; J < SIZE; J++) 
     for (K = 0; K < SIZE; K++) 
       C[I][J] += A[I][K] * B[K][J]; 

•  Each processor runs copy of loop above 
•  Library provides  my_id() function 

C A B 
X = 



Example: Bank Accounts 

•  Consider  
struct acct_t { int balance; … }; 
struct acct_t accounts[MAX_ACCT];     // current balances 

struct trans_t { int id; int amount; }; 
struct trans_t transactions[MAX_TRANS];  // debit amounts 

for (i = 0; i < MAX_TRANS; i++) { 
  debit(transactions[i].id, transactions[i].amount); 
} 

void debit(int id, int amount) { 
  if (accounts[id].balance >= amount) { 
    accounts[id].balance -= amount; 
  } 
} 

•  Can we do these “debit” operations in parallel? 
•  Does the order matter? 
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Example: Bank Accounts 

•  Example of Thread-level parallelism (TLP) 
•  Collection of asynchronous tasks: not started and stopped together 
•  Data shared “loosely” (sometimes yes, mostly no), dynamically 

•  Example: database/web server (each query is a thread) 
•   accts is global and thus shared, can’t register allocate 
•   id and amt are private variables, register allocated to r1, r2 

•  Running example 

struct acct_t { int bal; … }; 
shared struct acct_t accts[MAX_ACCT]; 
void debit(int id, int amt) { 
  if (accts[id].bal >= amt) 
  { 
     accts[id].bal -= amt; 
  } 
} 

0: addi r1,accts,r3 
1: ld 0(r3),r4 
2: blt r4,r2,done 
3: sub r4,r2,r4 
4: st r4,0(r3) 
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An Example Execution 

•  Two $100 withdrawals from account #241 at two ATMs 
•  Each transaction executed on different processor 
•  Track accts[241].bal (address is in r3) 

Thread 0 
0: addi r1,accts,r3 
1: ld 0(r3),r4 
2: blt r4,r2,done 
3: sub r4,r2,r4 
4: st r4,0(r3) 

Thread 1 

0: addi r1,accts,r3 
1: ld 0(r3),r4 
2: blt r4,r2,done 
3: sub r4,r2,r4 
4: st r4,0(r3) 

Mem 
500 

400 

300 

Tim
e 
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A Problem Execution 
Thread 0 

0: addi r1,accts,r3 
1: ld 0(r3),r4 
2: blt r4,r2,done 
3: sub r4,r2,r4 
<<< Switch >>> 

4: st r4,0(r3) 

Thread 1 

0: addi r1,accts,r3 
1: ld 0(r3),r4 
2: blt r4,r2,done 
3: sub r4,r2,r4 
4: st r4,0(r3) 

Mem 
500 

400 

Tim
e 

400 

•  Problem: wrong account balance!  Why? 
•  Solution: synchronize access to account balance 



Synchronization  
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Synchronization: 
•  Synchronization: a key issue for shared memory 
•  Regulate access to shared data (mutual exclusion) 
•  Low-level primitive: lock  (higher-level: “semaphore” or “mutex”)   

•  Operations: acquire(lock)and release(lock) 
•  Region between acquire and release is a critical section 
•  Must interleave acquire and release 
•  Interfering acquire will block 

•  Another option: Barrier synchronization 
•  Blocks until all threads reach barrier, used at end of “parallel_for” 

struct acct_t { int bal; … }; 
shared struct acct_t accts[MAX_ACCT]; 
shared int lock; 
void debit(int id, int amt): 
  acquire(lock); 
  if (accts[id].bal >= amt) { 
     accts[id].bal -= amt; 
  } 
  release(lock); 

critical section 
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A Synchronized Execution 
Thread 0 

   call acquire(lock) 
0: addi r1,accts,r3 
1: ld 0(r3),r4 
2: blt r4,r2,done 
3: sub r4,r2,r4 
<<< Switch >>> 

4: st r4,0(r3) 
   call release(lock) 

Thread 1 

   call acquire(lock) 
   <<< Switch >>> 

   (still in acquire) 
0: addi r1,accts,r3 
1: ld 0(r3),r4 
2: blt r4,r2,done 
3: sub r4,r2,r4 
4: st r4,0(r3) 

Mem 
500 

400 

Tim
e 

300 

•  Fixed, but how do 
we implement 
acquire & release? 

Spins! 
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Strawman Lock 

•  Spin lock: software lock implementation 
•   acquire(lock): while (lock != 0) {} lock = 1; 

•  “Spin” while lock is 1, wait for it to turn 0 
A0:  ld 0(&lock),r6 
A1:  bnez r6,A0 
A2:  addi r6,1,r6 
A3:  st r6,0(&lock) 

•   release(lock): lock = 0; 
R0:  st r0,0(&lock)     // r0 holds 0 

(Incorrect) 
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Strawman Lock 

•  Spin lock makes intuitive sense, but doesn’t actually work 
•  Loads/stores of two acquire sequences can be interleaved 
•  Lock acquire sequence also not atomic 
•  Same problem as before! 

•  Note, release is trivially atomic 

Thread 0 
A0: ld 0(&lock),r6 
A1: bnez r6,#A0 
A2: addi r6,1,r6 
A3: st r6,0(&lock) 
CRITICAL_SECTION 

Thread 1 

A0: ld r6,0(&lock) 
A1: bnez r6,#A0 
A2: addi r6,1,r6 
A3: st r6,0(&lock) 
CRITICAL_SECTION 

Mem 
0 

1 

Tim
e 

1 

(Incorrect) 
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A Correct Implementation: SYSCALL Lock 

•  Implement lock in a SYSCALL 
•  Only kernel can control interleaving by disabling interrupts 
+  Works… 
–  Large system call overhead 
–  But not in a hardware multithreading or a multiprocessor… 

ACQUIRE_LOCK: 
A1: disable_interrupts 
A2: ld r6,0(&lock) 
A3: bnez r6,#A0 
A4: addi r6,1,r6 
A5: st r6,0(&lock) 
A6: enable_interrupts 
A7: return 

atomic 
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Better Spin Lock: Use Atomic Swap 
•  ISA provides an atomic lock acquisition instruction 

•  Example: atomic swap 
swap r1,0(&lock) 
•  Atomically executes: 

•  New acquire sequence  
 (value of r1 is 1)  
 A0: swap r1,0(&lock) 
 A1: bnez r1,A0 

•  If lock was initially busy (1), doesn’t change it, keep looping 
•  If lock was initially free (0), acquires it (sets it to 1), break loop 

•  Insures lock held by at most one thread 
•  Other variants: exchange, compare-and-swap,  

test-and-set (t&s), or fetch-and-add 

mov r1->r2 
ld r1,0(&lock) 
st r2,0(&lock) 
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Atomic Update/Swap Implementation 

•  How is atomic swap implemented? 
•  Need to ensure no intervening memory operations 
•  Requires blocking access by other threads temporarily (yuck) 

•  How to pipeline it? 
•  Both a load and a store (yuck) 
•  Not very RISC-like 

PC 

I$ 

Regfile 

PC 

Regfile 

D$ 



CIS 501 (Martin): Multicore 37 

RISC Test-And-Set 

•  swap: a load and store in one insn is not very “RISC” 
•  Broken up into micro-ops, but then how is it made atomic? 

•  “Load-link” / “store-conditional” pairs 
•  Atomic load/store pair 

label: 
  load-link r1,0(&lock) 
  // potentially other insns 
  store-conditional r2,0(&lock) 
  branch-not-zero label   // check for failure 

•  On load-link, processor remembers address… 
•  …And looks for writes by other processors 
•  If write is detected, next store-conditional will fail 

•  Sets failure condition 

•  Used by ARM, PowerPC, MIPS, Itanium 
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Lock Correctness 

+  Lock actually works… 
•  Thread 1 keeps spinning 

•  Sometimes called a “test-and-set lock” 
•  Named after the common “test-and-set” atomic instruction 

Thread 0 
A0: swap r1,0(&lock) 
A1: bnez r1,#A0 
CRITICAL_SECTION 

Thread 1 

A0: swap r1,0(&lock) 
A1: bnez r1,#A0 
A0: swap r1,0(&lock) 
A1: bnez r1,#A0 
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“Test-and-Set” Lock Performance 

–  …but performs poorly 
•  Consider 3 processors rather than 2 
•  Processor 2 (not shown) has the lock and is in the critical section 
•  But what are processors 0 and 1 doing in the meantime? 

•  Loops of swap, each of which includes a st 
–  Repeated stores by multiple processors costly (more in a bit) 
–  Generating a ton of useless interconnect traffic 

Thread 0 
A0: swap r1,0(&lock) 
A1: bnez r1,#A0 
A0: swap r1,0(&lock) 
A1: bnez r1,#A0 

Thread 1 

A0: swap r1,0(&lock) 
A1: bnez r1,#A0 
A0: swap r1,0(&lock) 
A1: bnez r1,#A0 
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Test-and-Test-and-Set Locks 

•  Solution: test-and-test-and-set locks 
•  New acquire sequence 

A0: ld r1,0(&lock) 
A1: bnez r1,A0 
A2: addi r1,1,r1 
A3: swap r1,0(&lock) 
A4: bnez r1,A0 

•  Within each loop iteration, before doing a swap 
•  Spin doing a simple test (ld) to see if lock value has changed 
•  Only do a swap (st) if lock is actually free 

•  Processors can spin on a busy lock locally (in their own cache) 
+ Less unnecessary interconnect traffic 

•  Note: test-and-test-and-set is not a new instruction! 
•  Just different software 
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Queue Locks 

•  Test-and-test-and-set locks can still perform poorly 
•  If lock is contended for by many processors 
•  Lock release by one processor, creates “free-for-all” by others 
–  Interconnect gets swamped with swap requests 

•  Software queue lock 
•  Each waiting processor spins on a different location (a queue) 
•  When lock is released by one processor... 

•  Only the next processors sees its location go “unlocked” 
•  Others continue spinning locally, unaware lock was released 

•  Effectively, passes lock from one processor to the next, in order 
+  Greatly reduced network traffic (no mad rush for the lock) 
+  Fairness (lock acquired in FIFO order) 
–  Higher overhead in case of no contention (more instructions) 
–  Poor performance if one thread is descheduled by O.S. 
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Programming With Locks Is Tricky 

•  Multicore processors are the way of the foreseeable future 
•  thread-level parallelism anointed as parallelism model of choice 
•  Just one problem… 

•  Writing lock-based multi-threaded programs is tricky! 

•  More precisely: 
•  Writing programs that are correct is “easy” (not really) 
•  Writing programs that are highly parallel is “easy” (not really) 
–  Writing programs that are both correct and parallel is difficult 

•  And that’s the whole point, unfortunately 
•  Selecting the “right” kind of lock for performance 

•  Spin lock, queue lock, ticket lock, read/writer lock, etc. 
•  Locking granularity issues 
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Coarse-Grain Locks: Correct but Slow 

•  Coarse-grain locks: e.g., one lock for entire database 
+  Easy to make correct: no chance for unintended interference 
–  Limits parallelism: no two critical sections can proceed in parallel 

struct acct_t { int bal; … }; 
shared struct acct_t  accts[MAX_ACCT]; 
shared Lock_t lock; 
void debit(int id, int amt) { 
  acquire(lock); 
  if (accts[id].bal >= amt) { 
     accts[id].bal -= amt; 
  } 
  release(lock); 
} 
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Fine-Grain Locks: Parallel But Difficult 

•  Fine-grain locks: e.g., multiple locks, one per record 
+  Fast: critical sections (to different records) can proceed in parallel 
–  Difficult to make correct: easy to make mistakes 

•  This particular example is easy 
•  Requires only one lock per critical section 

•  What about critical sections that require two locks? 

struct acct_t { int bal, Lock_t lock; …  }; 
shared struct acct_t  accts[MAX_ACCT]; 

void debit(int id, int amt) { 
  acquire(accts[id].lock); 
  if (accts[id].bal >= amt) { 
     accts[id].bal -= amt; 
  } 
  release(accts[id].lock); 
} 
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Multiple Locks 

•  Multiple locks: e.g., acct-to-acct transfer 
•  Must acquire both id_from, id_to locks 
•  Running example with accts 241 and 37 
•  Simultaneous transfers 241 → 37 and 37 → 241 
•  Contrived… but even contrived examples must work correctly too 

struct acct_t { int bal, Lock_t lock; …}; 
shared struct acct_t  accts[MAX_ACCT]; 
void transfer(int id_from, int id_to, int amt) { 
  acquire(accts[id_from].lock); 
  acquire(accts[id_to].lock); 
  if (accts[id_from].bal >= amt) { 
     accts[id_from].bal -= amt; 
     accts[id_to].bal += amt;  
  } 
  release(accts[id_to].lock); 
  release(accts[id_from].lock); 
} 
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Multiple Locks And Deadlock 

•  Deadlock: circular wait for shared resources 
•  Thread 0 has lock 241 waits for lock 37 
•  Thread 1 has lock 37 waits for lock 241 
•  Obviously this is a problem 
•  The solution is … 

Thread 0 

id_from = 241; 
id_to = 37; 

acquire(accts[241].lock); 
// wait to acquire lock 37 
// waiting… 
// still waiting… 

Thread 1 

id_from = 37; 
id_to = 241; 

acquire(accts[37].lock); 
// wait to acquire lock 241 
// waiting… 
// … 
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Correct Multiple Lock Program 

•  Always acquire multiple locks in same order 
•  Just another thing to keep in mind when programming 

struct acct_t { int bal, Lock_t lock; … }; 
shared struct acct_t  accts[MAX_ACCT]; 
void transfer(int id_from, int id_to, int amt) { 
  int id_first = min(id_from, id_to); 
  int id_second = max(id_from, id_to); 

  acquire(accts[id_first].lock); 
  acquire(accts[id_second].lock); 
  if (accts[id_from].bal >= amt) { 
     accts[id_from].bal -= amt; 
     accts[id_to].bal += amt;  
  } 
  release(accts[id_second].lock); 
  release(accts[id_first].lock); 
} 
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Correct Multiple Lock Execution 

•  Great, are we done? No 

Thread 0 

id_from = 241; 
id_to = 37; 
id_first = min(241,37)=37; 
id_second = max(37,241)=241; 

acquire(accts[37].lock); 
acquire(accts[241].lock); 
// do stuff 
release(accts[241].lock); 
release(accts[37].lock); 

Thread 1 

id_from = 37; 
id_to = 241; 
id_first = min(37,241)=37; 
id_second = max(37,241)=241; 

// wait to acquire lock 37 
// waiting… 
// … 
// … 
// … 
acquire(accts[37].lock); 
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More Lock Madness 

•  What if… 
•  Some actions (e.g., deposits, transfers) require 1 or 2 locks… 
•  …and others (e.g., prepare statements) require all of them? 
•  Can these proceed in parallel? 

•  What if… 
•  There are locks for global variables (e.g., operation id counter)? 
•  When should operations grab this lock? 

•  What if… what if… what if… 

•  So lock-based programming is difficult… 
•  …wait, it gets worse 
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And To Make It Worse… 

•  Acquiring locks is expensive… 
•  By definition requires a slow atomic instructions 

•  Specifically, acquiring write permissions to the lock 
•  Ordering constraints (see soon) make it even slower 

•  …and 99% of the time un-necessary 
•  Most concurrent actions don’t actually share data 
–  You paying to acquire the lock(s) for no reason 

•  Fixing these problem is an area of active research 
•  One proposed solution “Transactional Memory” 
•  Programmer uses construct:   “atomic { … code … }”  

•  Hardware, compiler & runtime executes the code “atomically” 
•  Uses speculation, rolls back on conflicting accesses 
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Research: Transactional Memory (TM) 

•  Transactional Memory 
+  Programming simplicity of coarse-grain locks 
+  Higher concurrency (parallelism) of fine-grain locks 

•  Critical sections only serialized if data is actually shared 
+  No lock acquisition overhead 
•  Hottest thing since sliced bread (or was a few years ago) 
•  No fewer than nine research projects:  

•  Brown, Stanford, MIT, Wisconsin, Texas, Rochester,  
Sun/Oracle, Intel 

•  Penn, too 
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Transactional Memory: The Big Idea 

•  Big idea I: no locks, just shared data  

•  Big idea II: optimistic (speculative) concurrency 
•  Execute critical section speculatively, abort on conflicts 
•  “Better to beg for forgiveness than to ask for permission” 

struct acct_t { int bal; … }; 
shared struct acct_t  accts[MAX_ACCT]; 
void transfer(int id_from, int id_to, int amt) { 
  begin_transaction(); 
  if (accts[id_from].bal >= amt) { 
     accts[id_from].bal -= amt; 
     accts[id_to].bal += amt;  
  } 
  end_transaction(); 
} 
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Transactional Memory: Read/Write Sets 

•  Read set: set of shared addresses critical section reads 
•  Example: accts[37].bal, accts[241].bal 

•  Write set: set of shared addresses critical section writes 
•  Example: accts[37].bal, accts[241].bal 

struct acct_t { int bal; … }; 
shared struct acct_t  accts[MAX_ACCT]; 
void transfer(int id_from, int id_to, int amt) { 
  begin_transaction(); 
  if (accts[id_from].bal >= amt) { 
     accts[id_from].bal -= amt; 
     accts[id_to].bal += amt;  
  } 
  end_transaction(); 
} 
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Transactional Memory: Begin 

•   begin_transaction 
•  Take a local register checkpoint 
•  Begin locally tracking read set (remember addresses you read) 

•  See if anyone else is trying to write it 
•  Locally buffer all of your writes (invisible to other processors) 
+  Local actions only: no lock acquire 

struct acct_t { int bal; … }; 
shared struct acct_t  accts[MAX_ACCT]; 
void transfer(int id_from, int id_to, int amt) { 
  begin_transaction(); 
  if (accts[id_from].bal >= amt) { 
     accts[id_from].bal -= amt; 
     accts[id_to].bal += amt;  
  } 
  end_transaction(); 
} 
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Transactional Memory: End 

•   end_transaction 
•  Check read set: is all data you read still valid (i.e., no writes to any) 
•  Yes? Commit transactions: commit writes 
•  No? Abort transaction: restore checkpoint 

struct acct_t { int bal; … }; 
shared struct acct_t  accts[MAX_ACCT]; 
void transfer(int id_from, int id_to, int amt) { 
  begin_transaction(); 
  if (accts[id_from].bal >= amt) { 
     accts[id_from].bal -= amt; 
     accts[id_to].bal += amt;  
  } 
  end_transaction(); 
} 
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Transactional Memory Implementation 

•  How are read-set/write-set implemented? 
•  Track locations accessed using bits in the cache 

•  Read-set: additional “transactional read” bit per block 
•  Set on reads between begin_transaction and end_transaction 
•  Any other write to block with set bit  triggers abort 
•  Flash cleared on transaction abort or commit 

•  Write-set: additional “transactional write” bit per block 
•  Set on writes between begin_transaction and end_transaction 
•  Before first write, if dirty, initiate writeback (“clean” the block) 
•  Flash cleared on transaction commit 
•  On transaction abort: blocks with set bit are invalidated 
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Transactional Execution 
Thread 0 

id_from = 241; 
id_to = 37; 

begin_transaction(); 
if(accts[241].bal > 100) { 
   … 
   // write accts[241].bal  
   // abort 

Thread 1 

id_from = 37; 
id_to = 241; 

begin_transaction(); 
if(accts[37].bal > 100) { 
   accts[37].bal -= amt; 
   acts[241].bal += amt; 
} 
end_transaction(); 
// no writes to accts[241].bal 
// no writes to accts[37].bal 
// commit 
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Transactional Execution II (More Likely) 

•  Critical sections execute in parallel 

Thread 0 

id_from = 241; 
id_to = 37; 

begin_transaction(); 
if(accts[241].bal > 100) { 
   accts[241].bal -= amt; 
   acts[37].bal += amt; 
} 
end_transaction(); 
// no write to accts[240].bal 
// no write to accts[37].bal 
// commit 

Thread 1 

id_from = 450; 
id_to = 118; 

begin_transaction(); 
if(accts[450].bal > 100) { 
   accts[450].bal -= amt; 
   acts[118].bal += amt; 
} 
end_transaction(); 
// no write to accts[450].bal 
// no write to accts[118].bal 
// commit 
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So, Let’s Just Do Transactions? 

•  What if… 
•  Read-set or write-set bigger than cache? 
•  Transaction gets swapped out in the middle? 
•  Transaction wants to do I/O or SYSCALL (not-abortable)? 

•  How do we transactify existing lock based programs? 
•  Replace acquire with begin_trans does not always work 

•  Several different kinds of transaction semantics 
•  Are transactions atomic relative to code outside of transactions? 

•  Do we want transactions in hardware or in software? 
•  What we just saw is hardware transactional memory (HTM) 

•  That’s what these research groups are looking at 
•  Best-effort hardware TM: Azul systems, Sun’s Rock processor 
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Speculative Lock Elision 

•  Alternatively, keep the locks, but… 
•  … speculatively transactify lock-based programs in hardware 

•  Speculative Lock Elision (SLE) [Rajwar+, MICRO’01] 
•  Captures most of the advantages of transactional memory… 

+  No need to rewrite programs 
+  Can always fall back on lock-based execution (overflow, I/O, etc.) 

Processor 0 

acquire(accts[37].lock); // don’t actually set lock to 1 
// begin tracking read/write sets 
// CRITICAL_SECTION 
// check read set 
//  no conflicts? Commit, don’t actually set lock to 0 
//  conflicts? Abort, retry by acquiring lock 
release(accts[37].lock);  
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Roadmap Checkpoint 

•  Thread-level parallelism (TLP) 
•  Shared memory model 

•  Multiplexed uniprocessor 
•  Hardware multihreading 
•  Multiprocessing 

•  Synchronization 
•  Lock implementation 
•  Locking gotchas 

•  Cache coherence 
•  Bus-based protocols 
•  Directory protocols 

•  Memory consistency models 

Mem CPU I/O 

System software 
App App App 

CPU CPU CPU CPU CPU 
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Recall: Simplest Multiprocessor 

•  What if we don’t want to share the L1 caches? 
•  Bandwidth and latency issue 

•  Solution: use per-processor (“private”) caches 
•  Coordinate them with a Cache Coherence Protocol 

PC 

I$ 

Regfile 

PC 

Regfile 

D$ 
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Shared-Memory Multiprocessors 

•  Conceptual model 
•  The shared-memory abstraction 
•  Familiar and feels natural to programmers 
•  Life would be easy if systems actually looked like this… 

P0 P1 P2 P3 

Memory 
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Shared-Memory Multiprocessors 

•  …but systems actually look more like this 
•  Processors have caches 
•  Memory may be physically distributed 
•  Arbitrary interconnect 

P0 P1 P2 P3 

$ M0 

Router/interface 

Interconnect 

$ M1 

Router/interface 

$ M2 

Router/interface 

$ M3 

Router/interface 
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Revisiting Our Motivating Example 

•  Two $100 withdrawals from account #241 at two ATMs 
•  Each transaction maps to thread on different processor 
•  Track accts[241].bal (address is in $r3) 

Processor 0 
0: addi $r3,$r1,&accts 
1: lw $r4,0($r3) 
2: blt $r4,$r2,6 
3: sub $r4,$r4,$r2 
4: sw $r4,0($r3) 

Processor 1 

0: addi $r3,$r1,&accts 
1: lw $r4,0($r3) 
2: blt $r4,$r2,6 
3: sub $r4,$r4,$r2 
4: sw $r4,0($r3) 

critical section 
(locks not shown) 

critical section 
(locks not shown) 

CPU0 Mem CPU1 
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No-Cache, No-Problem 

•  Scenario I: processors have no caches 
•  No problem 

Processor 0 
0: addi $r3,$r1,&accts 
1: lw $r4,0($r3) 
2: blt $r4,$r2,6 
3: sub $r4,$r4,$r2 
4: sw $r4,0($r3) 

Processor 1 

0: addi $r3,$r1,&accts 
1: lw $r4,0($r3) 
2: blt $r4,$r2,6 
3: sub $r4,$r4,$r2 
4: sw $r4,0($r3) 

$500 
$500 

$400 

$400 

$300 

CPU0 Mem CPU1 
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Cache Incoherence 

•  Scenario II(a): processors have write-back caches   
•  Potentially 3 copies of accts[241].bal: memory, two caches 
•  Can get incoherent (inconsistent) 

Processor 0 
0: addi $r3,$r1,&accts 
1: lw $r4,0($r3) 
2: blt $r4,$r2,6 
3: sub $r4,$r4,$r2 
4: sw $r4,0($r3) 

Processor 1 

0: addi $r3,$r1,&accts 
1: lw $r4,0($r3) 
2: blt $r4,$r2,6 
3: sub $r4,$r4,$r2 
4: sw $r4,0($r3) 

$500 
$500 $500 

$400 $500 

$400 $500 $500 

$400 $500 $400 

CPU0 Mem CPU1 
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Write-Through Doesn’t Fix It 

•  Scenario II(b): processors have write-through caches   
•  This time only two (different) copies of accts[241].bal 
•  No problem? What if another withdrawal happens on processor 0? 

Processor 0 
0: addi $r3,$r1,&accts 
1: lw $r4,0($r3) 
2: blt $r4,$r2,6 
3: sub $r4,$r4,$r2 
4: sw $r4,0($r3) 

Processor 1 

0: addi $r3,$r1,&accts 
1: lw $r4,0($r3) 
2: blt $r4,$r2,6 
3: sub $r4,$r4,$r2 
4: sw $r4,0($r3) 

$500 
$500 $500 

$400 $400 

$400 $400 $400 

$400 $300 $300 

CPU0 Mem CPU1 
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What To Do? 
•  No caches?  

–  Too slow 

•  Make shared data uncachable?  
–  Faster, but still too slow 
•  Entire accts database is technically “shared” 

•  Flush all other caches on writes to shared data? 
•  Can work well in some cases, but can make caches ineffective  

•  Hardware cache coherence 
•  Rough goal: all caches have same data at all times 
+  Minimal flushing, maximum caching → best performance 
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Bus-based Multiprocessor 
•  Simple multiprocessors use a bus 

•  All processors see all requests at the same time, same order 

•  Memory 
•  Single memory module, -or- 
•  Banked memory module 

P0 P1 P2 P3 

$ 

M0 

Bus 

$ 

M1 

$ 

M2 

$ 

M3 
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Hardware Cache Coherence 
•  Coherence  

•  all copies have same data at all times 
•  Coherence controller: 

•  Examines bus traffic (addresses and data) 
•  Executes coherence protocol 

•  What to do with local copy when you see 
different things happening on bus 

•  Each processors runs a state machine 
•  Three processor-initiated events 

•  Ld: load     St: store    WB: write-back 

•  Two remote-initiated events 
•  LdMiss: read miss from another processor 
•  StMiss: write miss from another processor 

CPU 

D
$ 

da
ta

 

D
$ 

ta
gs

 

CC 

bus 
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VI (MI) Coherence Protocol 
•  VI (valid-invalid) protocol: aka “MI” 

•  Two states (per block in cache) 
•  V (valid): have block 
•  I (invalid): don’t have block 
+ Can implement with valid bit 

•  Protocol diagram (left & next slide) 
•  Summary 

•  If anyone wants to read/write block 
•  Give it up: transition to I state 
•  Write-back if your own copy is dirty 

•  This is an invalidate protocol 
•  Update protocol: copy data, don’t invalidate 

•  Sounds good, but uses too much bandwidth 

I 

V 

Lo
ad

, S
to

re
 

Ld
M

is
s,

 S
tM

is
s,

 W
B

 

Load, Store 

LdMiss/
StMiss 



VI Protocol State Transition Table 

This Processor Other Processor 

State Load Store Load Miss Store Miss 

Invalid  
(I) 

Load Miss 
 V 

Store Miss 
 V 

--- --- 

Valid  
(V) 

Hit Hit Send Data 
 I 

Send Data 
 I 
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•  Rows are “states” 
•  I vs V 

•  Columns are “events” 
•  Writeback events not shown 

•  Memory controller not shown 
•  Memory sends data when no processor responds 
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VI Protocol (Write-Back Cache) 

•   lw by processor 1 generates an “other load miss” event (LdMiss) 
•  Processor 0 responds by sending its dirty copy, transitioning to I 

Processor 0 
0: addi $r3,$r1,&accts 
1: lw $r4,0($r3) 
2: blt $r4,$r2,6 
3: sub $r4,$r4,$r2 
4: sw $r4,0($r3) 

Processor 1 

0: addi $r3,$r1,&accts 
1: lw $r4,0($r3) 
2: blt $r4,$r2,6 
3: sub $r4,$r4,$r2 
4: sw $r4,0($r3) 

500 
V:500 500 

V:400 500 

I: 400 V:400 

400 V:300 

CPU0 Mem CPU1 
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VI → MSI 

•  VI protocol is inefficient 
–  Only one cached copy allowed in entire system 
–  Multiple copies can’t exist even if read-only 

•  Not a problem in example 
•  Big problem in reality 

•  MSI (modified-shared-invalid) 
•  Fixes problem: splits “V” state into two states 

•  M (modified): local dirty copy 
•  S (shared): local clean copy 

•  Allows either 
•  Multiple read-only copies (S-state)  --OR-- 
•  Single read/write copy (M-state) 

I 

M 

St
or

e 

St
M

is
s,

 W
B

 

Load, Store 

S 
Store 

Load, LdMiss 
LdM 

LdMiss/
StMiss 



MSI Protocol State Transition Table 

This Processor Other Processor 

State Load Store Load Miss Store Miss 

Invalid  
(I) 

Load Miss 
 S 

Store Miss 
 M 

--- --- 

Shared  
(S) 

Hit Upgrade Miss 
 M 

---  I 

Modified 
(M) 

Hit Hit Send Data 
 S 

Send Data  
 I 
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•  M  S transition also updates memory 
•  After which memory willl respond (as all processors will be in S) 
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MSI Protocol (Write-Back Cache) 

•   lw by processor 1 generates a “other load miss” event (LdMiss) 
•  Processor 0 responds by sending its dirty copy, transitioning to S 

•   sw by processor 1 generates a “other store miss” event (StMiss) 
•  Processor 0 responds by transitioning to I 

Processor 0 
0: addi $r3,$r1,&accts 
1: lw $r4,0($r3) 
2: blt $r4,$r2,6 
3: sub $r4,$r4,$r2 
4: sw $r4,0($r3) 

Processor 1 

0: addi $r3,$r1,&accts 
1: lw $r4,0($r3) 
2: blt $r4,$r2,6 
3: sub $r4,$r4,$r2 
4: sw $r4,0($r3) 

500 
S:500 500 

M:400 500 

S:400 400 S:400 

I:      400 M:300 

CPU0 Mem CPU1 



Cache Coherence and Cache Misses 
•  Coherence introduces two new kinds of cache misses 

•  Upgrade miss  
•  On stores to read-only blocks 
•  Delay to acquire write permission to read-only block 

•  Coherence miss 
•  Miss to a block evicted by another processor’s requests 

•  Making the cache larger… 
•  Doesn’t reduce these type of misses 
•  So, as cache grows large, these sorts of misses dominate 

•  False sharing 
•  Two or more processors sharing parts of the same block 
•  But not the same bytes within that block (no actual sharing) 
•  Creates pathological “ping-pong” behavior 
•  Careful data placement may help, but is difficult 
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Snooping Example: Step #1 
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P0 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

Shared 
Cache 

Addr Data State 
A 1000 Modified 
B 0 Idle 

Bus 

Cache 
Addr Data State 

A 500 M 
-- -- -- 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

P1 P2 

Load A 

Miss! 

Memory A 1000 
B 0 



Snooping Example: Step #2 
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P0 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

Bus 

Cache 
Addr Data State 

A 500 M 
-- -- -- 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

P1 P2 

Load A 

LdMiss: Addr=A 

Memory A 1000 
B 0 

Shared 
Cache 

Addr Data State 
A 1000 Modified 
B 0 Idle 



Snooping Example: Step #3 
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P0 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

Bus 

Cache 
Addr Data State 

A 500 S 
-- -- -- 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

P1 P2 

Load A 

Response: Addr=A, Data=500 

Memory A 1000 
B 0 

Shared 
Cache 

Addr Data State 
A 1000 Modified 
B 0 Idle 



Snooping Example: Step #4 
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P0 

Cache 
Addr Data State 

A 500 S 
-- -- -- 

Bus 

Cache 
Addr Data State 

A 500 S 
-- -- -- 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

P1 P2 

Load A 

Response: Addr=A, Data=500 

Memory A 1000 
B 0 

Shared 
Cache 

Addr Data State 
A 500 Shared, Dirty 
B 0 Idle 



Snooping Example: Step #5 
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P0 

Cache 
Addr Data State 

A 500 S 
-- -- -- 

Bus 

Cache 
Addr Data State 

A 500 S 
-- -- -- 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

P1 P2 

Load A <- 500 

Memory A 1000 
B 0 

Shared 
Cache 

Addr Data State 
A 500 Shared, Dirty 
B 0 Idle 



Snooping Example: Step #6 
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P0 

Cache 
Addr Data State 

A 500 S 
-- -- -- 

Bus 

Cache 
Addr Data State 

A 500 S 
-- -- -- 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

P1 P2 

Store 400 -> A  

Miss! 

Memory A 1000 
B 0 

Shared 
Cache 

Addr Data State 
A 500 Shared, Dirty 
B 0 Idle 



Snooping Example: Step #7 
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P0 

Cache 
Addr Data State 

A 500 S 
-- -- -- 

Bus 

Cache 
Addr Data State 

A 500 S 
-- -- -- 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

P1 P2 

Store 400 -> A  

Miss! 

UpgradeMiss: Addr=A 

Memory A 1000 
B 0 

Shared 
Cache 

Addr Data State 
A 500 Shared, Dirty 
B 0 Idle 



Snooping Example: Step #8 

CIS 501 (Martin): Multicore 86 

P0 

Cache 
Addr Data State 

A 500 S 
-- -- -- 

Bus 

Cache 
Addr Data State 

A -- I 
-- -- -- 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

P1 P2 

Store 400 -> A  

Miss! 

UpgradeMiss: Addr=A 

Memory A 1000 
B 0 

Shared 
Cache 

Addr Data State 
A 500 Modified 
B 0 Idle 



Snooping Example: Step #9 
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P0 

Cache 
Addr Data State 

A 500 M 
-- -- -- 

Bus 

Cache 
Addr Data State 

A -- I 
-- -- -- 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

P1 P2 

Store 400 -> A  

Miss! 

Memory A 1000 
B 0 

Shared 
Cache 

Addr Data State 
A 500 Modified 
B 0 Idle 



Snooping Example: Step #10 
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P0 

Cache 
Addr Data State 

A 400 M 
-- -- -- 

Bus 

Cache 
Addr Data State 

A -- I 
-- -- -- 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

P1 P2 

Store 400 -> A  

Miss! 

Memory A 1000 
B 0 

Shared 
Cache 

Addr Data State 
A 500 Modified 
B 0 Idle 
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Exclusive Clean Protocol Optimization 

•  Most modern protocols also include E (exclusive) state 
•  Interpretation: “I have the only cached copy, and it’s a clean copy” 
•  Why would this state be useful? 

Processor 0 
0: addi $r3,$r1,&accts 
1: lw $r4,0($r3) 
2: blt $r4,$r2,6 
3: sub $r4,$r4,$r2 
4: sw $r4,0($r3) 

Processor 1 

0: addi $r3,$r1,&accts 
1: lw $r4,0($r3) 
2: blt $r4,$r2,6 
3: sub $r4,$r4,$r2 
4: sw $r4,0($r3) 

500 
E:500 500 

M:400 500 

S:400 400 S:400 

I:      400 M:300 

CPU0 Mem CPU1 

(No miss!) 



MESI Protocol State Transition Table 

This Processor Other Processor 

State Load Store Load Miss Store Miss 

Invalid  
(I) 

Miss 
 S or E 

Miss 
 M 

--- --- 

Shared  
(S) 

Hit Upg Miss 
 M 

---  I 

Exclusive 
(E) 

Hit Hit 
 M 

Send Data 
 S 

Send Data 
 I 

Modified 
(M) 

Hit Hit Send Data 
 S 

Send Data 
 I 
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•  Load misses lead to “E” if no other processors is caching the block 
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Snooping Bandwidth Scaling Problems 

•  Coherence events generated on… 
•  L2 misses (and writebacks) 

•  Problem#1: N2 bus traffic 
•  All N processors send their misses to all N-1 other processors 
•  Assume: 2 IPC, 2 Ghz clock, 0.01 misses/insn per processor 
•  0.01 misses/insn * 2 insn/cycle * 2 cycle/ns * 64 B blocks  

= 2.56 GB/s… per processor 
•  With 16 processors, that’s 40 GB/s!  With 128 that’s 320 GB/s!! 

•  You can use multiple buses… but that complicates the protocol 

•  Problem#2: N2 processor snooping bandwidth 
•  0.01 events/insn * 2 insn/cycle = 0.02 events/cycle per processor 
•  16 processors: 0.32 bus-side tag lookups per cycle 

•  Add 1 extra port to cache tags? Okay 
•  128 processors: 2.56 tag lookups per cycle!  3 extra tag ports? 
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“Scalable” Cache Coherence 

•  Part I: bus bandwidth 
•  Replace non-scalable bandwidth substrate (bus)… 
•  …with scalable one (point-to-point network, e.g., mesh) 

•  Part II: processor snooping bandwidth 
•  Most snoops result in no action 
•  Replace non-scalable broadcast protocol… 
•  …with scalable directory protocol (only notify processors that care) 

I 

LdM/StM 
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Point-to-Point Interconnects 

•  Single “bus” does not scale to larger core counts 
•  Also poor electrical properties (long wires, high capacitance, etc.)  

•  Alternative: on-chip interconnection network 
•  Routers move packets over short point-to-point links 
•  Examples: on-chip mesh or ring interconnection networks 

•  Used within a multicore chip 
•  Each “node”: a core, L1/L2 caches, and a “bank” (1/nth) of the L3 cache 
•  Multiple memory controllers (which talk to off-chip DRAM) 

•  Can also connect arbitrarily large number of chips 
•  Massively parallel processors (MPPs) 
•  Distributed memory: non-uniform memory architecture (NUMA) 

CPU($) 
Mem R 

CPU($) 
Mem R 

CPU($) 
Mem R 

CPU($) 
Mem R 



CIS 501 (Martin): Multicore 94 

Directory Coherence Protocols 

•  Directories: non-broadcast coherence protocol 
•  Extend memory (or shared cache) to track caching information 
•  For each physical cache block, track: 

•  Owner: which processor has a dirty copy (I.e., M state) 
•  Sharers: which processors have clean copies (I.e., S state) 

•  Processor sends coherence event to directory 
•  Directory sends events only to processors as needed 

•  Avoids non-scalable broadcast used by snooping protocols 
•  For multicore with shared L3 cache, put directory info in cache tags 

•  For high-throughput, directory can be banked/partitioned 
+  Use address to determine which bank/module holds a given block 

•  That bank/module is called the “home” for the block 
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MSI Directory Protocol 

•  Processor side 
•  Directory follows its own protocol 

•  Similar to bus-based MSI 
•  Same three states 
•  Same five actions (keep BR/BW names) 
•  Minus red arcs/actions 

•  Events that would not trigger action anyway 
+ Directory won’t bother you unless you need to act 

95 

I 

M 

St
or

e 

St
M

is
s,

 W
B

 

Load, Store 

S 
Store 

Load, LdMiss 
LdMiss 

LdMiss/
StMiss 
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MSI Directory Protocol 

•   ld by P1 sends BR to directory 
•  Directory sends BR to P0, P0 sends P1 data, does WB, goes to S 

•   st by P1 sends BW to directory 
•  Directory sends BW to P0, P0 goes to I 

Processor 0 
0: addi r1,accts,r3 
1: ld 0(r3),r4 
2: blt r4,r2,done 
3: sub r4,r2,r4 
4: st r4,0(r3) 

Processor 1 

0: addi r1,accts,r3 
1: ld 0(r3),r4 
2: blt r4,r2,done 
3: sub r4,r2,r4 
4: st r4,0(r3) 

–:–:500 

S:500 S:0:500 

M:400 M:0:500 

S:400 S:0,1:400 S:400 

M:1:400 M:300 

 P0       P1    Directory 

(stale) 



Point-to-Point Interconnect 

Directory Example: Step #1 
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P0 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

Shared 
Cache 

Addr Data State Sharers 
A 1000 Modified P1 
B 0 Idle -- 

Cache 
Addr Data State 

A 500 M 
-- -- -- 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

P1 P2 

Load A 

Miss! 

Memory A 1000 
B 0 



Point-to-Point Interconnect 

Directory Example: Step #2 
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P0 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

Cache 
Addr Data State 

A 500 M 
-- -- -- 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

P1 P2 

Load A 

LdMiss: Addr=A 

Memory A 1000 
B 0 

Shared 
Cache 

Addr Data State Sharers 
A 1000 Blocked P1 
B 0 Idle -- 

LdMissForward: Addr=A, Req=P0 



Point-to-Point Interconnect 

Directory Example: Step #3 
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P0 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

Cache 
Addr Data State 

A 500 S 
-- -- -- 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

P1 P2 

Load A 

Response: Addr=A, Data=500 

Memory A 1000 
B 0 

Shared 
Cache 

Addr Data State Sharers 
A 1000 Blocked P1 
B 0 Idle -- 



Point-to-Point Interconnect 

Directory Example: Step #4 
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P0 

Cache 
Addr Data State 

A 500 S 
-- -- -- 

Cache 
Addr Data State 

A 500 S 
-- -- -- 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

P1 P2 

Load A 

Response: Addr=A, Data=500 

Memory A 1000 
B 0 

Shared 
Cache 

Addr Data State Sharers 
A 1000 Blocked P1 
B 0 Idle -- 



Point-to-Point Interconnect 

Directory Example: Step #5 
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P0 

Cache 
Addr Data State 

A 500 S 
-- -- -- 

Cache 
Addr Data State 

A 500 S 
-- -- -- 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

P1 P2 

Load A <- 500 

Memory A 1000 
B 0 

Shared 
Cache 

Addr Data State Sharers 
A 500 Shared, Dirty P0, P1 
B 0 Idle -- 

Unblock: Addr=A, Data=500 



Point-to-Point Interconnect 

Directory Example: Step #6 
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P0 

Cache 
Addr Data State 

A 500 S 
-- -- -- 

Cache 
Addr Data State 

A 500 S 
-- -- -- 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

P1 P2 

Store 400 -> A  

Miss! 

Memory A 1000 
B 0 

Shared 
Cache 

Addr Data State Sharers 
A 500 Shared, Dirty P0, P1 
B 0 Idle -- 



Point-to-Point Interconnect 

Directory Example: Step #7 
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P0 

Cache 
Addr Data State 

A 500 S 
-- -- -- 

Cache 
Addr Data State 

A 500 S 
-- -- -- 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

P1 P2 

Store 400 -> A  

Memory A 1000 
B 0 

Shared 
Cache 

Addr Data State Sharers 
A 500 Blocked P0, P1 
B 0 Idle -- 

UpgradeMiss: Addr=A 

Invalidate: Addr=A, Req=P0, Acks=1 



Point-to-Point Interconnect 

Directory Example: Step #8 
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P0 

Cache 
Addr Data State 

A 500 S 
-- -- -- 

Cache 
Addr Data State 

A -- I 
-- -- -- 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

P1 P2 

Store 400 -> A  

Memory A 1000 
B 0 

Shared 
Cache 

Addr Data State Sharers 
A 500 Blocked P0, P1 
B 0 Idle -- 

Ack: Addr=A, Acks=1 

Invalidate: Addr=A, Req=P0, Acks=1 



Point-to-Point Interconnect 

Directory Example: Step #9 
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P0 

Cache 
Addr Data State 

A 500 M 
-- -- -- 

Cache 
Addr Data State 

A -- I 
-- -- -- 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

P1 P2 

Store 400 -> A  

Memory A 1000 
B 0 

Shared 
Cache 

Addr Data State Sharers 
A 500 Blocked P0, P1 
B 0 Idle -- 



Point-to-Point Interconnect 

Directory Example: Step #10 
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P0 

Cache 
Addr Data State 

A 400 M 
-- -- -- 

Cache 
Addr Data State 

A -- I 
-- -- -- 

Cache 
Addr Data State 

-- -- -- 
-- -- -- 

P1 P2 

Store 400 -> A  

Memory A 1000 
B 0 

Shared 
Cache 

Addr Data State Sharers 
A 500 Modified P0 
B 0 Idle -- 

Unblock: Addr=A 
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Directory Flip Side: Latency 
•  Directory protocols 

+  Lower bandwidth consumption → more scalable 
–  Longer latencies 

•  Two read miss situations 

•  Unshared: get data from memory 
•  Snooping: 2 hops (P0→memory→P0) 
•  Directory: 2 hops (P0→memory→P0) 

•  Shared or exclusive: get data from other processor (P1) 
•  Assume cache-to-cache transfer optimization 
•  Snooping: 2 hops (P0→P1→P0) 
–  Directory: 3 hops (P0→memory→P1→P0) 
•  Common, with many processors high probability someone has it 

P0 P1 

Dir 

3 hop miss 

P0 

Dir 

2 hop miss 



Coherence Recap & Alternatives 

•  Keeps caches “coherent” 
•  Load returns the most recent stored value by any processor 
•  And thus keeps caches transparent to software 

•  Directory-based protocol scale coherence 
•  Perhaps to 1000s of cores 
•  See “Why On-Chip Cache Coherence is Here to Stay” 

•  Alternatives to cache coherence 
•  #1: no caching of shared data (slow) 
•  #2: requiring software to explicitly “flush” data (hard to use) 

•  Using some new instructions 
•  #3: message passing (programming without shared memory) 

•  Used in clusters of machines for high-performance computing  
CIS 501 (Martin): Multicore 108 
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Roadmap Checkpoint 

•  Thread-level parallelism (TLP) 
•  Shared memory model 

•  Multiplexed uniprocessor 
•  Hardware multihreading 
•  Multiprocessing 

•  Synchronization 
•  Lock implementation 
•  Locking gotchas 

•  Cache coherence 
•  Bus-based protocols 
•  Directory protocols 

•  Memory consistency models 

Mem CPU I/O 

System software 
App App App 

CPU CPU CPU CPU CPU 
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•  Initially: all variables zero (that is, x is 0, y is 0) 

•  What value pairs can be read by the two loads?  
(x, y) 

Shared Memory Example #1 

thread 1 thread 2 
  store 1 → x 
  load y 

  store 1 → y 
  load x 
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•  Initially: all variables zero (that is, x is 0, y is 0) 

•  What value pairs can be read by the two loads?  
(x, y) 

Shared Memory Example #2 

thread 1 thread 2 
  store 1 → y 
  store 1 → x 

  load x 
  load y 
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•  Initially: all variables zero (flag is 0, a is 0)  

•  What value can be read by “load a”? 

Shared Memory Example #3 

  while(flag == 0) { } 
  load a 

thread 1 thread 2 
 store 1 → a 
 store 1 → flag 
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•  Initially: all variables zero (that is, x is 0, y is 0) 

•  What value pairs can be read by the two loads? 

•  What about (x=0, y=0)? 

“Answer” to Example #1 

thread 1 thread 2 
  store 1 → x 
  load y 

  store 1 → y 
  load x 

store 1 → y 
load x 
store 1 → x 
load y 
(x=0, y=1) 

store 1 → x 
load y 
store 1 → y 
load x 
(x=1, y=0) 

store 1 → y 
store 1 → x 
load x 
load y 
(x=1, y=1) 

store 1 → x 
store 1 → y 
load y 
load x 
(x=1, y=1) 

store 1 → y 
store 1 → x 
load y 
load x 
(x=1, y=1) 

store 1 → x 
store 1 → y 
load x 
load y 
(x=1, y=1) 
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•  Initially: all variables zero (that is, x is 0, y is 0) 

•  What value pairs can be read by the two loads?  
•  (x=1, y=1) 
•  (x=0, y=0) 
•  (x=0, y=1) 

•  Is (x=1, y=0) allowed? 

“Answer” to Example #2 

thread 1 thread 2 
  store 1 → y 
  store 1 → x 

  load x 
  load y 
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•  Initially: all variables zero (flag is 0, a is 0)  

•  What value can be read by “load a”? 
•  “load a” can see the value “1” 

•  Can “load a” read the value zero? 

“Answer” to Example #3 

  while(flag == 0) { } 
  load a 

thread 1 thread 2 
 store 1 → a 
 store 1 → flag 



What is Going On? 

•  Reordering of memory operations to different addresses! 

•  In the compiler 
•  Compiler is generally allowed to re-order memory operations to 

different addresses 
•  Many other compiler optimizations also cause problems 

•  In the hardware 
•  To tolerate write latency 

•  Processes don’t wait for writes to complete 
•  And why should they?  No reason on a uniprocessors 

•  To simplify out-of-order execution 
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Memory Consistency 

•  Memory coherence 
•  Creates globally uniform (consistent) view… 
•  Of a single memory location (in other words: cache blocks) 
–  Not enough 

•  Cache blocks A and B can be individually consistent… 
•  But inconsistent with respect to each other 

•  Memory consistency 
•  Creates globally uniform (consistent) view… 
•  Of all memory locations relative to each other 

•  Who cares? Programmers 
–  Globally inconsistent memory creates mystifying behavior 
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Coherence vs. Consistency 

•  Intuition says: P1 prints A=1 
•  Coherence says: absolutely nothing 

•  P1 can see P0’s write of flag before write of A!!! How? 
•  P0 has a coalescing store buffer that reorders writes 
•  Or out-of-order load execution 
•  Or compiler reorders instructions 

•  Imagine trying to figure out why this code sometimes 
“works” and sometimes doesn’t 

•  Real systems are allowed to act in this strange manner 
•  What is allowed? defined as part of the ISA and/or language 

            A=0  flag=0 
Processor 0 
A=1; 
flag=1; 

Processor 1 
while (!flag); // spin 
print A; 



Why? To Hide Store Miss Latency 

•  Why?  Why Allow Such Odd Behavior? 
•  Reason #1: hiding store miss latency 

•  Recall (back from caching unit) 
•  Hiding store miss latency 
•  How?  Store buffer 

•  Said it would complicate multiprocessors 
•  Yes.   It does. 
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Recall: Write Misses and Store Buffers 
•  Read miss? 

•  Load can’t go on without the data, it must stall 

•  Write miss? 
•  Technically, no instruction is waiting for data, why stall? 

•  Store buffer: a small buffer 
•  Stores put address/value to store buffer, keep going 
•  Store buffer writes stores to D$ in the background 
•  Loads must search store buffer (in addition to D$) 
+  Eliminates stalls on write misses (mostly) 
–  Creates some problems (later) 

•  Store buffer vs. writeback-buffer 
•  Store buffer: “in front” of D$, for hiding store misses 
•  Writeback buffer: “behind” D$, for hiding writebacks 

Cache 

Next-level 
cache 

WBB 

SB 

Processor 



Two Kinds of Store Buffers 

•  FIFO (First-in, First-out) store buffers 
•  All stores enter the store buffer, drain into the cache in-order 
•  In an in-order processor... 

•  Allows later loads to execute under store miss 
•  In an out-of-order processor… 

•  Instructions “commit” with older stores still in the store queue 

•  “Coalescing” store buffers 
•  Organized like a mini-cache (tags, blocks, etc.) 

•  But with per-byte valid bits 
•  At commit, stores that miss the cache placed in store buffer 

•  Stores that hit in the cache, written into cache 
•  When the store miss returns, all stores to that address drain into 

the cache 
•  That is, not necessarily in FIFO (first-in, first-out) order 
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Store Buffers & Consistency 

•  Consider the following execution: 
•  Processor 0’s write to A, misses the cache.  Put in store buffer. 
•  Processor 0 keeps going 
•  Processor 0 write “1” to flag hits, writes to the cache 
•  Processor 1 reads flag, misses cache, gets the value “1” from P0 
•  Processor 1 exits loop 
•  Processor 1 prints “0” for A   (sees “old” value) 

•  Ramification: store buffers can cause “strange” behavior 
•  How strange depends on lots of things 

•  Out-of-order execution also can cause problems… 

            A=0  flag=0 
Processor 0 
A=1; 
flag=1; 

Processor 1 
while (!flag); // spin 
print A; 



Simplifying Out-of-Order Execution 

•  Why?  Why Allow Such Odd Behavior? 
•  Reason #2: simplifying out-of-order execution 

•  One key benefit of out-of-order execution: 
•  Out-of-order execution of loads to (same or different) addresses 

•  Uh, oh. 
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thread 1 thread 2 
  store 1 → y 
  store 1 → x 

  load x 
  load y 



Simplifying Out-of-Order Execution 

•  Two options: 
•  Option #1: allow this sort of “odd” reordering 
•  Option #2: hardware detects & prevents such reorderings 

•  How to prevent? 
•  Scan the Load Queue (LQ) on stores from other threads 
•  Flush and rollback on conflict 

•  How to detect these stores from other threads? 
•  Leverage cache coherence! 
•  As long as a block remains in a private per-core cache… 

•  Another core can’t write to it! 
•  Thus, anytime a block leaves the cache (invalidation or eviction)… 

•  Scan the load queue.  If any loads to the address have 
executed but not committed, squash the pipeline and restart  
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3 Classes of Memory Consistency Models 
•  Sequential consistency (SC)  (MIPS, PA-RISC) 

•  Formal definition of memory view programmers expect 
•  1. Processors see their own loads and stores in program order 
•  2. Processors see others’ loads and stores in program order 
•  3. All processors see same global load/store ordering 
•  Corresponds to some sequential interleaving of uniprocessor orders 
•  Indistinguishable from multi-programmed uni-processor 

•  Processor consistency (PC)  (x86, SPARC) 
•  Allows a in-order (FIFO) store buffer 

•  Stores can be deferred, but must be put into the cache in order 

•  Release consistency (RC) (ARM, Itanium, PowerPC)  
•  Allows an un-ordered coalescing store buffer 

•  Stores can be put into cache in any order 
•  Loads re-ordered, too. 

CIS 501 (Martin): Multicore 125 



CIS 501 (Martin): Multicore 126 

•  Initially: all variables zero (that is, x is 0, y is 0) 

•  What value pairs can be read by the two loads? 

•  What about (x=0, y=0)?  Yes! (for x86, SPARC, ARM, PowerPC) 

Answer to Example #1 

thread 1 thread 2 
  store 1 → x 
  load y 

  store 1 → y 
  load x 

store 1 → y 
load x 
store 1 → x 
load y 
(x=0, y=1) 

store 1 → x 
load y 
store 1 → y 
load x 
(x=1, y=0) 

store 1 → y 
store 1 → x 
load x 
load y 
(x=1, y=1) 

store 1 → x 
store 1 → y 
load y 
load x 
(x=1, y=1) 

store 1 → y 
store 1 → x 
load y 
load x 
(x=1, y=1) 

store 1 → x 
store 1 → y 
load x 
load y 
(x=1, y=1) 
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•  Initially: all variables zero (that is, x is 0, y is 0) 

•  What value pairs can be read by the two loads?  
•  (x=1, y=1) 
•  (x=0, y=0) 
•  (x=0, y=1) 

•  Is (x=1, y=0) allowed? 
•  Yes! (for ARM, PowerPC, Itanium, and Alpha) 
•  No! (for Intel/AMD x86, Sun SPARC, IBM 370) 

•  Assuming the compiler didn’t reorder anything… 

Answer to Example #2 

thread 1 thread 2 
  store 1 → y 
  store 1 → x 

  load x 
  load y 
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•  Initially: all variables zero (flag is 0, a is 0)  

•  What value can be read by “load a”? 
•  “load a” can see the value “1” 

•  Can “load a” read the value zero? (same as last slide) 
•  Yes! (for ARM, PowerPC, Itanium, and Alpha) 
•  No! (for Intel/AMD x86, Sun SPARC, IBM 370) 

•  Assuming the compiler didn’t reorder anything… 

Answer to Example #3 

  while(flag == 0) { } 
  load a 

thread 1 thread 2 
 store 1 → a 
 store 1 → flag 
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Restoring Order (Hardware) 
•  Sometimes we need ordering (mostly we don’t) 

•  Prime example: ordering between “lock” and data 

•  How?  insert Fences (memory barriers) 
•  Special instructions, part of ISA 

•  Example 
•  Ensure that loads/stores don’t cross lock acquire/release operation 

acquire 
fence 
critical section 
fence 
release 

•  How do fences work?  
•  They stall exeuction until write buffers are empty 
•  Makes lock acquisition and release slow(er) 

•  Use synchronization library, don’t write your own 
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Restoring Order (Software) 
•  These slides have focused mostly on hardware reordering 

•  But the compiler also reorders instructions (reason #3) 

•  How do we tell the compiler to not reorder things? 
•  Depends on the language… 

•  In Java: 
•  The built-in “synchronized” constructs informs the compiler to limit 

its optimization scope (prevent reorderings across synchronization) 
•  Or, programmer uses “volatile” keyword to explicitly mark variables 
•  Java compiler also inserts the hardware-level ordering instructions 

•  In C/C++: 
•  Much more murky, as language doesn’t define synchronization 
•  Lots of hacks: “inline assembly”, volatile, atomic (newly proposed) 
•  Programmer may need to explicitly insert hardware-level fences  

•  Use synchronization library, don’t write your own 
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Summary 

•  Explicit parallelism 
•  Shared memory model 

•  Multiplexed uniprocessor 
•  Hardware multihreading 
•  Multiprocessing 

•  Synchronization 
•  Lock implementation 
•  Locking gotchas 

•  Cache coherence 
•  VI, MSI, MESI 
•  Bus-based protocols 
•  Directory protocols 

•  Memory consistency 

Mem CPU I/O 

System software 
App App App 

CPU CPU CPU CPU CPU 


