
CIS 501 (Martin): Multicore 1

CIS 501
Computer Architecture

Unit 9: Multicore
(Shared Memory Multiprocessors)

Slides developed by Milo Martin & Amir Roth at the University of Pennsylvania
with sources that included University of Wisconsin slides

by Mark Hill, Guri Sohi, Jim Smith, and David Wood.

Mem

CIS 501 (Martin): Multicore 2

This Unit: Shared Memory Multiprocessors

•  Thread-level parallelism (TLP)
•  Shared memory model

•  Multiplexed uniprocessor
•  Hardware multihreading
•  Multiprocessing

•  Synchronization
•  Lock implementation
•  Locking gotchas

•  Cache coherence
•  Bus-based protocols
•  Directory protocols

•  Memory consistency

CPU I/O

System software
App App App

CPU CPU CPU CPU CPU

Readings

•  Textbook (MA:FSPTCM)
•  Sections 7.0, 7.1.3, 7.2-7.4
•  Section 8.2

CIS 501 (Martin): Multicore 3

Beyond Implicit Parallelism

•  Consider “daxpy”:
double a, x[SIZE], y[SIZE], z[SIZE];
void daxpy():
 for (i = 0; i < SIZE; i++)
 z[i] = a*x[i] + y[i];

•  Lots of instruction-level parallelism (ILP)
•  Great!
•  But how much can we really exploit? 4 wide? 8 wide?

•  Limits to (efficient) super-scalar execution

•  But, if SIZE is 10,000, the loop has 10,000-way parallelism!
•  How do we exploit it?

CIS 501 (Martin): Multicore 4

Explicit Parallelism

•  Consider “daxpy”:
double a, x[SIZE], y[SIZE], z[SIZE];
void daxpy():
 for (i = 0; i < SIZE; i++)
 z[i] = a*x[i] + y[i];

•  Break it up into N “chunks” on N cores!
•  Done by the programmer (or maybe a really smart compiler)
void daxpy(int chunk_id):
 chuck_size = SIZE / N
 my_start = chuck_id * chuck_size
 my_end = my_start + chuck_size
 for (i = my_start; i < my_end; i++)
 z[i] = a*x[i] + y[i]

•  Assumes
•  Local variables are “private” and x, y, and z are “shared”
•  Assumes SIZE is a multiple of N (that is, SIZE % N == 0)

CIS 501 (Martin): Multicore 5

Chunk ID Start End
0 0 99
1 100 199
2 200 299
3 300 399

SIZE = 400, N=4

Explicit Parallelism

•  Consider “daxpy”:
double a, x[SIZE], y[SIZE], z[SIZE];
void daxpy(int chunk_id):
 chuck_size = SIZE / N
 my_start = chuck_id * chuck_size
 my_end = my_start + chuck_size
 for (i = my_start; i < my_end; i++)
 z[i] = a*x[i] + y[i]

•  Main code then looks like:
parallel_daxpy():
 for (tid = 0; tid < CORES; tid++) {
 spawn_task(daxpy, tid);
 }
 wait_for_tasks(CORES);

CIS 501 (Martin): Multicore 6

Explicit (Loop-Level) Parallelism

•  Another way: “OpenMP” annotations to inform the compiler

double a, x[SIZE], y[SIZE], z[SIZE];
void daxpy() {
 #pragma omp parallel for
 for (i = 0; i < SIZE; i++) {
 z[i] = a*x[i] + y[i];

 }

•  Look familiar?
•  Hint: homework #1

•  But only works if loop is actually parallel
•  If not parallel, incorrect behavior may result in unpredictable ways

CIS 501 (Martin): Multicore 7

Multicore & Multiprocessor
Hardware

CIS 501 (Martin): Multicore 8

CIS 501 (Martin): Multicore 9

Multiplying Performance
•  A single processor can only be so fast

•  Limited clock frequency
•  Limited instruction-level parallelism
•  Limited cache hierarchy

•  What if we need even more computing power?
•  Use multiple processors!
•  But how?

•  High-end example: Sun Ultra Enterprise 25k
•  72 UltraSPARC IV+ processors, 1.5Ghz
•  1024 GBs of memory
•  Niche: large database servers
•  $$$

CIS 501 (Martin): Multicore 10

Multicore: Mainstream Multiprocessors
•  Multicore chips
•  IBM Power5

•  Two 2+GHz PowerPC cores
•  Shared 1.5 MB L2, L3 tags

•  AMD Quad Phenom
•  Four 2+ GHz cores
•  Per-core 512KB L2 cache
•  Shared 2MB L3 cache

•  Intel Core i7 Quad
•  Four cores, private L2s
•  Shared 6 MB L3

•  Sun Niagara
•  8 cores, each 4-way threaded
•  Shared 2MB L2, shared FP
•  For servers, not desktop

1.5MB L2

L3 tags

Core 1 Core 2

Why multicore? What else would
you do with 1 billion transistors?

CIS 501 (Martin): Multicore 11

Recall Another Reason: Energy
•  Explicit parallelism (multicore) is highly energy efficient

•  Recall: dynamic voltage and frequency scaling
•  Performance vs power is NOT linear
•  Example: Intel’s Xscale

•  1 GHz → 200 MHz reduces energy used by 30x

•  Consider the impact of parallel execution
•  What if we used 5 Xscales at 200Mhz?
•  Similar performance as a 1Ghz Xscale, but 1/6th the energy

•  5 cores * 1/30th = 1/6th

•  Assumes parallel speedup (a difficult task)
•  Remember Ahmdal’s law

Sun Niagara II

CIS 501 (Martin): Multicore 12

Intel Quad-Core “Core i7”

CIS 501 (Martin): Multicore 13

CIS 501 (Martin): Multicore 14

Application Domains for Multiprocessors
•  Scientific computing/supercomputing

•  Examples: weather simulation, aerodynamics, protein folding
•  Large grids, integrating changes over time
•  Each processor computes for a part of the grid

•  Server workloads
•  Example: airline reservation database
•  Many concurrent updates, searches, lookups, queries
•  Processors handle different requests

•  Media workloads
•  Processors compress/decompress different parts of image/frames

•  Desktop workloads…
•  Gaming workloads…

But software must be written to expose parallelism

“Threading” &
The Shared Memory
Execution Model

CIS 501 (Martin): Multicore 15

CIS 501 (Martin): Multicore 16

First, Uniprocessor Concurrency

•  Software “thread”: Independent flows of execution
•  “private” per-thread state

•  Context state: PC, registers
•  Stack (per-thread local variables)

•  “shared” state: Globals, heap, etc.
•  Threads generally share the same memory space

•  “Process” like a thread, but different memory space
•  Java has thread support built in, C/C++ using a thread library

•  Generally, system software (the O.S.) manages threads
•  “Thread scheduling”, “context switching”
•  In single-core system, all threads share the one processor

•  Hardware timer interrupt occasionally triggers O.S.
•  Quickly swapping threads gives illusion of concurrent execution

•  Much more in an operating systems course

CIS 501 (Martin): Multicore 17

Multithreaded Programming Model

•  Programmer explicitly creates multiple threads

•  All loads & stores to a single shared memory space
•  Each thread has a private stack frame for local variables

•  A “thread switch” can occur at any time
•  Pre-emptive multithreading by OS

•  Common uses:
•  Handling user interaction (GUI programming)
•  Handling I/O latency (send network message, wait for response)
•  Expressing parallel work via Thread-Level Parallelism (TLP)

•  This is our focus!

CIS 501 (Martin): Multicore 18

Simplest Multiprocessor

•  Replicate entire processor pipeline!
•  Instead of replicating just register file & PC
•  Exception: share the caches (we’ll address this bottleneck later)

•  Multiple threads execute
•  “Shared memory” programming model
•  Operations (loads and stores) are interleaved at random
•  Loads returns the value written by most recent store

PC

I$

Regfile

PC

Regfile

D$

CIS 501 (Martin): Multicore 19

Alternative: Hardware Multithreading

•  Hardware Multithreading (MT)
•  Multiple threads dynamically share a single pipeline
•  Replicate only per-thread structures: program counter & registers
•  Hardware interleaves instructions
+  Multithreading improves utilization and throughput

•  Single programs utilize <50% of pipeline (branch, cache miss)
•  Multithreading does not improve single-thread performance

•  Individual threads run as fast or even slower
•  Coarse-grain MT: switch on L2 misses Why?
•  Simultaneous MT: no explicit switching, fine-grain interleaving

PC

I$ Regfile0 D$

Regfile1

PC

THR

CIS 501 (Martin): Multicore 20

Shared Memory Implementations
•  Multiplexed uniprocessor

•  Runtime system and/or OS occasionally pre-empt & swap threads
•  Interleaved, but no parallelism

•  Multiprocessing
•  Multiply execution resources, higher peak performance
•  Same interleaved shared-memory model
•  Foreshadowing: allow private caches, further disentangle cores

•  Hardware multithreading
•  Tolerate pipeline latencies, higher efficiency
•  Same interleaved shared-memory model

•  All support the shared memory programming model

CIS 501 (Martin): Multicore 21

Four Shared Memory Issues
1.  Parallel programming

•  How does the programmer express the parallelism?

2.  Synchronization
•  How to regulate access to shared data?
•  How to implement “locks”?

3.  Cache coherence
•  If cores have private (non-shared) caches
•  How to make writes to one cache “show up” in others?

4.  Memory consistency models
•  How to keep programmer sane while letting hardware optimize?
•  How to reconcile shared memory with store buffers?

Parallel Programming

CIS 501 (Martin): Multicore 22

Parallel Programming

•  One use of multiprocessors: multiprogramming
•  Running multiple programs with no interaction between them
•  Works great for a few cores, but what next?

•  Or, programmers must explicitly express parallelism
•  “Coarse” parallelism beyond what the hardware can extract implicitly
•  Even the compiler can’t extract it in most cases

•  How? Several options:
•  Call libraries that perform well-known computations in parallel

•  Example: a matrix multiply routine, etc.
•  Parallel “for” loops, task-based parallelism, …
•  Add code annotations (“this loop is parallel”), OpenMP
•  Explicitly spawn “tasks”, OS thread schedules them on the cores

•  Parallel programming: key challenge in multicore revolution

CIS 501 (Martin): Multicore 23

CIS 501 (Martin): Multicore 24

Example: Parallelizing Matrix Multiply

for (I = 0; I < SIZE; I++)
 for (J = 0; J < SIZE; J++)
 for (K = 0; K < SIZE; K++)
 C[I][J] += A[I][K] * B[K][J];

•  How to parallelize matrix multiply?
•  Replace outer “for” loop with “parallel_for” or OpenMP annotation
•  Supported by many parallel programming environments

•  Implementation: give each of N processors loop iterations
int start = (SIZE/N) * my_id();
for (I = start; I < start + SIZE/N; I++)
 for (J = 0; J < SIZE; J++)
 for (K = 0; K < SIZE; K++)
 C[I][J] += A[I][K] * B[K][J];

•  Each processor runs copy of loop above
•  Library provides my_id() function

C A B
X =

Example: Bank Accounts

•  Consider
struct acct_t { int balance; … };
struct acct_t accounts[MAX_ACCT]; // current balances

struct trans_t { int id; int amount; };
struct trans_t transactions[MAX_TRANS]; // debit amounts

for (i = 0; i < MAX_TRANS; i++) {
 debit(transactions[i].id, transactions[i].amount);
}

void debit(int id, int amount) {
 if (accounts[id].balance >= amount) {
 accounts[id].balance -= amount;
 }
}

•  Can we do these “debit” operations in parallel?
•  Does the order matter?

CIS 501 (Martin): Multicore 25

CIS 501 (Martin): Multicore 26

Example: Bank Accounts

•  Example of Thread-level parallelism (TLP)
•  Collection of asynchronous tasks: not started and stopped together
•  Data shared “loosely” (sometimes yes, mostly no), dynamically

•  Example: database/web server (each query is a thread)
•  accts is global and thus shared, can’t register allocate
•  id and amt are private variables, register allocated to r1, r2

•  Running example

struct acct_t { int bal; … };
shared struct acct_t accts[MAX_ACCT];
void debit(int id, int amt) {
 if (accts[id].bal >= amt)
 {
 accts[id].bal -= amt;
 }
}

0: addi r1,accts,r3
1: ld 0(r3),r4
2: blt r4,r2,done
3: sub r4,r2,r4
4: st r4,0(r3)

CIS 501 (Martin): Multicore 27

An Example Execution

•  Two $100 withdrawals from account #241 at two ATMs
•  Each transaction executed on different processor
•  Track accts[241].bal (address is in r3)

Thread 0
0: addi r1,accts,r3
1: ld 0(r3),r4
2: blt r4,r2,done
3: sub r4,r2,r4
4: st r4,0(r3)

Thread 1

0: addi r1,accts,r3
1: ld 0(r3),r4
2: blt r4,r2,done
3: sub r4,r2,r4
4: st r4,0(r3)

Mem
500

400

300

Tim
e

CIS 501 (Martin): Multicore 28

A Problem Execution
Thread 0

0: addi r1,accts,r3
1: ld 0(r3),r4
2: blt r4,r2,done
3: sub r4,r2,r4
<<< Switch >>>

4: st r4,0(r3)

Thread 1

0: addi r1,accts,r3
1: ld 0(r3),r4
2: blt r4,r2,done
3: sub r4,r2,r4
4: st r4,0(r3)

Mem
500

400

Tim
e

400

•  Problem: wrong account balance! Why?
•  Solution: synchronize access to account balance

Synchronization

CIS 501 (Martin): Multicore 29

CIS 501 (Martin): Multicore 30

Synchronization:
•  Synchronization: a key issue for shared memory
•  Regulate access to shared data (mutual exclusion)
•  Low-level primitive: lock (higher-level: “semaphore” or “mutex”)

•  Operations: acquire(lock)and release(lock)
•  Region between acquire and release is a critical section
•  Must interleave acquire and release
•  Interfering acquire will block

•  Another option: Barrier synchronization
•  Blocks until all threads reach barrier, used at end of “parallel_for”

struct acct_t { int bal; … };
shared struct acct_t accts[MAX_ACCT];
shared int lock;
void debit(int id, int amt):
 acquire(lock);
 if (accts[id].bal >= amt) {
 accts[id].bal -= amt;
 }
 release(lock);

critical section

CIS 501 (Martin): Multicore 31

A Synchronized Execution
Thread 0

 call acquire(lock)
0: addi r1,accts,r3
1: ld 0(r3),r4
2: blt r4,r2,done
3: sub r4,r2,r4
<<< Switch >>>

4: st r4,0(r3)
 call release(lock)

Thread 1

 call acquire(lock)
 <<< Switch >>>

 (still in acquire)
0: addi r1,accts,r3
1: ld 0(r3),r4
2: blt r4,r2,done
3: sub r4,r2,r4
4: st r4,0(r3)

Mem
500

400

Tim
e

300

•  Fixed, but how do
we implement
acquire & release?

Spins!

CIS 501 (Martin): Multicore 32

Strawman Lock

•  Spin lock: software lock implementation
•  acquire(lock): while (lock != 0) {} lock = 1;

•  “Spin” while lock is 1, wait for it to turn 0
A0: ld 0(&lock),r6
A1: bnez r6,A0
A2: addi r6,1,r6
A3: st r6,0(&lock)

•  release(lock): lock = 0;
R0: st r0,0(&lock) // r0 holds 0

(Incorrect)

CIS 501 (Martin): Multicore 33

Strawman Lock

•  Spin lock makes intuitive sense, but doesn’t actually work
•  Loads/stores of two acquire sequences can be interleaved
•  Lock acquire sequence also not atomic
•  Same problem as before!

•  Note, release is trivially atomic

Thread 0
A0: ld 0(&lock),r6
A1: bnez r6,#A0
A2: addi r6,1,r6
A3: st r6,0(&lock)
CRITICAL_SECTION

Thread 1

A0: ld r6,0(&lock)
A1: bnez r6,#A0
A2: addi r6,1,r6
A3: st r6,0(&lock)
CRITICAL_SECTION

Mem
0

1

Tim
e

1

(Incorrect)

CIS 501 (Martin): Multicore 34

A Correct Implementation: SYSCALL Lock

•  Implement lock in a SYSCALL
•  Only kernel can control interleaving by disabling interrupts
+  Works…
–  Large system call overhead
–  But not in a hardware multithreading or a multiprocessor…

ACQUIRE_LOCK:
A1: disable_interrupts
A2: ld r6,0(&lock)
A3: bnez r6,#A0
A4: addi r6,1,r6
A5: st r6,0(&lock)
A6: enable_interrupts
A7: return

atomic

CIS 501 (Martin): Multicore 35

Better Spin Lock: Use Atomic Swap
•  ISA provides an atomic lock acquisition instruction

•  Example: atomic swap
swap r1,0(&lock)
•  Atomically executes:

•  New acquire sequence
 (value of r1 is 1)
 A0: swap r1,0(&lock)
 A1: bnez r1,A0

•  If lock was initially busy (1), doesn’t change it, keep looping
•  If lock was initially free (0), acquires it (sets it to 1), break loop

•  Insures lock held by at most one thread
•  Other variants: exchange, compare-and-swap,

test-and-set (t&s), or fetch-and-add

mov r1->r2
ld r1,0(&lock)
st r2,0(&lock)

CIS 501 (Martin): Multicore 36

Atomic Update/Swap Implementation

•  How is atomic swap implemented?
•  Need to ensure no intervening memory operations
•  Requires blocking access by other threads temporarily (yuck)

•  How to pipeline it?
•  Both a load and a store (yuck)
•  Not very RISC-like

PC

I$

Regfile

PC

Regfile

D$

CIS 501 (Martin): Multicore 37

RISC Test-And-Set

•  swap: a load and store in one insn is not very “RISC”
•  Broken up into micro-ops, but then how is it made atomic?

•  “Load-link” / “store-conditional” pairs
•  Atomic load/store pair

label:
 load-link r1,0(&lock)
 // potentially other insns
 store-conditional r2,0(&lock)
 branch-not-zero label // check for failure

•  On load-link, processor remembers address…
•  …And looks for writes by other processors
•  If write is detected, next store-conditional will fail

•  Sets failure condition

•  Used by ARM, PowerPC, MIPS, Itanium

CIS 501 (Martin): Multicore 38

Lock Correctness

+  Lock actually works…
•  Thread 1 keeps spinning

•  Sometimes called a “test-and-set lock”
•  Named after the common “test-and-set” atomic instruction

Thread 0
A0: swap r1,0(&lock)
A1: bnez r1,#A0
CRITICAL_SECTION

Thread 1

A0: swap r1,0(&lock)
A1: bnez r1,#A0
A0: swap r1,0(&lock)
A1: bnez r1,#A0

CIS 501 (Martin): Multicore 39

“Test-and-Set” Lock Performance

–  …but performs poorly
•  Consider 3 processors rather than 2
•  Processor 2 (not shown) has the lock and is in the critical section
•  But what are processors 0 and 1 doing in the meantime?

•  Loops of swap, each of which includes a st
–  Repeated stores by multiple processors costly (more in a bit)
–  Generating a ton of useless interconnect traffic

Thread 0
A0: swap r1,0(&lock)
A1: bnez r1,#A0
A0: swap r1,0(&lock)
A1: bnez r1,#A0

Thread 1

A0: swap r1,0(&lock)
A1: bnez r1,#A0
A0: swap r1,0(&lock)
A1: bnez r1,#A0

CIS 501 (Martin): Multicore 40

Test-and-Test-and-Set Locks

•  Solution: test-and-test-and-set locks
•  New acquire sequence

A0: ld r1,0(&lock)
A1: bnez r1,A0
A2: addi r1,1,r1
A3: swap r1,0(&lock)
A4: bnez r1,A0

•  Within each loop iteration, before doing a swap
•  Spin doing a simple test (ld) to see if lock value has changed
•  Only do a swap (st) if lock is actually free

•  Processors can spin on a busy lock locally (in their own cache)
+ Less unnecessary interconnect traffic

•  Note: test-and-test-and-set is not a new instruction!
•  Just different software

CIS 501 (Martin): Multicore 41

Queue Locks

•  Test-and-test-and-set locks can still perform poorly
•  If lock is contended for by many processors
•  Lock release by one processor, creates “free-for-all” by others
–  Interconnect gets swamped with swap requests

•  Software queue lock
•  Each waiting processor spins on a different location (a queue)
•  When lock is released by one processor...

•  Only the next processors sees its location go “unlocked”
•  Others continue spinning locally, unaware lock was released

•  Effectively, passes lock from one processor to the next, in order
+  Greatly reduced network traffic (no mad rush for the lock)
+  Fairness (lock acquired in FIFO order)
–  Higher overhead in case of no contention (more instructions)
–  Poor performance if one thread is descheduled by O.S.

CIS 501 (Martin): Multicore 42

Programming With Locks Is Tricky

•  Multicore processors are the way of the foreseeable future
•  thread-level parallelism anointed as parallelism model of choice
•  Just one problem…

•  Writing lock-based multi-threaded programs is tricky!

•  More precisely:
•  Writing programs that are correct is “easy” (not really)
•  Writing programs that are highly parallel is “easy” (not really)
–  Writing programs that are both correct and parallel is difficult

•  And that’s the whole point, unfortunately
•  Selecting the “right” kind of lock for performance

•  Spin lock, queue lock, ticket lock, read/writer lock, etc.
•  Locking granularity issues

CIS 501 (Martin): Multicore 43

Coarse-Grain Locks: Correct but Slow

•  Coarse-grain locks: e.g., one lock for entire database
+  Easy to make correct: no chance for unintended interference
–  Limits parallelism: no two critical sections can proceed in parallel

struct acct_t { int bal; … };
shared struct acct_t accts[MAX_ACCT];
shared Lock_t lock;
void debit(int id, int amt) {
 acquire(lock);
 if (accts[id].bal >= amt) {
 accts[id].bal -= amt;
 }
 release(lock);
}

CIS 501 (Martin): Multicore 44

Fine-Grain Locks: Parallel But Difficult

•  Fine-grain locks: e.g., multiple locks, one per record
+  Fast: critical sections (to different records) can proceed in parallel
–  Difficult to make correct: easy to make mistakes

•  This particular example is easy
•  Requires only one lock per critical section

•  What about critical sections that require two locks?

struct acct_t { int bal, Lock_t lock; … };
shared struct acct_t accts[MAX_ACCT];

void debit(int id, int amt) {
 acquire(accts[id].lock);
 if (accts[id].bal >= amt) {
 accts[id].bal -= amt;
 }
 release(accts[id].lock);
}

CIS 501 (Martin): Multicore 45

Multiple Locks

•  Multiple locks: e.g., acct-to-acct transfer
•  Must acquire both id_from, id_to locks
•  Running example with accts 241 and 37
•  Simultaneous transfers 241 → 37 and 37 → 241
•  Contrived… but even contrived examples must work correctly too

struct acct_t { int bal, Lock_t lock; …};
shared struct acct_t accts[MAX_ACCT];
void transfer(int id_from, int id_to, int amt) {
 acquire(accts[id_from].lock);
 acquire(accts[id_to].lock);
 if (accts[id_from].bal >= amt) {
 accts[id_from].bal -= amt;
 accts[id_to].bal += amt;
 }
 release(accts[id_to].lock);
 release(accts[id_from].lock);
}

CIS 501 (Martin): Multicore 46

Multiple Locks And Deadlock

•  Deadlock: circular wait for shared resources
•  Thread 0 has lock 241 waits for lock 37
•  Thread 1 has lock 37 waits for lock 241
•  Obviously this is a problem
•  The solution is …

Thread 0

id_from = 241;
id_to = 37;

acquire(accts[241].lock);
// wait to acquire lock 37
// waiting…
// still waiting…

Thread 1

id_from = 37;
id_to = 241;

acquire(accts[37].lock);
// wait to acquire lock 241
// waiting…
// …

CIS 501 (Martin): Multicore 47

Correct Multiple Lock Program

•  Always acquire multiple locks in same order
•  Just another thing to keep in mind when programming

struct acct_t { int bal, Lock_t lock; … };
shared struct acct_t accts[MAX_ACCT];
void transfer(int id_from, int id_to, int amt) {
 int id_first = min(id_from, id_to);
 int id_second = max(id_from, id_to);

 acquire(accts[id_first].lock);
 acquire(accts[id_second].lock);
 if (accts[id_from].bal >= amt) {
 accts[id_from].bal -= amt;
 accts[id_to].bal += amt;
 }
 release(accts[id_second].lock);
 release(accts[id_first].lock);
}

CIS 501 (Martin): Multicore 48

Correct Multiple Lock Execution

•  Great, are we done? No

Thread 0

id_from = 241;
id_to = 37;
id_first = min(241,37)=37;
id_second = max(37,241)=241;

acquire(accts[37].lock);
acquire(accts[241].lock);
// do stuff
release(accts[241].lock);
release(accts[37].lock);

Thread 1

id_from = 37;
id_to = 241;
id_first = min(37,241)=37;
id_second = max(37,241)=241;

// wait to acquire lock 37
// waiting…
// …
// …
// …
acquire(accts[37].lock);

CIS 501 (Martin): Multicore 49

More Lock Madness

•  What if…
•  Some actions (e.g., deposits, transfers) require 1 or 2 locks…
•  …and others (e.g., prepare statements) require all of them?
•  Can these proceed in parallel?

•  What if…
•  There are locks for global variables (e.g., operation id counter)?
•  When should operations grab this lock?

•  What if… what if… what if…

•  So lock-based programming is difficult…
•  …wait, it gets worse

CIS 501 (Martin): Multicore 50

And To Make It Worse…

•  Acquiring locks is expensive…
•  By definition requires a slow atomic instructions

•  Specifically, acquiring write permissions to the lock
•  Ordering constraints (see soon) make it even slower

•  …and 99% of the time un-necessary
•  Most concurrent actions don’t actually share data
–  You paying to acquire the lock(s) for no reason

•  Fixing these problem is an area of active research
•  One proposed solution “Transactional Memory”
•  Programmer uses construct: “atomic { … code … }”

•  Hardware, compiler & runtime executes the code “atomically”
•  Uses speculation, rolls back on conflicting accesses

CIS 501 (Martin): Multicore 51

Research: Transactional Memory (TM)

•  Transactional Memory
+  Programming simplicity of coarse-grain locks
+  Higher concurrency (parallelism) of fine-grain locks

•  Critical sections only serialized if data is actually shared
+  No lock acquisition overhead
•  Hottest thing since sliced bread (or was a few years ago)
•  No fewer than nine research projects:

•  Brown, Stanford, MIT, Wisconsin, Texas, Rochester,
Sun/Oracle, Intel

•  Penn, too

CIS 501 (Martin): Multicore 52

Transactional Memory: The Big Idea

•  Big idea I: no locks, just shared data

•  Big idea II: optimistic (speculative) concurrency
•  Execute critical section speculatively, abort on conflicts
•  “Better to beg for forgiveness than to ask for permission”

struct acct_t { int bal; … };
shared struct acct_t accts[MAX_ACCT];
void transfer(int id_from, int id_to, int amt) {
 begin_transaction();
 if (accts[id_from].bal >= amt) {
 accts[id_from].bal -= amt;
 accts[id_to].bal += amt;
 }
 end_transaction();
}

CIS 501 (Martin): Multicore 53

Transactional Memory: Read/Write Sets

•  Read set: set of shared addresses critical section reads
•  Example: accts[37].bal, accts[241].bal

•  Write set: set of shared addresses critical section writes
•  Example: accts[37].bal, accts[241].bal

struct acct_t { int bal; … };
shared struct acct_t accts[MAX_ACCT];
void transfer(int id_from, int id_to, int amt) {
 begin_transaction();
 if (accts[id_from].bal >= amt) {
 accts[id_from].bal -= amt;
 accts[id_to].bal += amt;
 }
 end_transaction();
}

CIS 501 (Martin): Multicore 54

Transactional Memory: Begin

•  begin_transaction
•  Take a local register checkpoint
•  Begin locally tracking read set (remember addresses you read)

•  See if anyone else is trying to write it
•  Locally buffer all of your writes (invisible to other processors)
+  Local actions only: no lock acquire

struct acct_t { int bal; … };
shared struct acct_t accts[MAX_ACCT];
void transfer(int id_from, int id_to, int amt) {
 begin_transaction();
 if (accts[id_from].bal >= amt) {
 accts[id_from].bal -= amt;
 accts[id_to].bal += amt;
 }
 end_transaction();
}

CIS 501 (Martin): Multicore 55

Transactional Memory: End

•  end_transaction
•  Check read set: is all data you read still valid (i.e., no writes to any)
•  Yes? Commit transactions: commit writes
•  No? Abort transaction: restore checkpoint

struct acct_t { int bal; … };
shared struct acct_t accts[MAX_ACCT];
void transfer(int id_from, int id_to, int amt) {
 begin_transaction();
 if (accts[id_from].bal >= amt) {
 accts[id_from].bal -= amt;
 accts[id_to].bal += amt;
 }
 end_transaction();
}

CIS 501 (Martin): Multicore 56

Transactional Memory Implementation

•  How are read-set/write-set implemented?
•  Track locations accessed using bits in the cache

•  Read-set: additional “transactional read” bit per block
•  Set on reads between begin_transaction and end_transaction
•  Any other write to block with set bit triggers abort
•  Flash cleared on transaction abort or commit

•  Write-set: additional “transactional write” bit per block
•  Set on writes between begin_transaction and end_transaction
•  Before first write, if dirty, initiate writeback (“clean” the block)
•  Flash cleared on transaction commit
•  On transaction abort: blocks with set bit are invalidated

CIS 501 (Martin): Multicore 57

Transactional Execution
Thread 0

id_from = 241;
id_to = 37;

begin_transaction();
if(accts[241].bal > 100) {
 …
 // write accts[241].bal
 // abort

Thread 1

id_from = 37;
id_to = 241;

begin_transaction();
if(accts[37].bal > 100) {
 accts[37].bal -= amt;
 acts[241].bal += amt;
}
end_transaction();
// no writes to accts[241].bal
// no writes to accts[37].bal
// commit

CIS 501 (Martin): Multicore 58

Transactional Execution II (More Likely)

•  Critical sections execute in parallel

Thread 0

id_from = 241;
id_to = 37;

begin_transaction();
if(accts[241].bal > 100) {
 accts[241].bal -= amt;
 acts[37].bal += amt;
}
end_transaction();
// no write to accts[240].bal
// no write to accts[37].bal
// commit

Thread 1

id_from = 450;
id_to = 118;

begin_transaction();
if(accts[450].bal > 100) {
 accts[450].bal -= amt;
 acts[118].bal += amt;
}
end_transaction();
// no write to accts[450].bal
// no write to accts[118].bal
// commit

CIS 501 (Martin): Multicore 59

So, Let’s Just Do Transactions?

•  What if…
•  Read-set or write-set bigger than cache?
•  Transaction gets swapped out in the middle?
•  Transaction wants to do I/O or SYSCALL (not-abortable)?

•  How do we transactify existing lock based programs?
•  Replace acquire with begin_trans does not always work

•  Several different kinds of transaction semantics
•  Are transactions atomic relative to code outside of transactions?

•  Do we want transactions in hardware or in software?
•  What we just saw is hardware transactional memory (HTM)

•  That’s what these research groups are looking at
•  Best-effort hardware TM: Azul systems, Sun’s Rock processor

CIS 501 (Martin): Multicore 60

Speculative Lock Elision

•  Alternatively, keep the locks, but…
•  … speculatively transactify lock-based programs in hardware

•  Speculative Lock Elision (SLE) [Rajwar+, MICRO’01]
•  Captures most of the advantages of transactional memory…

+  No need to rewrite programs
+  Can always fall back on lock-based execution (overflow, I/O, etc.)

Processor 0

acquire(accts[37].lock); // don’t actually set lock to 1
// begin tracking read/write sets
// CRITICAL_SECTION
// check read set
// no conflicts? Commit, don’t actually set lock to 0
// conflicts? Abort, retry by acquiring lock
release(accts[37].lock);

CIS 501 (Martin): Multicore 61

Roadmap Checkpoint

•  Thread-level parallelism (TLP)
•  Shared memory model

•  Multiplexed uniprocessor
•  Hardware multihreading
•  Multiprocessing

•  Synchronization
•  Lock implementation
•  Locking gotchas

•  Cache coherence
•  Bus-based protocols
•  Directory protocols

•  Memory consistency models

Mem CPU I/O

System software
App App App

CPU CPU CPU CPU CPU

CIS 501 (Martin): Multicore 62

Recall: Simplest Multiprocessor

•  What if we don’t want to share the L1 caches?
•  Bandwidth and latency issue

•  Solution: use per-processor (“private”) caches
•  Coordinate them with a Cache Coherence Protocol

PC

I$

Regfile

PC

Regfile

D$

CIS 501 (Martin): Multicore 63

Shared-Memory Multiprocessors

•  Conceptual model
•  The shared-memory abstraction
•  Familiar and feels natural to programmers
•  Life would be easy if systems actually looked like this…

P0 P1 P2 P3

Memory

CIS 501 (Martin): Multicore 64

Shared-Memory Multiprocessors

•  …but systems actually look more like this
•  Processors have caches
•  Memory may be physically distributed
•  Arbitrary interconnect

P0 P1 P2 P3

$ M0

Router/interface

Interconnect

$ M1

Router/interface

$ M2

Router/interface

$ M3

Router/interface

CIS 501 (Martin): Multicore 65

Revisiting Our Motivating Example

•  Two $100 withdrawals from account #241 at two ATMs
•  Each transaction maps to thread on different processor
•  Track accts[241].bal (address is in $r3)

Processor 0
0: addi $r3,$r1,&accts
1: lw $r4,0($r3)
2: blt $r4,$r2,6
3: sub $r4,$r4,$r2
4: sw $r4,0($r3)

Processor 1

0: addi $r3,$r1,&accts
1: lw $r4,0($r3)
2: blt $r4,$r2,6
3: sub $r4,$r4,$r2
4: sw $r4,0($r3)

critical section
(locks not shown)

critical section
(locks not shown)

CPU0 Mem CPU1

CIS 501 (Martin): Multicore 66

No-Cache, No-Problem

•  Scenario I: processors have no caches
•  No problem

Processor 0
0: addi $r3,$r1,&accts
1: lw $r4,0($r3)
2: blt $r4,$r2,6
3: sub $r4,$r4,$r2
4: sw $r4,0($r3)

Processor 1

0: addi $r3,$r1,&accts
1: lw $r4,0($r3)
2: blt $r4,$r2,6
3: sub $r4,$r4,$r2
4: sw $r4,0($r3)

$500
$500

$400

$400

$300

CPU0 Mem CPU1

CIS 501 (Martin): Multicore 67

Cache Incoherence

•  Scenario II(a): processors have write-back caches
•  Potentially 3 copies of accts[241].bal: memory, two caches
•  Can get incoherent (inconsistent)

Processor 0
0: addi $r3,$r1,&accts
1: lw $r4,0($r3)
2: blt $r4,$r2,6
3: sub $r4,$r4,$r2
4: sw $r4,0($r3)

Processor 1

0: addi $r3,$r1,&accts
1: lw $r4,0($r3)
2: blt $r4,$r2,6
3: sub $r4,$r4,$r2
4: sw $r4,0($r3)

$500
$500 $500

$400 $500

$400 $500 $500

$400 $500 $400

CPU0 Mem CPU1

CIS 501 (Martin): Multicore 68

Write-Through Doesn’t Fix It

•  Scenario II(b): processors have write-through caches
•  This time only two (different) copies of accts[241].bal
•  No problem? What if another withdrawal happens on processor 0?

Processor 0
0: addi $r3,$r1,&accts
1: lw $r4,0($r3)
2: blt $r4,$r2,6
3: sub $r4,$r4,$r2
4: sw $r4,0($r3)

Processor 1

0: addi $r3,$r1,&accts
1: lw $r4,0($r3)
2: blt $r4,$r2,6
3: sub $r4,$r4,$r2
4: sw $r4,0($r3)

$500
$500 $500

$400 $400

$400 $400 $400

$400 $300 $300

CPU0 Mem CPU1

CIS 501 (Martin): Multicore 69

What To Do?
•  No caches?

–  Too slow

•  Make shared data uncachable?
–  Faster, but still too slow
•  Entire accts database is technically “shared”

•  Flush all other caches on writes to shared data?
•  Can work well in some cases, but can make caches ineffective

•  Hardware cache coherence
•  Rough goal: all caches have same data at all times
+  Minimal flushing, maximum caching → best performance

CIS 501 (Martin): Multicore 70

Bus-based Multiprocessor
•  Simple multiprocessors use a bus

•  All processors see all requests at the same time, same order

•  Memory
•  Single memory module, -or-
•  Banked memory module

P0 P1 P2 P3

$

M0

Bus

$

M1

$

M2

$

M3

CIS 501 (Martin): Multicore 71

Hardware Cache Coherence
•  Coherence

•  all copies have same data at all times
•  Coherence controller:

•  Examines bus traffic (addresses and data)
•  Executes coherence protocol

•  What to do with local copy when you see
different things happening on bus

•  Each processors runs a state machine
•  Three processor-initiated events

•  Ld: load St: store WB: write-back

•  Two remote-initiated events
•  LdMiss: read miss from another processor
•  StMiss: write miss from another processor

CPU

D
$

da
ta

D
$

ta
gs

CC

bus

CIS 501 (Martin): Multicore 72

VI (MI) Coherence Protocol
•  VI (valid-invalid) protocol: aka “MI”

•  Two states (per block in cache)
•  V (valid): have block
•  I (invalid): don’t have block
+ Can implement with valid bit

•  Protocol diagram (left & next slide)
•  Summary

•  If anyone wants to read/write block
•  Give it up: transition to I state
•  Write-back if your own copy is dirty

•  This is an invalidate protocol
•  Update protocol: copy data, don’t invalidate

•  Sounds good, but uses too much bandwidth

I

V

Lo
ad

, S
to

re

Ld
M

is
s,

 S
tM

is
s,

 W
B

Load, Store

LdMiss/
StMiss

VI Protocol State Transition Table

This Processor Other Processor

State Load Store Load Miss Store Miss

Invalid
(I)

Load Miss
 V

Store Miss
 V

--- ---

Valid
(V)

Hit Hit Send Data
 I

Send Data
 I

CIS 501 (Martin): Multicore 73

•  Rows are “states”
•  I vs V

•  Columns are “events”
•  Writeback events not shown

•  Memory controller not shown
•  Memory sends data when no processor responds

CIS 501 (Martin): Multicore 74

VI Protocol (Write-Back Cache)

•  lw by processor 1 generates an “other load miss” event (LdMiss)
•  Processor 0 responds by sending its dirty copy, transitioning to I

Processor 0
0: addi $r3,$r1,&accts
1: lw $r4,0($r3)
2: blt $r4,$r2,6
3: sub $r4,$r4,$r2
4: sw $r4,0($r3)

Processor 1

0: addi $r3,$r1,&accts
1: lw $r4,0($r3)
2: blt $r4,$r2,6
3: sub $r4,$r4,$r2
4: sw $r4,0($r3)

500
V:500 500

V:400 500

I: 400 V:400

400 V:300

CPU0 Mem CPU1

CIS 501 (Martin): Multicore 75

VI → MSI

•  VI protocol is inefficient
–  Only one cached copy allowed in entire system
–  Multiple copies can’t exist even if read-only

•  Not a problem in example
•  Big problem in reality

•  MSI (modified-shared-invalid)
•  Fixes problem: splits “V” state into two states

•  M (modified): local dirty copy
•  S (shared): local clean copy

•  Allows either
•  Multiple read-only copies (S-state) --OR--
•  Single read/write copy (M-state)

I

M

St
or

e

St
M

is
s,

 W
B

Load, Store

S
Store

Load, LdMiss
LdM

LdMiss/
StMiss

MSI Protocol State Transition Table

This Processor Other Processor

State Load Store Load Miss Store Miss

Invalid
(I)

Load Miss
 S

Store Miss
 M

--- ---

Shared
(S)

Hit Upgrade Miss
 M

--- I

Modified
(M)

Hit Hit Send Data
 S

Send Data
 I

CIS 501 (Martin): Multicore 76

•  M S transition also updates memory
•  After which memory willl respond (as all processors will be in S)

CIS 501 (Martin): Multicore 77

MSI Protocol (Write-Back Cache)

•  lw by processor 1 generates a “other load miss” event (LdMiss)
•  Processor 0 responds by sending its dirty copy, transitioning to S

•  sw by processor 1 generates a “other store miss” event (StMiss)
•  Processor 0 responds by transitioning to I

Processor 0
0: addi $r3,$r1,&accts
1: lw $r4,0($r3)
2: blt $r4,$r2,6
3: sub $r4,$r4,$r2
4: sw $r4,0($r3)

Processor 1

0: addi $r3,$r1,&accts
1: lw $r4,0($r3)
2: blt $r4,$r2,6
3: sub $r4,$r4,$r2
4: sw $r4,0($r3)

500
S:500 500

M:400 500

S:400 400 S:400

I: 400 M:300

CPU0 Mem CPU1

Cache Coherence and Cache Misses
•  Coherence introduces two new kinds of cache misses

•  Upgrade miss
•  On stores to read-only blocks
•  Delay to acquire write permission to read-only block

•  Coherence miss
•  Miss to a block evicted by another processor’s requests

•  Making the cache larger…
•  Doesn’t reduce these type of misses
•  So, as cache grows large, these sorts of misses dominate

•  False sharing
•  Two or more processors sharing parts of the same block
•  But not the same bytes within that block (no actual sharing)
•  Creates pathological “ping-pong” behavior
•  Careful data placement may help, but is difficult

CIS 501 (Martin): Multicore 78

Snooping Example: Step #1

CIS 501 (Martin): Multicore 79

P0

Cache
Addr Data State

-- -- --
-- -- --

Shared
Cache

Addr Data State
A 1000 Modified
B 0 Idle

Bus

Cache
Addr Data State

A 500 M
-- -- --

Cache
Addr Data State

-- -- --
-- -- --

P1 P2

Load A

Miss!

Memory A 1000
B 0

Snooping Example: Step #2

CIS 501 (Martin): Multicore 80

P0

Cache
Addr Data State

-- -- --
-- -- --

Bus

Cache
Addr Data State

A 500 M
-- -- --

Cache
Addr Data State

-- -- --
-- -- --

P1 P2

Load A

LdMiss: Addr=A

Memory A 1000
B 0

Shared
Cache

Addr Data State
A 1000 Modified
B 0 Idle

Snooping Example: Step #3

CIS 501 (Martin): Multicore 81

P0

Cache
Addr Data State

-- -- --
-- -- --

Bus

Cache
Addr Data State

A 500 S
-- -- --

Cache
Addr Data State

-- -- --
-- -- --

P1 P2

Load A

Response: Addr=A, Data=500

Memory A 1000
B 0

Shared
Cache

Addr Data State
A 1000 Modified
B 0 Idle

Snooping Example: Step #4

CIS 501 (Martin): Multicore 82

P0

Cache
Addr Data State

A 500 S
-- -- --

Bus

Cache
Addr Data State

A 500 S
-- -- --

Cache
Addr Data State

-- -- --
-- -- --

P1 P2

Load A

Response: Addr=A, Data=500

Memory A 1000
B 0

Shared
Cache

Addr Data State
A 500 Shared, Dirty
B 0 Idle

Snooping Example: Step #5

CIS 501 (Martin): Multicore 83

P0

Cache
Addr Data State

A 500 S
-- -- --

Bus

Cache
Addr Data State

A 500 S
-- -- --

Cache
Addr Data State

-- -- --
-- -- --

P1 P2

Load A <- 500

Memory A 1000
B 0

Shared
Cache

Addr Data State
A 500 Shared, Dirty
B 0 Idle

Snooping Example: Step #6

CIS 501 (Martin): Multicore 84

P0

Cache
Addr Data State

A 500 S
-- -- --

Bus

Cache
Addr Data State

A 500 S
-- -- --

Cache
Addr Data State

-- -- --
-- -- --

P1 P2

Store 400 -> A

Miss!

Memory A 1000
B 0

Shared
Cache

Addr Data State
A 500 Shared, Dirty
B 0 Idle

Snooping Example: Step #7

CIS 501 (Martin): Multicore 85

P0

Cache
Addr Data State

A 500 S
-- -- --

Bus

Cache
Addr Data State

A 500 S
-- -- --

Cache
Addr Data State

-- -- --
-- -- --

P1 P2

Store 400 -> A

Miss!

UpgradeMiss: Addr=A

Memory A 1000
B 0

Shared
Cache

Addr Data State
A 500 Shared, Dirty
B 0 Idle

Snooping Example: Step #8

CIS 501 (Martin): Multicore 86

P0

Cache
Addr Data State

A 500 S
-- -- --

Bus

Cache
Addr Data State

A -- I
-- -- --

Cache
Addr Data State

-- -- --
-- -- --

P1 P2

Store 400 -> A

Miss!

UpgradeMiss: Addr=A

Memory A 1000
B 0

Shared
Cache

Addr Data State
A 500 Modified
B 0 Idle

Snooping Example: Step #9

CIS 501 (Martin): Multicore 87

P0

Cache
Addr Data State

A 500 M
-- -- --

Bus

Cache
Addr Data State

A -- I
-- -- --

Cache
Addr Data State

-- -- --
-- -- --

P1 P2

Store 400 -> A

Miss!

Memory A 1000
B 0

Shared
Cache

Addr Data State
A 500 Modified
B 0 Idle

Snooping Example: Step #10

CIS 501 (Martin): Multicore 88

P0

Cache
Addr Data State

A 400 M
-- -- --

Bus

Cache
Addr Data State

A -- I
-- -- --

Cache
Addr Data State

-- -- --
-- -- --

P1 P2

Store 400 -> A

Miss!

Memory A 1000
B 0

Shared
Cache

Addr Data State
A 500 Modified
B 0 Idle

CIS 501 (Martin): Multicore 89

Exclusive Clean Protocol Optimization

•  Most modern protocols also include E (exclusive) state
•  Interpretation: “I have the only cached copy, and it’s a clean copy”
•  Why would this state be useful?

Processor 0
0: addi $r3,$r1,&accts
1: lw $r4,0($r3)
2: blt $r4,$r2,6
3: sub $r4,$r4,$r2
4: sw $r4,0($r3)

Processor 1

0: addi $r3,$r1,&accts
1: lw $r4,0($r3)
2: blt $r4,$r2,6
3: sub $r4,$r4,$r2
4: sw $r4,0($r3)

500
E:500 500

M:400 500

S:400 400 S:400

I: 400 M:300

CPU0 Mem CPU1

(No miss!)

MESI Protocol State Transition Table

This Processor Other Processor

State Load Store Load Miss Store Miss

Invalid
(I)

Miss
 S or E

Miss
 M

--- ---

Shared
(S)

Hit Upg Miss
 M

--- I

Exclusive
(E)

Hit Hit
 M

Send Data
 S

Send Data
 I

Modified
(M)

Hit Hit Send Data
 S

Send Data
 I

CIS 501 (Martin): Multicore 90
•  Load misses lead to “E” if no other processors is caching the block

CIS 501 (Martin): Multicore 91

Snooping Bandwidth Scaling Problems

•  Coherence events generated on…
•  L2 misses (and writebacks)

•  Problem#1: N2 bus traffic
•  All N processors send their misses to all N-1 other processors
•  Assume: 2 IPC, 2 Ghz clock, 0.01 misses/insn per processor
•  0.01 misses/insn * 2 insn/cycle * 2 cycle/ns * 64 B blocks

= 2.56 GB/s… per processor
•  With 16 processors, that’s 40 GB/s! With 128 that’s 320 GB/s!!

•  You can use multiple buses… but that complicates the protocol

•  Problem#2: N2 processor snooping bandwidth
•  0.01 events/insn * 2 insn/cycle = 0.02 events/cycle per processor
•  16 processors: 0.32 bus-side tag lookups per cycle

•  Add 1 extra port to cache tags? Okay
•  128 processors: 2.56 tag lookups per cycle! 3 extra tag ports?

CIS 501 (Martin): Multicore 92

“Scalable” Cache Coherence

•  Part I: bus bandwidth
•  Replace non-scalable bandwidth substrate (bus)…
•  …with scalable one (point-to-point network, e.g., mesh)

•  Part II: processor snooping bandwidth
•  Most snoops result in no action
•  Replace non-scalable broadcast protocol…
•  …with scalable directory protocol (only notify processors that care)

I

LdM/StM

CIS 501 (Martin): Multicore 93

Point-to-Point Interconnects

•  Single “bus” does not scale to larger core counts
•  Also poor electrical properties (long wires, high capacitance, etc.)

•  Alternative: on-chip interconnection network
•  Routers move packets over short point-to-point links
•  Examples: on-chip mesh or ring interconnection networks

•  Used within a multicore chip
•  Each “node”: a core, L1/L2 caches, and a “bank” (1/nth) of the L3 cache
•  Multiple memory controllers (which talk to off-chip DRAM)

•  Can also connect arbitrarily large number of chips
•  Massively parallel processors (MPPs)
•  Distributed memory: non-uniform memory architecture (NUMA)

CPU($)
Mem R

CPU($)
Mem R

CPU($)
Mem R

CPU($)
Mem R

CIS 501 (Martin): Multicore 94

Directory Coherence Protocols

•  Directories: non-broadcast coherence protocol
•  Extend memory (or shared cache) to track caching information
•  For each physical cache block, track:

•  Owner: which processor has a dirty copy (I.e., M state)
•  Sharers: which processors have clean copies (I.e., S state)

•  Processor sends coherence event to directory
•  Directory sends events only to processors as needed

•  Avoids non-scalable broadcast used by snooping protocols
•  For multicore with shared L3 cache, put directory info in cache tags

•  For high-throughput, directory can be banked/partitioned
+  Use address to determine which bank/module holds a given block

•  That bank/module is called the “home” for the block

CIS 501 (Martin): Multicore 95

MSI Directory Protocol

•  Processor side
•  Directory follows its own protocol

•  Similar to bus-based MSI
•  Same three states
•  Same five actions (keep BR/BW names)
•  Minus red arcs/actions

•  Events that would not trigger action anyway
+ Directory won’t bother you unless you need to act

95

I

M

St
or

e

St
M

is
s,

 W
B

Load, Store

S
Store

Load, LdMiss
LdMiss

LdMiss/
StMiss

CIS 501 (Martin): Multicore 96

MSI Directory Protocol

•  ld by P1 sends BR to directory
•  Directory sends BR to P0, P0 sends P1 data, does WB, goes to S

•  st by P1 sends BW to directory
•  Directory sends BW to P0, P0 goes to I

Processor 0
0: addi r1,accts,r3
1: ld 0(r3),r4
2: blt r4,r2,done
3: sub r4,r2,r4
4: st r4,0(r3)

Processor 1

0: addi r1,accts,r3
1: ld 0(r3),r4
2: blt r4,r2,done
3: sub r4,r2,r4
4: st r4,0(r3)

–:–:500

S:500 S:0:500

M:400 M:0:500

S:400 S:0,1:400 S:400

M:1:400 M:300

 P0 P1 Directory

(stale)

Point-to-Point Interconnect

Directory Example: Step #1

CIS 501 (Martin): Multicore 97

P0

Cache
Addr Data State

-- -- --
-- -- --

Shared
Cache

Addr Data State Sharers
A 1000 Modified P1
B 0 Idle --

Cache
Addr Data State

A 500 M
-- -- --

Cache
Addr Data State

-- -- --
-- -- --

P1 P2

Load A

Miss!

Memory A 1000
B 0

Point-to-Point Interconnect

Directory Example: Step #2

CIS 501 (Martin): Multicore 98

P0

Cache
Addr Data State

-- -- --
-- -- --

Cache
Addr Data State

A 500 M
-- -- --

Cache
Addr Data State

-- -- --
-- -- --

P1 P2

Load A

LdMiss: Addr=A

Memory A 1000
B 0

Shared
Cache

Addr Data State Sharers
A 1000 Blocked P1
B 0 Idle --

LdMissForward: Addr=A, Req=P0

Point-to-Point Interconnect

Directory Example: Step #3

CIS 501 (Martin): Multicore 99

P0

Cache
Addr Data State

-- -- --
-- -- --

Cache
Addr Data State

A 500 S
-- -- --

Cache
Addr Data State

-- -- --
-- -- --

P1 P2

Load A

Response: Addr=A, Data=500

Memory A 1000
B 0

Shared
Cache

Addr Data State Sharers
A 1000 Blocked P1
B 0 Idle --

Point-to-Point Interconnect

Directory Example: Step #4

CIS 501 (Martin): Multicore 100

P0

Cache
Addr Data State

A 500 S
-- -- --

Cache
Addr Data State

A 500 S
-- -- --

Cache
Addr Data State

-- -- --
-- -- --

P1 P2

Load A

Response: Addr=A, Data=500

Memory A 1000
B 0

Shared
Cache

Addr Data State Sharers
A 1000 Blocked P1
B 0 Idle --

Point-to-Point Interconnect

Directory Example: Step #5

CIS 501 (Martin): Multicore 101

P0

Cache
Addr Data State

A 500 S
-- -- --

Cache
Addr Data State

A 500 S
-- -- --

Cache
Addr Data State

-- -- --
-- -- --

P1 P2

Load A <- 500

Memory A 1000
B 0

Shared
Cache

Addr Data State Sharers
A 500 Shared, Dirty P0, P1
B 0 Idle --

Unblock: Addr=A, Data=500

Point-to-Point Interconnect

Directory Example: Step #6

CIS 501 (Martin): Multicore 102

P0

Cache
Addr Data State

A 500 S
-- -- --

Cache
Addr Data State

A 500 S
-- -- --

Cache
Addr Data State

-- -- --
-- -- --

P1 P2

Store 400 -> A

Miss!

Memory A 1000
B 0

Shared
Cache

Addr Data State Sharers
A 500 Shared, Dirty P0, P1
B 0 Idle --

Point-to-Point Interconnect

Directory Example: Step #7

CIS 501 (Martin): Multicore 103

P0

Cache
Addr Data State

A 500 S
-- -- --

Cache
Addr Data State

A 500 S
-- -- --

Cache
Addr Data State

-- -- --
-- -- --

P1 P2

Store 400 -> A

Memory A 1000
B 0

Shared
Cache

Addr Data State Sharers
A 500 Blocked P0, P1
B 0 Idle --

UpgradeMiss: Addr=A

Invalidate: Addr=A, Req=P0, Acks=1

Point-to-Point Interconnect

Directory Example: Step #8

CIS 501 (Martin): Multicore 104

P0

Cache
Addr Data State

A 500 S
-- -- --

Cache
Addr Data State

A -- I
-- -- --

Cache
Addr Data State

-- -- --
-- -- --

P1 P2

Store 400 -> A

Memory A 1000
B 0

Shared
Cache

Addr Data State Sharers
A 500 Blocked P0, P1
B 0 Idle --

Ack: Addr=A, Acks=1

Invalidate: Addr=A, Req=P0, Acks=1

Point-to-Point Interconnect

Directory Example: Step #9

CIS 501 (Martin): Multicore 105

P0

Cache
Addr Data State

A 500 M
-- -- --

Cache
Addr Data State

A -- I
-- -- --

Cache
Addr Data State

-- -- --
-- -- --

P1 P2

Store 400 -> A

Memory A 1000
B 0

Shared
Cache

Addr Data State Sharers
A 500 Blocked P0, P1
B 0 Idle --

Point-to-Point Interconnect

Directory Example: Step #10

CIS 501 (Martin): Multicore 106

P0

Cache
Addr Data State

A 400 M
-- -- --

Cache
Addr Data State

A -- I
-- -- --

Cache
Addr Data State

-- -- --
-- -- --

P1 P2

Store 400 -> A

Memory A 1000
B 0

Shared
Cache

Addr Data State Sharers
A 500 Modified P0
B 0 Idle --

Unblock: Addr=A

CIS 501 (Martin): Multicore 107

Directory Flip Side: Latency
•  Directory protocols

+  Lower bandwidth consumption → more scalable
–  Longer latencies

•  Two read miss situations

•  Unshared: get data from memory
•  Snooping: 2 hops (P0→memory→P0)
•  Directory: 2 hops (P0→memory→P0)

•  Shared or exclusive: get data from other processor (P1)
•  Assume cache-to-cache transfer optimization
•  Snooping: 2 hops (P0→P1→P0)
–  Directory: 3 hops (P0→memory→P1→P0)
•  Common, with many processors high probability someone has it

P0 P1

Dir

3 hop miss

P0

Dir

2 hop miss

Coherence Recap & Alternatives

•  Keeps caches “coherent”
•  Load returns the most recent stored value by any processor
•  And thus keeps caches transparent to software

•  Directory-based protocol scale coherence
•  Perhaps to 1000s of cores
•  See “Why On-Chip Cache Coherence is Here to Stay”

•  Alternatives to cache coherence
•  #1: no caching of shared data (slow)
•  #2: requiring software to explicitly “flush” data (hard to use)

•  Using some new instructions
•  #3: message passing (programming without shared memory)

•  Used in clusters of machines for high-performance computing
CIS 501 (Martin): Multicore 108

CIS 501 (Martin): Multicore 109

Roadmap Checkpoint

•  Thread-level parallelism (TLP)
•  Shared memory model

•  Multiplexed uniprocessor
•  Hardware multihreading
•  Multiprocessing

•  Synchronization
•  Lock implementation
•  Locking gotchas

•  Cache coherence
•  Bus-based protocols
•  Directory protocols

•  Memory consistency models

Mem CPU I/O

System software
App App App

CPU CPU CPU CPU CPU

CIS 501 (Martin): Multicore 110

•  Initially: all variables zero (that is, x is 0, y is 0)

•  What value pairs can be read by the two loads?
(x, y)

Shared Memory Example #1

thread 1 thread 2
 store 1 → x
 load y

 store 1 → y
 load x

CIS 501 (Martin): Multicore 111

•  Initially: all variables zero (that is, x is 0, y is 0)

•  What value pairs can be read by the two loads?
(x, y)

Shared Memory Example #2

thread 1 thread 2
 store 1 → y
 store 1 → x

 load x
 load y

CIS 501 (Martin): Multicore 112

•  Initially: all variables zero (flag is 0, a is 0)

•  What value can be read by “load a”?

Shared Memory Example #3

 while(flag == 0) { }
 load a

thread 1 thread 2
 store 1 → a
 store 1 → flag

CIS 501 (Martin): Multicore 113

•  Initially: all variables zero (that is, x is 0, y is 0)

•  What value pairs can be read by the two loads?

•  What about (x=0, y=0)?

“Answer” to Example #1

thread 1 thread 2
 store 1 → x
 load y

 store 1 → y
 load x

store 1 → y
load x
store 1 → x
load y
(x=0, y=1)

store 1 → x
load y
store 1 → y
load x
(x=1, y=0)

store 1 → y
store 1 → x
load x
load y
(x=1, y=1)

store 1 → x
store 1 → y
load y
load x
(x=1, y=1)

store 1 → y
store 1 → x
load y
load x
(x=1, y=1)

store 1 → x
store 1 → y
load x
load y
(x=1, y=1)

CIS 501 (Martin): Multicore 114

•  Initially: all variables zero (that is, x is 0, y is 0)

•  What value pairs can be read by the two loads?
•  (x=1, y=1)
•  (x=0, y=0)
•  (x=0, y=1)

•  Is (x=1, y=0) allowed?

“Answer” to Example #2

thread 1 thread 2
 store 1 → y
 store 1 → x

 load x
 load y

CIS 501 (Martin): Multicore 115

•  Initially: all variables zero (flag is 0, a is 0)

•  What value can be read by “load a”?
•  “load a” can see the value “1”

•  Can “load a” read the value zero?

“Answer” to Example #3

 while(flag == 0) { }
 load a

thread 1 thread 2
 store 1 → a
 store 1 → flag

What is Going On?

•  Reordering of memory operations to different addresses!

•  In the compiler
•  Compiler is generally allowed to re-order memory operations to

different addresses
•  Many other compiler optimizations also cause problems

•  In the hardware
•  To tolerate write latency

•  Processes don’t wait for writes to complete
•  And why should they? No reason on a uniprocessors

•  To simplify out-of-order execution

CIS 501 (Martin): Multicore 116

CIS 501 (Martin): Multicore 117

Memory Consistency

•  Memory coherence
•  Creates globally uniform (consistent) view…
•  Of a single memory location (in other words: cache blocks)
–  Not enough

•  Cache blocks A and B can be individually consistent…
•  But inconsistent with respect to each other

•  Memory consistency
•  Creates globally uniform (consistent) view…
•  Of all memory locations relative to each other

•  Who cares? Programmers
–  Globally inconsistent memory creates mystifying behavior

CIS 501 (Martin): Multicore 118

Coherence vs. Consistency

•  Intuition says: P1 prints A=1
•  Coherence says: absolutely nothing

•  P1 can see P0’s write of flag before write of A!!! How?
•  P0 has a coalescing store buffer that reorders writes
•  Or out-of-order load execution
•  Or compiler reorders instructions

•  Imagine trying to figure out why this code sometimes
“works” and sometimes doesn’t

•  Real systems are allowed to act in this strange manner
•  What is allowed? defined as part of the ISA and/or language

 A=0 flag=0
Processor 0
A=1;
flag=1;

Processor 1
while (!flag); // spin
print A;

Why? To Hide Store Miss Latency

•  Why? Why Allow Such Odd Behavior?
•  Reason #1: hiding store miss latency

•  Recall (back from caching unit)
•  Hiding store miss latency
•  How? Store buffer

•  Said it would complicate multiprocessors
•  Yes. It does.

CIS 501 (Martin): Multicore 119

CIS 501 (Martin): Multicore 120

Recall: Write Misses and Store Buffers
•  Read miss?

•  Load can’t go on without the data, it must stall

•  Write miss?
•  Technically, no instruction is waiting for data, why stall?

•  Store buffer: a small buffer
•  Stores put address/value to store buffer, keep going
•  Store buffer writes stores to D$ in the background
•  Loads must search store buffer (in addition to D$)
+  Eliminates stalls on write misses (mostly)
–  Creates some problems (later)

•  Store buffer vs. writeback-buffer
•  Store buffer: “in front” of D$, for hiding store misses
•  Writeback buffer: “behind” D$, for hiding writebacks

Cache

Next-level
cache

WBB

SB

Processor

Two Kinds of Store Buffers

•  FIFO (First-in, First-out) store buffers
•  All stores enter the store buffer, drain into the cache in-order
•  In an in-order processor...

•  Allows later loads to execute under store miss
•  In an out-of-order processor…

•  Instructions “commit” with older stores still in the store queue

•  “Coalescing” store buffers
•  Organized like a mini-cache (tags, blocks, etc.)

•  But with per-byte valid bits
•  At commit, stores that miss the cache placed in store buffer

•  Stores that hit in the cache, written into cache
•  When the store miss returns, all stores to that address drain into

the cache
•  That is, not necessarily in FIFO (first-in, first-out) order

CIS 501 (Martin): Multicore 121

CIS 501 (Martin): Multicore 122

Store Buffers & Consistency

•  Consider the following execution:
•  Processor 0’s write to A, misses the cache. Put in store buffer.
•  Processor 0 keeps going
•  Processor 0 write “1” to flag hits, writes to the cache
•  Processor 1 reads flag, misses cache, gets the value “1” from P0
•  Processor 1 exits loop
•  Processor 1 prints “0” for A (sees “old” value)

•  Ramification: store buffers can cause “strange” behavior
•  How strange depends on lots of things

•  Out-of-order execution also can cause problems…

 A=0 flag=0
Processor 0
A=1;
flag=1;

Processor 1
while (!flag); // spin
print A;

Simplifying Out-of-Order Execution

•  Why? Why Allow Such Odd Behavior?
•  Reason #2: simplifying out-of-order execution

•  One key benefit of out-of-order execution:
•  Out-of-order execution of loads to (same or different) addresses

•  Uh, oh.

CIS 501 (Martin): Multicore 123

thread 1 thread 2
 store 1 → y
 store 1 → x

 load x
 load y

Simplifying Out-of-Order Execution

•  Two options:
•  Option #1: allow this sort of “odd” reordering
•  Option #2: hardware detects & prevents such reorderings

•  How to prevent?
•  Scan the Load Queue (LQ) on stores from other threads
•  Flush and rollback on conflict

•  How to detect these stores from other threads?
•  Leverage cache coherence!
•  As long as a block remains in a private per-core cache…

•  Another core can’t write to it!
•  Thus, anytime a block leaves the cache (invalidation or eviction)…

•  Scan the load queue. If any loads to the address have
executed but not committed, squash the pipeline and restart

CIS 501 (Martin): Multicore 124

3 Classes of Memory Consistency Models
•  Sequential consistency (SC) (MIPS, PA-RISC)

•  Formal definition of memory view programmers expect
•  1. Processors see their own loads and stores in program order
•  2. Processors see others’ loads and stores in program order
•  3. All processors see same global load/store ordering
•  Corresponds to some sequential interleaving of uniprocessor orders
•  Indistinguishable from multi-programmed uni-processor

•  Processor consistency (PC) (x86, SPARC)
•  Allows a in-order (FIFO) store buffer

•  Stores can be deferred, but must be put into the cache in order

•  Release consistency (RC) (ARM, Itanium, PowerPC)
•  Allows an un-ordered coalescing store buffer

•  Stores can be put into cache in any order
•  Loads re-ordered, too.

CIS 501 (Martin): Multicore 125

CIS 501 (Martin): Multicore 126

•  Initially: all variables zero (that is, x is 0, y is 0)

•  What value pairs can be read by the two loads?

•  What about (x=0, y=0)? Yes! (for x86, SPARC, ARM, PowerPC)

Answer to Example #1

thread 1 thread 2
 store 1 → x
 load y

 store 1 → y
 load x

store 1 → y
load x
store 1 → x
load y
(x=0, y=1)

store 1 → x
load y
store 1 → y
load x
(x=1, y=0)

store 1 → y
store 1 → x
load x
load y
(x=1, y=1)

store 1 → x
store 1 → y
load y
load x
(x=1, y=1)

store 1 → y
store 1 → x
load y
load x
(x=1, y=1)

store 1 → x
store 1 → y
load x
load y
(x=1, y=1)

CIS 501 (Martin): Multicore 127

•  Initially: all variables zero (that is, x is 0, y is 0)

•  What value pairs can be read by the two loads?
•  (x=1, y=1)
•  (x=0, y=0)
•  (x=0, y=1)

•  Is (x=1, y=0) allowed?
•  Yes! (for ARM, PowerPC, Itanium, and Alpha)
•  No! (for Intel/AMD x86, Sun SPARC, IBM 370)

•  Assuming the compiler didn’t reorder anything…

Answer to Example #2

thread 1 thread 2
 store 1 → y
 store 1 → x

 load x
 load y

CIS 501 (Martin): Multicore 128

•  Initially: all variables zero (flag is 0, a is 0)

•  What value can be read by “load a”?
•  “load a” can see the value “1”

•  Can “load a” read the value zero? (same as last slide)
•  Yes! (for ARM, PowerPC, Itanium, and Alpha)
•  No! (for Intel/AMD x86, Sun SPARC, IBM 370)

•  Assuming the compiler didn’t reorder anything…

Answer to Example #3

 while(flag == 0) { }
 load a

thread 1 thread 2
 store 1 → a
 store 1 → flag

CIS 501 (Martin): Multicore 129

Restoring Order (Hardware)
•  Sometimes we need ordering (mostly we don’t)

•  Prime example: ordering between “lock” and data

•  How? insert Fences (memory barriers)
•  Special instructions, part of ISA

•  Example
•  Ensure that loads/stores don’t cross lock acquire/release operation

acquire
fence
critical section
fence
release

•  How do fences work?
•  They stall exeuction until write buffers are empty
•  Makes lock acquisition and release slow(er)

•  Use synchronization library, don’t write your own

CIS 501 (Martin): Multicore 130

Restoring Order (Software)
•  These slides have focused mostly on hardware reordering

•  But the compiler also reorders instructions (reason #3)

•  How do we tell the compiler to not reorder things?
•  Depends on the language…

•  In Java:
•  The built-in “synchronized” constructs informs the compiler to limit

its optimization scope (prevent reorderings across synchronization)
•  Or, programmer uses “volatile” keyword to explicitly mark variables
•  Java compiler also inserts the hardware-level ordering instructions

•  In C/C++:
•  Much more murky, as language doesn’t define synchronization
•  Lots of hacks: “inline assembly”, volatile, atomic (newly proposed)
•  Programmer may need to explicitly insert hardware-level fences

•  Use synchronization library, don’t write your own

CIS 501 (Martin): Multicore 131

Summary

•  Explicit parallelism
•  Shared memory model

•  Multiplexed uniprocessor
•  Hardware multihreading
•  Multiprocessing

•  Synchronization
•  Lock implementation
•  Locking gotchas

•  Cache coherence
•  VI, MSI, MESI
•  Bus-based protocols
•  Directory protocols

•  Memory consistency

Mem CPU I/O

System software
App App App

CPU CPU CPU CPU CPU

