
CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 1 

CIS 501: Computer Architecture 

Unit 10: Multicore 

Slides	
  developed	
  by	
  Milo	
  Mar0n	
  &	
  Amir	
  Roth	
  at	
  the	
  University	
  of	
  Pennsylvania	
  	
  
with	
  sources	
  that	
  included	
  University	
  of	
  Wisconsin	
  slides	
  

by	
  Mark	
  Hill,	
  Guri	
  Sohi,	
  Jim	
  Smith,	
  and	
  David	
  Wood	
  



Mem 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 2 

This Unit: Shared Memory Multiprocessors 

•  Thread-level parallelism (TLP) 
•  Shared memory model 

•  Multiplexed uniprocessor 
•  Hardware multihreading 
•  Multiprocessing 

•  Cache coherence 
•  Valid/Invalid, MSI, MESI 

•  Parallel programming 
•  Synchronization 

•  Lock implementation 
•  Locking gotchas 
•  Transactional memory 

•  Memory consistency models 

CPU I/O 

System software 
App App App 

CPU CPU CPU CPU CPU 



Readings 

•  Textbook (MA:FSPTCM) 
•  Sections 7.0, 7.1.3, 7.2-7.4 
•  Section 8.2 

•  “Suggested” reading 
•  “Why On-Chip Cache Coherence is Here to Stay”  

by Milo Martin, Mark Hill, and Daniel Sorin,  
Communications of the ACM (CACM), July 2012. 

•  “A Primer on Memory Consistency and Cache 
Coherence” (Synthesis Lectures on Computer Architecture) by 
Daniel Sorin, Mark Hill, and David Wood, November 2011 

•  “Speculative Lock Elision: Enabling Highly Concurrent Multithreaded 
Execution” by Rajwar & Goodman, MICRO 2001 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 3 



Beyond Implicit Parallelism 

•  Consider “daxpy”: 
double a, x[SIZE], y[SIZE], z[SIZE]; 
void daxpy(): 
  for (i = 0; i < SIZE; i++) 
   z[i] = a*x[i] + y[i]; 

•  Lots of instruction-level parallelism (ILP) 
•  Great! 
•  But how much can we really exploit?  4 wide?  8 wide? 

•  Limits to (efficient) super-scalar execution 

•  But, if SIZE is 10,000, the loop has 10,000-way parallelism! 
•  How do we exploit it? 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 4 



Explicit Parallelism 

•  Consider “daxpy”: 
double a, x[SIZE], y[SIZE], z[SIZE]; 
void daxpy(): 
  for (i = 0; i < SIZE; i++) 
   z[i] = a*x[i] + y[i]; 

•  Break it up into N “chunks” on N cores! 
•  Done by the programmer (or maybe a really smart compiler) 
void daxpy(int chunk_id): 
  chuck_size = SIZE / N 
  my_start = chuck_id * chuck_size 
  my_end = my_start + chuck_size 
  for (i = my_start; i < my_end; i++) 
    z[i] = a*x[i] + y[i] 

•  Assumes 
•  Local variables are “private” and x, y, and z are “shared” 
•  Assumes SIZE is a multiple of N (that is, SIZE % N == 0) 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 5 

Chunk ID Start End 
0 0 99 
1 100 199 
2 200 299 
3 300 399 

SIZE = 400, N=4 



Explicit Parallelism 

•  Consider “daxpy”: 
double a, x[SIZE], y[SIZE], z[SIZE]; 
void daxpy(int chunk_id): 
  chuck_size = SIZE / N 
  my_start = chuck_id * chuck_size 
  my_end = my_start + chuck_size 
  for (i = my_start; i < my_end; i++) 
    z[i] = a*x[i] + y[i] 

•  Main code then looks like: 
parallel_daxpy(): 
  for (tid = 0; tid < CORES; tid++) { 
    spawn_task(daxpy, tid); 
  } 
  wait_for_tasks(CORES); 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 6 



Explicit (Loop-Level) Parallelism 

•  Another way: “OpenMP” annotations to inform the compiler 

double a, x[SIZE], y[SIZE], z[SIZE]; 
void daxpy() { 
  #pragma omp parallel for 
  for (i = 0; i < SIZE; i++) { 
   z[i] = a*x[i] + y[i]; 

  } 

•  Look familiar? 
•  Hint: homework #1 

•  But only works if loop is actually parallel 
•  If not parallel, incorrect behavior may result in unpredictable ways 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 7 



Multicore & Multiprocessor 
Hardware 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 8 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 9 

Multiplying Performance 
•  A single core can only be so fast 

•  Limited clock frequency 
•  Limited instruction-level parallelism 

•  What if we need even more computing power? 
•  Use multiple cores!   But how? 

•  Old-school (2000s): Ultra Enterprise 25k 
•  72 dual-core UltraSPARC IV+ processors 
•  Up to 1TB of memory 
•  Niche: large database servers 
•  $$$, weights more than 1 ton 

•  Today: multicore is everywhere 
•  Dual-core ARM phones 



Intel Quad-Core “Core i7” 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 10 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 11 

Multicore: Mainstream Multiprocessors 
•  Multicore chips 
•  IBM Power5 

•  Two 2+GHz PowerPC cores 
•  Shared 1.5 MB L2, L3 tags 

•  AMD Quad Phenom 
•  Four 2+ GHz cores  
•  Per-core 512KB L2 cache 
•  Shared 2MB L3 cache  

•  Intel Core i7 Quad 
•  Four cores, private L2s 
•  Shared 8 MB L3 

•  Sun Niagara 
•  8 cores, each 4-way threaded 
•  Shared 2MB L2 
•  For servers, not desktop 

1.5MB L2 

L3 tags 

Core 1 Core 2 

Why multicore?  What else would  
you do with 1 billion transistors? 



Sun Niagara II 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 12 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 13 

Application Domains for Multiprocessors 
•  Scientific computing/supercomputing 

•  Examples: weather simulation, aerodynamics, protein folding 
•  Large grids, integrating changes over time 
•  Each processor computes for a part of the grid  

•  Server workloads 
•  Example: airline reservation database 
•  Many concurrent updates, searches, lookups, queries 
•  Processors handle different requests 

•  Media workloads 
•  Processors compress/decompress different parts of image/frames 

•  Desktop workloads… 
•  Gaming workloads… 

But software must be written to expose parallelism 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 14 

Recall: Multicore & Energy 
•  Explicit parallelism (multicore) is highly energy efficient 

•  Recall: dynamic voltage and frequency scaling 
•  Performance vs power is NOT linear 
•  Example: Intel’s Xscale  

•  1 GHz → 200 MHz reduces energy used by 30x 

•  Consider the impact of parallel execution 
•  What if we used 5 Xscales at 200Mhz? 
•  Similar performance as a 1Ghz Xscale, but 1/6th the energy 

•  5 cores * 1/30th = 1/6th 

•  And, amortizes background “uncore” energy among cores 

•  Assumes parallel speedup (a difficult task) 
•  Subject to Ahmdal’s law 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 15 

Amdahl’s Law 
•  Restatement of the law of diminishing returns 

•  Total speedup limited by non-accelerated piece 
•  Analogy: drive to work & park car, walk to building 

•  Consider a task with a “parallel” and “serial” portion 
•  What is the speedup with N cores? 
•  Speedup(n, p, s) =  (s+p) / (s + (p/n)) 

•  p is “parallel percentage”, s is “serial percentage” 
•  What about infinite cores? 

•  Speedup(p, s) = (s+p) / s   =  1 / s 

•  Example: can optimize 50% of program A 
•  Even “magic” optimization that makes this 50% disappear… 
•  …only yields a 2X speedup 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 16 

Amdahl’s Law Graph 

Source: Wikipedia 



“Threading” &  
The Shared Memory 
Execution Model 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 17 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 18 

First, Uniprocessor Concurrency  

•  Software “thread”: Independent flows of execution 
•  “Per-thread” state 

•  Context state: PC, registers 
•  Stack (per-thread local variables) 

•  “Shared” state: globals, heap, etc. 
•  Threads generally share the same memory space 

•  “Process” like a thread, but different memory space 
•  Java has thread support built in, C/C++ using a thread library 

•  Generally, system software (the O.S.) manages threads 
•  “Thread scheduling”, “context switching” 
•  In single-core system, all threads share the one processor 

•  Hardware timer interrupt occasionally triggers O.S.  
•  Quickly swapping threads gives illusion of concurrent execution 

•  Much more in an operating systems course 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 19 

Multithreaded Programming Model 

•  Programmer explicitly creates multiple threads 

•  All loads & stores to a single shared memory space 
•  Each thread has its own stack frame for local variables 
•  All memory shared, accessible by all threads 

•  A “thread switch” can occur at any time 
•  Pre-emptive multithreading by OS 

•  Common uses: 
•  Handling user interaction (GUI programming) 
•  Handling I/O latency (send network message, wait for response) 
•  Expressing parallel work via Thread-Level Parallelism (TLP) 

•  This is our focus! 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 20 

•  Initially: all variables zero (that is, x is 0, y is 0) 

•  What value pairs can be read by the two loads? 

Shared Memory Model: Interleaving 

thread 1 thread 2 
  store 1 → x 
  load y 

  store 1 → y 
  load x 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 21 

•  Initially: all variables zero (that is, x is 0, y is 0) 

•  What value pairs can be read by the two loads? 

•  What about (x=0, y=0)? 

Shared Memory Model: Interleaving 

thread 1 thread 2 
  store 1 → x 
  load y 

  store 1 → y 
  load x 

store 1 → y 
load x 
store 1 → x 
load y 
(x=0, y=1) 

store 1 → x 
load y 
store 1 → y 
load x 
(x=1, y=0) 

store 1 → y 
store 1 → x 
load x 
load y 
(x=1, y=1) 

store 1 → x 
store 1 → y 
load y 
load x 
(x=1, y=1) 

store 1 → y 
store 1 → x 
load y 
load x 
(x=1, y=1) 

store 1 → x 
store 1 → y 
load x 
load y 
(x=1, y=1) 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 22 

Shared Memory Implementations  
•  Multiplexed uniprocessor 

•  Runtime system and/or OS occasionally pre-empt & swap threads 
•  Interleaved, but no parallelism 

•  Multiprocessing 
•  Multiply execution resources, higher peak performance 
•  Same interleaved shared-memory model 
•  Foreshadowing: allow private caches, further disentangle cores 

•  Hardware multithreading 
•  Tolerate pipeline latencies, higher efficiency 
•  Same interleaved shared-memory model 

•  All support the shared memory programming model 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 23 

Simplest Multiprocessor 

•  Replicate entire processor pipeline! 
•  Instead of replicating just register file & PC 
•  Exception: share the caches (we’ll address this bottleneck soon) 

•  Multiple threads execute 
•  Shared memory programming model 
•  Operations (loads and stores) are interleaved “at random” 
•  Loads returns the value written by most recent store to location 

PC 

I$ 

Regfile 

PC 

Regfile 

D$ 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 24 

Hardware Multithreading 

•  Hardware Multithreading (MT)  
•  Multiple threads dynamically share a single pipeline 
•  Replicate only per-thread structures: program counter & registers 
•  Hardware interleaves instructions  
+  Multithreading improves utilization and throughput 

•  Single programs utilize <50% of pipeline (branch, cache miss) 
•  Multithreading does not improve single-thread performance 

•  Individual threads run as fast or even slower 
•  Coarse-grain MT: switch on cache misses   Why? 
•  Simultaneous MT: no explicit switching, fine-grain interleaving 

PC 

I$ Regfile0 D$ 

Regfile1 

PC 

THR 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 25 

Four Shared Memory Issues 
1.  Cache coherence 

•  If cores have private (non-shared) caches 
•  How to make writes to one cache “show up” in others? 

2.  Parallel programming 
•  How does the programmer express the parallelism? 

3.  Synchronization 
•  How to regulate access to shared data? 
•  How to implement “locks”? 

4.  Memory consistency models 
•  How to keep programmer sane while letting hardware optimize? 
•  How to reconcile shared memory with compiler optimizations, store 

buffers, and out-of-order execution? 



Mem 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 26 

Roadmap Checkpoint 

•  Thread-level parallelism (TLP) 
•  Shared memory model 

•  Multiplexed uniprocessor 
•  Hardware multihreading 
•  Multiprocessing 

•  Cache coherence 
•  Valid/Invalid, MSI, MESI 

•  Parallel programming 
•  Synchronization 

•  Lock implementation 
•  Locking gotchas 
•  Transactional memory 

•  Memory consistency models 

CPU I/O 

System software 
App App App 

CPU CPU CPU CPU CPU 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 27 

Recall: Simplest Multiprocessor 

•  What if we don’t want to share the L1 caches? 
•  Bandwidth and latency issue 

•  Solution: use per-processor (“private”) caches 
•  Coordinate them with a Cache Coherence Protocol 

•  Must still provide shared-memory invariant: 
•  “Loads read the value written by the most recent store” 

PC 

Insn 
Mem 

Regfile 

PC 

Regfile 

Data 
Mem 



No-Cache (Conceptual) Implementation 

28 

P0 P1 P2 

Memory 



Interconnect 

No-Cache (Conceptual) Implementation 

29 

P0 P1 P2 

Memory A 500 
B 0 

•  No caches 
•  Not a realistic design 



Interconnect 

Shared Cache Implementation 

30 

P0 P1 P2 

Memory A 500 
B 0 

Shared 
Cache 

Tag Data •  On-chip shared cache 
•  Lacks per-core caches 

•  Shared cache becomes 
bottleneck 



Interconnect 

Shared Cache Implementation 

31 

P0 P1 P2 

Memory A 500 
B 0 

Shared 
Cache 

Tag Data 

Load [A] 

1 

2 



Interconnect 

Shared Cache Implementation 

32 

P0 P1 P2 

Memory A 500 
B 0 

Shared 
Cache 

Tag Data 
A 500 

Load [A] 

1 

2 
3 

4 

(500) 



Shared 
Cache 

Tag Data 
A 400 

Interconnect 

Shared Cache Implementation 

•  Write into cache 

33 

P0 P1 P2 

Memory A 500 
B 0 

1 

Store 400 -> [A] 



Shared 
Cache 

Tag Data State 
A 400 Dirty 

Interconnect 

Shared Cache Implementation 

•  Mark as “dirty” 
•  Memory not updated 

34 

P0 P1 P2 

Memory A 500 
B 0 

1 

Store 400 -> [A] 

2 



Interconnect 

Adding Private Caches 

35 

P0 

Cache 
Tag Data 

Cache 
Tag Data 

Cache 
Tag Data 

P1 P2 

Memory A 
B 

Shared 
Cache 

Tag Data State 
•  Add per-core caches 

(write-back caches) 
•  Reduces latency 
•  Increases throughput 
•  Decreases energy 



Interconnect 

Adding Private Caches 

36 

P0 

Cache 
Tag Data 

Cache 
Tag Data 

Cache 
Tag Data 

P1 P2 

Memory A 500 
B 

Shared 
Cache 

Tag Data State 

Load [A] 1 

2 

3 



Interconnect 

Adding Private Caches 

37 

P0 

Cache 
Tag Data 

Cache 
Tag Data 
A 500 

Cache 
Tag Data 

P1 P2 

Memory A 500 
B 

Shared 
Cache 

Tag Data State 
A 500 Clean 

Load [A] 1 

2 

3 4 

(500) 

5 

6 



Interconnect 

Adding Private Caches 

38 

P0 

Cache 
Tag Data 

Cache 
Tag Data 
A 400 

Cache 
Tag Data 

P1 P2 

Memory A 500 
B 

Shared 
Cache 

Tag Data State 
A 500 Clean 

Store 400 -> [A] 1 



Interconnect 

Adding Private Caches 

39 

P0 

Cache 
Tag Data 

Cache 
Tag Data State 
A 400 Dirty 

Cache 
Tag Data 

P1 P2 

Memory A 500 
B 

Shared 
Cache 

Tag Data State 
A 500 Clean 

Store 400 -> [A] 1 

2 



Interconnect 

Private Cache Problem: Incoherence 

•  What happens 
with another 
core tries to 
read A? 

40 

P0 

Cache 
Tag Data 

Cache 
Tag Data State 
A 400 Dirty 

Cache 
Tag Data 

P1 P2 

Memory A 500 
B 

Shared 
Cache 

Tag Data State 
A 500 Clean 



Interconnect 

Private Cache Problem: Incoherence 

41 

P0 

Cache 
Tag Data 

Cache 
Tag Data State 
A 400 Dirty 

Cache 
Tag Data 

C1 P2 

Memory A 500 
B 

Shared 
Cache 

Tag Data State 
A 500 Clean 

P0 P1 

Load [A] 1 

2 



Interconnect 

Private Cache Problem: Incoherence 

42 

P0 

Cache 
Tag Data 
A 500 

Cache 
Tag Data State 
A 400 Dirty 

Cache 
Tag Data 

P1 P2 

Memory A 500 
B 

Shared 
Cache 

Tag Data State 
A 500 Clean 

P0 P1 

Load [A] 1 

2 

(500) 

3 

4 



Interconnect 

Private Cache Problem: Incoherence 

•  P0 got the 
wrong value! 

43 

P0 

Cache 
Tag Data 
A 500 

Cache 
Tag Data State 
A 400 Dirty 

Cache 
Tag Data 

P1 P2 

Memory A 500 
B 

Shared 
Cache 

Tag Data State 
A 500 Clean 

P0 P1 

Load [A] 1 

2 

(500) 

3 

4 

Uh, Oh 



Interconnect 

Rewind: Fix Problem by Tracking Sharers 

44 

P0 

Cache 
Tag Data State 

Cache 
Tag Data State 
A 400 Dirty 

Cache 
Tag Data State 

P1 P2 

Memory A 500 
B 

Shared 
Cache 

Tag Data State Sharers 
A 500 -- P1 

•  Solution: Track  
copies of each block 



Interconnect 

Use Tracking Information to “Invalidate” 

45 

P0 

Cache 
Tag Data State 

Cache 
Tag Data State 
A 400 Dirty 

Cache 
Tag Data State 

P1 P2 

Memory A 500 
B 

Shared 
Cache 

Tag Data State Sharers 
A 500 -- P1 

Load [A] 1 

2 



Interconnect 

Use Tracking Information to “Invalidate” 

46 

P0 

Cache 
Tag Data State 

Cache 
Tag Data State 
A 400 Dirty 

Cache 
Tag Data State 

P1 P2 

Memory A 500 
B 

Shared 
Cache 

Tag Data State Sharers 
A 500 -- P1 

Load [A] 1 

2 3 



Interconnect 

Use Tracking Information to “Invalidate” 

47 

P0 

Cache 
Tag Data State 
A 400 Dirty 

Cache 
Tag Data State 
-- -- -- 

Cache 
Tag Data State 

P1 P2 

Memory A 500 
B 

Shared 
Cache 

Tag Data State Sharers 
A 500 -- P1 

Load [A] 1 

2 

(400) 

3 

4 

5 



“Valid/Invalid” Cache Coherence 

•  To enforce the shared memory invariant… 
•  “Loads read the value written by the most recent store” 

•  Enforce the invariant… 
•  “At most one valid copy of the block” 
•  Simplest form is a two-state “valid/invalid” protocol 
•  If a core wants a copy, must find and “invalidate” it  

•  On a cache miss, how is the valid copy found? 
•  Option #1 “Snooping”: broadcast to all, whoever has it responds 
•  Option #2: “Directory”: tracker sharers at known location 

•  Problem: multiple copies can’t exist, even if read-only 
•  Consider mostly-read data structures, instructions, etc. 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 48 



MSI Cache Coherence Protocol 

•  Solution: enforce the invariant… 
•  Multiple read-only copies  —OR— 
•  Single read/write copy 

•  Track these MSI permissions (states) in per-core caches 
•  Modified (M): read/write permission 
•  Shared (S): read-only permission 
•  Invalid (I): no permission 

•  Also track a “Sharer” bit vector in shared cache 
•  One bit per core; tracks all shared copies of a block 
•  Then, invalidate all readers when a write occurs 

•  Allows for many readers… 
•  …while still enforcing shared memory invariant  

(“Loads read the value written by the most recent store”) 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 49 



Point-to-Point Interconnect 

MSI Coherence Example: Step #1 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 50 

P0 

Cache 
Tag Data State 
-- -- -- 
-- -- -- 

Shared 
Cache 

Tag Data State Sharers 
A 500 P1 is Modified P1 
B 0 Idle -- 

Cache 
Tag Data State 
A 400 M 
-- -- -- 

Cache 
Tag Data State 
-- -- -- 
-- -- -- 

P1 P2 

Load [A] 

Miss! 

Memory A 500 
B 0 



Point-to-Point Interconnect 

MSI Coherence Example: Step #2 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 51 

P0 

Cache 
Tag Data State 
-- -- -- 
-- -- -- 

Cache 
Tag Data State 
A 400 M 
-- -- -- 

Cache 
Tag Data State 
-- -- -- 
-- -- -- 

P1 P2 

Load [A] 

LdMiss: Addr=A 

Memory A 500 
B 0 

Shared 
Cache 

Tag Data State Sharers 
A 500 Blocked P1 
B 0 Idle -- 

LdMissForward: Addr=A, Req=P0 

1 
2 



Point-to-Point Interconnect 

MSI Coherence Example: Step #3 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 52 

P0 

Cache 
Tag Data State 
-- -- -- 
-- -- -- 

Cache 
Tag Data State 
A 400 S 
-- -- -- 

Cache 
Tag Data State 
-- -- -- 
-- -- -- 

P1 P2 

Load [A] 

Response: Addr=A, Data=400 

Memory A 500 
B 0 

Shared 
Cache 

Tag Data State Sharers 
A 500 Blocked P1 
B 0 Idle -- 

3 



Point-to-Point Interconnect 

MSI Coherence Example: Step #4 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 53 

P0 

Cache 
Tag Data State 
A 400 S 
-- -- -- 

Cache 
Tag Data State 
A 400 S 
-- -- -- 

Cache 
Tag Data State 
-- -- -- 
-- -- -- 

P1 P2 

Load [A] 

Response: Addr=A, Data=400 

Memory A 500 
B 0 

Shared 
Cache 

Tag Data State Sharers 
A 500 Blocked P1 
B 0 Idle -- 

3 



Point-to-Point Interconnect 

MSI Coherence Example: Step #5 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 54 

P0 

Cache 
Tag Data State 
A 400 S 
-- -- -- 

Cache 
Tag Data State 
A 400 S 
-- -- -- 

Cache 
Tag Data State 
-- -- -- 
-- -- -- 

P1 P2 

Load [A]  (400) 

Memory A 500 
B 0 

Shared 
Cache 

Tag Data State Sharers 
A 400 Shared, Dirty P0, P1 
B 0 Idle -- 

Unblock: Addr=A, Data=400 4 



Point-to-Point Interconnect 

MSI Coherence Example: Step #6 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 55 

P0 

Cache 
Tag Data State 
A 400 S 
-- -- -- 

Cache 
Tag Data State 
A 400 S 
-- -- -- 

Cache 
Tag Data State 
-- -- -- 
-- -- -- 

P1 P2 

Store 300 -> [A]  

Miss! 

Memory A 500 
B 0 

Shared 
Cache 

Tag Data State Sharers 
A 400 Shared, Dirty P0, P1 
B 0 Idle -- 



Point-to-Point Interconnect 

MSI Coherence Example: Step #7 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 56 

P0 

Cache 
Tag Data State 
A 400 S 
-- -- -- 

Cache 
Tag Data State 
A 400 S 
-- -- -- 

Cache 
Tag Data State 
-- -- -- 
-- -- -- 

P1 P2 

Store 300 -> [A]  

Memory A 500 
B 0 

Shared 
Cache 

Tag Data State Sharers 
A 400 Blocked P0, P1 
B 0 Idle -- 

UpgradeMiss: Addr=A 

1 



Point-to-Point Interconnect 

MSI Coherence Example: Step #8 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 57 

P0 

Cache 
Tag Data State 
A 400 S 
-- -- -- 

Cache 
Tag Data State 
A -- I 
-- -- -- 

Cache 
Tag Data State 
-- -- -- 
-- -- -- 

P1 P2 

Store 300 -> [A]  

Memory A 500 
B 0 

Shared 
Cache 

Tag Data State Sharers 
A 400 Blocked P0, P1 
B 0 Idle -- 

Invalidate: Addr=A, Req=P0, Acks=1 

2 



Point-to-Point Interconnect 

MSI Coherence Example: Step #9 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 58 

P0 

Cache 
Tag Data State 
A 400 S 
-- -- -- 

Cache 
Tag Data State 
A -- I 
-- -- -- 

Cache 
Tag Data State 
-- -- -- 
-- -- -- 

P1 P2 

Store 300 -> [A]  

Memory A 500 
B 0 

Shared 
Cache 

Tag Data State Sharers 
A 400 Blocked P0, P1 
B 0 Idle -- 

Ack: Addr=A, Acks=1 

Invalidate: Addr=A, Req=P0, Acks=1 

3 2 



Point-to-Point Interconnect 

MSI Coherence Example: Step #10 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 59 

P0 

Cache 
Tag Data State 
A 400 M 
-- -- -- 

Cache 
Tag Data State 
A -- I 
-- -- -- 

Cache 
Tag Data State 
-- -- -- 
-- -- -- 

P1 P2 

Store 300 -> [A]  

Memory A 500 
B 0 

Shared 
Cache 

Tag Data State Sharers 
A 400 Blocked P0, P1 
B 0 Idle -- 

Ack: Addr=A, Acks=1 

3 2 

Invalidate: Addr=A, Req=P0, Acks=1 



Point-to-Point Interconnect 

MSI Coherence Example: Step #11 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 60 

P0 

Cache 
Tag Data State 
A 300 M 
-- -- -- 

Cache 
Tag Data State 
A -- I 
-- -- -- 

Cache 
Tag Data State 
-- -- -- 
-- -- -- 

P1 P2 

Store 300 -> [A]  

Memory A 500 
B 0 

Shared 
Cache 

Tag Data State Sharers 
A 400 P0 is Modified P0 
B 0 Idle -- 

Unblock: Addr=A 

4 



MESI Cache Coherence 
•  Ok, we have read-only and read/write with MSI 

•  But consider load & then store of a block by same core 
•  Under coherence as described, this would be two misses: 

“Load miss” plus an “upgrade miss”… 
•  … even if the block isn’t shared!   
•  Consider programs with 99% (or 100%) private data 

•  Potentially doubling number of misses (bad) 

•  Solution: 
•  Most modern protocols also include E (exclusive) state 
•  Interpretation: “I have the only cached copy, and it’s a clean copy” 

•  Has read/write permissions 
•  Just like “Modified” but “clean” instead of “dirty”. 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 61 



MESI Operation 
•  Goals: 

•  Avoid “upgrade” misses for non-shared blocks 
•  While not increasing eviction (aka writeback or replacement) traffic  

•  Two cases on a load miss to a block… 
•  Case #1: … with no current sharers  

(that is, no sharers in the set of sharers) 
•  Grant requester “Exclusive” copy with read/write permission  

•  Case #2: … with other sharers 
•  As before, grant just a “Shared” copy with read-only permission 

•  A store to a block in “Exclusive” changes it to “Modified” 
•  Instantaneously & silently (no latency or traffic) 

•  On block eviction (aka writeback or replacement)… 
•  If “Modified”, block is dirty, must be written back to next level 
•  If “Exclusive”, writing back the data is not necessary  

(but notification may or may not be, depending on the system) 
CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 62 



Cache Coherence and Cache Misses 
•  With the “Exclusive” state… 

•  Coherence has no overhead on misses to non-shared blocks 
•  Just request/response like a normal cache miss 

•  But, coherence introduces two new kinds of cache misses 
•  Upgrade miss: stores to read-only blocks 

•  Delay to acquire write permission to read-only block 
•  Coherence miss 

•  Miss to a block evicted by another processor’s requests 
•  Making the cache larger… 

•  Doesn’t reduce these types of misses 
•  So, as cache grows large, these sorts of misses dominate 

•  False sharing 
•  Two or more processors sharing parts of the same block 
•  But not the same bytes within that block (no actual sharing) 
•  Creates pathological “ping-pong” behavior 
•  Careful data placement may help, but is difficult 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 63 



Cache Coherence Protocols 
•  Two general types 

•  Update-based cache coherence 
•  Write through update to all caches 
•  Too much traffic; used in the past, not common today 

•  Invalidation-based cache coherence (examples shown) 

•  Of invalidation-based cache coherence, two types: 
•  Snooping/broadcast-based cache coherence 

•  No explicit state, but too much traffic; not common today 
•  Directory-based cache coherence (examples shown) 

•  Track sharers of blocks 

•  For directory-based cache coherence, two options: 
•  Enforce “inclusion”; if in per-core cache, must be in last-level cache 

•  Encoding sharers in cache tags (examples shown & Core i7) 
•  No inclusion?  “directory cache” parallel to last-level cache (AMD)  

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 64 



Scaling Cache Coherence 
•  Scalable interconnect 

•  Build switched interconnect to communicate among cores 

•  Scalable directory lookup bandwidth 
•  Address interleave (or “bank”) the last-level cache 
•  Low-order bits of block address select which cache bank to access 
•  Coherence controller per bank 

•  Scalable traffic 
•  Amortized analysis shows traffic overhead independent of core #  
•  Each invalidation can be tied back to some earlier request 

•  Scalable storage 
•  Bit vector requires n-bits for n cores, scales up to maybe 32 cores 
•  Inexact & “coarse” encodings trade more traffic for less storage  

•  Hierarchical design can help all of the above, too 
•  See: “Why On-Chip Cache Coherence is Here to Stay”, CACM, 2012 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 65 



Coherence Recap & Alternatives 

•  Keeps caches “coherent” 
•  Load returns the most recent stored value by any processor 
•  And thus keeps caches transparent to software 

•  Alternatives to cache coherence 
•  #1: no caching of shared data (slow) 
•  #2: requiring software to explicitly “flush” data (hard to use) 

•  Using some new instructions 
•  #3: message passing (programming without shared memory) 

•  Used in clusters of machines for high-performance computing  

•  However, directory-based coherence protocol scales well 
•  Perhaps to 1000s of cores 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 66 



Mem 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 67 

Roadmap Checkpoint 

•  Thread-level parallelism (TLP) 
•  Shared memory model 

•  Multiplexed uniprocessor 
•  Hardware multihreading 
•  Multiprocessing 

•  Cache coherence 
•  Valid/Invalid, MSI, MESI 

•  Parallel programming 
•  Synchronization 

•  Lock implementation 
•  Locking gotchas 
•  Transactional memory 

•  Memory consistency models 

CPU I/O 

System software 
App App App 

CPU CPU CPU CPU CPU 



Parallel Programming  

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 68 



Parallel Programming 

•  One use of multiprocessors: multiprogramming 
•  Running multiple programs with no interaction between them 
•  Works great for a few cores, but what next? 

•  Or, programmers must explicitly express parallelism 
•  “Coarse” parallelism beyond what the hardware can extract implicitly 
•  Even the compiler can’t extract it in most cases 

•  How? Several options: 
1. Call libraries that perform well-known computations in parallel 

•  Example: a matrix multiply routine, etc. 
2. Add code annotations (“this loop is parallel”), OpenMP 
3. Parallel “for” loops, task-based parallelism, … 
4. Explicitly spawn “tasks”, runtime/OS schedules them on the cores 

•  Parallel programming: key challenge in multicore revolution 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 69 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 70 

Example #1: Parallelizing Matrix Multiply 

for (I = 0; I < SIZE; I++) 
   for (J = 0; J < SIZE; J++) 
      for (K = 0; K < SIZE; K++) 
        C[I][J] += A[I][K] * B[K][J]; 

•  How to parallelize matrix multiply? 
•  Replace outer “for” loop with “parallel_for” or OpenMP annotation 
•  Supported by many parallel programming environments 

•  Implementation: give each of N processors loop iterations 
int start = (SIZE/N) * my_id();   // my_id() from library 
for (I = start; I < start + SIZE/N; I++) 
  for (J = 0; J < SIZE; J++) 
     for (K = 0; K < SIZE; K++) 
       C[I][J] += A[I][K] * B[K][J]; 

•  Each processor runs copy of loop above 
•  No explicit synchronization required (implicit at end of loop) 

C A B 
X = 



Example #2: Bank Accounts 

•  Consider  
struct acct_t { int balance; … }; 
struct acct_t accounts[MAX_ACCT];     // current balances 

struct trans_t { int id; int amount; }; 
struct trans_t transactions[MAX_TRANS];  // debit amounts 

for (i = 0; i < MAX_TRANS; i++) { 
  debit(transactions[i].id, transactions[i].amount); 
} 

void debit(int id, int amount) { 
  if (accounts[id].balance >= amount) { 
    accounts[id].balance -= amount; 
  } 
} 

•  Can we do these “debit” operations in parallel? 
•  Does the order matter? 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 71 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 72 

Example #2: Bank Accounts 

•  Example of Thread-level parallelism (TLP) 
•  Collection of asynchronous tasks: not started and stopped together 
•  Data shared “loosely” (sometimes yes, mostly no), dynamically 

•  Example: database/web server (each query is a thread) 
•   accts is global and thus shared, can’t register allocate 
•   id and amt are private variables, register allocated to r1, r2 

•  Running example 

struct acct_t { int bal; … }; 
shared struct acct_t accts[MAX_ACCT]; 
void debit(int id, int amt) { 
  if (accts[id].bal >= amt) 
  { 
     accts[id].bal -= amt; 
  } 
} 

0: addi r1,accts,r3 
1: ld 0(r3),r4 
2: blt r4,r2,done 
3: sub r4,r2,r4 
4: st r4,0(r3) 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 73 

An Example Execution 

•  Two $100 withdrawals from account #241 at two ATMs 
•  Each transaction executed on different processor 
•  Track accts[241].bal (address is in r3) 

Thread 0 
0: addi r1,accts,r3 
1: ld 0(r3),r4 
2: blt r4,r2,done 
3: sub r4,r2,r4 
4: st r4,0(r3) 

Thread 1 

0: addi r1,accts,r3 
1: ld 0(r3),r4 
2: blt r4,r2,done 
3: sub r4,r2,r4 
4: st r4,0(r3) 

Mem 
500 

400 

300 

Tim
e 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 74 

A Problem Execution 
Thread 0 

0: addi r1,accts,r3 
1: ld 0(r3),r4 
2: blt r4,r2,done 
3: sub r4,r2,r4 
<<< Thread Switch >>> 

4: st r4,0(r3) 

Thread 1 

0: addi r1,accts,r3 
1: ld 0(r3),r4 
2: blt r4,r2,done 
3: sub r4,r2,r4 
4: st r4,0(r3) 

Mem 
500 

400 

Tim
e 

400 

•  Problem: wrong account balance!  Why? 
•  Solution: synchronize access to account balance 



Synchronization  

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 75 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 76 

Synchronization: 
•  Synchronization: a key issue for shared memory 
•  Regulate access to shared data (mutual exclusion) 
•  Low-level primitive: lock  (higher-level: “semaphore” or “mutex”)   

•  Operations: acquire(lock)and release(lock) 
•  Region between acquire and release is a critical section 
•  Must interleave acquire and release 
•  Interfering acquire will block 

•  Another option: Barrier synchronization 
•  Blocks until all threads reach barrier, used at end of “parallel_for” 

struct acct_t { int bal; … }; 
shared struct acct_t accts[MAX_ACCT]; 
shared int lock; 
void debit(int id, int amt): 
  acquire(lock); 
  if (accts[id].bal >= amt) { 
     accts[id].bal -= amt; 
  } 
  release(lock); 

critical section 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 77 

A Synchronized Execution 
Thread 0 

   call acquire(lock) 
0: addi r1,accts,r3 
1: ld 0(r3),r4 
2: blt r4,r2,done 
3: sub r4,r2,r4 
<<< Switch >>> 

4: st r4,0(r3) 
   call release(lock) 

Thread 1 

   call acquire(lock) 
   <<< Switch >>> 

   (still in acquire) 
0: addi r1,accts,r3 
1: ld 0(r3),r4 
2: blt r4,r2,done 
3: sub r4,r2,r4 
4: st r4,0(r3) 

Mem 
500 

400 

Tim
e 

300 

•  Fixed, but how do 
we implement 
acquire & release? 

Spins! 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 78 

Strawman Lock 

•  Spin lock: software lock implementation 
•   acquire(lock): while (lock != 0) {} lock = 1; 

•  “Spin” while lock is 1, wait for it to turn 0 
A0:  ld 0(&lock),r6 
A1:  bnez r6,A0 
A2:  addi r6,1,r6 
A3:  st r6,0(&lock) 

•   release(lock): lock = 0; 
R0:  st r0,0(&lock)     // r0 holds 0 

(Incorrect) 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 79 

Incorrect Lock Implementation 

•  Spin lock makes intuitive sense, but doesn’t actually work 
•  Loads/stores of two acquire sequences can be interleaved 
•  Lock acquire sequence also not atomic 
•  Same problem as before! 

•  Note, release is trivially atomic 

Thread 0 
A0: ld 0(&lock),r6 
A1: bnez r6,#A0 
A2: addi r6,1,r6 
A3: st r6,0(&lock) 
CRITICAL_SECTION 

Thread 1 

A0: ld r6,0(&lock) 
A1: bnez r6,#A0 
A2: addi r6,1,r6 
A3: st r6,0(&lock) 
CRITICAL_SECTION 

Mem 
0 

1 

Tim
e 

1 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 80 

Correct Spin Lock: Use Atomic Swap 
•  ISA provides an atomic lock acquisition instruction 

•  Example: atomic swap 
swap r1,0(&lock) 
•  Atomically executes: 

•  New acquire sequence  
 (value of r1 is 1)  
 A0: swap r1,0(&lock) 
 A1: bnez r1,A0 

•  If lock was initially busy (1), doesn’t change it, keep looping 
•  If lock was initially free (0), acquires it (sets it to 1), break loop 

•  Insures lock held by at most one thread 
•  Other variants: exchange, compare-and-swap,  

test-and-set (t&s), or fetch-and-add 

mov r1->r2 
ld r1,0(&lock) 
st r2,0(&lock) 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 81 

Atomic Update/Swap Implementation 

•  How is atomic swap implemented? 
•  Need to ensure no intervening memory operations 
•  Requires blocking access by other threads temporarily (yuck) 

•  How to pipeline it? 
•  Both a load and a store (yuck) 
•  Not very RISC-like 

PC 

I$ 

Regfile 

PC 

Regfile 

D$ 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 82 

RISC Test-And-Set 

•  swap: a load and store in one insn is not very “RISC” 
•  Broken up into micro-ops, but then how is it made atomic? 

•  “Load-link” / “store-conditional” pairs 
•  Atomic load/store pair 

label: 
  load-link r1,0(&lock) 
  // potentially other insns 
  store-conditional r2,0(&lock) 
  branch-not-zero label   // check for failure 

•  On load-link, processor remembers address… 
•  …And looks for writes by other processors 
•  If write is detected, next store-conditional will fail 

•  Sets failure condition 

•  Used by ARM, PowerPC, MIPS, Itanium 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 83 

Lock Correctness 

+  Lock actually works… 
•  Thread 1 keeps spinning 

•  Sometimes called a “test-and-set lock” 
•  Named after the common “test-and-set” atomic instruction 

Thread 0 
A0: swap r1,0(&lock) 
A1: bnez r1,#A0 
CRITICAL_SECTION 

Thread 1 

A0: swap r1,0(&lock) 
A1: bnez r1,#A0 
A0: swap r1,0(&lock) 
A1: bnez r1,#A0 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 84 

“Test-and-Set” Lock Performance 

–  …but performs poorly 
•  Consider 3 processors rather than 2 
•  Processor 2 (not shown) has the lock and is in the critical section 
•  But what are processors 0 and 1 doing in the meantime? 

•  Loops of swap, each of which includes a st 
–  Repeated stores by multiple processors costly  
–  Generating a ton of useless interconnect traffic 

Thread 0 
A0: swap r1,0(&lock) 
A1: bnez r1,#A0 
A0: swap r1,0(&lock) 
A1: bnez r1,#A0 

Thread 1 

A0: swap r1,0(&lock) 
A1: bnez r1,#A0 
A0: swap r1,0(&lock) 
A1: bnez r1,#A0 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 85 

Test-and-Test-and-Set Locks 

•  Solution: test-and-test-and-set locks 
•  New acquire sequence 

A0: ld r1,0(&lock) 
A1: bnez r1,A0 
A2: addi r1,1,r1 
A3: swap r1,0(&lock) 
A4: bnez r1,A0 

•  Within each loop iteration, before doing a swap 
•  Spin doing a simple test (ld) to see if lock value has changed 
•  Only do a swap (st) if lock is actually free 

•  Processors can spin on a busy lock locally (in their own cache) 
+ Less unnecessary interconnect traffic 

•  Note: test-and-test-and-set is not a new instruction! 
•  Just different software 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 86 

Queue Locks 

•  Test-and-test-and-set locks can still perform poorly 
•  If lock is contended for by many processors 
•  Lock release by one processor, creates “free-for-all” by others 
–  Interconnect gets swamped with swap requests 

•  Software queue lock 
•  Each waiting processor spins on a different location (a queue) 
•  When lock is released by one processor... 

•  Only the next processors sees its location go “unlocked” 
•  Others continue spinning locally, unaware lock was released 

•  Effectively, passes lock from one processor to the next, in order 
+  Greatly reduced network traffic (no mad rush for the lock) 
+  Fairness (lock acquired in FIFO order) 
–  Higher overhead in case of no contention (more instructions) 
–  Poor performance if one thread is descheduled by O.S. 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 87 

Programming With Locks Is Tricky 

•  Multicore processors are the way of the foreseeable future 
•  thread-level parallelism anointed as parallelism model of choice 
•  Just one problem… 

•  Writing lock-based multi-threaded programs is tricky! 

•  More precisely: 
•  Writing programs that are correct is “easy” (not really) 
•  Writing programs that are highly parallel is “easy” (not really) 
–  Writing programs that are both correct and parallel is difficult 

•  And that’s the whole point, unfortunately 
•  Selecting the “right” kind of lock for performance 

•  Spin lock, queue lock, ticket lock, read/writer lock, etc. 
•  Locking granularity issues 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 88 

Coarse-Grain Locks: Correct but Slow 

•  Coarse-grain locks: e.g., one lock for entire database 
+  Easy to make correct: no chance for unintended interference 
–  Limits parallelism: no two critical sections can proceed in parallel 

struct acct_t { int bal; … }; 
shared struct acct_t  accts[MAX_ACCT]; 
shared Lock_t lock; 
void debit(int id, int amt) { 
  acquire(lock); 
  if (accts[id].bal >= amt) { 
     accts[id].bal -= amt; 
  } 
  release(lock); 
} 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 89 

Fine-Grain Locks: Parallel But Difficult 

•  Fine-grain locks: e.g., multiple locks, one per record 
+  Fast: critical sections (to different records) can proceed in parallel 
–  Difficult to make correct: easy to make mistakes 

•  This particular example is easy 
•  Requires only one lock per critical section 

•  What about critical sections that require two locks? 

struct acct_t { int bal, Lock_t lock; …  }; 
shared struct acct_t  accts[MAX_ACCT]; 

void debit(int id, int amt) { 
  acquire(accts[id].lock); 
  if (accts[id].bal >= amt) { 
     accts[id].bal -= amt; 
  } 
  release(accts[id].lock); 
} 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 90 

Multiple Locks 

•  Multiple locks: e.g., acct-to-acct transfer 
•  Must acquire both id_from, id_to locks 
•  Running example with accts 241 and 37 
•  Simultaneous transfers 241 → 37 and 37 → 241 
•  Contrived… but even contrived examples must work correctly too 

struct acct_t { int bal, Lock_t lock; …}; 
shared struct acct_t  accts[MAX_ACCT]; 
void transfer(int id_from, int id_to, int amt) { 
  acquire(accts[id_from].lock); 
  acquire(accts[id_to].lock); 
  if (accts[id_from].bal >= amt) { 
     accts[id_from].bal -= amt; 
     accts[id_to].bal += amt;  
  } 
  release(accts[id_to].lock); 
  release(accts[id_from].lock); 
} 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 91 

Multiple Locks And Deadlock 
Thread 0 

id_from = 241; 
id_to = 37; 

acquire(accts[241].lock); 
// wait to acquire lock 37 
// waiting… 
// still waiting… 

Thread 1 

id_from = 37; 
id_to = 241; 

acquire(accts[37].lock); 
// wait to acquire lock 241 
// waiting… 
// … 



Deadlock! 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 92 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 93 

Multiple Locks And Deadlock 

•  Deadlock: circular wait for shared resources 
•  Thread 0 has lock 241 waits for lock 37 
•  Thread 1 has lock 37 waits for lock 241 
•  Obviously this is a problem 
•  The solution is … 

Thread 0 

id_from = 241; 
id_to = 37; 

acquire(accts[241].lock); 
// wait to acquire lock 37 
// waiting… 
// still waiting… 

Thread 1 

id_from = 37; 
id_to = 241; 

acquire(accts[37].lock); 
// wait to acquire lock 241 
// waiting… 
// … 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 94 

Correct Multiple Lock Program 

•  Always acquire multiple locks in same order 
•  Just another thing to keep in mind when programming 

struct acct_t { int bal, Lock_t lock; … }; 
shared struct acct_t  accts[MAX_ACCT]; 
void transfer(int id_from, int id_to, int amt) { 
  int id_first = min(id_from, id_to); 
  int id_second = max(id_from, id_to); 

  acquire(accts[id_first].lock); 
  acquire(accts[id_second].lock); 
  if (accts[id_from].bal >= amt) { 
     accts[id_from].bal -= amt; 
     accts[id_to].bal += amt;  
  } 
  release(accts[id_second].lock); 
  release(accts[id_first].lock); 
} 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 95 

Correct Multiple Lock Execution 

•  Great, are we done? No 

Thread 0 

id_from = 241; 
id_to = 37; 
id_first = min(241,37)=37; 
id_second = max(37,241)=241; 

acquire(accts[37].lock); 
acquire(accts[241].lock); 
// do stuff 
release(accts[241].lock); 
release(accts[37].lock); 

Thread 1 

id_from = 37; 
id_to = 241; 
id_first = min(37,241)=37; 
id_second = max(37,241)=241; 

// wait to acquire lock 37 
// waiting… 
// … 
// … 
// … 
acquire(accts[37].lock); 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 96 

More Lock Madness 

•  What if… 
•  Some actions (e.g., deposits, transfers) require 1 or 2 locks… 
•  …and others (e.g., prepare statements) require all of them? 
•  Can these proceed in parallel? 

•  What if… 
•  There are locks for global variables (e.g., operation id counter)? 
•  When should operations grab this lock? 

•  What if… what if… what if… 

•  So lock-based programming is difficult… 
•  …wait, it gets worse 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 97 

And To Make It Worse… 

•  Acquiring locks is expensive… 
•  By definition requires a slow atomic instructions 

•  Specifically, acquiring write permissions to the lock 
•  Ordering constraints (see soon) make it even slower 

•  …and 99% of the time un-necessary 
•  Most concurrent actions don’t actually share data 
–  You paying to acquire the lock(s) for no reason 

•  Fixing these problem is an area of active research 
•  One proposed solution “Transactional Memory” 
•  Programmer uses construct:   “atomic { … code … }”  

•  Hardware, compiler & runtime executes the code “atomically” 
•  Uses speculation, rolls back on conflicting accesses 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 98 

Research: Transactional Memory (TM) 

•  Transactional Memory (TM) goals: 
+  Programming simplicity of coarse-grain locks 
+  Higher concurrency (parallelism) of fine-grain locks 

•  Critical sections only serialized if data is actually shared 
+  Lower overhead than lock acquisition 
•  Hot academic & industrial research topic (or was a few years ago) 
•  No fewer than nine research projects:  

•  Brown, Stanford, MIT, Wisconsin, Texas, Rochester,  
Sun/Oracle, Intel 

•  Penn, too 

•  Most recently: 
•  Intel announced TM support in “Haswell” core! (shipping in 2013) 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 99 

Transactional Memory: The Big Idea 

•  Big idea I: no locks, just shared data  

•  Big idea II: optimistic (speculative) concurrency 
•  Execute critical section speculatively, abort on conflicts 
•  “Better to beg for forgiveness than to ask for permission” 

struct acct_t { int bal; … }; 
shared struct acct_t  accts[MAX_ACCT]; 
void transfer(int id_from, int id_to, int amt) { 
  begin_transaction(); 
  if (accts[id_from].bal >= amt) { 
     accts[id_from].bal -= amt; 
     accts[id_to].bal += amt;  
  } 
  end_transaction(); 
} 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 100 

Transactional Memory: Read/Write Sets 

•  Read set: set of shared addresses critical section reads 
•  Example: accts[37].bal, accts[241].bal 

•  Write set: set of shared addresses critical section writes 
•  Example: accts[37].bal, accts[241].bal 

struct acct_t { int bal; … }; 
shared struct acct_t  accts[MAX_ACCT]; 
void transfer(int id_from, int id_to, int amt) { 
  begin_transaction(); 
  if (accts[id_from].bal >= amt) { 
     accts[id_from].bal -= amt; 
     accts[id_to].bal += amt;  
  } 
  end_transaction(); 
} 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 101 

Transactional Memory: Begin 

•   begin_transaction 
•  Take a local register checkpoint 
•  Begin locally tracking read set (remember addresses you read) 

•  See if anyone else is trying to write it 
•  Locally buffer all of your writes (invisible to other processors) 
+  Local actions only: no lock acquire 

struct acct_t { int bal; … }; 
shared struct acct_t  accts[MAX_ACCT]; 
void transfer(int id_from, int id_to, int amt) { 
  begin_transaction(); 
  if (accts[id_from].bal >= amt) { 
     accts[id_from].bal -= amt; 
     accts[id_to].bal += amt;  
  } 
  end_transaction(); 
} 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 102 

Transactional Memory: End 

•   end_transaction 
•  Check read set: is all data you read still valid (i.e., no writes to any) 
•  Yes? Commit transactions: commit writes 
•  No? Abort transaction: restore checkpoint 

struct acct_t { int bal; … }; 
shared struct acct_t  accts[MAX_ACCT]; 
void transfer(int id_from, int id_to, int amt) { 
  begin_transaction(); 
  if (accts[id_from].bal >= amt) { 
     accts[id_from].bal -= amt; 
     accts[id_to].bal += amt;  
  } 
  end_transaction(); 
} 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 103 

Transactional Memory Implementation 

•  How are read-set/write-set implemented? 
•  Track locations accessed using bits in the cache 

•  Read-set: additional “transactional read” bit per block 
•  Set on reads between begin_transaction and end_transaction 
•  Any other write to block with set bit  triggers abort 
•  Flash cleared on transaction abort or commit 

•  Write-set: additional “transactional write” bit per block 
•  Set on writes between begin_transaction and end_transaction 
•  Before first write, if dirty, initiate writeback (“clean” the block) 
•  Flash cleared on transaction commit 
•  To abort transaction: invalidate all blocks with bit set 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 104 

Transactional Execution 
Thread 0 

id_from = 241; 
id_to = 37; 

begin_transaction(); 
if(accts[241].bal > 100) { 
   … 
   // write accts[241].bal  
   // abort 

Thread 1 

id_from = 37; 
id_to = 241; 

begin_transaction(); 
if(accts[37].bal > 100) { 
   accts[37].bal -= amt; 
   acts[241].bal += amt; 
} 
end_transaction(); 
// no writes to accts[241].bal 
// no writes to accts[37].bal 
// commit 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 105 

Transactional Execution II (More Likely) 

•  Critical sections execute in parallel 

Thread 0 

id_from = 241; 
id_to = 37; 

begin_transaction(); 
if(accts[241].bal > 100) { 
   accts[241].bal -= amt; 
   acts[37].bal += amt; 
} 
end_transaction(); 
// no write to accts[240].bal 
// no write to accts[37].bal 
// commit 

Thread 1 

id_from = 450; 
id_to = 118; 

begin_transaction(); 
if(accts[450].bal > 100) { 
   accts[450].bal -= amt; 
   acts[118].bal += amt; 
} 
end_transaction(); 
// no write to accts[450].bal 
// no write to accts[118].bal 
// commit 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 106 

So, Let’s Just Do Transactions? 

•  What if… 
•  Read-set or write-set bigger than cache? 
•  Transaction gets swapped out in the middle? 
•  Transaction wants to do I/O or SYSCALL (not-abortable)? 

•  How do we transactify existing lock based programs? 
•  Replace acquire with begin_trans does not always work 

•  Several different kinds of transaction semantics 
•  Are transactions atomic relative to code outside of transactions? 

•  Do we want transactions in hardware or in software? 
•  What we just saw is hardware transactional memory (HTM) 

•  That’s what these research groups are looking at 
•  Best-effort hardware TM: Azul systems, Sun’s Rock processor 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 107 

Speculative Lock Elision (SLE) 

•  Alternatively, keep the locks, but… 
•  … speculatively transactify lock-based programs in hardware 

•  Speculative Lock Elision (SLE) [Rajwar+, MICRO’01] 
•  Captures most of the advantages of transactional memory… 

+  No need to rewrite programs 
+  Can always fall back on lock-based execution (overflow, I/O, etc.) 

•  Intel’s “Haswell” supports both SLE & best-effort TM 

Processor 0 
acquire(accts[37].lock); // don’t actually set lock to 1 
// begin tracking read/write sets 
// CRITICAL_SECTION 
// check read set 
//  no conflicts? Commit, don’t actually set lock to 0 
//  conflicts? Abort, retry by acquiring lock 
release(accts[37].lock);  



Mem 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 108 

Roadmap Checkpoint 

•  Thread-level parallelism (TLP) 
•  Shared memory model 

•  Multiplexed uniprocessor 
•  Hardware multihreading 
•  Multiprocessing 

•  Cache coherence 
•  Valid/Invalid, MSI, MESI 

•  Parallel programming 
•  Synchronization 

•  Lock implementation 
•  Locking gotchas 
•  Transactional memory 

•  Memory consistency models 

CPU I/O 

System software 
App App App 

CPU CPU CPU CPU CPU 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 109 

•  Initially: all variables zero (that is, x is 0, y is 0) 

•  What value pairs can be read by the two loads? 

Shared Memory Example #1 

thread 1 thread 2 
  store 1 → x 
  load y 

  store 1 → y 
  load x 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 110 

•  Initially: all variables zero (that is, x is 0, y is 0) 

•  What value pairs can be read by the two loads? 

•  What about (x=0, y=0)?   Nope… or can it? 

Shared Memory Example #1: “Answer” 

thread 1 thread 2 
  store 1 → x 
  load y 

  store 1 → y 
  load x 

store 1 → y 
load x 
store 1 → x 
load y 
(x=0, y=1) 

store 1 → x 
load y 
store 1 → y 
load x 
(x=1, y=0) 

store 1 → y 
store 1 → x 
load x 
load y 
(x=1, y=1) 

store 1 → x 
store 1 → y 
load y 
load x 
(x=1, y=1) 

store 1 → y 
store 1 → x 
load y 
load x 
(x=1, y=1) 

store 1 → x 
store 1 → y 
load x 
load y 
(x=1, y=1) 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 111 

•  Initially: all variables zero (“flag” is 0, “a” is 0)  

•  What value can be read by “load a”? 

Shared Memory Example #2 

loop: if (flag == 0) goto loop 
      load a 

thread 1 thread 2 
 store 1 → a 
 store 1 → flag 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 112 

•  Initially: all variables zero (“flag” is 0, “a” is 0)  

•  What value can be read by “load a”? 
•  “load a” can see the value “1” 

•  Can “load a” read the value zero?   
•  Are you sure? 

Shared Memory Example #2: “Answer” 

loop: if (flag == 0) goto loop 
      load a 

thread 1 thread 2 
 store 1 → a 
 store 1 → flag 



What is Going On? 

•  Reordering of memory operations to different addresses! 

•  In the compiler 
•  Compiler is generally allowed to re-order memory operations to 

different addresses 
•  Many other compiler optimizations also cause problems 

•  In the hardware 
1. To tolerate write latency 

•  Cores don’t wait for writes to complete (via store buffers) 
•  And why should they?  No reason to wait on non-threaded code 

2. To simplify out-of-order execution 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 113 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 114 

Memory Consistency 

•  Memory coherence 
•  Creates globally uniform (consistent) view… 
•  Of a single memory location (in other words: cache blocks) 
–  Not enough 

•  Cache blocks A and B can be individually consistent… 
•  But inconsistent with respect to each other 

•  Memory consistency 
•  Creates globally uniform (consistent) view… 
•  Of all memory locations relative to each other 

•  Who cares? Programmers 
–  Globally inconsistent memory creates mystifying behavior 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 115 

Recall: Write Misses and Store Buffers 
•  Read miss? 

•  Load can’t go on without the data, it must stall 

•  Write miss? 
•  Technically, no instruction is waiting for data, why stall? 

•  Store buffer: a small buffer 
•  Stores put address/value to store buffer, keep going 
•  Store buffer writes stores to D$ in the background 
•  Loads must search store buffer (in addition to D$) 
+  Eliminates stalls on write misses (mostly) 
–  Creates some problems (later) 

•  Store buffer vs. writeback-buffer 
•  Store buffer: “in front” of D$, for hiding store misses 
•  Writeback buffer: “behind” D$, for hiding writebacks 

Cache 

Next-level 
cache 

WBB 

SB 

Processor 



Why? To Hide Store Miss Latency 

•  Why?  Why Allow Such Odd Behavior? 
•  Reason #1: hiding store miss latency 

•  Recall (back from caching unit) 
•  Hiding store miss latency 
•  How?  Store buffer 

•  Said it would complicate multiprocessors 
•  Yes.   It does. 
•  By allowing reordering of store and load (to different addresses) 

•  Example: 
•  Both stores miss cache, are put in store buffer 
•  Loads hit, receive value before store completes, sees “old” value   

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 116 

thread 1 thread 2 
  store 1 → x 
  load y 

  store 1 → y 
  load x 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 117 

•  Initially: all variables zero (that is, x is 0, y is 0) 

•  What value pairs can be read by the two loads? 

•  What about (x=0,y=0)? Yes! (for x86, SPARC, ARM, PowerPC) 

Shared Memory Example #1: Answer 

thread 1 thread 2 
  store 1 → x 
  load y 

  store 1 → y 
  load x 

store 1 → y 
load x 
store 1 → x 
load y 
(x=0, y=1) 

store 1 → x 
load y 
store 1 → y 
load x 
(x=1, y=0) 

store 1 → y 
store 1 → x 
load x 
load y 
(x=1, y=1) 

store 1 → x 
store 1 → y 
load y 
load x 
(x=1, y=1) 

store 1 → y 
store 1 → x 
load y 
load x 
(x=1, y=1) 

store 1 → x 
store 1 → y 
load x 
load y 
(x=1, y=1) 



Why? Simplify Out-of-Order Execution 

•  Why?  Why Allow Such Odd Behavior? 
•  Reason #2: simplifying out-of-order execution 

•  One key benefit of out-of-order execution: 
•  Out-of-order execution of loads to (same or different) addresses 

•  Uh, oh. 

•  Two options for hardware designers: 
•  Option #1: allow this sort of “odd” reordering (“not my problem”) 
•  Option #2: hardware detects & recovers from such reorderings 

•  Scan load queue (LQ) when cache block is invalidated 

•  Aside: some store buffers reorder stores by same thread  
to different addresses (as in thread 1 above) 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 118 

loop: if (flag == 0) goto loop 
      load a 

thread 1 thread 2 
 store 1 → a 
 store 1 → flag 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 119 

•  Initially: all variables zero (flag is 0, a is 0)  

•  What value can be read by “load a”? 
•  “load a” can see the value “1” 

•  Can “load a” read the value zero? (same as last slide) 
•  Yes! (for ARM, PowerPC, Itanium, and Alpha) 
•  No! (for Intel/AMD x86, Sun SPARC, IBM 370) 

•  Assuming the compiler didn’t reorder anything… 

Shared Memory Example #2: Answer 

loop: if (flag == 0) goto loop 
      load a 

thread 1 thread 2 
 store 1 → a 
 store 1 → flag 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 120 

Restoring Order (Hardware) 
•  Sometimes we need ordering (mostly we don’t) 

•  Prime example: ordering between “lock” and data 

•  How?  insert Fences (memory barriers) 
•  Special instructions, part of ISA 

•  Example 
•  Ensure that loads/stores don’t cross synchronization operations 

lock acquire 
fence 
“critical section” 
fence 
lock release 

•  How do fences work?  
•  They stall execution until write buffers are empty 
•  Makes lock acquisition and release slow(er) 

•  Use synchronization library, don’t write your own 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 121 

Restoring Order (Software) 
•  These slides have focused mostly on hardware reordering 

•  But the compiler also reorders instructions (reason #3) 

•  How do we tell the compiler to not reorder things? 
•  Depends on the language… 

•  In Java: 
•  The built-in “synchronized” constructs informs the compiler to limit 

its optimization scope (prevent reorderings across synchronization) 
•  Or, programmer uses “volatile” keyword to explicitly mark variables 
•  Java compiler inserts the hardware-level ordering instructions 

•  In C/C++: 
•  More murky, as pre-2011 language doesn’t define synchronization 
•  Lots of hacks: “inline assembly”, volatile, atomic keyword (new!) 
•  Programmer may need to explicitly insert hardware-level fences  

•  Use synchronization library, don’t write your own 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 122 

Recap: Four Shared Memory Issues 
1.  Cache coherence 

•  If cores have private (non-shared) caches 
•  How to make writes to one cache “show up” in others? 

2.  Parallel programming 
•  How does the programmer express the parallelism? 

3.  Synchronization 
•  How to regulate access to shared data? 
•  How to implement “locks”? 

4.  Memory consistency models 
•  How to keep programmer sane while letting hardware optimize? 
•  How to reconcile shared memory with compiler optimizations, store 

buffers, and out-of-order execution? 



Mem 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  Multicore 123 

Summary 

•  Thread-level parallelism (TLP) 
•  Shared memory model 

•  Multiplexed uniprocessor 
•  Hardware multihreading 
•  Multiprocessing 

•  Cache coherence 
•  Valid/Invalid, MSI, MESI 

•  Parallel programming 
•  Synchronization 

•  Lock implementation 
•  Locking gotchas 
•  Transactional memory 

•  Memory consistency models 

CPU I/O 

System software 
App App App 

CPU CPU CPU CPU CPU 


