
Need for an x86 simulator

• Many tools only exist on or are more mature on x86

• e.g. Pin, Harmony JVM

• Many interesting apps are only available as x86 binaries

• e.g. Word, Photoshop

Need for full-system simulation

• Modern applications are multi-threaded

• Communicate via O/S mechanisms such as signals

• O/S thread scheduling can affect program behavior

• Modeling O/S behavior requires simulating supervisor code

• i.e. full-system

Need for accurate timing model

• Architectural features have first-order performance effect

• e.g. caches, branch prediction, superscalar, out-of-order Simulating an Application

FeS2: A Full-system Execution-driven Simulator for x86
Naveen Neelakantam†, Colin Blundell‡, Joe Devietti§, Milo M. K. Martin‡ and Craig Zilles†

†University of Illinois at Urbana-Champaign ‡University of Pennsylvania §University of Washington

Motivation

Simulation Methodology

High-Level Design of FeS2

ReferencesReleases

Timing-first simulation[1]

• Separation of functional and timing concerns

• Timing simulator (FeS2) calculates execution times

• Includes a mostly correct functional model

• Runs ahead of functional simulator

• Functional simulator detects functional deviations

• Trails timing simulator and verifies architected state

Leverage Simics[2] for functional model

• Production quality x86 full-system simulator

• Provides golden standard functional model

How it works

• FeS2 verifies its state when it commits an x86 op

• Compares with Simics state

• If mismatch, reload state from Simics

Modular design (C++ object-oriented code)

• Separate classes for branch predictor, scheduler, etc

Leverages PTLsim[3] for µop decode and execute

• x86 op ! µop decoder from PTLsim

• µop functional model also from PTLsim

Open Source (GPL)

Configurable out-of-order timing model

• Superscalar decode (default 3 x86 ops)

• Superscalar rename/execute/commit (default 4 µops)

• D-cache (currently 32KB L1, 512KB L2)

• Branch predictors (currently 8Kb gshare, 32-entry RAS)

Leverage Simics scripting capabilities

• Simics script can trigger at various events

• Magic instruction (special x86 no-op)

• Breakpoints

• Script transitions into and out of timing-first mode

Simulate entire application or samples

• Sampling preferable in general

• Timing simulation is relatively slow

Complete uniprocessor model in initial release

• Available at http://fes2.cs.uiuc.edu

Multiprocessor model is already finished

• Leverages the GEMS! Ruby[4] memory timing model

• To be included in a future release

1. Carl J. Mauer et al. Full system timing-first simulation. In

SIGMETRICS !02, pp. 108-116, June 2002

2. Virtutech Simics: http://www.simics.com

3. Matt Yourst. PTLsim: A cycle accurate full system x86-64

microarchitectural simulator. In ISPASS !07, April 2007

4. Milo M.K. Marin et al. Multifacet!s General Execution-driven

Multiprocessor Simulator (GEMS) Toolset. Computer
Architecture News, September 2005

