
Computational Sprinting on a Hardware/Software Testbed

Arun Raghavan∗ Laurel Emurian∗ Lei Shao‡

Marios Papaefthymiou† Kevin P. Pipe†‡ Thomas F. Wenisch† Milo M. K. Martin∗

∗ Dept. of Computer and Information Science, University of Pennsylvania
† Dept. of Electrical Engineering and Computer Science, University of Michigan

‡ Dept. of Mechanical Engineering, University of Michigan

Abstract
CMOS scaling trends have led to an inflection point where thermal
constraints (especially in mobile devices that employ only passive
cooling) preclude sustained operation of all transistors on a chip—
a phenomenon called “dark silicon.” Recent research proposed
computational sprinting—exceeding sustainable thermal limits for
short intervals—to improve responsiveness in light of the bursty
computation demands of many media-rich interactive mobile appli-
cations. Computational sprinting improves responsiveness by acti-
vating reserve cores (parallel sprinting) and/or boosting frequen-
cy/voltage (frequency sprinting) to power levels that far exceed the
system’s sustainable cooling capabilities, relying on thermal ca-
pacitance to buffer heat.

Prior work analyzed the feasibility of sprinting through mod-
eling and simulation. In this work, we investigate sprinting using
a hardware/software testbed. First, we study unabridged sprints,
wherein the computation completes before temperature becomes
critical, demonstrating a 6.3× responsiveness gain, and a 6% en-
ergy efficiency improvement by racing to idle. We then analyze
truncated sprints, wherein our software runtime system must in-
tervene to prevent overheating by throttling parallelism and fre-
quency before the computation is complete. To avoid oversubscrip-
tion penalties (context switching inefficiencies after a truncated
parallel sprint), we develop a sprint-aware task-based parallel run-
time. We find that maximal-intensity sprinting is not always best,
introduce the concept of sprint pacing, and evaluate an adaptive
policy for selecting sprint intensity. We report initial results using
a phase change heat sink to extend maximum sprint duration. Fi-
nally, we demonstrate that a sprint-and-rest operating regime can
actually outperform thermally-limited sustained execution.

Categories and Subject Descriptors C.1.4 [Parallel architec-
tures]: mobile processors

Keywords computational sprinting; thermal-aware computation

1. Introduction
The anticipated end of CMOS voltage (a.k.a. Dennard) scaling has
led to an inflection point in computer system design. In the past,
chip designers could deliver value by exploiting transistor counts
that double with near-constant total chip power each technology
generation. Technology trends indicate that in the future, although
transistor dimensions will likely continue to scale for at least an-
other decade, power density will grow with each generation at
a rate that far outstrips improvements in our ability to dissipate

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’13, March 16–20, 2013, Houston, Texas, USA.
Copyright © 2013 ACM 978-1-4503-1870-9/13/03. . . $15.00

heat [11, 15, 18, 20, 48, 52]. This conundrum has led many re-
searchers and industry observers to predict the advent of “dark sil-
icon”, i.e., that much of a chip must be powered off at any time
[11, 12, 18, 20, 26, 37, 48, 52]. Thermal constraints are particularly
acute in hand-held and mobile devices that are restricted to passive
cooling; dark silicon is already a reality in mobile chips like the
Apple A5, where half of chip area is dedicated to accelerators that
are active only some of the time.

Whereas the thermal constraints that underlie dark silicon loom
as a significant industry challenge, they create an opportunity to
rethink how we use chip area to deliver value. Many interactive
applications are characterized by short bursts of intense computa-
tion punctuated by long idle periods waiting for user input [8, 47,
54]. Media-intensive mobile applications, such as mobile visual
search [2, 3, 23], handwriting and character recognition [17, 35],
and augmented reality [53], often fit this pattern. For short bursts of
computations found in such applications, one approach to improve
responsiveness on thermally-constrained devices is to transiently
exceed a chip’s sustainable thermal limits to deliver a brief but in-
tense burst of computation.

Our prior work proposed computational sprinting [45], which
activates reserve cores (parallel sprinting) and/or boosts frequency
and voltage (frequency sprinting) to power levels that exceed the
system’s sustained cooling capabilities (i.e., the thermal design
power or TDP) by an order of magnitude or more. Sprinting ex-
ploits thermal capacitance, the property that materials can buffer
significant heat as they rise in temperature and subsequently dissi-
pate this heat to the ambient after the sprint. Recent chips from In-
tel and AMD already exploit such phenomena with limited forms of
frequency sprinting. For example, Intel’s second-generation “Turbo
Boost” exceeds the sustainable chip power by 25% for tens of sec-
onds [46].

Previously, we explored the feasibility of computational sprints
that exceed sustainable thermal limits by an order of magnitude
through a combination of modeling and simulation [45]. In this pa-
per, we describe and measure a concrete implementation of com-
putational sprinting in a hardware/software testbed that supports
both parallel and frequency sprinting, offering a maximum sprint
intensity that exceeds sustainable power levels by a factor of five.
The testbed comprises a conventional quad-core Core i7 desktop
system, in which we remove the chip’s heat sink to engineer a sys-
tem with a 10 W TDP—just enough cooling to sustain the indef-
inite operation of a single core at the lowest configurable operat-
ing frequency. At the maximum sprint intensity, with four cores at
maximum configurable frequency drawing over 50 W, chip temper-
ature will rise to cause overheating in mere seconds. However, this
temperature rise is not instantaneous, but extends over a few sec-
onds because of the inherent thermal capacitance of the copper heat
spreader and chip package; we exploit this brief interval to sprint.
We implement a software runtime system to monitor and control
the platform and execute a suite of image processing and vision
workloads to investigate computational sprinting on this testbed.

We first study unabridged sprints—those sprints that can be
completed within the thermal capacitance limits of our testbed. We
show that the thermal capacitance of the heat spreader is sufficient
to allow a few seconds of 5× sprints over the platform’s sustain-
able thermal dissipation, resulting in an average improvement in
responsiveness of 6.3× over sustainable execution. We also analyze
the energy impact of sprinting and find that even for a chip that
has not been designed for sprinting, using parallel sprinting can re-
sult in a net energy efficiency gain relative to sustainable operation.
This somewhat counterintuitive result stems from the relatively
high background power required to activate even a single core (e.g.,
last-level cache and other “uncore” logic), so the incremental per-
formance benefit of activating additional cores more than offsets
the additional energy consumption. Furthermore, by completing the
computation more quickly, the system can enter idle mode more
quickly. Our analysis indicates that the energy efficiency advan-
tages of sprinting grow as idle power decreases. Hence, although
there is already a more than ten-to-one ratio between peak and idle
power in the testbed’s chip, even lower idle power remains desir-
able in chips designed with sprinting in mind.

Overall, when sprints can complete within thermal capacitance
limits, the sprinting policy is relatively straightforward on the
testbed: for best responsiveness, sprint with all cores at maximum
frequency and voltage; for best energy efficiency, sprint with all
cores at the minimum operating frequency and voltage. However,
experiments reveal that optimal sprinting policy becomes much
more complicated when the thermal capacitance is insufficient to
complete all work during a sprint. We call sprints that must end due
to thermal limits truncated sprints.

We study two aspects of truncated sprints. First, we study the
oversubcription penalty of post-sprint execution. When a parallel
sprint is truncated, execution switches to reach a sustainable op-
erating mode by disabling all but one core and migrating all still-
active threads to be multiplexed on a single core. This coarse-grain
multiplexing by the operating system can lead to substantial slow-
down relative to simply running the entire computation on a sin-
gle thread, particularly when threads synchronize frequently [9, 25,
28, 29, 50]. If the post-sprint execution period is large relative to
the sprint, then sprinting can result in a net slowdown; both en-
ergy and responsiveness would have been better if the system had
never attempted to sprint at all. This effect is most pronounced on
one workload, where the oversubscription penalty is nearly 2×. We
show that converting the workload to use a sprint-aware task-based
work-stealing parallel runtime can serve as a general strategy to
eliminate this oversubscription penalty. In this sprint-aware run-
time, worker threads simply cease claiming new tasks and instead
put themselves to sleep as thermal capacity nears exhaustion.

Addressing the oversubscription problem ensures that sprinting
will not result in performance worse than sustainable single-core
execution. Nevertheless, simply sprinting at maximum intensity is
not always best. Rather, experiments show that maximum respon-
siveness requires sprint pacing in which a sprint intensity is se-
lected such that the computation completes just as the thermal ca-
pacitance is exhausted. Optimum sprint pacing depends on the in-
terplay of available thermal capacitance, the amount of work to be
completed, and the power/performance characteristics of the plat-
form and workloads. Measured results indicate that the best static
sprint intensity can be determined a posteriori once the amount of
work to complete is known. However, as the required length of a
sprint is often uncertain, a priori sprint pacing (e.g., based on pre-
dicting task lengths) may not be feasible. Instead, we propose a
dynamic pacing scheme in which sprints are initiated at maximum
intensity, but then frequency (and voltage) are reduced after half of
the thermal capacitance has been consumed. Although straightfor-
ward, this policy provides the maximum responsiveness for short

sprints while providing the benefits of sprinting to a wider range of
computation lengths than maximum-intensity sprinting alone.

Prior work suggested incorporating phase change materials into
the chip packaging to extend maximum sprint duration with the
additional thermal capacitance available in the latent heat of a
phase transition [45]. We report on experiences with augmenting
the testbed with a phase change heat sink placed on top of the
package, demonstrating a 6× extension in sprint duration.

Finally, we consider the implications of computational sprint-
ing for long-running computations that greatly exceed the maxi-
mum sprint duration. Although intuition might suggest such com-
putations call for sustained execution within the thermal limit, we
find that a staccato sprint-and-rest operating regime is both faster
and more energy efficient. Sprint-and-rest outperforms thermally-
constrained sustained operation because energy efficiency is maxi-
mized by activating all useful cores, thus amortizing the fixed costs
of operating at all.

To summarize, this paper is the first to explore aspects of sprint-
ing on an actual hardware testbed (Section 2), and the paper’s ex-
perimental findings include:

• Showing that existing sources of thermal capacitance are suffi-
cient for 5× intensity sprints for up to a few seconds of duration
(Section 3.1).

• Demonstrating that parallel sprinting can actually improve en-
ergy efficiency (Section 3.2).

• Identifying the potential inefficiencies of truncating sprints and
proposing a sprint-aware task-based runtime as a remedy (Sec-
tion 4.2).

• Introducing the concept and opportunity of sprint pacing and
proposing an initial adaptive sprint pacing policy implemented
in the software runtime (Section 4.3).

• Reporting our experiences with augmenting the testbed with a
phase-change heat sink (Section 5).

• Demonstrating that sprint-and-rest outperforms thermally con-
strained (sustained) execution for long-running computations
(Section 6).

2. Sprinting Testbed Hardware
In contrast to earlier simulation-based studies [45, 49], this paper
investigates computational sprinting using a testbed built from a
real system. We modify a current desktop system to act as a proxy
for a hypothetical future thermally-limited mobile system. Avoid-
ing simulation overcomes modeling artifacts and simulation time
constraints [38], but it is imperfect in that our study is limited to ex-
isting chips/platforms, which have not been designed with sprinting
in mind.

To evaluate sprinting, a chip must offer an operating point where
its peak power greatly exceeds the sustainable power dissipation
of its cooling system (i.e., the platform’s TDP). Existing mobile
chips have been designed with peak power envelopes easily dis-
sipated via passive cooling, and hence are not appropriate for our
study. Instead, as a proxy for the thermal characteristics of a future
sprint-enabled device, we create a sprinting testbed system using
a multi-core desktop-class chip and adjust its cooling environment
to create an appropriate ratio between the chip’s peak power and
the platform’s sustainable TDP (in our case, 5:1). A further advan-
tage of using a modern desktop chip is that such chips already have
documented support to allow software to control power states and
monitor chip energy and temperature.

Testbed implementation. We engineer the thermal environ-
ment of our testbed such that it can sustain indefinitely (without
overheating) a single-core running at the lowest configurable fre-

(a) Testbed setup

Die Thermal Interface Material

Integrated Heat Spreader

(b) Package internals

Figure 1. Testbed setup and package cut-away.

quency, but all higher power operating points are not sustainable
and hence represent various intensities of sprinting. We build the
testbed from a system with an Intel Core i7 2600 quad-core “Sandy
Bridge” chip. We remove the heat sink and place a small variable-
speed fan several inches above the exposed package, as shown in
Figure 1(a). By tuning the fan speed, we can adjust the testbed’s
sustainable TDP. For this chip, single-core operation at 1.6 GHz
(the lowest user-selectable frequency/voltage setting) draws 9.5 W.
We tune the fan speed such that under sustained execution, die tem-
perature saturates at 75◦ C (just under the rated junction tempera-
ture limit of 78◦ C). Although we had hoped to demonstrate sprint-
ing using purely passive cooling, unfortunately, operating even a
single core at minimum configurable frequency/voltage dissipates
more power than can be sustained without a fan.

To control sprinting, we disable the chip’s own frequency man-
agement and instead explicitly control the chip’s operating point
using the software ACPI interface to enable/disable cores and select
frequency/voltage. With all cores executing at highest configurable
frequency (3.2 GHz), this chip draws approximately 50 W. This set-
ting represents our most intense sprinting mode (5× higher power
than sustainable operation). In our experimental results, we use the
chip’s energy measurement facility to report package-level energy
consumption and the on-die temperature sensors to report die tem-
perature. We validated these energy readings by calibrating against
measured wall-socket power. After each experiment, we wait until
the temperature returns to the idle temperature before conducting
the next experiment. Each experiment is repeated multiple times;
we present average results over these runs.

Thermal capacitance from the integrated heat spreader.
Sprinting leverages thermal capacitance to support brief opera-
tion at modes with unsustainable power dissipation. Like a mobile
system, the testbed has no heatsink that would serve as a natu-
ral source of thermal capacitance for sprinting to exploit. It does,
however, have an integrated heat spreader (IHS), which is a copper

plate inside the package that is attached directly to the die via a thin
thermal interface material, as illustrated in Figure 1(b). The tradi-
tional role of the IHS is to spread the heat: (i) on the die (to reduce
hot spots) and (ii) from the die to the entire top of the package (to
facilitate cooling), so the IHS is typically larger than the die.

The copper IHS provides sufficient thermal capacitance for
sprinting. Given its dimensions (32 mm × 34 mm × 2 mm [4]) and
the density (8.94 g/cc) and specific heat of copper (0.385 J/gK),
we estimate its total heat capacity to be 7.5 J/K. When the system
idles, its temperature settles at roughly 50◦ C. Thus, during sprint-
ing, for a temperature swing of 25◦ C to a maximum temperature
of 75◦ C, the IHS can store 188 J of heat. Therefore, in theory, the
IHS present in this off-the-shelf package enables 4.7 s of sprint-
ing at 40 W over sustainable TDP (50 W total). As we will show
later, because lateral heat spreading is not instantaneous with the
IHS, the actual achievable sprint duration at maximum intensity is
somewhat less than this simple calculation suggests. We explore ex-
tending this sprint duration by augmenting the testbed with a phase
change heat sink to increase thermal capacitance in Section 5.

The testbed relies on the thermal capacitance of the heat
spreader for sprinting, and chips in mobile devices have typically
not employed heat spreaders. However, the Apple A5X chip used
in the third-generation iPad tablet does employ a heat spreader [13].
In addition, the dual-core A5X has a die size of 162mm2, which
is nearly as large as the 216mm2 die of the quad-core Core i7
used in the testbed (albeit on 45 nm for the A5X vs. 32 nm for the
Core i7). Perhaps the largest difference is that the peak power draw
of the A5X chip is nowhere near the 50 W or more of the Core i7.
Correspondingly, both the idle power and the power of using just
one core of the Core i7 is substantially higher than the A5X. Based
on this comparison and process scaling trends [11, 18, 20, 48, 52],
a future mobile chip with more cores than can sustainably operate
within the thermal constraints of a mobile device seems entirely
plausible.

Effects not captured in the testbed. In addition to the thermal
effects captured in the testbed (which are the focus of this paper),
sprinting also places requirements on energy supply, including the
voltage regulator, sufficient pins to carry the necessary peak electri-
cal current, and power supply (which would be a battery in a mobile
device). Prior work discusses these challenges and potential solu-
tions [45], including ultra-capacitor/battery hybrids to meet peak
current demands [39, 42, 44]. In our testbed, the electrical supply is
already provisioned to sustain the chip’s peak power, and hence is
a non-issue. We do not address the electrical challenges or reliabil-
ity/wearout implications of sprinting in this paper.

3. Unabridged Sprints
Computational sprinting is relatively easy to manage when sprints
are unabridged, that is, when the parallel work can be completed
entirely during the sprint without exhausting the system’s thermal
capacitance. This section explores the responsiveness and energy
efficiency of unabridged sprints; we turn to the more complex case
of truncated sprints in Section 4.

3.1 Responsiveness Benefits of Sprinting
Our testbed is able to sprint due to the thermal capacitance available
in the copper mass of the integrated head spreader. Section 2 pro-
vides a back-of-the-envelope estimate for this capacitance as 188 J,
which suggests a maximum sprint duration of 4.7 s at peak inten-
sity. We compare this estimate against repeated trials of sprinting
with all four cores at maximum configurable frequency (3.2 GHz)
to establish the actual maximum sprint duration at peak. This oper-
ating mode dissipates approximately 5× the power of the sustain-
able single-core 1.6 GHz mode (50 W vs. 9.5 W) and can poten-
tially improve responsiveness by 8× (2× frequency and 4× cores).

Kernel Description
sobel Edge detection filter; parallelized with OpenMP
disparity Stereo image disparity detection; adapted from [51]
segment Image feature classification; adapted from [51]
kmeans Partition-based clustering; parallelized with OpenMP
feature Feature extraction (SURF) from [14]
texture Image composition; adapted from [51]

Table 1. Parallel workloads used to evaluate sprinting.

0

2

4

6

8

n
o
rm

al
iz

ed
 s

p
ee

d
u
p

sobel disparity segment kmeans feature texture

Figure 2. Speedup benefits of unabridged sprinting using four
cores at 3.2 Ghz over a single-core 1.6 Ghz baseline.

For each trial, we allow the system to cool to a nominal of approxi-
mately 50◦ C and sprint until the system reaches our safe tempera-
ture threshold of 75◦ C as measured by internal on-die temperature
sensors.

We find that the testbed can sprint for at most three seconds at
maximum intensity. The actual sprinting capability of the testbed
is lower than the total thermal capacity of the bulk-copper heat
spreader suggesting a delay in lateral heat spreading [34]—the tem-
perature rise during sprints is so rapid that significant temperature
gradients persist. Given the thermal conductivity of copper (be-
tween 300 and 400 W/mK), heat will spread only 16 mm to 19 mm
during a 3 s sprint, which is insufficient to reach the corners of the
heat spreader from the center of the die. As we show later in our
study of truncated sprints, reducing sprint intensity allows more
time for heat to spread, allowing more thermal capacitance to be
utilized before the critical temperature is reached.

To explore the practical benefits of unabridged sprints in real
workloads, we configure the work size for our parallel work-
loads (see Table 1) to complete before the thermal limit is reached.
Figure 2 shows the responsiveness benefits of maximum-intensity
sprints (four cores at 3.2 GHz) in terms of speedup over the sustain-
able single-core 1.6 GHz baseline. On average, sprinting provides
a 6.3× benefit over the baseline. In essence, sprinting allows this
system to complete in just a few seconds what would have taken
fifteen seconds or more if constrained to operate only in sustainable
(non-sprinting) mode.

To better understand the testbed’s thermal behavior, Figure 3
shows its power and temperature response over time. Each graph
has two lines, which correspond to the same computation being per-
formed in sustainable (single-core) and maximum-intensity sprint
mode for the sobel workload. At time zero (on the x-axis), the
power in sustainable mode (dotted line) rises from the idle-draw of
4.5 W to 9.5 W (Figure 3(a)), causing a gradual increase in temper-
ature (Figure 3(b)); the computation completes after 26 s, at which
time the power level drops back to idle and the temperature begins
to fall. Under sprinting (solid line), power jumps initially to 50 W,
which causes the temperature to rise precipitously. In fact, the tem-
perature rise is so large that the leakage power of the chip grows
over the duration of the sprint, causing power to increase further to
a peak of 55 W. After a few seconds, the computation completes,

0 10 20 30 40

time (s)

0

20

40

60

p
o
w

er
 (

W
) sprint

sustained

(a) Power

0 10 20 30 40

time (s)

30

40

50

60

70

80

te
m

p
er

at
u
re

 (
C

)

sprint

sustained

Tmax

(b) Temperature

Figure 3. Chip power and thermal behavior for sustained and
sprinting operation.

the chip returns to idle, and temperature falls quickly (although not
as quickly as it rose).

3.2 Energy Impacts of Sprinting
Energy consumption is a critical metric especially for battery-
powered devices, so sprinting may not be an attractive option
if it uses more energy than slower sustained execution. Perhaps
counter-intuitively, however, we find sprinting can actually result
in net gains in energy efficiency by (i) amortizing the fixed uncore
power consumption over a larger number of active cores and (ii)
capturing race-to-idle effects. Our conclusions stand in contrast to
our previously published predictions from simulation-based analy-
sis of computational sprinting [45], which neglected uncore power
and hence suggested that sprinting might at best be energy neutral.

When considering energy implications, there are two distinct
knobs available for sprinting: the number of cores and the clock fre-
quency. Increasing the clock frequency requires increasing voltage
as well, leading to a super-linear increase in energy consumption.
In contrast, we find that increasing the number of cores results in
a sub-linear energy increase, consistent with previously published
estimates [6]. For the chip in our testbed, all but one core can be
disabled (clock and power gated) but the last-level cache and ring
interconnect are always powered and active unless the system has
been suspended to DRAM. In this chip, this background power
draw is substantial and largely independent of the number of ac-
tive cores. Thus, activating all four cores requires only 2× more
power than single-core operation. For any platform in which back-
ground/static power dissipation is substantial, using more cores
will improve energy efficiency and responsiveness for unabridged
sprints by amortizing these fixed overheads (provided the workload
performance scales with the number of cores). On our testbed, four-
core sprints dominate configurations that use fewer cores, hence,
we omit such configurations from our results.

Whereas our responsiveness analysis in the preceding section
considered only the most intense possible sprint, incorporating
all cores at maximum frequency/voltage, because of the super-
linear power increase of voltage/frequency scaling, we also con-

0

2

4

6

8

n
o

rm
al

iz
ed

 s
p

ee
d

u
p

3.
2

2.
8

2.
4

2.
0

1.
6

sobel

3.
2

2.
8

2.
4

2.
0

1.
6

disparity

3.
2

2.
8

2.
4

2.
0

1.
6

segment
3.

2
2.

8
2.

4
2.

0
1.

6

kmeans

3.
2

2.
8

2.
4

2.
0

1.
6

feature

3.
2

2.
8

2.
4

2.
0

1.
6

texture

(a) Speedup

0

2

4

6

n
o

rm
al

iz
ed

 s
p

ri
n

t
p

o
w

er

3.
2

2.
8

2.
4

2.
0

1.
6

sobel

3.
2

2.
8

2.
4

2.
0

1.
6

disparity

3.
2

2.
8

2.
4

2.
0

1.
6

segment

3.
2

2.
8

2.
4

2.
0

1.
6

kmeans

3.
2

2.
8

2.
4

2.
0

1.
6

feature

3.
2

2.
8

2.
4

2.
0

1.
6

texture

(b) Power

0.0

0.5

1.0

1.5

n
o

rm
al

iz
ed

 e
n

er
g

y Idle

Sprint

3.
2

2.
8

2.
4

2.
0

1.
6

sobel

3.
2

2.
8

2.
4

2.
0

1.
6

disparity

3.
2

2.
8

2.
4

2.
0

1.
6

segment

3.
2

2.
8

2.
4

2.
0

1.
6

kmeans

3.
2

2.
8

2.
4

2.
0

1.
6

feature

3.
2

2.
8

2.
4

2.
0

1.
6

texture

(c) Energy

Figure 4. Speedup, power, and energy (normalized to the one-core
1.6 GHz sustainable baseline) for four cores across frequencies.

sider sprinting with lower frequencies to improve energy efficiency.
Figure 4 shows the responsiveness, power, and energy implications
of sprinting with all four cores at various frequency/voltage lev-
els. The left-most bar in each group of Figure 4(a) shows the same
speedup (6.3× on average) with a maximum-intensity four-core
3.2 GHz sprint that was presented earlier in Figure 2. The corre-
sponding bars in Figure 4(b) show the 5× power increase for such
a sprint. As the frequency is lowered, the responsiveness improve-
ments decrease, but power decreases relatively more.

Figure 4(c) shows the energy implications of each sprint. We
apportion energy into two components. The lower portion of the
bar depicts the energy consumed during the sprint itself; because of
the non-linear relationship between performance and power under
frequency/voltage scaling, higher frequency sprints consume more
energy. The upper portion of each bar depicts the energy consumed
as a result of idle power dissipated after the end of the sprint
until the work would have completed under sustainable single-
core execution. By measuring energy consumption over the period
of the slower, sustainable execution, we facilitate a fair efficiency
comparison.

Ignoring idle energy for a moment, we see that even sprinting
at maximum intensity reduces the energy consumed during the

computation. The background power conserved by finishing sooner
more than compensates for the super-linear cost of voltage scaling,
reducing energy up to 30%. At lower frequencies, this potential
energy savings grows to nearly 40%. Similar race-to-idle effects
have been observed previously [5, 7, 21, 22, 33, 36, 40].

Unfortunately, chips continue to dissipate power even when
idle. By finishing earlier, the chip must idle for longer [40]; thus
we must also consider the top segment of each bar, which adds the
energy consumed during the additional idle time. For the 3.2 GHz
four-core sprint, once the idle energy is included, the total energy is
21% higher than the sustainable baseline. However, when we con-
sider the lowest-frequency four-core sprint, we find an energy effi-
ciency gain of 6% even when including idle energy. Hence, when
sprint intensity is selected appropriately, sprinting can improve en-
ergy efficiency as well as responsiveness even on today’s chips. Fi-
nally, we note that, even though the chip idle power is already less
than one tenth of its peak, there is still ample motivation to optimize
idle power further: the energy efficiency advantages of sprinting
grow rapidly as idle power vanishes. With several emerging mo-
bile architectures seeking to aggressively reduce idle power (e.g.,
NVIDIA Tegra 3’s vSMP/4-plus-1 [41] and ARM’s big.LITTLE
multicores [24]), we see substantial potential for sprinting as an en-
ergy saver as well as a responsiveness enabler.

4. Truncated Sprints
Ideally, all sprints would be unabridged, completing before avail-
able thermal capacitance is exhausted. However the system must
avoid overheating for computations that cannot be completed en-
tirely within a sprint while aiming to preserve some of the respon-
siveness benefits of sprinting.

This section first describes the software for truncating sprints to
avoid overheating by throttling frequency and disabling all but one
core. Next, we observe that for some workloads, the naive approach
to completing work after truncation, i.e., migrating threads to be
multiplexed on a single core, can result in significant degradation
in performance and energy efficiency. We explore mitigating these
effects using a sprinting-aware task-based parallel runtime. Finally,
we motivate sprint pacing by showing that the most responsive
mode of sprinting is not always maximum-intensity sprints, but
instead is sprinting at the most intense rate that still allows the sprint
to remain unabridged.

4.1 Implementing and Evaluating Sprint Truncation
The testbed software monitors die temperature using a thread to
query the on-die temperature sensor every 100 ms. Although im-
plemented as a user-level thread in our testbed prototype, ultimately
this functionality would likely be integrated into the operating sys-
tem’s dynamic thermal management facility. When the die temper-
ature reaches Tmax, the software truncates the sprint by: (i) pinning
all threads to a single core to force the operating system to migrate
the threads, (ii) disabling the now-idle cores, and (iii) changing the
frequency of the single core to the lowest configurable frequency.
The testbed software implements these steps using system calls and
the standard Linux ACPI interface.

To explore the behavior of sprint truncation, we reconfigure the
workloads to run longer so that the computation exceeds the avail-
able thermal capacitance for sprinting. Figure 5 shows the impact
of sprint truncation on the power and temperature of the chip over
time for both sustained execution and a truncated sprint. As be-
fore, temperature rises sharply when sprinting begins from the idle
state at time zero. Once the temperature reaches the Tmax value
of 75◦ C, the runtime system invokes sprint truncation, which re-
sults in the abrupt drop in power from 55 W to 9.5 W. In response,
the temperature stops rising, as the system’s power consumption
now matches the rate of cooling dissipation. In fact, the temper-

0 10 20 30 40

time (s)

0

20

40

60

p
o
w

er
 (

W
)

sprint

sustained

(a) Power

0 10 20 30 40

time (s)

30

40

50

60

70

80

te
m

p
er

at
u
re

 (
C

)

sprint

sustained

Tmax

(b) Temperature

Figure 5. Power and thermal response for truncated sprints.

ature drops initially as the heat spreads throughout the die, pack-
age, and surrounding components. After truncation, the computa-
tion continues in sustainable mode with all threads multiplexed on a
single active core at minimum frequency. The system’s thermal re-
sponse matches that of the sustained computation during this inter-
val. When the computation completes, the remaining core becomes
idle, and the chip begins to cool.

Performance and energy penalties of sprint truncation. To
evaluate the impact of sprint truncation, we vary the length of each
computation and measure responsiveness across sprint intensities.
In Figure 6, each group of bars shows the execution time (Fig-
ure 6(a)) or energy (Figure 6(b)) for maximum-intensity sprinting
for varying computation lengths normalized to a non-sprinting sys-
tem. The segments of each bar indicate the fraction of time spent
in sprint (bottom segment), sustained (middle segment), and idle
modes (top segment). Unsurprisingly, as the computation length
increases beyond the sprint capacity, larger and larger fractions of
time are spent computing in sustained mode. Correspondingly, the
impact of sprinting on execution time (and thus responsiveness)
and energy is smaller for longer computations as less time is spent
sprinting. One seeming anomaly is that truncated sprinting is actu-
ally slower than the sustained baseline for two workloads (feature
and texture), which we address next.

4.2 Mitigating Overheads of Truncated Sprints
Sprint truncation results in all active threads being multiplexed
on the single remaining core, which leads to a net slowdown in
some workloads relative to the sustainable baseline (Figure 6(a)).
Although it is expected that long-running computations would re-
ceive little benefit from an initial sprint, the observed degradation is
highly undesirable as ideally sprinting would “do no harm” to long-
running computations. The observed degradation in these work-
loads is a result of multiplexing all threads on a single core. The re-
sulting oversubscribed system is prone to known pathologies from
contention on synchronization, load imbalance, convoying, and fre-
quent context switches [9, 25, 28, 29, 50].

0

1

2

3

n
o

rm
a
li

z
e
d

 r
u

n
ti

m
e

1 2 4 8 16

feature

1 2 4 8 16

texture

4.1 5.8

Figure 7. Runtime penalty from oversubscription with increasing
numbers of threads on a single core.

Demonstrating the penalty of oversubscription. To demon-
strate the performance penalty of oversubscription, Figure 7 shows
the performance impact of spawning N threads but pinning them
to a single core. As the amount of oversubscription increases, so
does the penalty. Although most of the workloads are not sensi-
tive to oversubscription (omitted for brevity), the effect is partic-
ularly pronounced in texture, where we see a penalty of over
2.5× for a four-to-one oversubscription ratio. The penalty is as high
as 5.8× for 16 threads.

Conventional approaches to mitigating the penalty of over-
subscription. This well-known phenomenon has several typically
prescribed mitigation approaches. One approach—avoiding the
problem of oversubscription by spawning only as many threads
as cores—is not applicable because sprint truncation changes the
number of available cores while the computation is executing. An-
other mitigating approach is to tailor shared-memory synchroniza-
tion primitives (locks and barriers) to yield the processor instead
of busy waiting. We explored various implementations and our
reported results already include user-level synchronization primi-
tives that yield() after spinning for 1000 cycles. These primitives
reduced the prevalence of the oversubscription penalty, but extra
context switches are still required and the penalty remains for two
workloads due to their frequent use of barrier synchronization. An-
other approach is to have programs dynamically adjust the number
of active threads [50], which is the approach we build upon here.

Sprint-aware task-based parallel runtime to mitigate over-
subscription penalties. Efficient sprint truncation requires an effi-
cient mechanism to dynamically change the number of active soft-
ware threads. To provide such a mechanism, we look toward task-
queue based worker thread execution frameworks [1, 10, 16, 19, 30,
50], in which applications are decomposed into tasks and the pro-
gram is oblivious to the actual number of worker threads. In such
frameworks, the tasks created by the application are then assigned
to thread queues. Worker threads first look for tasks to execute in
their local task queue. Upon the absence of a local task, workers
“steal” tasks from other threads’ task queues. The core-oblivious
nature of the task-based model, coupled with its automatic load bal-
ancing via task stealing facilitates dynamically changing the num-
ber of worker threads. Reducing the number of threads is as simple
as having a worker thread go to sleep once it has completed its cur-
rent task.

We mitigate oversubscription penalties with a sprint-aware task-
stealing runtime framework (similar to Intel’s Threading Building
Blocks [1]). Before dequeuing another task to execute, a thread
first queries a shared variable that indicates the number of worker
threads that should be active. If the desired number of active threads
is lower than the worker thread’s identifier, the worker thread exits.
Any pending tasks in that thread’s queues will eventually be stolen
and executed by the worker thread running on the single remaining
core after a sprint is truncated. The same monitor thread that other-

0.0

0.5

1.0

1.5

2.0

n
o
rm

al
iz

ed
 r

u
n
ti

m
e

2.7

Sustained

Sprint

sobel disparity segment kmeans feature texture

(a) Runtime

0.0

0.5

1.0

1.5

2.0

n
o
rm

al
iz

ed
 e

n
er

g
y

3.0Idle

Sustained

Sprint

sobel disparity segment kmeans feature texture

(b) Energy

Figure 6. Runtime and energy spent during sprinting, sustained, and idle modes for 4-core sprints at 3.2 Ghz (normalized to the one-core
1.6 Ghz baseline.) Bars represent increasing computation lengths from left to right.

50 100 150 200

worksize (sustained runtime in seconds)

0
1
2
3
4
5
6
7
8

n
o
rm

al
iz

ed
 s

p
ee

d
u
p

texture unmodified

texture task-based

(a) Speedup

50 100 150 200

worksize (sustained runtime in seconds)

0

1

2

3

4

n
o
rm

al
iz

ed
 e

n
er

g
y texture unmodified

texture task-based

(b) Energy

Figure 8. Speedup and energy comparison of the unmodified
threaded and task-based implementations of texture.

wise handles sprint termination is responsible for setting the desired
number of active threads by writing to the shared variable. This
task-based mechanism does not replace the existing thread migra-
tion and core disabling mechanism; that mechanism is still needed
in case a thread is executing a long task, which must be suspended

and migrated to avoid overheating. However, the task-based pol-
icy ensures that eventually all but one worker thread will be put to
sleep, thus avoiding the oversubscription penalty for the remainder
of the computation.

To evaluate the effectiveness of this approach, we create a vari-
ant of the texture workload rewritten for this task-based par-
allelism model. Figure 8 shows the sprint truncation behavior of
the original multi-threaded version of texture and the task-based
variant for various computation lengths. Both versions have sim-
ilar responsiveness when the computation is short and the sprint
is unabridged. However, whereas the performance of the original
multi-threaded version of texture falls well below that of the sus-
tainable baseline, the task-based texture variant converges to it.
This experiment indicates that a sprint-aware task-based runtime
can eliminate the inefficiencies of sprint truncation, allowing for
robust “do no harm” sprinting.

4.3 Sprint Pacing
Section 3 concluded that for unabridged sprints, sprinting at max-
imum intensity is best to improve responsiveness. However, when
maximum-intensity sprinting results in sprint truncation, the choice
of sprint intensity is not so simple. Figure 9 shows responsiveness
benefits over a sustainable baseline for four-core sprints across fre-
quencies ranging from 3.2 GHz to 1.6 GHz. For short computations
(the far left of the graph), maximum-intensity sprinting maximizes
responsiveness; for large computations, the responsiveness is no
better than sustainable execution. However, for intermediate com-
putation lengths, the optimal sprinting mode is not always maxi-
mum sprint intensity. In such cases—just as in human runners—
it is better to sprint at a slower pace for longer than to sprint at
maximum pace for an extremely short duration. This observation
motivates the need for a sprint pacing policy.

Benefits of paced sprinting. To better understand the opportu-
nity for sprint pacing, consider the difference in maximum sprint

20 40 60 80 100

worksize (baseline runtime in seconds)

0
1
2
3
4
5
6
7
8

n
o
rm

al
iz

ed
 s

p
ee

d
u
p

3.2 GHz

2.8 GHz

2.4 GHz

2.0 GHz

1.6 GHz

(a) Speedup

20 40 60 80 100

worksize (baseline runtime in seconds)

0.8

1.0

1.2

n
o
rm

al
iz

ed
 e

n
er

g
y

3.2 GHz

2.8 GHz

2.4 GHz

2.0 GHz

1.6 GHz

(b) Energy

Figure 9. Speedup and energy versus size of computation for
sprinting with four cores at different differences.

duration for four cores at 3.2 GHz vs. 1.6 GHz, illustrated with
power and temperature curves in Figure 10. The responsiveness ad-
vantage due to doubling frequency is 2× at best. However, the max-
imum sprint duration at 1.6 GHz is 6.3× longer than the 3.2 GHz
sprint, implying that a 1.6 GHz sprint can complete over 3× more
work. The less intense sprint completes more work for three rea-
sons. First, lowering frequency and voltage results in a more en-
ergy efficient operating point, so the thermal capacitance consumed
per unit of work is lower. Second, the longer sprint duration allows
more heat to be dissipated to ambient during the sprint. Third, as we
discussed previously, maximum intensity sprints are unable to fully
exploit all thermal capacitance in the heat spreader because the lat-
eral heat conduction delay to the extents of the copper plate is larger
than the time for the die temperature to become critical. By sprint-
ing less intensely, more time is available for heat to spread and more
of the heat spreader’s thermal capacitance can be exploited.

Toward a sprint pacing policy. The most critical impact on
sprint pacing policy is the length of the computation, and we en-
vision two general approaches to sprint pacing. The first approach
is predictive sprint pacing in which the length of the computation
is predicted to select a near-optimal sprint pace. Such a prediction
(e.g., [27]) could be performed by the hardware, operating system,
or with hints from the application program directly. In the absence
of such a prediction, an alternative approach is adaptive sprint pac-
ing in which the pacing policy dynamically adapts the sprint pace
to capture the best-case benefit for short computations, but moves
to a less intense sprint mode to extend the length of computations
for which sprinting improves responsiveness. Figure 11 shows the
behavior of a simple adaptive sprint policy that sprints at full inten-
sity until half of the thermal capacity is consumed, after which it
switches to less intense and more power-efficient sprints by keep-
ing all four cores active but throttling their frequency to 1.6 GHz.
As shown in the graph, this policy captures the benefits of sprinting
for short computations but maintains some responsiveness gains for

0 10 20 30 40

time (s)

0

20

40

60

p
o
w

er
 (

W
) sprint-3.2 GHz

sprint-1.6 GHz

(a) Power

0 10 20 30 40

time (s)

30

40

50

60

70

80

te
m

p
er

at
u
re

 (
C

)

sprint-3.2 GHz

sprint-1.6 GHz

Tmax

(b) Temperature

Figure 10. Power and thermal response for sprinting with four
cores at 1.6 GHz.

longer computations. Although the dynamic policy falls short of an
a priori selection of the best sprint intensity for some computation
lengths, it is robust in that it provides benefits over a larger range
of computation lengths.

Other parameters that may impact sprint pacing policies.
The optimal sprint pace is potentially impacted by other factors.
Although the most basic factor is the length of the computation,
other factors include the performance and power impact of both the
clock frequency and the number of cores [31, 32, 43]. For example,
a workload that has poor parallel scaling may benefit more from
higher frequency than additional cores. In our four-core testbed
with workloads that scale well, we found such effects were not
significant, but they will likely become more critical in the future
as the number of cores on a chip increases.

5. Extending Sprints using Latent Heat
Thus far, this paper has examined policy approaches to mitigat-
ing the impacts of limited sprint duration. A complementary ap-
proach to increase sprinting effectiveness is to engineer a system
that supports longer sprints by including more thermal capacitance.
Instead of leveraging only the specific heat of conventional materi-
als, prior work proposed using the latent heat of a phase change ma-
terial (PCM) to add thermal capacitance to a sprinting system [45].
Latent heat has the advantage that it can absorb substantial heat
without a change in temperature. Whereas each gram of copper in
the heat spreader can absorb 11.5 J over a 30◦ C rise, many phase
change materials used for heat storage can absorb 200 J per gram
or more [55].

To test the potential of phase change materials to extend sprint
duration, we perform proof-of-concept experiments using our
testbed. We are unaware of a readily available PCM designed
to meet the needs of computational sprinting (e.g., stability over
numerous rapid thermal cycles with a melting point within the
relevant temperature range), so we test paraffin (BW-40701 from
BlendedWaxes, Inc.) which has a melting point of 54◦ C. Because
paraffin has poor thermal conductivity (0.2 W/mK), we infuse it

20 40 60 80 100 120

worksize (baseline runtime in seconds)

0
1
2
3
4
5
6
7
8

n
o
rm

al
iz

ed
 s

p
ee

d
u
p

adaptive

4 cores, 1.6 GHz

4 cores, 3.2 GHz

(a) Speedup

20 40 60 80 100 120

worksize (baseline runtime in seconds)

0.8

1.0

1.2

n
o
rm

al
iz

ed
 e

n
er

g
y

adaptive

4 cores, 1.6 GHz

4 cores, 3.2 GHz

(b) Energy
Figure 11. Speedup and energy for sprinting based on an adaptive
allocation of sprint budget between the most responsive and most
energy efficient schemes.

in 0.9 g of Doucel aluminum foam (bulk thermal conductivity of
5 W/mK). To prevent leakage, we enclose the paraffin/foam struc-
ture in a 4.2 cm × 4.2 cm × 0.3 cm box of 0.013 cm thick copper
weighing 4 g. We then mount this enclosure on the processor socket
using screws to provide firm attachment and improve interfacial
heat transfer. Figure 12 illustrates our setup.

Figure 13 shows the thermal response of sprinting with four
cores at 1.6 GHz on this modified testbed, isolating the effects of
each of the labeled components. Adding the copper container and
aluminum foam alone (labeled empty foam) increases thermal ca-
pacitance due to the additional specific heat and nearly doubles the
baseline (air) sprint duration (37 s vs. 20 s). With the addition of 4 g
of PCM (wax), the testbed can sprint for 120 s—6× over the base-
line. The flattening in the PCM temperature curve is a consequence
of the PCM melting. Given the latent heat of paraffin wax (200 J/g),
4 g of such material can absorb about 800 J of heat when melting,
corresponding to an additional 40 s of sprint duration at 20 W. How-
ever, the observed sprint extension exceeds this estimate largely due
to the additional heat dissipated to the ambient over this duration,
and to a smaller extent, due to the specific heat of the wax.

To further distinguish the contribution of latent heat from spe-
cific heat, we replace the PCM with an equal weight of water (and
a plastic cap to prevent the water from evaporating), and observe
a sprint duration of 50 s. As the specific heat of water (4.2 J/gK)
is higher than that of paraffin (2 J/gK), we conclude that the latent
heat of the PCM indeed accounts for the substantial sprint exten-
sion. Although our experiments confirm that using PCM can be an
effective approach for extending sprint duration, significant oppor-
tunity remains for engineering more effective PCM materials and
composites, especially if incorporated directly within the package.

6. Sprint-and-Rest for Extended Computations
Whereas introducing additional thermal capacitance facilitates
longer sprints, maximum sprint duration remains finite. In the

(a) Phase change material on top of the package

Die Thermal Interface Material

Integrated Heat SpreaderPhase Change Material

(b) Cross-section of phase change material on the package

Figure 12. Testbed augmented with phase-change material.

0 100 200 300 400

time (s)

30

40

50

60

70

80

te
m

p
er

at
u
re

 (
C

)

Tmax
air

empty foam

water

wax
(with foam)

Figure 13. Comparison of sprinting thermal response with and
without PCM.

previous sections, we have analyzed sprint policy as a function
of workload size while considering only a single sprint. In this
section, we consider whether sprinting can also be beneficial for
extended (even indefinite) computations.

Over the long run, the average power consumption of a platform
is constrained by the heat dissipation of the cooling solution (i.e.,
the platform’s TDP). The obvious way to execute a long-running
computation is to select a sustainable operating mode that con-
sumes less power than the TDP (in which case the chip can op-
erate indefinitely). However, in a sprint-enabled system, one can
also consider an operating regime that alternates between sprint and
rest periods. Provided (i) the sprint periods are short enough to re-
main within temperature bounds and (ii) the rest periods are long
enough to dissipate the accumulated heat, such a sprint-and-rest
mode of operation is also sustainable indefinitely. That is, sprint-

100 200 300 400 500

time (s)

0

5

10

15

20

p
o
w

er
 (

W
)

(a) Power

100 200 300 400 500

time (s)

30

40

50

60

70

te
m

p
er

at
u
re

 (
C

)

sustained

sprint-and-rest

(b) Temperature

100 200 300 400 500

time (s)

0

100

200

300

cu
m

u
la

ti
v

e
w

o
rk

sustained

sprint-and-rest

(c) Work

Figure 14. Comparison of power, temperarature, and cumulative
work done with sprint-and-rest and sustained computation.

and-rest is sustainable as long as the average (but not necessarily
instantaneous) power dissipation over a sprint-and-rest cycle is at
or below the platform’s sustainable power dissipation.

We contrast conventional sustainable operation using a single-
core at 1.6 GHz and sprint-and-rest operation with four cores at
1.6 GHz. For the sprint-and-rest mode to be sustainable, its aver-
age power draw must be at or below the 9.5 W dissipation of the
single-core mode. On our testbed, a four-core 1.6 GHz sprint con-
sumes 20 W, while idling consumes 4.5 W. Hence, the maximum
sustainable sprint-to-rest ratio is 1:2.1. We conservatively choose a
ratio of 1:2.5, with a sprint duration of 5 s followed by a rest period
of 12.5 s. We repeat this cycle over several minutes and measure
temperature fluctuations, power, and the total work completed.

Counterintuitively, we found that this sprint-and-rest mode pro-
vides higher performance despite marginally lower average power
consumption than the sustainable baseline. Figure 14 shows power,
temperature, and cumulative completed work over several minutes.
The power plot (Figure 14(a)) shows the staccato instantaneous
power pattern of sprint-and-rest operation. The temperature plot
(Figure 14(b)) reveals temperature increases for both modes—with
sprint-and-rest following a sawtooth pattern—but both modes con-
verge to a temperature below the 75◦ C threshold. Careful exami-
nation of the power plot reveals a slight upward trend for the power
consumption of both sustained and sprint-and-rest execution, due

to temperature-dependent leakage. The cumulative work plot (Fig-
ure 14(c)) demonstrates the performance advantage of sprint-and-
rest; despite the stair-step pattern of forward progress, sprint-and-
rest completes work at an average rate 35% higher than single-
core sustained. Hence, sprint-and-rest provides both greater perfor-
mance and better energy-efficiency than steady sustained operation.

Sprint-and-rest outperforms TDP-constrained sustained opera-
tion because the instantaneous energy efficiency of quad-core op-
eration is better than single-core operation; operating all four cores
provides quadruple the performance at double the power. This ben-
efit arises because quad-core operation amortizes the fixed power
costs of operating the chip over more useful work. Sprint-and-
rest will provide a net efficiency gain whenever the instaneous
energy-efficiency ratio of sprint vs. sustainable operation exceeds
the sprint-to-rest time ratio required to cool. The advantages of
sprint-and-rest grow if the idle power of the chip is reduced. We
expect that similar observations may hold for chips that provide
other kinds of performance-power assymetry, for example, due to
heterogeneous cores. On the other hand, repeated thermal cycling
introduced by sprint-and-rest can affect the reliability of the chip
and potentially cause thermal stress in packaging components like
solder bumps. We leave an analysis of reliability to future work.

7. Conclusions
Finding ways to deliver value to customers from dark silicon may
be one of the defining challenges of the next decade of computer ar-
chitecture research. Computational sprinting offers one such value
proposition for bursty interactive applications by transiently acti-
vating dark silicon to deliver performance when end users need it
most—when they are waiting for their device to respond.

Whereas prior work argued for the feasibility and potential of
computational sprinting in theory, in this paper we reduce it to
practice through experimentation on a concrete hardware/software
sprinting testbed. We have shown that even though our testbed is
constructed with an existing chip that was not designed with sprint-
ing in mind, sprinting can provide not only substantial gains in re-
sponsiveness, but in fact also provides net energy efficiency gains
by racing to idle. Even for extended computations, we find that a
thermally constrained sprint-enabled chip achieves better perfor-
mance through sprint-and-rest operation rather than sustained exe-
cution. The central insight underlying these counterintuitive results
is that chip energy efficiency is maximized by activating all use-
ful cores—disregarding thermal limits—to best amortize the fixed
costs of operating at all. Moreover, our results provide ample mo-
tivation for chip designers to further optimize idle power; although
many chips already achieve 10-to-1 ratios between peak and idle
power, our results indicate that further overall energy efficiency
gains of nearly 40% could be achieved by driving down idle power.

Our study demonstrates the synergy between task-based work-
stealing parallelism and sprinting; by dissociating parallel work
from specific threads, we give the runtime the freedom it needs to
manage sprint pacing and avoid oversubscription penalties for trun-
cated sprints. We have performed an investigation of sprint pacing,
demonstrating the benefits of adaptive pacing, but anticipate rich
opportunities for further innovation as chips scale in heterogene-
ity and number of cores. Finally, we have shown the first experi-
mental results that phase change materials can indeed extend sprint
durations, which may open a myriad of avenues for innovation in
packaging and thermal management.

Acknowledgments
This work was supported in part by NSF grants CCF-0644197,
CCF-0815457, CCF-1161505 and CCF-1161681. The authors
would like to thank Yatin Manerkar and the anonymous review-
ers for their feedback.

References
[1] Threading Building Blocks. URL http://

threadingbuildingblocks.org.
[2] Nokia Point and Find, 2006. URL http://www.pointandfind.

nokia.com.
[3] Google Goggles, 2009. URL http://www.google.com/mobile/

goggles.
[4] 2nd Generation Intel Core Processor Family Desktop and In-

tel Pentium Processor Family Deskop, and LGA1155 Socket,
2011. URL http://www.intel.com/content/dam/doc/guide/
2nd-gen-core-lga1155-socket-guide.pdf.

[5] S. Albers and A. Antoniadis. Race to Idle: New Algorithms for Speed
Scaling with a Sleep State. In Proceedings of the Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms, 2012.

[6] O. Azizi, A. Mahesri, B. C. Lee, S. J. Patel, and M. Horowitz. Energy
Performance Tradeoffs in Processor Architecture and Circuit Design:
A Marginal Cost Analysis. In Proceedings of the 37th Annual Inter-
national Symposium on Computer Architecture, June 2010.

[7] P. Bailis, V. J. Reddi, S. Gandhi, D. Brooks, and M. I. Seltzer.
Dimetrodon: Processor-level Preventive Thermal Management via
Idle Cycle Injection. In Proceedings of the 48th Design Automation
Conference, June 2011.

[8] G. Blake, R. G. Dreslinski, T. Mudge, and K. Flautner. Evolution of
Thread-Level Parallelism in Desktop Applications. In Proceedings of
the 37th Annual International Symposium on Computer Architecture,
June 2010.

[9] M. Blasgen, J. Gray, M. Mitoma, and T. Price. The Convoy Phe-
nomenon. ACM SIGOPS Operating Systems Review, 13, April 1979.

[10] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou. Cilk: An Efficient Multithreaded Runtime Sys-
tem. In Proceedings of the 5th ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming (PPOPP), July 1995.

[11] S. Borkar and A. A. Chien. The Future of Microprocessors. Commu-
nications of the ACM, 54(5):67–77, 2011.

[12] K. Chakraborty. Over-provisioned Multicore Systems. PhD thesis,
University of Wisconsin, 2008.

[13] Chipworks. The New iPad: A Closer Look In-
side, Mar. 2012. URL http://www.chipworks.
com/en/technical-competitive-analysis/
resources/recent-teardowns/2012/03/
the-new-ipad-a-closer-look-inside/.

[14] J. Clemons, H. Zhu, S. Savarese, and T. Austin. MEVBench: A Mobile
Computer Vision Benchmarking Suite. In Proceedings of the IEEE
International Symposium on Workload Characterization, Sept. 2011.

[15] Computing Community Consortium. 21st Century Computer Archi-
tecture: A Community Whitepaper, Mar. 2012. URL http://cra.
org/ccc/docs/init/21stcenturyarchitecturewhitepaper.
pdf.

[16] G. Contreras and M. Martonosi. Characterizing and Improving the
Performance of Intel Threading Building Blocks. In Proceedings
of the IEEE International Symposium on Workload Characterization,
Sept. 2008.

[17] B. Erol, E. Antunez, and J. J. Hull. PACER: Toward a Cameraphone-
based Paper Interface for Fine-grained and Flexible Interaction with
Documents. In Proceedings of the International Symposium on Multi-
media, 2009.

[18] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger. Dark Silicon and the End of Multicore Scaling. In Pro-
ceedings of the 38th Annual International Symposium on Computer
Architecture, June 2011.

[19] M. Frigo, C. E. Leiserson, and K. H. Randall. The Implementation of
the Cilk-5 Multithreaded Language. In Proceedings of the SIGPLAN
1998 Conference on Programming Language Design and Implemen-
tation, June 1998.

[20] S. H. Fuller and L. I. Millett. Computing Performance: Game Over or
Next Level? IEEE Computer, 44(1):31–38, Jan. 2011.

[21] A. Gandhi, M. Harchol-Balter, R. Das, and C. Lefurgy. Optimal Power
Allocation in Server Farms. In Proceedings of the 2009 ACM SIG-
METRICS Conference on Measurement and Modeling of Computer
Systems, June 2009.

[22] M. Garrett. Powering Down. Queue, 5(7):16–21, 2007.
[23] B. Girod, V. Chandrasekhar, D. M. Chen, N.-M. Cheung,

R. Grzeszczuk, Y. Reznik, G. Takacs, S. S. Tsai, and R. Vedantham.
Mobile Visual Search. IEEE Signal Processing Magazine, July 2011.

[24] P. Greenhalgh. Big.LITTLE Processing with ARM Cortex-A15 &
Cortex-A7: Improving Energy Efficiency in High-Performance Mo-
bile Platforms, Sept. 2011.

[25] A. Gupta, A. Tucker, and S. Urushibara. The Impact of Operating
System Scheduling Policies and Synchronization Methods of Perfor-
mance of Parallel Applications. In Proceedings of the 1991 ACM Sig-
metrics Conference on Measurement and Modeling of Computer Sys-
tems, May 1991.

[26] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Toward
Dark Silicon in Servers. IEEEMICRO, 31(4):6–15, July 2011.

[27] C. J. Hughes, P. Kaul, S. V. Adve, R. Jain, C. Park, and J. Srinivasan.
Variability in the Execution of Multimedia Applications and Implica-
tions for Architecture. In Proceedings of the 28th Annual International
Symposium on Computer Architecture, July 2001.

[28] F. R. Johnson, R. Stoica, A. Ailamaki, and T. C. Mowry. Decoupling
Contention Management from Scheduling. In Proceedings of the 15th
International Conference on Architectural Support for Programming
Languages and Operating Systems, Mar. 2010.

[29] L. I. Kontothanassis, R. W. Wisniewski, and M. L. Scott. Scheduler-
Conscious Synchronization. ACM Transactions on Computer Systems,
15(1):3–40, Feb. 1997.

[30] D. Lea. A Java Fork/Join Framework. In Proceedings of the ACM Java
Grande 2000 Conference, 2000.

[31] J. Li and J. F. Martı́nez. Power-Performance Considerations of Parallel
Computing on Chip Multiprocessors. ACM Transactions on Architec-
ture and Code Optimization, 2(4):397–422, Dec. 2005.

[32] J. Li and J. F. Martinez. Dynamic Power-Performance Adaptation of
Parallel Computation on Chip Multiprocessors. In Proceedings of the
12th Symposium on High-Performance Computer Architecture, Feb.
2006.

[33] X. Li, Z. Li, F. David, P. Zhou, Y. Zhou, S. Adve, and S. Kumar. Per-
formance Directed Energy Management for Main Memory and Disks.
In Proceedings of the 11th International Conference on Architectural
Support for Programming Languages and Operating Systems, Oct.
2004.

[34] Y. Li, B. C. Lee, D. Brooks, Z. Hu, and K. Skadron. CMP Design
Space Exploration Subject to Physical Constraints. In Proceedings
of the 12th Symposium on High-Performance Computer Architecture,
Feb. 2006.

[35] G. Loudon, O. Pellijeff, and L. Zhong-Wei. A Method for Handwriting
Input and Correction on Smartphones. In Proceedings of the 7th In-
ternational Workshop on Frontiers in Handwriting Recognition, 2000.

[36] D. Meisner, B. T. Gold, and T. F. Wenisch. PowerNap: Eliminating
Server Idle Power. In Proceedings of the 14th International Confer-
ence on Architectural Support for Programming Languages and Op-
erating Systems, Mar. 2009.

[37] R. Merritt. ARM CTO: Power Surge Could Create
’Dark Silicon’. EE Times, Oct. 2009. URL http:
//www.eetimes.com/electronics-news/4085396/
ARM-CTO-power-surge-could-create-dark-silicon-.

[38] F. J. Mesa-Martinez, E. K. Ardestani, and J. Renau. Characterizing
Processor Thermal Behavior. In Proceedings of the 15th International
Conference on Architectural Support for Programming Languages
and Operating Systems, Mar. 2010.

[39] A. Mirhoseini and F. Koushanfar. HypoEnergy: Hybrid
Supercapacitor-Battery Power-Supply Optimization for Energy
Efficiency. In Proceedings of the Conference on Design, Automation
and Test in Europe, Mar. 2011.

[40] A. Miyoshi, C. Lefurgy, E. Van Hensbergen, R. Rajamony, and
R. Rajkumar. Critical Power Slope: Understanding the Runtime Ef-
fects of Frequency Scaling. In Proceedings of the 2002 International
Conference on Supercomputing, June 2002.

[41] Variable SMP (4-PLUS-1TM) A Multi-Core CPU Architecture for
Low Power and High Performance. NVIDIA, 2011.

[42] L. Palma, P. Enjeti, and J. Howze. An Approach to Improve Battery
Run-time in Mobile Applications with Supercapacitors. In 34th An-
nual IEEE Power Electronics Specialist Conference, volume 2, June
2003.

[43] S. Park, W. Jiang, Y. Zhou, and S. Adve. Managing Energy-
Performance Tradeoffs for Multithreaded Applications on Multipro-
cessor Architectures. In Proceedings of the 2007 ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems, June
2007.

[44] M. Pedram, N. Chang, Y. Kim, and Y. Wang. Hybrid Electrical Energy
Storage Systems. In Proceedings of the 2010 International Symposium
on Low Power Electronics and Design, 2010.

[45] A. Raghavan, Y. Luo, A. Chandawalla, M. C. Papaefthymiou, K. P.
Pipe, T. F. Wenisch, and M. M. K. Martin. Computational Sprinting. In
Proceedings of the 17th Symposium on High-Performance Computer
Architecture, Feb. 2012.

[46] E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, and
E. Weissmann. Power Management Architecture of the 2nd
Generation Intel Core Microarchitecture, Formerly Codenamed
Sandy Bridge. In Hot Chips 23 Symposium, Aug. 2011.

[47] A. Shye, B. Scholbrock, and G. Memik. Into the Wild: Studying Real
User Activity Patterns to Guide Power Optimizations for Mobile Ar-
chitectures. In Proceedings of the 42nd International Symposium on
Microarchitecture, Nov. 2009.

[48] M. B. Taylor. Is Dark Silicon Useful? Harnessing the Four Horsemen
of the Coming Dark Silicon Apocalypse. In Proceedings of the 49th
Design Automation Conference, June 2012.

[49] A. Tilli, A. Bartolini, M. Cacciari, and L. Benini. Don’t Burn Your Mo-
bile! Safe Computational Re-Sprinting via Model Predictive Control.
In Proceedings of the Eighth IEEE/ACM/IFIP International Confer-
ence on Hardware/Software Codesign and System Synthesis, 2012.

[50] A. Tucker and A. Gupta. Process Control and Scheduling Issues for
Multiprogrammed Shared-Memory Multiprocessors. In Proceedings
of the 12th ACM Symposium on Operating System Principles, 1989.

[51] S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia,
S. Belongie, and M. B. Taylor. SD-VBS: The San Diego Vision Bench-
mark Suite. In Proceedings of the IEEE International Symposium on
Workload Characterization, Sept. 2009.

[52] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin,
J. Lugo-Martinez, S. Swanson, and M. B. Taylor. Conservation Cores:
Reducing the Energy of Mature Computations. In Proceedings
of the 15th International Conference on Architectural Support for
Programming Languages and Operating Systems, Mar. 2010.

[53] D. Wagner and D. Schmalstieg. Making Augmented Reality Practical
on Mobile Phones, Part I. Computer Graphics and Applications, IEEE,
29(3):12–15, 2009.

[54] L. Yan, L. Zhong, and N. Jha. User-Perceived Latency Driven Voltage
Scaling for Interactive Applications. In Proceedings of the 41st Design
Automation Conference, June 2005.

[55] B. Zalbaa, J. M. Marina, L. F. Cabezab, and H. Mehling. Review on
Thermal Energy Storage with Phase Change: Materials, Heat Transfer
Analysis and Applications. Applied Thermal Engineering, 23(3):251–
283, 2003.

