
Abstract

The Wisconsin Multifacet Project has created a
simulation toolset to characterize and evaluate the
performance of multiprocessor hardware systems
commonly used as database and web servers. We
leverage an existing full-system functional simula-
tion infrastructure (Simics [14]) as the basis
around which to build a set of timing simulator
modules for modeling the timing of the memory
system and microprocessors. This simulator infra-
structure enables us to run architectural experi-
ments using a suite of scaled-down commercial
workloads [3]. To enable other researchers to more
easily perform such research, we have released
these timing simulator modules as the Multifacet
General Execution-driven Multiprocessor Simula-
tor (GEMS) Toolset, release 1.0, under GNU GPL
[9].

1 Introduction
Simulation is one of the most important tech-

niques used by computer architects to evaluate
their innovations. Not only does the target machine
need to be simulated with sufficient detail, but it
also must be driven with a realistic workload. For
example, SimpleScalar [4] has been widely used in
the architectural research community to evaluate
new ideas. However it and other similar simulators
run only user-mode, single-threaded workloads
such as the SPEC CPU benchmarks [24]. Many
designers are interested in multiprocessor systems
that run more complicated, multithreaded work-
loads such as databases, web servers, and parallel
scientific codes. These workloads depend upon

many operating system services (e.g., I/O, synchro-
nization, thread scheduling and migration). Fur-
thermore, as the single-chip microprocessor
evolves to a chip-multiprocessor, the ability to sim-
ulate these machines running realistic multi-
threaded workloads is paramount to continue
innovation in architecture research.

Simulation Challenges. Creating a timing simula-
tor for evaluating multiprocessor systems with
workloads that require operating system support is
difficult. First, creating even a functional simulator,
which provides no modeling of timing, is a sub-
stantial task. Providing sufficient functional fidelity
to boot an unmodified operating system requires
implementing supervisor instructions, and interfac-
ing with functional models of many I/O devices.
Such simulators are called full-system simulators
[14, 20]. Second, creating a detailed timing simula-
tor that executes only user-level code is a substan-
tial undertaking, although the wide availability of
such tools reduces redundant effort. Finally, creat-
ing a simulation toolset that supports both full-sys-
tem and timing simulation is substantially more
complicated than either endeavor alone.

Our Approach: Decoupled Functionality and
Timing Simulation. To address these simulation
challenges, we designed a modular simulation
infrastructure (GEMS) that decouples simulation
functionality and timing. To expedite simulator
development, we used Simics [14], a full-system
functional simulator, as a foundation on which var-
ious timing simulation modules can be dynami-
cally loaded. By decoupling functionality and
timing simulation in GEMS, we leverage both the
efficiency and the robustness of a functional simu-

Multifacet’s General Execution-driven
Multiprocessor Simulator (GEMS) Toolset

Milo M. K. Martin1, Daniel J. Sorin2, Bradford M. Beckmann3, Michael R. Marty3, Min Xu4,
Alaa R. Alameldeen3, Kevin E. Moore3, Mark D. Hill3,4, and David A. Wood3,4

http://www.cs.wisc.edu/gems/

1Computer and Information
Sciences Dept.

Univ. of Pennsylvania

2Electrical and Computer
Engineering Dept.

Duke Univ.

3Computer Sciences Dept.
Univ. of Wisconsin-Madison

4Electrical and Computer
Engineering Dept.

Univ. of Wisconsin-Madison

ACM SIGARCH Computer Architecture News 92 Vol. 33, No. 4, September 2005

lator. Using modular design provides the flexibility
to simulate various system components in different
levels of detail.

While some researchers used the approach of
adding full-system simulation capabilities to exist-
ing user-level-only timing simulators [6, 21], we
adopted the approach of leveraging an existing
full-system functional simulation environment
(also used by other simulators [7, 22]). This strat-
egy enabled us to begin workload development and
characterization in parallel with development of
the timing modules. This approach also allowed us
to perform initial evaluation of our research ideas
using a more approximate processor model while
the more detailed processor model was still in
development.

We use the timing-first simulation approach
[18], in which we decoupled the functional and
timing aspects of the simulator. Since Simics is
robust enough to boot an unmodified OS, we used
its functional simulation to help us avoid imple-
menting rare but effort-consuming instructions in
the timing simulator. Our timing modules interact
with Simics to determine when Simics should exe-
cute an instruction. However, what the result of the

execution of the instruction is ultimately dependent
on Simics. Such a decoupling allows the timing
models to focus on the most common 99.9% of all
dynamic instructions. This task is much easier than
requiring a monolithic simulator to model the tim-
ing and correctness of every function in all aspects
of the full-system simulation. For example, a small
mistake in handling an I/O request or in modeling a
special case in floating point arithmetic is unlikely
to cause a significant change in timing fidelity.
However, such a mistake will likely affect func-
tional fidelity, which may prevent the simulation
from continuing to execute. By allowing Simics to
always determine the result of execution, the pro-
gram will always continue to execute correctly.

Our approach is different from trace-driven
simulation. Although our approach decouples
functional simulation and timing simulation, the
functional simulator is still affected by the timing
simulator, allowing the system to capture timing-
dependent effects. For example, the timing model
will determine the winner of two processors that
are trying to access the same software lock in
memory. Since the timing simulator determines
when the functional simulator advances, such tim-

Ruby

Network
Caches & Memory

Coherence
Controllers

Memory System Simulator

Interconnection

Microbenchmarks

Random

C
on

te
nd

ed
 L

oc
ks

Tester

M

S I

B
as

ic
 V

er
ifi

ca
tio

n

et
c.

Simics

Model
Processor
Detailed

Opal

Figure 1. A view of the GEMS architecture: Ruby, our memory simulator can be driven by one of
four memory system request generators.

ACM SIGARCH Computer Architecture News 93 Vol. 33, No. 4, September 2005

ing-dependent effects are captured. In contrast,
trace-driven simulation fails to capture these
important effects. In the limit, if our timing simula-
tor was 100% functionally correct, it would always
agree with the functional simulator, making the
functional simulation redundant. Such an approach
allows for “correctness tuning” during simulator
development.

Design Goals. As the GEMS simulation system
has primarily been used to study cache-coherent
shared memory systems (both on-chip and off-
chip) and related issues, those aspects of GEMS
release 1.0 are the most detailed and the most flexi-
ble. For example, we model the transient states of
cache coherence protocols in great detail. How-
ever, the tools have a more approximate timing
model for the interconnection network, a simplified
DRAM sub-system, and a simple I/O timing
model. Although we do include a detailed model of
a modern dynamically-scheduled processor, our
goal was to provide a more realistic driver for eval-
uating the memory system. Therefore, our proces-
sor model may lack some details, and it may lack
flexibility that is more appropriate for certain
detailed micro-architectural experiments.

Availability. The first release of GEMS is available
at http://www.cs.wisc.edu/gems/. GEMS is open-
source software and is licensed under GNU GPL
[9]. However, GEMS relies on Virtutech’s Simics,
a commercial product, for full-system functional
simulation. At this time, Virtutech provides evalua-
tion licenses for academic users at no charge. More
information about Simics can be found at
http://www.virtutech.com/.

The remainder of this paper provides an over-
view of GEMS (Section 2) and then describes the
two main pieces of GEMS: the multiprocessor
memory system timing simulator Ruby (Section 3),
which includes the SLICC domain-specific lan-
guage for specifying cache-coherence protocols
and systems, and the detailed microarchitectural
processor timing model Opal (Section 4).
Section 5 discusses some constraints and caveats of
GEMS, and we conclude in Section 6.

2 GEMS Overview
The heart of GEMS is the Ruby memory system

simulator. As illustrated in Figure 1, GEMS pro-

vides multiple drivers that can serve as a source of
memory operation requests to Ruby:

1) Random tester module: The simplest driver of
Ruby is a random testing module used to stress test
the corner cases of the memory system. It uses
false sharing and action/check pairs to detect many
possible memory system and coherence errors and
race conditions [25]. Several features are available
in Ruby to help debug the modeled system includ-
ing deadlock detection and protocol tracing.

2) Micro-benchmark module: This driver sup-
ports various micro-benchmarks through a com-
mon interface. The module can be used for basic
timing verification, as well as detailed performance
analysis of specific conditions (e.g., lock conten-
tion or widely-shared data).

3) Simics: This driver uses Simics’ functional
simulator to approximate a simple in-order proces-
sor with no pipeline stalls. Simics passes all load,
store, and instruction fetch requests to Ruby, which
performs the first level cache access to determine if
the operation hits or misses in the primary cache.
On a hit, Simics continues executing instructions,
switching between processors in a multiple proces-
sor setting. On a miss, Ruby stalls Simics’ request
from the issuing processor, and then simulates the
cache miss. Each processor can have only a single
miss outstanding, but contention and other timing
affects among the processors will determine when
the request completes. By controlling the timing of
when Simics advances, Ruby determines the tim-
ing-dependent functional simulation in Simics
(e.g., to determine which processor next acquires a
memory block).

4) Opal: This driver models a dynamically-sched-
uled SPARC v9 processor and uses Simics to ver-
ify its functional correctness. Opal (previously
known as TFSim[18]) is described in more detail
later in Section 4.

The first two drivers are part of a stand-alone
executable that is independent of Simics or any
actual simulated program. In addition, Ruby is spe-
cifically designed to support additional drivers
(beyond the four mentioned above) using a well-
defined interface.

GEMS’ modular design provides significant
simulator configuration flexibility. For example,

ACM SIGARCH Computer Architecture News 94 Vol. 33, No. 4, September 2005

our memory system simulator is independent of
our out-of-order processor simulator. A researcher
can obtain preliminary results for a memory sys-
tem enhancement using the simple in-order proces-
sor model provided by Simics, which runs much
faster than Opal. Based on these preliminary
results, the researcher can then determine whether
the accompanying processor enhancement should
be implemented and simulated in the detailed out-
of-order simulator.

GEMS also provides flexibility in specifying
many different cache coherence protocols that can
be simulated by our timing simulator. We separated
the protocol-dependent details from the protocol-
independent system components and mechanisms.
To facilitate specifying different protocols and sys-
tems, we proposed and implemented the protocol
specification language SLICC (Section 3.2). In the
next two sections, we describe our two main simu-
lation modules: Ruby and Opal.

3 Multiprocessor Memory System (Ruby)
Ruby is a timing simulator of a multiprocessor

memory system that models: caches, cache con-
trollers, system interconnect, memory controllers,
and banks of main memory. Ruby combines hard-
coded timing simulation for components that are
largely independent of the cache coherence proto-
col (e.g., the interconnection network) with the
ability to specify the protocol-dependent compo-
nents (e.g., cache controllers) in a domain-specific
language called SLICC (Specification Language
for Implementing Cache Coherence).

Implementation. Ruby is implemented in C++
and uses a queue-driven event model to simulate
timing. Components communicate using message
buffers of varying latency and bandwidth, and the
component at the receiving end of the buffer is
scheduled to wake up when the next message will
be available to be read from the buffer. Although
many buffers are used in a strictly first-in-first-out
(FIFO) manner, the buffers are not restricted to
FIFO-only behavior. The simulation proceeds by
invoking the wakeup method for the next sched-
uled event on the event queue. Conceptually, the
simulation would be identical if all components
were woken up each cycle; thus, the event queue
can be thought of as an optimization to avoid
unnecessary processing during each cycle.

3.1 Protocol-Independent Components
The protocol-independent components of Ruby

include the interconnection network, cache arrays,
memory arrays, message buffers, and assorted glue
logic. The only two components that merit discus-
sion are the caches and interconnection network.

Caches. Ruby models a hierarchy of caches associ-
ated with each single processor, as well as shared
caches used in chip multiprocessors (CMPs) and
other hierarchical coherence systems. Cache char-
acteristics, such as size and associativity, are con-
figuration parameters.

Interconnection Network. The interconnection
network is the unified communication substrate
used to communicate between cache and memory
controllers. A single monolithic interconnection
network model is used to simulate all communica-
tion, even between controllers that would be on the
same chip in a simulated CMP system. As such, all
intra-chip and inter-chip communication is handled
as part of the interconnect, although each individ-
ual link can have different latency and bandwidth
parameters. This design provides sufficient flexibil-
ity to simulate the timing of almost any kind of
system.

A controller communicates by sending mes-
sages to other controllers. Ruby’s interconnection
network models the timing of the messages as they
traverse the system. Messages sent to multiple des-
tinations (such as a broadcast) use traffic-efficient
multicast-based routing to fan out the request to the
various destinations.

Ruby models a point-to-point switched inter-
connection network that can be configured simi-
larly to interconnection networks in current high-
end multiprocessor systems, including both direc-
tory-based and snooping-based systems. For simu-
lating systems based on directory protocols, Ruby
release 1.0 supports three non-ordered networks: a
simplified full connected point-to-point network, a
dynamically-routed 2D-torus interconnect inspired
by the Alpha 21364 [19], and a flexible user-
defined network interface. The first two networks
are automatically generated using certain simulator
configuration parameters, while the third creates an
arbitrary network by reading a user-defined config-
uration file. This file-specified network can create

ACM SIGARCH Computer Architecture News 95 Vol. 33, No. 4, September 2005

complicated networks such as a CMP-DNUCA
network [5].

For snooping-based systems, Ruby has two
totally-ordered networks: a crossbar network and a
hierarchical switch network. Both ordered net-
works use a hierarchy of one or more switches to
create a total order of coherence requests at the net-
work’s root. This total order is enough for many
broadcast-based snooping protocols, but it requires
that the specific cache-coherence protocol does not
rely on stronger timing properties provided by the
more traditional bus-based interconnect. In addi-
tion, mechanisms for synchronous snoop response
combining and other aspects of some bus-based
protocols are not supported.

The topology of the interconnect is specified by
a set of links between switches, and the actual rout-
ing tables are re-calculated for each execution,
allowing for additional topologies to be easily
added to the system. The interconnect models vir-
tual networks for different types and classes of
messages, and it allows dynamic routing to be
enabled or disabled on a per-virtual-network basis
(to provide point-to-point order if required). Each
link of the interconnect has limited bandwidth, but
the interconnect does not model the details of the
physical or link-level layer. By default, infinite net-
work buffering is assumed at the switches, but
Ruby also supports finite buffering in certain net-
works. We believe that Ruby’s interconnect model
is sufficient for coherence protocol and memory
hierarchy research, but a more detailed model of
the interconnection network may need to be inte-
grated for research focusing on low-level intercon-
nection network issues.

3.2 Specification Language for Implement-
ing Cache Coherence (SLICC)

One of our main motivations for creating
GEMS was to evaluate different coherence proto-
cols and coherence-based prediction. As such, flex-
ibility in specifying cache coherence protocols was
essential. Building upon our earlier work on table-
driven specification of coherence protocols [23],
we created SLICC (Specification Language for
Implementing Cache Coherence), a domain-spe-
cific language that codifies our table-driven meth-
odology.

SLICC is based upon the idea of specifying
individual controller state machines that represent
system components such as cache controllers and
directory controllers. Each controller is conceptu-
ally a per-memory-block state machine, which
includes:

•States: set of possible states for each cache
block,

•Events: conditions that trigger state transitions,
such as message arrivals,

•Transitions: the cross-product of states and
events (based on the state and event, a transi-
tion performs an atomic sequence of actions
and changes the block to a new state), and

•Actions: the specific operations performed dur-
ing a transition.

For example, the SLICC code might specify a
“Shared” state that allows read-only access for a
block in a cache. When an external invalidation
message arrives at the cache for a block in Shared,
it triggers an “Invalidation” event, which causes a
“Shared x Invalidation” transition to occur. This
transition specifies that the block should change to
the “Invalid” state. Before a transition can begin,
all required resources must be available. This
check prevents mid-transition blocking. Such
resource checking includes available cache frames,
in-flight transaction buffer, space in an outgoing
message queue, etc. This resource check allows the
controller to always complete the entire sequence
of actions associated with the transition without
blocking.

SLICC is syntactically similar to C or C++, but
it is intentionally limited to constrain the specifica-
tion to hardware-like structures. For example, no
local variables or loops are allowed in the lan-
guage. We also added special language constructs
for inserting messages into buffers and reading
information from the next message in a buffer.

Each controller specified in SLICC consists of
protocol-independent components, such as cache
memories and directories, as well as all fields in:
caches, per-block directory information at the
home node, in-flight transaction buffers, messages,
and any coherence predictors. These fields consist
of primitive types such as addresses, bit-fields, sets,
counters, and user-specified enumerations. Mes-

ACM SIGARCH Computer Architecture News 96 Vol. 33, No. 4, September 2005

sages contain a message type tag (for statistics
gathering) and a size field (for simulating conten-
tion on the interconnection network). A controller
uses these messages to communicate with other
controllers. Messages travel along the intra-chip
and inter-chip interconnection networks. When a
message arrives at its destination, it generates a
specific type of event determined by the input mes-
sage control logic of the particular controller (also
specified in SLICC).

SLICC allows for the specification of many
types of invalidation-based cache coherence proto-
cols and systems. As invalidation-based protocols
are ubiquitous in current commercial systems, we
constructed SLICC to perform all operations on
cache block granularity (configurable, but canoni-
cally 64 bytes). As such, the word-level granularity
required for update-based protocols is currently not
supported. SLICC is perhaps best suited for speci-
fying directory-based protocols (e.g., the protocols
used in the Stanford DASH [13] and the SGI Ori-
gin [12]), and other related protocols such as
AMD’s Opteron protocol [1, 10]. Although SLICC
can be used to specify broadcast snooping proto-
cols, SLICC assumes all protocols use an asyn-
chronous point-to-point network, and not the
simpler (but less scalable) synchronous system bus.
The GEMS release 1.0 distribution contains a
SLICC specification for an aggressive snooping
protocol, a flat directory protocol, a protocol based
on the AMD Opteron [1, 10], two hierarchical
directory protocols suitable for CMP systems, and
a Token Coherence protocol [16] for a hierarchical
CMP system [17].

The SLICC compiler translates a SLICC speci-
fication into C++ code that links with the protocol-
independent portions of the Ruby memory system
simulator. In this way, Ruby and SLICC are tightly
integrated to the extent of being inseparable. In
addition to generating code for Ruby, the SLICC
language is intended to be used for a variety of pur-
poses. First, the SLICC compiler generates
HTML-based tables as documentation for each
controller. This concise and continuously-updated
documentation is helpful when developing and
debugging protocols. Example SLICC code and
corresponding HTML tables can be found online
[15]. Second, the SLICC code has also served as
the basis for translating protocols into a model-

checkable format such as TLA+ [2, 11] or Murphi
[8]. Although such efforts have thus far been man-
ual translations, we are hopeful the process can be
partially or fully automated in the future. Finally,
we have restricted SLICC in ways (e.g., no loops)
in which we believe will allow automatic transla-
tion of a SLICC specification directly into a syn-
thesizable hardware description language (such as
VHDL or Verilog). Such efforts are future work.

3.3 Ruby’s Release 1.0 Limitations
Most of the limitations in Ruby release 1.0 are

specific to the implementation and not the general
framework. For example, Ruby release 1.0 sup-
ports only physically-indexed caches, although
support for indexing the primary caches with vir-
tual addresses could be added. Also, Ruby does not
model the memory system traffic due to direct
memory access (DMA) operations or memory-
mapped I/O loads and stores. Instead of modeling
these I/O operations, we simply count the number
that occur. For our workloads, these operations are
infrequent enough (compared to cache misses) to
have negligible relative impact on our simulations.
Those researchers who wish to study more I/O
intensive workloads may find it necessary to model
such effects.

4 Detailed Processor Model (Opal)
Although GEMS can use Simics’ functional

simulator as a driver that approximates a system
with simple in-order processor cores, capturing the
timing of today’s dynamically-scheduled supersca-
lar processors requires a more detailed timing
model. GEMS includes Opal—also known as
TFSim [18]—as a detailed timing model using the
timing-first approach. Opal runs ahead of Simics’
functional simulation by fetching, decoding, pre-
dicting branches, dynamically scheduling, execut-
ing instructions, and speculatively accessing the
memory hierarchy. When Opal has determined that
the time has come for an instruction to retire, it
instructs the functional simulation of the corre-
sponding Simics processor to advance one instruc-
tion. Opal then compares its processor states with
that of Simics to ensure that it executed the instruc-
tion correctly. The vast majority of the time Opal
and Simics agree on the instruction execution;
however, when an interrupt, I/O operation, or rare

ACM SIGARCH Computer Architecture News 97 Vol. 33, No. 4, September 2005

kernel-only instruction not implemented by Opal
occurs, Opal will detect the discrepancy and
recover as necessary. The paper on TFSim/Opal
[18] provides more discussion of the timing-first
philosophy, implementation, effectiveness, and
related work.

Features. Opal models a modern dynamically-
scheduled, superscalar, deeply-pipelined processor
core. Opal is configured by default to use a two-
level gshare branch predictor, MIPS R10000 style
register renaming, dynamic instruction issue, mul-
tiple execution units, and a load/store queue to
allow for out-of-order memory operations and
memory bypassing. As Opal simulates the SPARC
ISA, condition codes and other architectural state
are renamed as necessary to allow for highly-con-
current execution. Because Opal runs ahead of the
Simics functional processor, it models all wrong-
path effects of instructions that are not eventually
retired. Opal implements an aggressive implemen-
tation of sequential consistency, allowing memory
operations to occur out of order and detecting pos-
sible memory ordering violations as necessary.

Limitations. Opal is sufficient for modeling a pro-
cessor that generates multiple outstanding misses
for the Ruby memory system. However, Opal’s
microarchtectual model, although detailed, does
not model all the most advanced features of some
modern processors (e.g., a trace cache and
advanced memory-dependence speculation predic-
tors). Thus, the model may need to be extended and
further validated in order to be used as a basis for
experiments that focus on the microarchitecture of
the system. Also, the first release of Opal does not
support hardware multithreading, but at least one
of our internal projects has preliminarily added
such support to Opal. Similar to most microarchi-
tecture simulators, Opal is heavily tied to its target
ISA (in this case, SPARC), and porting it to a dif-
ferent ISA, though possible, would not be trivial.

Perhaps Opal’s biggest constraints deal with its
dependence on the Simics functional execution
mode. For instance, because Simics uses a flat
memory image, Opal cannot execute a non-sequen-
tially consistent execution. Also we developed
Opal to simulate systems based on the SPARC
ISA, and therefore it is limited to the specific TLB
configurations supported by Simics and the simu-
lated operating system.

5 Constraints and Caveats
As with any complicated research tool, GEMS

is not without its constraints and caveats. One
caveat of GEMS is that although individual com-
ponents and some entire system timing testing and
sanity checking has been performed, a full end-to-
end validation of GEMS has not been performed.
For instance, through the random tester we have
verified Ruby coherently transfers cache blocks,
however, we have not performed exhaustive timing
verification or verified that it strictly adheres to the
sequential consistency memory model. Neverthe-
less, the relative performance comparisons gener-
ated by GEMS should suffice to provide insight
into many types of proposed design enhancements.

Another caveat of GEMS is that we are unable
to distribute our commercial workload suite [3], as
it contains proprietary software that cannot be
redistributed. Although commercial workloads can
be set up under Simics, the lack of ready-made
workloads will increase the effort required to use
GEMS to generate timing results for commercial
servers and other multiprocessing systems.

6 Conclusions
In this paper we presented Multifacet’s General

Execution-driven Multiprocessor Simulator
(GEMS) as a simulation toolset to evaluate multi-
processor architectures. By using the full-system
simulator Simics, we were able to decouple the
development of the GEMS timing model from
ensuring the necessary functional correctness
required to run an unmodified operating system
and commercial workloads. The multiprocessor
timing simulator Ruby allows for detailed simula-
tion of cache hierarchies. The domain-specific lan-
guage SLICC grants GEMS the flexibility to
implement different coherence protocols and sys-
tems under a single simulation infrastructure. The
processor timing simulator Opal can be used to
simulate a dynamically-scheduled superscalar pro-
cessor, and it relies on Simics for functional cor-
rectness. To enables others to more easily perform
research on multiprocessors with commercial
workloads, we have released GEMS under the
GNU GPL, and the first release is available at
http://www.cs.wisc.edu/gems/.

ACM SIGARCH Computer Architecture News 98 Vol. 33, No. 4, September 2005

7 Acknowledgments
We thank Ross Dickson, Pacia Harper, Carl

Mauer, Manoj Plakal, and Luke Yen for their con-
tributions to the GEMS infrastructure. We thank
the University of Illinois for original beta testing.
This work is supported in part by the National Sci-
ence Foundation (CCR-0324878, EIA/CNS-
0205286, and CCR-0105721) and donations from
Compaq, IBM, Intel Corporation and Sun Micro-
systems. We thank Amir Roth for suggesting the
acronym SLICC. We thank Virtutech AB, the Wis-
consin Condor group, and the Wisconsin Computer
Systems Lab for their help and support.

References

[1] Ardsher Ahmed, Pat Conway, Bill Hughes, and
Fred Weber. AMD Opteron Shared Memory MP
Systems. In Proceedings of the 14th HotChips
Symposium, August 2002.

[2] Homayoon Akhiani, Damien Doligez, Paul Harter,
Leslie Lamport, Joshua Scheid, Mark Tuttle, and
Yuan Yu. Cache Coherence Verification with
TLA+. In FM’99—Formal Methods, Volume II,
volume 1709 of Lecture Notes in Computer Science,
page 1871. Springer Verlag, 1999.

[3] Alaa R. Alameldeen, Milo M. K. Martin, Carl J.
Mauer, Kevin E. Moore, Min Xu, Daniel J. Sorin,
Mark D. Hill, and David A. Wood. Simulating a
$2M Commercial Server on a $2K PC. IEEE
Computer, 36(2):50–57, February 2003.

[4] Todd Austin, Eric Larson, and Dan Ernst.
SimpleScalar: An Infrastructure for Computer
System Modeling. IEEE Computer, 35(2):59–67,
February 2002.

[5] Bradford M. Beckmann and David A. Wood.
Managing Wire Delay in Large Chip-
Multiprocessor Caches. In Proceedings of the 37th
Annual IEEE/ACM International Symposium on
Microarchitecture, December 2004.

[6] Nathan. L. Binkert, Erik. G. Hallnor, and Steven. K.
Reinhardt. Network-Oriented Full-System
Simulation using M5. In Proceedings of the Sixth
Workshop on Computer Architecture Evaluation
Using Commercial Workloads, February 2003.

[7] Harold W. Cain, Kevin M. Lepak, Brandon A.
Schwartz, and Mikko H. Lipasti. Precise and
Accurate Processor Simulation. In Proceedings of
the Fifth Workshop on Computer Architecture
Evaluation Using Commercial Workloads, pages
13–22, February 2002.

[8] David L. Dill, Andreas J. Drexler, Alan J. Hu, and
C. Han Yang. Protocol Verification as a Hardware
Design Aid. In International Conference on
Computer Design. IEEE, October 1992.

[9] Free Software Foundation. GNU General Public
License (GPL).
http://www.gnu.org/copyleft/gpl.html.

[10] Chetana N. Keltcher, Kevin J. McGrath, Ardsher
Ahmed, and Pat Conway. The AMD Opteron
Processor for Multiprocessor Servers. IEEE Micro,
23(2):66–76, March-April 2003.

[11] Leslie Lamport. Specifying Systems: The TLA+

Language and Tools for Hardware and Software
Engineers. Addision-Wesley, 2002.

[12] James Laudon and Daniel Lenoski. The SGI Origin:
A ccNUMA Highly Scalable Server. In
Proceedings of the 24th Annual International
Symposium on Computer Architecture, pages 241–
251, June 1997.

[13] Daniel Lenoski, James Laudon, Kourosh
Gharachorloo, Anoop Gupta, and John Hennessy.
The Directory-Based Cache Coherence Protocol for
the DASH Multiprocessor. In Proceedings of the
17th Annual International Symposium on Computer
Architecture, pages 148–159, May 1990.

[14] Peter S. Magnusson et al. Simics: A Full System
Simulation Platform. IEEE Computer, 35(2):50–58,
February 2002.

[15] Milo M. K. Martin et al. Protocol Specifications
and Tables for Four Comparable MOESI Coherence
Protocols: Token Coherence, Snooping, Directory,
and Hammer.
http://www.cs.wisc.edu/multifacet/theses/milo_ma
rtin_phd/, 2003.

[16] Milo M. K. Martin, Mark D. Hill, and David A.
Wood. Token Coherence: A New Framework for
Shared-Memory Multiprocessors. IEEE Micro,
23(6), Nov/Dec 2003.

[17] Michael R. Marty, Jesse D. Bingham, Mark D. Hill,
Alan J. Hu, Milo M. K. Martin, and David A.
Wood. Improving Multiple-CMP Systems Using
Token Coherence. In Proceedings of the Eleventh
IEEE Symposium on High-Performance Computer
Architecture, February 2005.

[18] Carl J. Mauer, Mark D. Hill, and David A. Wood.
Full System Timing-First Simulation. In
Proceedings of the 2002 ACM Sigmetrics
Conference on Measurement and Modeling of
Computer Systems, pages 108–116, June 2002.

[19] Shubhendu S. Mukherjee, Peter Bannon, Steven
Lang, Aaron Spink, and David Webb. The Alpha
21364 Network Architecture. In Proceedings of the
9th Hot Interconnects Symposium, August 2001.

[20] Mendel Rosenblum, Stephen A. Herrod, Emmett
Witchel, and Anoop Gupta. Complete Computer
System Simulation: The SimOS Approach. IEEE
Parallel and Distributed Technology: Systems and
Applications, 3(4):34–43, 1995.

[21] Lambert Schaelicke and Mike Parker. ML-RSIM
Reference Manual. Technical Report tech. report
02-10, Department of Computer Science and
Engineering, Univ. of Notre Dame, Notre Dame,
IN, 2002.

[22] Jared Smolens, Brian Gold, Jangwoo Kim, Babak
Falsafi, James C. Hoe, , and Andreas G. Nowatzyk.
Fingerprinting: Bounding the Soft-Error Detection
Latency and Bandwidth. In Proceedings of the
Eleventh International Conference on Architectural
Support for Programming Languages and
Operating Systems, pages 224–234, October 2004.

[23] Daniel J. Sorin, Manoj Plakal, Mark D. Hill,
Anne E. Condon, Milo M. K. Martin, and David A.
Wood. Specifying and Verifying a Broadcast and a
Multicast Snooping Cache Coherence Protocol.
IEEE Transactions on Parallel and Distributed
Systems, 13(6):556–578, June 2002.

[24] Systems Performance Evaluation Cooperation.
SPEC Benchmarks. http://www.spec.org.

[25] David A. Wood, Garth A. Gibson, and Randy H.
Katz. Verifying a Multiprocessor Cache Controller
Using Random Test Generation. IEEE Design and
Test of Computers, pages 13–25, August 1990.

ACM SIGARCH Computer Architecture News 99 Vol. 33, No. 4, September 2005

