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Two classes of multiprocessors

• Snooping (SMP) multiprocessors
– Broadcast-based ’ use more interconnect bandwidth
+ Directly locate owner ’ low latency cache-to-cache transfers

 (36% - 91% of misses are cache-to-cache transfers in our
commercial workloads)

• Directory-based multiprocessors
+ Indirection ’ bandwidth-efficient & scalable

– Indirection ’ higher latency cache-to-cache transfers

• Problem: higher performing approach varies with:
– Configuration (e.g., number of processors)

– Workload (e.g., cache miss rate)
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Which approach is best?

•Micro-benchmark
•64 processors
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Bandwidth Adaptive Snooping Hybrid (BASH)

• Goals
– Best performance aspects of both approaches

• High performance for many configurations & workloads
• Future workload properties unknown at design time

– Single design
• Coherence logic integrated with processors
• One part for many systems

• Hybrid protocol
– Snooping-like broadcast requests
– Directory-like “unicast” requests

• Bandwidth adaptive
– Estimate available bandwidth
– Adjust rate of broadcast based on estimate
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Best of both protocols

•Micro-benchmark
•64 processors
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Outline

• Overview

• Bandwidth adaptive mechanism

• Hybrid protocol
• Evaluation

• Conclusions
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System model

• Ordered interconnect

• Processor/Memory nodes
– Directory state
– Adaptive mechanism
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Bandwidth adaptive mechanism

• Choose broadcast or unicast for each miss

• Goal: minimize latency - avoid extreme queuing delay

• Approach: limit average interconnect utilization
– Contention dominates miss latency at high utilizations

– Interconnect utilization goal (e.g., 75%)
– Adjust rate of broadcast

– Feedback control system

BASH – Milo Martinslide 9

Implementation

• Two counters at each processor
– Utilization counter (Above or below utilization threshold?)
– Policy counter (Probability of broadcast?)

• At each processor
– Each cycle: Monitor local link & adjust utilization counter
– Each sampling interval: Adjust policy counter based on

utilization counter

– Each miss: Compare policy counter with a random number

• Why random?
– Steady state of mixed broadcasts and unicasts

– Enables us to avoid oscillation
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Outline

• Overview

• Bandwidth adaptive mechanism

• Hybrid protocol
– Snooping-like operation

– Directory-like operation

– Complexity & Scalability

• Evaluation

• Conclusions
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•Ordered broadcast

•Marker places request
 in total order
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Low latency cache-to-cache, but requires broadcast

Owner: P1
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! •Add indirection

•Uses order to avoid acks
•Similar to Alpha GS320
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Directory-like operation
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Avoids broadcast, but frequently adds indirection

Owner: P1, Sharers: {P2}
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Protocol races

• Choose broadcast or unicast for each miss

• Protocol simultaneously allows
– Broadcast requests

– Unicast requests

– Forwarded requests
– Writebacks

• Like all protocols, BASH has protocol races
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Protocol race example
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Protocol race example
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Protocol race example
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Protocol races

• Race detection: directory audits all requests
– Observes all requests
– Compares request destination set with current sharers

– Occasionally needs to re-issue a request

• Requests are processed uniformly
– Processors - respond with data or invalidate

– Directory - audit request, may forward data or request

See paper for more information
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Complexity

• One “cost” of implementing BASH

• Quantifying complexity is difficult…
– Protocol controllers are finite state machines

– Similar number of states

– BASH has twice as many events and transitions

• Moderate complexity
– Additive, not multiplicative

• Similar to Multicast Snooping
– Original proposal [Bilir et al., ISCA 1999]

– Enhanced, specified & verified [Sorin et al., TPDS 2002]
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Scalability

• Limited by ordered interconnect
– BASH eliminates broadcast-only nature of snooping

• Recent systems with an ordered interconnect
– Compaq AlphaServer GS320 (32 processor) - directory
– Sun UE15000 (106 processors) - snooping
– Fujitsu PrimePower 2000 (128 processors) - snooping

• Potential alternative
– Timestamp Snooping network [Martin et al., ASPLOS 2000]
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Outline

• Overview

• Bandwidth adaptive mechanism

• Hybrid protocol
• Evaluation

• Conclusions
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Workloads & methods

• Workloads [CAECW ‘02]
– OLTP: IBM’s DB2 & TPCC-like (1GB database)
– Static web: Apache

– Dynamic web: SlashCode

– Java middleware: SpecJBB

– Scientific workload: Barnes-Hut

• Setup and tuned for 16 processors

• Full system simulation
– Virtutech’s Simics
– Solaris 8 on SPARC V9

– Blocking processor model

• Memory system simulator
– Captures timing, races, and all transient states

BASH – Milo Martinslide 22

Three Questions

1) Is our adaptive mechanism effective?

2) Does BASH adapt to multiple workloads?

3) Does BASH adapt to multiple configurations?
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(1) SpecJBB on 16 processors
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(1) SpecJBB on 16 processors, 4x broadcast cost
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(1) SpecJBB on 16 processors, 4x broadcast cost

BASH – Milo Martinslide 26

(2) Can BASH adapt to multiple workloads?
1600 MB/s links

Similar Snooping
Directory
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(2) Can BASH adapt to multiple workloads?
1600 MB/s links
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(3) Can BASH adapt to multiple configurations?

Micro-benchmark
1600 MB/s links
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(3) Can BASH adapt to multiple configurations?

Micro-benchmark
1600 MB/s links
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Results Summary

1) Is our adaptive mechanism effective?

• Yes
2) Does BASH adapt to multiple workloads?

• Yes
3) Does BASH adapt to multiple configurations?

• Yes
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Conclusions

• Bandwidth Adaptive Snooping Hybrid (BASH)
– Hybrid of snooping and directories
– Simple bandwidth adaptive mechanism

• Adapts to various workloads & system configurations
– Robust performance
– Outperforms base protocols in some cases

• Future directions
– Focus bandwidth on likely cache-to-cache transfers
– Explore multicasts

– Power-adaptive coherence
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Queuing model motivation

Knee

• A multiprocessor as a simple queuing model
– Exponential service & think time distributions

“interconnect”

“processors”

requests responses


