
1

(C) 2003 Milo Martin

Token Coherence:
Decoupling Performance and Correctness

Milo Martin, Mark Hill, and David Wood

Wisconsin Multifacet Project
http://www.cs.wisc.edu/multifacet/
University of Wisconsin—Madison

Token Coherence – Milo Martinslide 2

We See Two Problems in Cache Coherence

1. Protocol ordering bottlenecks
– Artifact of conservatively resolving racing requests

– “Virtual bus” interconnect (snooping protocols)
– Indirection (directory protocols)

2. Protocol enhancements compound complexity
– Fragile, error prone & difficult to reason about

– Why? A distributed & concurrent system

– Often enhancements too complicated to implement
(predictive/adaptive/hybrid protocols)

Performance and correctness tightly intertwined

Token Coherence – Milo Martinslide 3

Rethinking Cache-Coherence Protocols

• Goal of invalidation-based coherence
– Invariant: many readers -or- single writer

– Enforced by globally coordinated actions

• Enforce this invariant directly using tokens
– Fixed number of tokens per block
– One token to read, all tokens to write

• Guarantees safety in all cases
– Global invariant enforced with only local rules

– Independent of races, request ordering, etc.

Key innovation

Token Coherence – Milo Martinslide 4

Token Coherence:
A New Framework for Cache Coherence

• Goal: Decouple performance and correctness
– Fast in the common case
– Correct in all cases

• To remove ordering bottlenecks
– Ignore races (fast common case)

– Tokens enforce safety (all cases)

• To reduce complexity
– Performance enhancements (fast common case)

– Without affecting correctness (all cases)

– (without increased complexity)

Focus of this talk

Briefly described

Token Coherence – Milo Martinslide 5

Outline

• Overview

• Problem: ordering bottlenecks

• Solution: Token Coherence (TokenB)

• Evaluation

• Further exploiting decoupling

• Conclusions

Token Coherence – Milo Martinslide 6

Technology Trends

• High-speed point-to-point links
– No (multi-drop) busses

• Desire: low-latency interconnect
– Avoid “virtual bus” ordering

– Enabled by directory protocols

Technology trends Æ unordered interconnects

• Increasing design integration
– “Glueless” multiprocessors

– Improve cost & latency

2

Token Coherence – Milo Martinslide 7

Workload Trends

P P P M

1

2

P P P M

2

1

3

Directory
Protocol

Workload trends Æ avoid indirection, broadcast ok

• Commercial workloads
– Many cache-to-cache misses

– Clusters of small multiprocessors

• Goals:
– Direct cache-to-cache misses

(2 hops, not 3 hops)

– Moderate scalability

Token Coherence – Milo Martinslide 8

Basic Approach

• Low-latency protocol
– Broadcast with direct responses

– As in snooping protocols

P P P M

1

2

Fast & works fine with no races…
 …but what happens in the case of a race?

• Low-latency interconnect
– Use unordered interconnect

– As in directory protocols

Token Coherence – Milo Martinslide 9

1

•P0 issues a request to write (delayed to P2)

Request to write

Basic approach… but not yet correct

P2

Read/Write

P1

No Copy

P0

No Copy

Delayed in interconnect

3

•P1 issues a request to read

Request to read

2
Ack

Token Coherence – Milo Martinslide 10

P2

Read/Write

P1

No Copy

P0

No Copy

Basic approach… but not yet correct

1
2

3

4

Read-only Read-only

•P2 responds with data to P1

Token Coherence – Milo Martinslide 11

Basic approach… but not yet correct

P2

Read/Write

P1

No Copy

P0

No Copy 1
2

3

4

5

Read-only Read-only

•P0’s delayed request arrives at P2

Token Coherence – Milo Martinslide 12

Basic approach… but not yet correct

P2

Read/Write

P1

No Copy

P0

Read/Write 1
2

3

4

5

6

7

Read-only Read-only
No Copy

•P2 responds to P0

3

Token Coherence – Milo Martinslide 13

Basic approach… but not yet correct

P2

Read/Write

P1

No Copy

P0

Read/Write 1
2

3

4

5

6

7

Read-only Read-only
No Copy

Problem: P0 and P1 are in inconsistent states

Locally “correct” operation, globally inconsistent

Token Coherence – Milo Martinslide 14

Contribution #1: Token Counting

• Tokens control reading & writing of data
• At all times, all blocks have T tokens

E.g., one token per processor
• One or more to read

• All tokens to write

• Tokens: in caches, memory, or in transit
• Components exchange tokens & data

Provides safety in all cases

Token Coherence – Milo Martinslide 15

Basic Approach (Revisited)

• As before:
– Broadcast with direct responses (like snooping)

– Use unordered interconnect (like directory)

• Track tokens for safety

• More refinement in a moment…

Token Coherence – Milo Martinslide 16

Token Coherence Example

P2

T=16 (R/W)

P1

T=0

P0

T=0

2

Delayed

1

•P0 issues a request to write (delayed to P2)

Request to write

3

•P1 issues a request to read

Delayed Request to read

Max Tokens

Token Coherence – Milo Martinslide 17

Token Coherence Example

P2

T=16 (R/W)

P1

T=0

P0

T=0 1
2

3

4

T=1(R) T=15(R)

•P2 responds with data to P1

T=1

Token Coherence – Milo Martinslide 18

Token Coherence Example

P2

T=16 (R/W)

P1

T=0

P0

T=0 1
2

3

4

5

T=1(R) T=15(R)

•P0’s delayed request arrives at P2

4

Token Coherence – Milo Martinslide 19

Token Coherence Example

P2

T=16 (R/W)

P1

T=0

P0

T=15(R) 1
2

3

4

5

6

7

T=1(R) T=15(R)
T=0

•P2 responds to P0

T=15

Token Coherence – Milo Martinslide 20

Token Coherence Example

P2

T=16 (R/W)

P1

T=0

P0

T=15(R) 1
2

3

4

5

6

7

T=1(R) T=15(R)
T=0

Token Coherence – Milo Martinslide 21

Token Coherence Example

P2

T=0

P1

T=1(R)

P0

T=15(R)

Now what? (P0 wants all tokens)

Token Coherence – Milo Martinslide 22

Basic Approach (Re-Revisited)

• As before:
– Broadcast with direct responses (like snooping)

– Use unordered interconnect (like directory)
– Track tokens for safety

• Reissue requests as needed
– Needed due to racing requests (uncommon)
– Timeout to detect failed completion

• Wait twice average miss latency

• Small hardware overhead

– All races handled in this uniform fashion

Token Coherence – Milo Martinslide 23

Token Coherence Example

P2

T=0

P1

T=1(R)

P0

T=15(R)

8

•P0 reissues request

•P1 responds with a token

T=19
Timeout!

Token Coherence – Milo Martinslide 24

Token Coherence Example

P2

T=0

P0

T=16 (R/W)

P1

T=0

•P0’s request completed

One final issue: What about starvation?

5

Token Coherence – Milo Martinslide 25

Contribution #2:
Guaranteeing Starvation-Freedom

• Handle pathological cases
– Infrequently invoked

– Can be slow, inefficient, and simple

• When normal requests fail to succeed (4x)
– Longer timeout and issue a persistent request

– Request persists until satisfied

– Table at each processor

– “Deactivate” upon completion

• Implementation
– Arbiter at memory orders persistent requests

Token Coherence – Milo Martinslide 26

Outline

• Overview

• Problem: ordering bottlenecks

• Solution: Token Coherence (TokenB)

• Evaluation

• Further exploiting decoupling

• Conclusions

Token Coherence – Milo Martinslide 27

Evaluation Goal: Four Questions

1. Are reissued requests rare?
Yes

2. Can Token Coherence outperform snooping?
Yes: lower-latency unordered interconnect

3. Can Token Coherence outperform directory?
Yes: direct cache-to-cache misses

4. Is broadcast overhead reasonable?
Yes (for 16 processors)

Quantitative evidence for qualitative behavior
Token Coherence – Milo Martinslide 28

Workloads and Simulation Methods

• Workloads
– OLTP - On-line transaction processing

– SPECjbb - Java middleware workload
– Apache - Static web serving workload

– All workloads use Solaris 8 for SPARC

• Simulation methods
– 16 processors

– Simics full-system simulator

– Out-of-order processor model

– Detailed memory system model
– Many assumptions and parameters (see paper)

Token Coherence – Milo Martinslide 29

Q1: Reissued Requests
(percent of all L2 misses)

ApacheSPECjbbOLTP

Token Coherence – Milo Martinslide 30

Q1: Reissued Requests
(percent of all L2 misses)

0.3%0.1%0.2%
Persistent
Requests
(Reissued > 4)

0.7%0.3%0.4%Reissued > 1

3%2%2%
Reissued
Once

96%98%98%Not Reissued

ApacheSPECjbbOLTPOutcome

Yes; reissued requests are rare (these workloads, 16p)

6

Token Coherence – Milo Martinslide 31

Q2: Runtime: Snooping vs. Token Coherence
Hierarchical Switch Interconnect

Similar performance on
same interconnect

“Tree” interconnect

Token Coherence – Milo Martinslide 32

Q2: Runtime: Snooping vs. Token Coherence
Direct Interconnect

Snooping not
applicable

“Torus” interconnect

Token Coherence – Milo Martinslide 33

Q2: Runtime: Snooping vs. Token Coherence

Yes; Token Coherence
can outperform

snooping

(15-28% faster)

Why? Lower-latency
interconnect

Token Coherence – Milo Martinslide 34

Q3: Runtime: Directory vs. Token Coherence

Yes; Token Coherence
can outperform

directories
(17-54% faster with

slow directory)

Why? Direct “2-hop”
cache-to-cache misses

Token Coherence – Milo Martinslide 35

Q4: Traffic per Miss: Directory vs. Token

Yes; broadcast
overheads reasonable

for 16 processors

(directory uses 21-25%
less bandwidth)

Token Coherence – Milo Martinslide 36

Q4: Traffic per Miss: Directory vs. Token

Yes; broadcast
overheads reasonable

for 16 processors

(directory uses 21-25%
less bandwidth)

Why? Requests are
smaller than data

(8B v. 64B)

Requests & forwards

Responses

7

Token Coherence – Milo Martinslide 37

Outline

• Overview

• Problem: ordering bottlenecks

• Solution: Token Coherence (TokenB)

• Evaluation

• Further exploiting decoupling

• Conclusions

Token Coherence – Milo Martinslide 38

Contribution #3: Decoupled Coherence

Cache Coherence Protocol

Correctness Substrate
(all cases)

Performance Protocol
(common cases)

Safety
(token counting)

Starvation Freedom
(persistent requests)

Many Implementation choices

Token Coherence – Milo Martinslide 39

Example Opportunities of Decoupling

• Predict a destination-set [ISCA ‘03]
– Based on past history
– Need not be correct (rely on persistent requests)
– Enables larger or more cost-effective systems

• Example#2: predictive push

P2P2P2P2PnP1

T=16

P0 T=16

• Example#1: Broadcast is not required

Requires no changes to correctness substrate

Predictive push

Token Coherence – Milo Martinslide 40

Conclusions

• Token Coherence (broadcast version)
– Low cache-to-cache miss latency (no indirection)

– Avoids “virtual bus” interconnects
– Faster and/or cheaper

• Token Coherence (in general)
– Correctness substrate

• Tokens for safety

• Persistent requests for starvation freedom

– Performance protocol for performance

– Decouple correctness from performance

• Enables further protocol innovation

