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Big Picture

• Naïve value prediction can break concurrent systems

• Microprocessors  incorporate concurrency
– Multithreading (SMT)

– Multiprocessing (SMP, CMP)
– Coherent I/O

• Correctness defined by memory consistency model
– Comparing predicted value to actual value not always OK
– Different issues for different models

• Violations can occur in practice

• Solutions exist for detecting violations
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Outline

• The Issues
– Value prediction

– Memory consistency models

• The Problem

• Value Prediction and Sequential Consistency

• Value Prediction and Relaxed Consistency Models

• Conclusions
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Value Prediction

• Predict the value of an instruction
– Speculatively execute with this value

– Later verify that prediction was correct

• Example: Value predict a load that misses in cache
– Execute instructions dependent on value-predicted load

– Verify the predicted value when the load data arrives

• Without concurrency: simple verification is OK
– Compare actual value to predicted

• Value prediction literature has ignored concurrency
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Memory Consistency Models

• Correctness defined by consistency model
• Rules about legal orderings of reads and writes

– E.g., do all processors observe writes in the same order?

• Example: Sequential consistency (SC)
– Simplest memory model
– System appears to be multitasking uniprocessor

Memory

P1

P2

P3
Appearance of one memory operation at a time
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Outline

• The Issues

• The Problem
– Informal example

– Linked list code example

• Value Prediction and Sequential Consistency

• Value Prediction and Relaxed Consistency Models

• Conclusions
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Informal Example of Problem, part 1

• Student #2 predicts grades are on bulletin board B

• Based on prediction, assumes score is 60

Grades for Class

Student ID score

       1    75

       2                              60

       3                              85

Bulletin Board B
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Informal Example of Problem, part 2

• Professor now posts actual grades for this class
– Student #2 actually got a score of 80

• Announces to students that grades are on board B

Grades for Class

Student ID score

       1    75     50

       2                              60     80

       3                              85     70

Bulletin Board B
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Informal Example of Problem, part 3

• Student #2 sees prof’s announcement and says,

“ I made the right prediction (bulletin board B),
 and my score is 60”!

• Actually, Student #2’s score is 80

• What went wrong here?
– Intuition: predicted value from future

• Problem is concurrency
– Interaction between student and professor

– Just like multiple threads, processors, or devices
• E.g., SMT, SMP, CMP
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Linked List Example of Problem (initial state)

head A

null

42

60

null
A.data

B.data

A.next

B.next

• Linked list with single writer and single reader

• No synchronization (e.g., locks) needed

Initial state of list
Uninitialized
node
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Linked List Example of Problem (Writer)

head B

null

42

80

A

•  Writer sets up node B and inserts it into list

A.data

B.data

A.next

B.next

Code For Writer Thread

W1: store mem[B.data] <- 80

W2: load reg0 <- mem[Head]

W3: store mem[B.next] <- reg0

W4: store mem[Head] <- B

 I
ns

er
t

{

Se
tu

p 
no

de

slide 12

Linked List Example of Problem (Reader)

head ?

null

42

60

null

•  Reader cache misses on head and value predicts head=B.

•  Cache hits on B.data and reads 60.

•  Later “verifies” prediction of B.  Is this execution legal?

A.data

B.data

A.next

B.next

Predict head=B
Code For Reader Thread

R1: load reg1 <- mem[Head] = B

R2: load reg2 <- mem[reg1] = 60
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Why This Execution Violates SC

• Sequential Consistency
– Simplest memory consistency model

– Must exist total order of all operations
– Total order must respect program order at each processor

• Our example execution has a cycle
– No total order exists
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Trying to Find a Total Order

•  What orderings are enforced in this example?

Code For Writer Thread

W1: store mem[B.data] <- 80

W2: load reg0 <- mem[Head]

W3: store mem[B.next] <- reg0

W4: store mem[Head] <- B

Code For Reader Thread

R1: load reg1 <- mem[Head]

R2: load reg2 <- mem[reg1]
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Program Order

Code For Writer Thread

W1: store mem[B.data] <- 80

W2: load reg0 <- mem[Head]

W3: store mem[B.next] <- reg0

W4: store mem[Head] <- B

Code For Reader Thread

R1: load reg1 <- mem[Head]

R2: load reg2 <- mem[reg1]
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•  Must enforce program order
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Data Order

•  If we predict that R1 returns the value B, we can violate SC

Code For Writer Thread

W1: store mem[B.data] <- 80

W2: load reg0 <- mem[Head]

W3: store mem[B.next] <- reg0

W4: store mem[Head] <- B

Code For Reader Thread

R1: load reg1 <- mem[Head] = B

R2: load reg2 <- mem[reg1]  = 60
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Outline

• The Issues

• The Problem

• Value Prediction and Sequential Consistency
– Why the problem exists
– How to fix it

• Value Prediction and Relaxed Consistency Models

• Conclusions
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Value Prediction and Sequential Consistency

• Key: value prediction reorders dependent operations
– Specifically, read-to-read data dependence order

• Execute dependent operations out of program order

• Applies to almost all consistency models
– Models that enforce data dependence order

• Must detect when this happens and recover

• Similar to other optimizations that complicate SC
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How to Fix SC Implementations

• Address-based detection of violations
– Student watches board B between prediction and verification

– Like existing techniques for out-of-order SC processors
– Track stores from other threads

– If address matches speculative load, possible violation

• Value-based detection of violations
– Student checks grade again at verification

– Also an existing idea

– Replay all speculative instructions at commit
– Can be done with dynamic verification (e.g., DIVA)
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Outline

• The Issues

• The Problem

• Value Prediction and Sequential Consistency

• Value Prediction and Relaxed Consistency Models
– Relaxed consistency models

– Value prediction and processor consistency (PC)

– Value prediction and weakly ordered models

• Conclusions
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Relaxed Consistency Models

• Relax some orderings between reads and writes

• Allows HW/SW optimizations

• Software must add memory barriers to get ordering

• Intuition: should make value prediction easier

• Our intuition is wrong …
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Processor Consistency

• Just like SC, but relaxes order from write to read

• Optimization: allows for FIFO store queue

• Examples of PC models:
– SPARC Total Store Order
– IA-32

• Bad news
– Same VP issues as for SC
– Intuition: VP breaks read-to-read dependence order

– Relaxing write-to-read order doesn’t change issues

• Good news
– Same solutions as for SC

slide 23

Weakly Ordered Consistency Models

• Relax orderings unless memory barrier between

• Examples:
– SPARC RMO

– IA-64
– PowerPC

– Alpha

• Subtle point that affects value prediction
– Does model enforce data dependence order?

slide 24

Models that Enforce Data Dependence

• Examples: SPARC RMO, PowerPC, and IA-64

Code For Writer Thread

W1: store mem[B.data] <- 80

W2: load reg0 <- mem[Head]

W3: store mem[B.next] <- reg0

W3b: Memory Barrier

W4: store mem[Head] <- B

Code For Reader Thread

R1: load reg1 <- mem[Head]

R2: load reg2 <- mem[reg1]

Memory barrier orders W4
after W1, W2, W3
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Violating Consistency Model

• Simple value prediction can break RMO, PPC, IA-64

• How? By relaxing dependence order between reads

• Same issues as for SC and PC
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Solutions to Problem

1. Don’t enforce dependence order (add memory barriers)
– Changes architecture

– Breaks backward compatibility
– Not practical

2. Enforce SC or PC
– Potential performance loss

3. More efficient solutions possible
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Models that Don’t Enforce Data Dependence

• Example: Alpha
• Requires extra memory barrier (between R1 & R2)

Code For Writer Thread

W1: store mem[B.data] <- 80

W2: load reg0 <- mem[Head]

W3: store mem[B.next] <- reg0

W3b: Memory Barrier

W4: store mem[Head] <- B

Code For Reader Thread

R1: load reg1 <- mem[Head]

R1b: Memory Barrier

R2: load reg2 <- mem[reg1]
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Issues in Not Enforcing Data Dependence

• Works correctly with value prediction
– No detection mechanism necessary

– Do not need to add any more memory barriers for VP

• Additional memory barriers
– Non-intuitive locations

– Added burden on programmer
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Summary of Memory Model Issues

SC Relaxed
Models

Weakly Ordered
Models

PC

IA-32
SPARC TSO

Enforce 
Data Dependence

NOT Enforce
Data Dependence

IA-64
SPARC RMO

Alpha
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Could this Problem Happen in Practice?

• Theoretically, value prediction can break consistency

• Could it happen in practice?

• Experiment:
– Ran multithreaded workloads on SimOS

– Looked for code sequences that could violate model

• Result: sequences occurred that could violate model
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Conclusions

• Naïve value prediction can violate consistency

• Subtle issues for each class of memory model

• Solutions for SC & PC require detection mechanism
– Use existing mechanisms for enhancing SC performance

• Solutions for more relaxed memory models
– Enforce stronger model


