
1

(C) 2001 Daniel Sorin

Correctly Implementing Value Prediction
in Microprocessors that Support
Multithreading or Multiprocessing

Milo M.K. Martin, Daniel J. Sorin, Harold W. Cain,

Mark D. Hill, and Mikko H. Lipasti

Computer Sciences Department
Department of Electrical and Computer Engineering

University of Wisconsin—Madison

slide 2

Big Picture

• Naïve value prediction can break concurrent systems

• Microprocessors incorporate concurrency
– Multithreading (SMT)

– Multiprocessing (SMP, CMP)
– Coherent I/O

• Correctness defined by memory consistency model
– Comparing predicted value to actual value not always OK
– Different issues for different models

• Violations can occur in practice

• Solutions exist for detecting violations

slide 3

Outline

• The Issues
– Value prediction

– Memory consistency models

• The Problem

• Value Prediction and Sequential Consistency

• Value Prediction and Relaxed Consistency Models

• Conclusions

slide 4

Value Prediction

• Predict the value of an instruction
– Speculatively execute with this value

– Later verify that prediction was correct

• Example: Value predict a load that misses in cache
– Execute instructions dependent on value-predicted load

– Verify the predicted value when the load data arrives

• Without concurrency: simple verification is OK
– Compare actual value to predicted

• Value prediction literature has ignored concurrency

slide 5

Memory Consistency Models

• Correctness defined by consistency model
• Rules about legal orderings of reads and writes

– E.g., do all processors observe writes in the same order?

• Example: Sequential consistency (SC)
– Simplest memory model
– System appears to be multitasking uniprocessor

Memory

P1

P2

P3
Appearance of one memory operation at a time

slide 6

Outline

• The Issues

• The Problem
– Informal example

– Linked list code example

• Value Prediction and Sequential Consistency

• Value Prediction and Relaxed Consistency Models

• Conclusions

2

slide 7

Informal Example of Problem, part 1

• Student #2 predicts grades are on bulletin board B

• Based on prediction, assumes score is 60

Grades for Class

Student ID score

 1 75

 2 60

 3 85

Bulletin Board B

slide 8

Informal Example of Problem, part 2

• Professor now posts actual grades for this class
– Student #2 actually got a score of 80

• Announces to students that grades are on board B

Grades for Class

Student ID score

 1 75 50

 2 60 80

 3 85 70

Bulletin Board B

slide 9

Informal Example of Problem, part 3

• Student #2 sees prof’s announcement and says,

“ I made the right prediction (bulletin board B),
 and my score is 60”!

• Actually, Student #2’s score is 80

• What went wrong here?
– Intuition: predicted value from future

• Problem is concurrency
– Interaction between student and professor

– Just like multiple threads, processors, or devices
• E.g., SMT, SMP, CMP

slide 10

Linked List Example of Problem (initial state)

head A

null

42

60

null
A.data

B.data

A.next

B.next

• Linked list with single writer and single reader

• No synchronization (e.g., locks) needed

Initial state of list
Uninitialized
node

slide 11

Linked List Example of Problem (Writer)

head B

null

42

80

A

• Writer sets up node B and inserts it into list

A.data

B.data

A.next

B.next

Code For Writer Thread

W1: store mem[B.data] <- 80

W2: load reg0 <- mem[Head]

W3: store mem[B.next] <- reg0

W4: store mem[Head] <- B

 I
ns

er
t

{

Se
tu

p
no

de

slide 12

Linked List Example of Problem (Reader)

head ?

null

42

60

null

• Reader cache misses on head and value predicts head=B.

• Cache hits on B.data and reads 60.

• Later “verifies” prediction of B. Is this execution legal?

A.data

B.data

A.next

B.next

Predict head=B
Code For Reader Thread

R1: load reg1 <- mem[Head] = B

R2: load reg2 <- mem[reg1] = 60

3

slide 13

Why This Execution Violates SC

• Sequential Consistency
– Simplest memory consistency model

– Must exist total order of all operations
– Total order must respect program order at each processor

• Our example execution has a cycle
– No total order exists

slide 14

Trying to Find a Total Order

• What orderings are enforced in this example?

Code For Writer Thread

W1: store mem[B.data] <- 80

W2: load reg0 <- mem[Head]

W3: store mem[B.next] <- reg0

W4: store mem[Head] <- B

Code For Reader Thread

R1: load reg1 <- mem[Head]

R2: load reg2 <- mem[reg1]

Se
tu

p
no

de
 I

ns
er

t

{

Se
tu

p
no

de

slide 15

Program Order

Code For Writer Thread

W1: store mem[B.data] <- 80

W2: load reg0 <- mem[Head]

W3: store mem[B.next] <- reg0

W4: store mem[Head] <- B

Code For Reader Thread

R1: load reg1 <- mem[Head]

R2: load reg2 <- mem[reg1]

Se
tu

p
no

de
 I

ns
er

t

{

• Must enforce program order

slide 16

Data Order

• If we predict that R1 returns the value B, we can violate SC

Code For Writer Thread

W1: store mem[B.data] <- 80

W2: load reg0 <- mem[Head]

W3: store mem[B.next] <- reg0

W4: store mem[Head] <- B

Code For Reader Thread

R1: load reg1 <- mem[Head] = B

R2: load reg2 <- mem[reg1] = 60

Se
tu

p
no

de
 I

ns
er

t

{

slide 17

Outline

• The Issues

• The Problem

• Value Prediction and Sequential Consistency
– Why the problem exists
– How to fix it

• Value Prediction and Relaxed Consistency Models

• Conclusions

slide 18

Value Prediction and Sequential Consistency

• Key: value prediction reorders dependent operations
– Specifically, read-to-read data dependence order

• Execute dependent operations out of program order

• Applies to almost all consistency models
– Models that enforce data dependence order

• Must detect when this happens and recover

• Similar to other optimizations that complicate SC

4

slide 19

How to Fix SC Implementations

• Address-based detection of violations
– Student watches board B between prediction and verification

– Like existing techniques for out-of-order SC processors
– Track stores from other threads

– If address matches speculative load, possible violation

• Value-based detection of violations
– Student checks grade again at verification

– Also an existing idea

– Replay all speculative instructions at commit
– Can be done with dynamic verification (e.g., DIVA)

slide 20

Outline

• The Issues

• The Problem

• Value Prediction and Sequential Consistency

• Value Prediction and Relaxed Consistency Models
– Relaxed consistency models

– Value prediction and processor consistency (PC)

– Value prediction and weakly ordered models

• Conclusions

slide 21

Relaxed Consistency Models

• Relax some orderings between reads and writes

• Allows HW/SW optimizations

• Software must add memory barriers to get ordering

• Intuition: should make value prediction easier

• Our intuition is wrong …

slide 22

Processor Consistency

• Just like SC, but relaxes order from write to read

• Optimization: allows for FIFO store queue

• Examples of PC models:
– SPARC Total Store Order
– IA-32

• Bad news
– Same VP issues as for SC
– Intuition: VP breaks read-to-read dependence order

– Relaxing write-to-read order doesn’t change issues

• Good news
– Same solutions as for SC

slide 23

Weakly Ordered Consistency Models

• Relax orderings unless memory barrier between

• Examples:
– SPARC RMO

– IA-64
– PowerPC

– Alpha

• Subtle point that affects value prediction
– Does model enforce data dependence order?

slide 24

Models that Enforce Data Dependence

• Examples: SPARC RMO, PowerPC, and IA-64

Code For Writer Thread

W1: store mem[B.data] <- 80

W2: load reg0 <- mem[Head]

W3: store mem[B.next] <- reg0

W3b: Memory Barrier

W4: store mem[Head] <- B

Code For Reader Thread

R1: load reg1 <- mem[Head]

R2: load reg2 <- mem[reg1]

Memory barrier orders W4
after W1, W2, W3

 I
ns

er
t

{

Se
tu

p
no

de

5

slide 25

Violating Consistency Model

• Simple value prediction can break RMO, PPC, IA-64

• How? By relaxing dependence order between reads

• Same issues as for SC and PC

slide 26

Solutions to Problem

1. Don’t enforce dependence order (add memory barriers)
– Changes architecture

– Breaks backward compatibility
– Not practical

2. Enforce SC or PC
– Potential performance loss

3. More efficient solutions possible

slide 27

Models that Don’t Enforce Data Dependence

• Example: Alpha
• Requires extra memory barrier (between R1 & R2)

Code For Writer Thread

W1: store mem[B.data] <- 80

W2: load reg0 <- mem[Head]

W3: store mem[B.next] <- reg0

W3b: Memory Barrier

W4: store mem[Head] <- B

Code For Reader Thread

R1: load reg1 <- mem[Head]

R1b: Memory Barrier

R2: load reg2 <- mem[reg1]

 I
ns

er
t

{

Se
tu

p
no

de

slide 28

Issues in Not Enforcing Data Dependence

• Works correctly with value prediction
– No detection mechanism necessary

– Do not need to add any more memory barriers for VP

• Additional memory barriers
– Non-intuitive locations

– Added burden on programmer

slide 29

Summary of Memory Model Issues

SC Relaxed
Models

Weakly Ordered
Models

PC

IA-32
SPARC TSO

Enforce
Data Dependence

NOT Enforce
Data Dependence

IA-64
SPARC RMO

Alpha

slide 30

Could this Problem Happen in Practice?

• Theoretically, value prediction can break consistency

• Could it happen in practice?

• Experiment:
– Ran multithreaded workloads on SimOS

– Looked for code sequences that could violate model

• Result: sequences occurred that could violate model

6

slide 31

Conclusions

• Naïve value prediction can violate consistency

• Subtle issues for each class of memory model

• Solutions for SC & PC require detection mechanism
– Use existing mechanisms for enhancing SC performance

• Solutions for more relaxed memory models
– Enforce stronger model

