
TOKEN COHERENCE

by

Milo M. K. Martin

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2003

c© Copyright by Milo M. K. Martin 2003

All Rights Reserved

i

Acknowledgments

I have received an incredible amount of support, encouragement, help, and mentoring through-

out my time in graduate school. Many of the people I’ve met during this graduate school journey

have greatly influenced my research and forever changed me as a person.

First and foremost I thank my wife, Denise, for all her loving support, encouragement, under-

standing, and patience throughout all of the ups and down of graduate school. She is my inspiration

and the greatest source of joy in my life. I also thank my parents for their encouragement, constant

interest in my life, and for not asking “how much longer until you graduate” too many times. They

have always been for there for me.

My advisor, Mark Hill, has been an incredible mentor. The depth of knowledge (and perhaps

wisdom) that I’ve gained through my close interaction with Mark is incredible. Not only have I

learned about computer architecture, but about many aspects of performing research, communicat-

ing with others, time management, and achieving balance in life. Most importantly, I have learned

a great deal by simply observing his excellent example. My research and non-research life has

forever been changed by Mark’s mentoring.

Many of the other faculty members at the University of Wisconsin have also profoundly af-

fected me. I’ve benefited greatly both from directly interacting with these individuals and from

the thriving research environment which they established. I would like to thank the other mem-

bers of my dissertation committee. Charlie Fischer, Mikko Lipasti, Guri Sohi, and David Wood

all provided useful insight into my dissertation research and provided valuable feedback during

the process. I especially appreciate their flexibility in scheduling my dissertation defense. As

co-leader of the Wisconsin Multifacet Project with Mark Hill, David Wood was like a second ad-

visor to me. He greatly contributed to my success in graduate school, and I have learned much

ii

from him. Charlie Fischer and Jim Goodman were also excellent mentors to me, especially in the

critical early years of graduate school. Michael Gleicher, Remzi Arpaci-Dusseau, and Ras Bodik

provided excellent information and advice about the academic job search process.

I’ve met many wonderful and interesting students while in graduate school. Although I can’t

possibly mention everyone who has enriched my graduate school experience or provided moral

support, I wish to specifically thank a few individuals. Dan Sorin and I worked incredibly closely:

we co-authored several papers and together developed much of the early Multifacet simulation

infrastructure and tools. Dan greatly influenced my research, and ultimately it was during a dis-

cussion with him on a plane ride back from HPCA in 2002 that I came up with the idea of Token

Coherence. Our complementary set of skills created a prolific collaboration, and hope to collabo-

rate with him again someday. I also thank the other current and former members of the Multifacet

Project for their help and encouragement, especially Anastassia Ailamaki, Alaa Alameldeen, Brad

Beckmann, Ross Dickson, Michael Marty, Carl Mauer, Kevin Moore, Manoj Plakal, and Min Xu.

Fellow “Architecture Mafia” members Adam Butts, Ravi Rajwar, Amir Roth, Dan Sorin, and

Craig Zilles have become life-long friends. They providing an incredible sounding board for brain-

storming new research ideas, developing half-baked ideas, and discussing computer architecture in

general. They have become close friends, whose friendships have been among the most valuable

outcomes of my time in graduate school. I especially thank Craig for putting up with me as an

officemate for all those years, and Amir for agreeing to put up with me for years to come as a

colleague at Penn.

I’ve also benefited greatly from interacting technically with many members of the computer

industry. While interning one summer at IBM, Steven Kunkel, Hal Kossman and the other engi-

neers I worked with introduced me to server workloads, the challenges of multiprocessor system

design, and the important role cache-coherence protocols play in such systems. Without their in-

fluence, I would not have pursed this avenue of research. Discussions with Peter Hsu during his

one-semester visit to Wisconsin and since that time have been insightful and encouraging. Joel

Emer has provided incredible insight during conversations about my research. It was Joel Emer

and Shubu Mukherjee’s challenge at HPCA in 2000 to improve my previous work that directly

iii

inspired Token Coherence. I have also learned a great deal about computer architecture through

conversations with Allan Baum, Kourosh Gharachorloo, Anders Landin, Shubu Mukherjee, and

Aaron Spink.

My computer science education began long before graduate school. I especially thank Max

Hailperin, Karl Knight, and Barbara Kaiser, computer science professors from my days at Gustavus

Adolphus College. I also thank Chuck Fink, my advisor during my two summers working at

Argonne National Lab as an undergraduate intern. Chuck was the first to expose me to research.

I’ve also benefited greatly from the world-class software and hardware support. Both the UW’s

Computer Systems Lab (CSL) staff and Condor Project staff have been invaluable in providing

and supporting the computer hardware and software environment in the department. I also thank

Virtutech AB for their support of Simics, especially Peter Magnusson, Andreas Moestedt, and

Bengt Warner.

My graduate work has been financially supported by a wide variety of sources. I was supported

by an IBM Graduate Fellowship for five consecutive years. This work was also supported by a

Norm Koo Graduate Fellowship, and National Science Foundation Grants (CCR-0324878, EIA-

9971256, EIA-0205286, EIA-9971256, CCR-0105721 and CDA-9623632) and donations from

Intel Corporation, IBM, and Sun Microsystems.

iv

Table of Contents

Page

List of Tables . x

List of Figures .xii

Abstract .xiv

1 Introduction & Motivation . 1

1.1 Cache Coherence Protocols .1
1.2 Three Desirable Attributes .2

1.2.1 Attribute #1: Low-latency Cache-to-cache Misses3
1.2.2 Attribute #2: No Reliance on a Bus or Bus-like Interconnect4
1.2.3 Attribute #3: Bandwidth Efficiency .6

1.3 Token Coherence: A New Coherence Framework7
1.3.1 Decoupling Performance and Correctness7
1.3.2 Correctness Substrate .8
1.3.3 Performance Policies .9

1.4 Achieving the Three Desirable Attributes .10
1.4.1 TOKENB .10
1.4.2 TOKEND .10
1.4.3 TOKENM .11

1.5 Differences from Previously Published Versions of this Work12
1.6 Contributions .12
1.7 Dissertation Structure .13

2 Understanding and Extending Traditional Coherence Protocols 15

2.1 Coherent Caching in Multiprocessor Systems .16
2.2 Base States and Abstract Operation of Cache Coherence Protocols17

2.2.1 The MODIFIED, SHARED, and INVALID States17
2.2.2 The OWNED State .19
2.2.3 The EXCLUSIVE State .20

v

Page

2.2.4 Optimizing for Migratory Sharing .22
2.2.5 Upgrade Requests .23

2.3 Interconnection Networks .25
2.3.1 Types of Interconnects: Buses, Indirect, Direct25
2.3.2 Interconnect Routing .26
2.3.3 Ordering Properties: Unordered, Point-to-Point, Totally-Ordered27
2.3.4 Our Interconnect Implementations: TREE and TORUS 28

2.4 Snooping Protocols .30
2.4.1 Snooping Protocol Background and Evolution30
2.4.2 Advantages of Snooping Protocols .31
2.4.3 Disadvantages of Snooping Protocols .32
2.4.4 Comparing Snooping Protocols with Token Coherence32
2.4.5 Our Snooping Protocol Implementation: SNOOPING 33

2.5 Directory Protocols .34
2.5.1 Directory Protocol Background .34
2.5.2 Advantages of Directory Protocols .36
2.5.3 Disadvantages of Directory Protocols .37
2.5.4 Comparing Directory Protocols with Token Coherence38
2.5.5 Our Directory Protocol Implementation: DIRECTORY 39

2.6 A Non-Traditional Protocol: AMD’s Hammer .40
2.6.1 The Hammer Protocol .41
2.6.2 Our Implementation: HAMMEROPT . 42

2.7 Protocol Background Summary .43

3 Safety via Token Counting .44

3.1 Token Counting Rules .44
3.1.1 Simplified Token Counting Rules .45
3.1.2 Invariants for Simplified Token Counting46
3.1.3 Memory Consistency and Token Coherence48
3.1.4 The Owner Token and Revised Token Counting Rules48
3.1.5 Rules for Supporting the EXCLUSIVE State50
3.1.6 Supporting Upgrade Requests, Special-Purpose Requests, and I/O53
3.1.7 Reliability of Token Coherence .54
3.1.8 Opportunities Enabled by Token Counting55

3.2 Token Storage and Manipulation Overheads .55
3.2.1 Token Storage in Caches .56
3.2.2 Transferring Tokens in Messages .56
3.2.3 Non-Silent Evictions Overheads .58

vi

Page

3.2.4 Token Storage in Memory .58
3.2.5 Overhead Summary .65

4 Starvation Freedom via Persistent Requests. 66

4.1 Centralized-Arbitration Persistent Requests .68
4.2 Showing That Persistent Requests Can Prevent Starvation70

4.2.1 Deadlock-Free Message Delivery .70
4.2.2 Receiving All Tokens .72
4.2.3 Receiving Valid Data .72
4.2.4 Persistent Request Deactivation Requirement73
4.2.5 Summary .73

4.3 Banked-Arbitration Persistent Request .73
4.4 Introducing Persistent Read Requests .74
4.5 Distributed-Arbitration Persistent Requests .75
4.6 Improved Scalability of Persistent Requests .78
4.7 Preventing Reordering of Persistent Request Messages79

4.7.1 Problems Caused by Reordered Activations and Deactivations79
4.7.2 Solution#1: Point-to-point Ordering .80
4.7.3 Solution#2: Explicit Acknowledgments81
4.7.4 Solution#3: Acknowledgment Aggregation82
4.7.5 Solution#4: Large Sequence Numbers .83
4.7.6 Summary of Solutions .84

4.8 Persistent Request Summary .85

5 Performance Policies Overview .86

5.1 Obligations .86
5.2 Opportunities via Transient Requests .87
5.3 Performance Policy Forecast .87

5.3.1 TOKENB .88
5.3.2 TOKEND .88
5.3.3 TOKENM .88

5.4 Other Possible Performance Policies .89
5.4.1 Bandwidth Adaptive Protocols .89
5.4.2 Predictive Push .90
5.4.3 Multi-Block Request or Prefetch .90
5.4.4 Supporting Hierarchical Systems .91
5.4.5 Reducing the Frequency of Persistent Requests91

vii

Page

5.5 Roadmap for the Second Part of this Dissertation92

6 Experimental Methods and Workload Characterization 93

6.1 Simulation Tools .93
6.2 Simulated System .94

6.2.1 Coherence Protocols .95
6.2.2 System Interconnects .95

6.3 Workloads and Measurement Methods .97
6.3.1 Methods for Simulating Commercial Workloads97
6.3.2 Workload Descriptions .99

6.4 Workload Characterization .100
6.4.1 Characterization of our Base Coherence Protocols100
6.4.2 Cache-to-Cache Misses Occur Frequently103
6.4.3 The Performance Cost of Indirection .105
6.4.4 The Bandwidth Cost of Broadcasting .107

7 TOKEN B: A Low-Latency Performance Policy Using Unordered Broadcast. 109

7.1 TOKENB Operation .109
7.1.1 Issuing Transient Requests .109
7.1.2 Responding to Transient Requests .110
7.1.3 Reissuing Requests and Invoking Persistent Requests110

7.2 Evaluation of TOKENB .111
7.2.1 Question#1: Are reissued and persistent requests uncommon?113
7.2.2 Question#2: Can TOKENB outperform SNOOPING?119
7.2.3 Question#3: Is TOKENB’s traffic similar to SNOOPING?120
7.2.4 Question#4: Can TOKENB outperform DIRECTORY or HAMMEROPT? . . 121
7.2.5 Question#5: How does TOKENB’s traffic compare to DIRECTORY and

HAMMEROPT? .123
7.2.6 Question#6: How frequently do non-silent evictions occur?126
7.2.7 Question#7: Does TOKENB scale to an unlimited number of processors? .126
7.2.8 TOKENB Results Summary .128

8 TOKEN D: A Directory-Like Performance Policy .130

8.1 TOKEND’s Operation .130
8.2 Soft-State Directory Implementations .132

8.2.1 A Simple Soft-State Directory .132

viii

Page

8.2.2 A More Accurate Soft-State Directory .133
8.3 Evaluation of TOKEND .133

8.3.1 Question#1: Is TOKEND’s soft-state directory effective?134
8.3.2 Question#2: Is TOKEND’s traffic similar to DIRECTORY?135
8.3.3 Question#3: Does TOKEND perform similarly to DIRECTORY?139
8.3.4 Question#4: Does TOKEND outperform TOKENB?139
8.3.5 TOKEND Results Summary .140

9 TOKEN M: A Predictive-Multicast Performance Policy142

9.1 TOKENM’s Operation .143
9.2 Destination-Set Predictors .145

9.2.1 Predictor Goals .145
9.2.2 Our Approach .146
9.2.3 Common Predictor Mechanisms .146
9.2.4 Three Specific Predictor Policies .147
9.2.5 Capturing Spatial Predictability via Macroblock Indexing150

9.3 Evaluation of TOKENM .150
9.3.1 Question#1: Does TOKENM Use Less Traffic than TOKENB?150
9.3.2 Question#2: Does TOKENM Outperform TOKEND?152
9.3.3 Question#3: Is TOKENM Always Better than TOKENB and TOKEND? . . 154
9.3.4 TOKENM Results Summary .155

9.4 Related Work .156

10 Conclusions .157

10.1 Token Coherence Summary and Conclusions .157
10.2 Future Directions and Further Challenges .158

10.2.1 How Else Can Systems Exploit Token Coherence’s Flexibility?159
10.2.2 Is There a Better Way to Prevent Starvation?159
10.2.3 Does Token Coherence Simplify Coherence Protocol Implementation? . . .160

10.3 Reflections on Cache-Coherent Multiprocessors162
10.3.1 Optimize For Migratory Sharing .162
10.3.2 Decouple Coherence and Consistency .163
10.3.3 Avoid Reliance on a Total Order of Requests164
10.3.4 Revisit Snooping vs. Directory Protocols166
10.3.5 Design Cost-Effective Multiprocessor Systems167
10.3.6 The Increasing Importance of Chip Multiprocessors170

ix

Page

Bibliography .172

Appendix A: Differences from Martin et al., ISCA 2003183

x

List of Tables

Table Page

2.1 MSI State Transitions .18

2.2 MOSI State Transitions .19

2.3 MOESI State Transitions .21

2.4 MOESI State Transitions Optimized for Migratory Sharing23

6.1 Simulation Parameters .96

6.2 Non-Token Coherence Protocol Results for the TREE Interconnect.101

6.3 Non-Token Coherence Protocol Results for the TORUS Interconnect.102

7.1 TOKENB Results for the TREE Interconnect. .114

7.2 TOKENB Results for the TORUS Interconnect. .115

7.3 TOKENB Reissued Requests. .115

7.4 Distribution of Evictions per State. .126

7.5 Results from an Analytical Model of Traffic: TOKENB versus DIRECTORY. 128

8.1 TOKEND Results for the TORUS Interconnect. .134

8.2 TOKEND Reissued Requests. .135

8.3 Results from an Analytical Model of Traffic: TOKEND versus DIRECTORY. 139

9.1 Predictor Policies .149

9.2 TOKENM Results for the TORUS Interconnect. .151

xi

Table Page

9.3 TOKENM Reissued Requests. .155

xii

List of Figures

Figure Page

1.1 Characterizing Common Protocols in Terms of Three Desirable Attributes.3

1.2 Interconnection Network Topologies. .5

1.3 Pictorial Dissertation Overview. .8

1.4 Characterizing Performance Policies in Terms of Three Desirable Attributes.11

2.1 Interconnection Network Topologies. .29

4.1 Single-Arbiter System. .68

4.2 Arbiter-based Persistent Request Example. .69

4.3 Multiple-Arbiter System. .74

4.4 Distributed-Arbitration System. .76

4.5 Distributed Persistent Request Example. .77

4.6 Using Explicit Acknowledgments. .82

4.7 Algorithm for determining when a recipient should ignore an incoming message. . . .84

6.1 Miss Rate vs. Cache Size. .103

6.2 Runtime vs. Cache Size. .106

6.3 Degree of Sharing Histogram. .108

7.1 A Diminishing Weighted Average. .112

7.2 Implementing a Diminishing Weighted Average in Hardware.113

xiii

Figure Page

7.3 Runtime of TOKENB and TOKENNULL .116

7.4 Endpoint Traffic of TOKENB and TOKENNULL .117

7.5 Interconnect Traffic of TOKENB and TOKENNULL118

7.6 Runtime of SNOOPINGand TOKENB. .119

7.7 Endpoint Traffic of SNOOPINGand TOKENB. .121

7.8 Interconnect Traffic of SNOOPINGand TOKENB. .122

7.9 Runtime of DIRECTORY, HAMMEROPT, and TOKENB.123

7.10 Endpoint Traffic of DIRECTORY, HAMMEROPT, and TOKENB.124

7.11 Interconnect Traffic of DIRECTORY, HAMMEROPT, and TOKENB.125

7.12 An Analytical Model of the Traffic of TOKENB and DIRECTORY.127

8.1 Endpoint Traffic of DIRECTORY and TOKEND. .136

8.2 Interconnect Traffic of DIRECTORY and TOKEND.137

8.3 An Analytical Model of the Traffic of TOKEND and DIRECTORY.138

8.4 Runtime of DIRECTORY, TOKEND, and TOKENB140

9.1 A Bandwidth/Latency Tradeoff. .142

9.2 Destination-Set Predictors as Bandwidth/Latency Tradeoffs.148

9.3 Endpoint Traffic of TOKENM, TOKEND, TOKENB and DIRECTORY.152

9.4 Interconnect Traffic of TOKENM, TOKEND, TOKENB and DIRECTORY. 153

9.5 Runtime of TOKENM, TOKEND, TOKENB and DIRECTORY.154

xiv

Abstract

Token Coherence is a framework for creating cache-coherent multiprocessor systems. By de-

coupling performance and correctness, Token Coherence can simultaneously capture the best as-

pects of the two predominant approaches to coherence: directory protocols and snooping proto-

cols. These two approaches to coherence have a different set of attractive attributes. Snooping

protocols have low-latency and direct processor-to-processor communication, whereas directory

protocols are bandwidth efficient and do not require a bus or other totally-ordered interconnect.

Token Coherence captures the best aspects of both of these traditional approaches to coherence

by creating a correctness substrate that (1) enforces safety (using a new technique we calltoken

counting) and (2) prevents starvation (using an infrequently-invoked operation we call apersis-

tent request). These two mechanisms form a correctness substrate that provides a foundation for

implementing manyperformance policies. These performance policies focus on making the sys-

tem fast and bandwidth-efficient, but have no correctness responsibilities (because the substrate is

responsible for correctness). This decoupling of responsibility between the correctness substrate

and performance policy (1) enables the development of performance policies that capture many of

the desirable attributes of snooping and directory protocols and (2) provides ample opportunity for

other performance policies that result in better cache-coherence protocols.

The most important contribution of this dissertation is the observation that simple token count-

ing rules can ensure that the memory system behaves in a coherent manner. Token counting speci-

fies that each block of the shared memory has a fixed number of tokens and that the system is not

allowed to create or destroy tokens. A processor is allowed to read a block only when it holds at

least one of the block’s tokens, and a processor is allowed to write a block only when it holds all

of its tokens. These simple rules prevent a processor from reading the block while another pro-

cessor is writing the block, ensuring coherent behavior at all times. This guarantee of safe system

behavior forms the foundation of the new coherence framework that we call Token Coherence.

1

Chapter 1

Introduction & Motivation

The performance and cost of database and web servers are important because the services

they provide are increasingly a part of our daily lives. Many of these servers are shared-memory

multiprocessors (or clusters of shared-memory multiprocessors). Shared-memory multiprocessors

use a cache coherence protocol to coordinate the many caches distributed throughout the system

as part of providing a consistent view of memory to the processors. This dissertation focuses on

improving the cache coherence protocol because of its effect on both the cost and performance of

shared-memory multiprocessors.

This chapter briefly describes cache coherence protocols (Section 1.1) and identifies three de-

sirable attributes for coherence protocols (Section 1.2). We then present Token Coherence, our

new framework for coherence protocols (Section 1.3). We show how this framework enables pro-

tocols that capture all three desirable attributes simultaneously (Section 1.4), and in Section 1.5 we

describe the differences between this dissertation and previously published versions of this work

[80, 81]. We conclude the chapter by presenting the contributions (Section 1.6) and structure of

this dissertation (Section 1.7).

1.1 Cache Coherence Protocols

A coherence protocol provides a consistent view of memory by segmenting the shared ad-

dress space into blocks and controlling the permissions for locally cached copies of these blocks.

2

Invalidation-based cache coherence protocols1 manage these permissions to enforce thecoherence

invariant. Informally, the coherence invariant states that (1) no processor may read the block while

another processor is writing the block, and (2) all readable copies must contain the same data.

To enforce this invariant, current protocols encode the specific permissions and other attributes of

blocks in caches using a subset of the MODIFIED, OWNED, EXCLUSIVE, SHARED, and INVALID

(MOESI) coherence states [116].

Even though modern protocols adopt these basic states (or a subset of these states), a designer

must choose one of several specific approaches for manipulating and controlling these states. To-

day, the two most common approaches to cache coherence are snooping protocols and directory

protocols.Snooping protocolsbroadcast requests to all processors using a bus or bus-like intercon-

nect (i.e., one that provides a total order of requests). This ordered broadcast both (1) unambigu-

ously resolves potentially conflicting requests, and (2) directly locates the block even when it is in

another processor’s cache. In contrast,directory protocolssend requests only to the home mem-

ory which responds with data or forwards the request to one or more processors. This approach

reduces bandwidth consumption, but increases the latency of some misses. Chapter 2 presents a

more in-depth discussion the cache coherence problem (Section 2.1), the MOESI coherence states,

multiprocessor interconnects (Section 2.3), snooping protocols (Section 2.4), directory protocols

(Section 2.5), and other approaches to coherence (Section 2.6).

1.2 Three Desirable Attributes

In our view, workload and technology trends point toward a new design space that provides

opportunities to improve the performance and cost of multiprocessor servers by moving beyond

traditional snooping and directory protocols. We explore this design space by identifying three

desirable attributes of cache coherence protocols driven by workload and technology trends. As

illustrated in Figure 1.1, neither predominant approach to coherence captures all three of these

attributes: two are captured by directory protocols and one is captured by snooping. This deficiency

1This dissertation considers only invalidation-based coherence protocols because recent systems have
overwhelmingly chosen invalidation-based protocols over the alternatives.

3

Low-Latency Cache-
to-Cache Misses

No Reliance on a Bus or
Bus-Like Interconnect

Bandwidth
Efficiency

Low-Latency Cache-
to-Cache Misses

No Reliance on a Bus or
Bus-Like Interconnect

Bandwidth
Efficiency

(a) Snooping Protocols (b) Directory Protocols

Figure 1.1 Characterizing Common Protocols in Terms of Three Desirable Attributes.
This figure illustrates the three desirable properties described in Section 1.2 and which of these
attributes are exhibited by snooping (part a) and directory protocols (part b). Each triangle
represents a different protocol, and each vertex corresponds to a different attribute. The shaded
portion of the triangle shows the attributes exhibited by the corresponding protocol. As shown
in this figure, the set of these desirable attributes captured by snooping and directory protocols
is disjoint, and thus neither protocol has all the desired properties.

of the current approaches motivates our creation of a new framework for coherence that enables

protocols to capture all three of the attributes described next.

1.2.1 Attribute #1: Low-latency Cache-to-cache Misses

Many commercial workloads exhibit abundant thread-level parallelism, and thus using multi-

ple processors is an attractive approach for increasing their performance. To efficiently support the

frequent communication and synchronization in these workloads, servers should optimize the la-

tency ofcache-to-cache misses[17]. A cache-to-cache miss is a miss—often caused by accessing

shared data—that requires another processor’s cache to supply the data. To reduce the latency of

cache-to-cache misses, a coherence protocol should ideally support direct cache-to-cache misses.

For example, snooping protocols support fast cache-to-cache misses by broadcasting all requests to

find the responder directly. In contrast, directory protocols indirectly locate remote data by placing

a directory lookup and a third interconnect traversal on the critical path of cache-to-cache misses.

4

1.2.2 Attribute #2: No Reliance on a Bus or Bus-like Interconnect

Unfortunately, snooping protocols rely on a bus or bus-like interconnect to enable their fast

cache-to-cache transfers, and such interconnects are not a good match with two important tech-

nology trends: high-speed point-to-point links and increasing levels of integration. As discussed

briefly below and more extensively in Section 2.3, creating a bus-like or “virtual bus” interconnect

requires the interconnect to provide a total order of requests. An interconnect provides atotal order

if all messages are delivered to all destinations in some order. A total order requires an ordering

among all the messages (even those from different sources or sent to different destinations). For

example, if any processor receives messageA before messageB, then no processor receives mes-

sageB beforeA. Unfortunately, creating a totally-ordered interconnect that exploits both of the

two important technology trends described below is infeasible using traditional techniques. For

this reason, protocols that rely on a totally-ordered interconnect—such as snooping protocols—

are undesirable, and protocols that do not rely on such an interconnect—such as most directory

protocols—are more attractive.2

High-speed point-to-point links. Continued scaling of the bandwidth of shared-wire buses

is difficult because of electrical implementation realities [35]. To overcome this limitation, some

multiprocessor systems replace shared-wire buses with high-speed point-to-point links that can

provide significantly more bandwidth per pin than shared-wire buses [59]. Although many early

snooping systems relied on shared-wire buses, many recent snooping protocols use virtual bus

switched interconnects that exploit high-speed point-to-point links. These interconnects provide

the bus-like ordering properties required for snooping, often by ordering all requests at the root

switch chip (such as the interconnect illustrated in Figure 1.2a).

Higher levels of integration. The increasing number of transistors per chip predicted by

Moore’s Law has encouraged and will continue to encourage more integrated designs, making

“glue” logic (e.g., dedicated switch chips) less desirable. Many current and future systems will in-

tegrate processor(s), cache(s), coherence logic, switch logic, and memory controller(s) on a single

2We describe additional, second-order reasons to avoid protocols that rely on a total order of requests in
Section 10.3.3.

5

P P P P

Switch

PPPP

Switch

P P P P

Switch

PPPP

Switch

Root Switch
P P P P

P P P P

P P P P

P P P P

(a) (b)

Figure 1.2 Interconnection Network Topologies.(a) 16-processor two-level tree interconnect
and (b) 16-processor (4x4) two-dimensional bi-directional torus interconnect. The boxes marked
“P” represent highly-integrated nodes that include a processor, caches, memory controller, and
coherence controllers. The indirect tree uses dedicated switch chips, while the torus is a directly
connected interconnect. For these example interconnects, the torus has lower latency (two vs.
four chip crossings on average) and does not require any glue chips; however, unlike the indirect
tree, the torus provides no total order of requests, making it unsuitable for traditional snooping.

die (e.g., Alpha 21364 [91] and AMD’s Hammer [9]). Directly connecting these highly-integrated

nodes leads to a high-bandwidth, low-cost, low-latency “glueless” interconnect (such an intercon-

nect is illustrated in Figure 1.2b).

These glueless, point-to-point interconnects are fast, but they do not easily provide the virtual

bus behavior required by traditional snooping protocols.3 Instead, most such systems use direc-

tory protocols, which provide coherence without requiring a totally-ordered interconnect. These

systems maintain a directory at the home node (i.e., memory) that resolves possibly conflicting

requests by ordering requests on a per-cache-block basis. In contrast, snooping protocols rely on

a totally-ordered interconnect to resolve conflicting requests. Unfortunately, traditional directory

protocols must first send all requests to the home node (to resolve conflicting requests), adding

latency to the critical path of cache-to-cache misses.

3Martin et al. [82] proposed such a scheme for recreating a total order of requests on an unordered
interconnect, but it is perhaps too complicated to implement in practice.

6

1.2.3 Attribute #3: Bandwidth Efficiency

Bandwidth efficiency is the third—and perhaps currently the least important—desirable at-

tribute. A cache coherence protocol should conserve bandwidth to reduce cost and avoid inter-

connect contention (because contention reduces performance), but a protocol should not sacrifice

either of the first two attributes to obtain this less-important third attribute.

Past research has extensively studied the bandwidth efficiency of coherence protocols, espe-

cially in terms of the system’s scalability (i.e., the growth of system traffic as the number of

processors increases). However, the workload trend towards commercial workloads has dimin-

ished the incentive to dramatically increase the number of processors in a multiprocessor system.

Although some scientific workloads can use thousands of processors, many commercial work-

loads can only exploit smaller systems. These small multiprocessor systems represent the bulk of

total multiprocessor sales [49]. Service providers that need more throughput than a moderately-

sized multiprocessor can provide often create clusters of multiprocessors, because they also desire

availability and know that little commercial software runs on multiprocessors with hundreds of

processors. As a result, most systems sold have a small to moderate number of processors, and few

truly scalable systems are sold. For example, an essay [85] estimated that, of the 30,000 Origin

200/2000 [72] systems shipped, less than 10 systems contained 256 or more processors (0.03%),

and less than 250 of the systems had 128 processors or more (1%).

Instead of focusing on system scalability, this dissertation focuses on providing the first two

desirable attributes while using less bandwidth than traditional snooping protocols. Snooping pro-

tocols broadcast all requests to quickly find shared data in caches or memory, but they use sig-

nificantly more bandwidth than a directory protocol, which avoids broadcast. Our new coherence

framework, described next, allows a system to capture the best performance aspects of snoop-

ing and directory protocols (attributes #1 and #2) while using significantly less bandwidth than

snooping protocols (attribute #3).

7

1.3 Token Coherence: A New Coherence Framework

In an effort to capture all three of these desirable attributes, this dissertation proposes Token

Coherence, a new framework for creating coherence protocols. Although several research efforts

by Martin et al. [79, 82, 84] and other researchers (e.g., [3, 4, 20, 70, 73, 114]) have attempted to

evolve current approaches into protocols that capture two or more of these attributes, we ultimately

discovered a more radical approach for pragmatically capturing the desired attributes.

1.3.1 Decoupling Performance and Correctness

Instead of evolving either a directory protocol or snooping protocol to mitigate their undesirable

properties, we revisit fundamental aspects of cache coherence protocols by creating a coherence

framework that decouples the performance and correctness aspects of the protocol. In the tra-

ditional model (illustrated in Figure 1.3a), a specific cache coherence protocol is built upon the

conceptual foundation of the basic MOESI coherence states. We replace this traditional two-tiered

model of coherence with a three-tiered model. At the lowest level, Token Coherence still relies on

the familiar MOESI conceptual foundation. However, the Token Coherence framework introduces

a correctness substratethat ensures safety, prevents starvation, and allows for manyperformance

policies to be conceptually layered over it. These performance policies have no correctness re-

quirements, which allows them significant flexibility to seek high performance.4 This layered

framework is illustrated in Figure 1.3b.

In the remainder of this section, we describe the most important aspects of this framework. In

the next section (Section 1.4), we use this flexibility to create a sequence of performance policies

that ultimately capture the three desirable attributes that we described in Section 1.2.

4Although Token Coherence decouples performance and correctness, Token Coherence is not a specu-
lative execution technique; Token Coherence does not speculatively modify memory state, and it does not
require a rollback or recovery mechanism.

8

Performance Policies (Chapter 5)

TokenB
Policy

(Chapter 7)
TokenD
Policy

(Chapter 8)
TokenM
Policy

(Chapter 9)

Other
Protocols

(Section 2.6)
Directory
Protocol

(Section 2.5)
Snooping
Protocol

(Section 2.4)

Coherence Invariant (Section 2.1)
and MOESI States (Section 2.2)

Coherence Invariant (Section 2.1)
and MOESI States (Section 2.2)

Persistent
Requests

(Chapter 4)

Correctness Substrate
Token

Counting
(Chapter 3)

Conceptual Foundation Conceptual Foundation

Specific Implementation

or or

or or

(a) Traditional Coherence (b) Token Coherence
Figure 1.3 Pictorial Dissertation Overview. This figure provides a pictorial overview of the
organization of this dissertation by illustrating both the traditional approach and Token Coher-
ence’s approach to cache coherence. The traditional approach (part a) builds upon the conceptual
foundations of coherence, the coherence invariant, and the MOESI states. Upon this foundation,
traditional systems implement a particular protocol (such a snooping or directory protocol).
The Token Coherence framework (part b) builds upon the same well-understood conceptual
foundations, but implements a specific performance policy upon a correctness substrate (that is
independent of any particular performance policy). These two layers decouple the protocol’s
correctness and performance responsibilities. This illustration provides a forecast of the organi-
zation of this dissertation by labeling each component with the chapter or section in which it is
discussed. Parts of the dissertation not shown include the introduction (Chapter 1), discussion of
multiprocessor interconnects (Section 2.3), experimental methods (Chapter 6), and conclusions
(Chapter 10).

1.3.2 Correctness Substrate

The correctness substrate provides a foundation for building correct coherence protocols by

separating the correctness aspects of coherence into ensuring safety (do no harm) and preventing

starvation (do some good).

Safety.A coherence protocol ensuressafetyif it guarantees that all reads and writes are coher-

ent (i.e., they maintain the single writer or multiple reader coherence invariant). The correctness

9

substrate ensures safety using token counting. Token counting (1) associates a fixed number of

tokens with each logical block of shared memory, and (2) ensures that a processor may read a

cache block only when it holds at least one of the block’s tokens, and it may write a cache block

only when it holds all of the block’s tokens (allowing for a single writer or many readers, but not

both). Tokens are held with copies of the block in caches and memory and exchanged using coher-

ence messages. We further discuss enforcing safety, token-counting rules, and token overheads in

Chapter 3.

Starvation freedom. A coherence protocol isstarvation-freeif all reads and writes eventually

complete. The correctness substrate prevents starvation usingpersistent requests. A persistent

request is a special type of heavy-weight request that is used in the infrequent situation in which

a processor may be starving. This special type of request ensures that—no matter how tokens are

moving throughout the system—the requester is guaranteed to eventually receive the tokens and

data necessary to complete its request. A processor invokes a persistent request when it detects

possible starvation. Persistent requests always succeed in obtaining data and tokens—even when

conflicting requests occur—because once activated they persist in forwarding data and tokens until

the request is satisfied. Once the request is satisfied, the requester explicitly deactivates the request

by sending another round of messages. Because processors should only infrequently resort to per-

sistent requests (i.e., for only a couple percent of cache misses), persistent requests must be correct

but not necessarily fast or efficient. We further discuss starvation freedom, persistent requests, and

associated overheads in Chapter 4.

1.3.3 Performance Policies

The correctness substrate frees performance policies to seek high performance and bandwidth

efficiency without concern for correctness. One way in which performance policies seek high

performance is by usingtransient requestsas “hints” to direct the correctness substrate to send

data and tokens to the requesting processor. A transient request is a simple request that is not

guaranteed to succeed (e.g., it may fail to find sufficient tokens because of conflicting concurrent

requests), but—in the common case—it often succeeds in obtaining the requested data and tokens.

10

Because the correctness substrate prevents starvation (via persistent requests) and guarantees safety

(via token counting), performance policy bugs and various races may hurt performance, but they

cannot affect correctness. We further discuss performance policies, the opportunities they provide,

and several possible performance policies in Chapter 5.

1.4 Achieving the Three Desirable Attributes

The flexibility granted by the Token Coherence framework allows the creation of performance

policies that can capture all three of the desirable attributes previously described in Section 1.2.

This dissertation presents a progression of three performance policies for capturing these three

attributes. Figure 1.4 illustrates the attributes captured by each of these policies.

1.4.1 TOKEN B

The goal of theToken-using-Broadcast(TOKENB) performance policy is to simultaneously

capture attributes #1 and #2 (i.e., avoid an ordered interconnect and provide low-latency cache-to-

cache misses). These two attributes are the more important of the three attributes, and targeting

both of these attributes results in a low-latency, broadcast-based coherence protocol suitable for

implementation with a glueless, point-to-point interconnect. TOKENB is faster than traditional

snooping protocols (by not requiring a higher-latency totally-ordered interconnect) and directory

protocols (by avoiding indirection for frequent cache-to-cache misses). TOKENB is described and

evaluated in Chapter 7.

1.4.2 TOKEN D

TOKENB broadcasts all requests, and thus it uses substantially more bandwidth than a directory

protocol. In an effort to achieve bandwidth efficiency (attribute #3), we first create theToken-

based-Directory(TOKEND) performance policy. TOKEND uses the Token Coherence framework

to emulate a directory protocol, resulting in a protocol that has the same (desirable) bandwidth

and (undesirable) latency properties as a traditional directory protocol. The TOKEND performance

11

Low-Latency Cache-
to-Cache Misses

No Reliance on a Bus or
Bus-Like Interconnect

Bandwidth
Efficiency

(a) TokenB

Low-Latency Cache-
to-Cache Misses

No Reliance on a Bus or
Bus-Like Interconnect

Bandwidth
Efficiency

(b) TokenD
Low-Latency Cache-

to-Cache Misses

No Reliance on a Bus or
Bus-Like Interconnect

Bandwidth
Efficiency

(c) TokenM

Tradeoff Latency
and Bandwidth

Figure 1.4 Characterizing Performance Policies in Terms of Three Desirable Attributes.
Each triangle represents a different performance policy, and each vertex of the triangle corre-
sponds to a different attribute described in Section 1.2. As shown by the shaded region of the
triangles, TOKENB and TOKEND each capture two of the three desired properties. TOKENM is
a hybrid protocol that uses destination-set prediction to capture most of the benefits of all three
desirable attributes. However, TOKENM’s triangle is not entirely filled because of imperfect
destination-set prediction; predicting too many destinations decreases its bandwidth efficiency,
and predicting too few destinations increases its average miss latency. The arrow along the edge
of the triangle represents the choice of predictor results in a bandwidth-latency tradeoff for the
protocol. We further describe these three performance policies in Chapter 7, Chapter 8, and
Chapter 9.

policy illustrates the flexibility of Token Coherence, and it provides a foundation for creating the

hybrid performance policy TOKENM. TOKEND is described and evaluated in Chapter 8.

1.4.3 TOKEN M

Token-using-Multicast(TOKENM) is a hybrid performance policy that usesdestination-set pre-

diction to multicast requests to a subset of processors that likely need to observe the requests.

12

Destination-set prediction has been applied to more traditional protocols [3, 4, 20, 79, 114], and

TOKENM applies this preexisting predictive technique to Token Coherence. The TOKENM perfor-

mance policy captures attribute #2 (it does not require a totally-ordered interconnect), and allows

the system designer to trade off between attributes #1 and #3 (low-latency cache-to-cache misses

and bandwidth efficiency). In the extremes, TOKENM acts like either TOKENB (when the predic-

tor always predicts broadcast) or TOKEND (when the predictor only sends requests to the home

memory for forwarding if necessary). However, when the predictor uses past behavior to cor-

rectly predict which processors need to see various requests, TOKENM can capture all three of our

desired attributes. TOKENM is described and evaluated in Chapter 8.

1.5 Differences from Previously Published Versions of this Work

A preliminary subset of this work was published by Martinet al. [80, 81]. This dissertation

extends these earlier documents by refining the token-counting rules, adding a clean/dirty owner

token, describing the overheads associated with token counting, introducing another approach for

implementing persistent requests, and evaluating three distinct performance policies. In contrast,

the earlier publications explored only one performance policy. This dissertation also builds upon

another work by Martinet al. [79] that explores destination-set prediction in coherence proto-

cols. We use these destination-set predictors as part of constructing TOKENM, a predictive hybrid

protocol based upon Token Coherence that captures the best aspects of snooping and directory

protocols. As many readers of this dissertation will be familiar with one or more of these previous

publications, we further describe the most important differences between these earlier works and

this dissertation in Appendix A.

1.6 Contributions

This section describes our view of this dissertation’s most important contributions.

• Proposes a coherence framework that decouples correctness and performance.This

dissertation proposes decoupling coherence protocols into a correctness substrate and a per-

13

formance protocol. This decoupling provides significant flexibility for seeking high perfor-

mance to enable protocols that overcome the limitations of previous approaches to coher-

ence.

• Introduces simple token-counting rules for enforcing safety.The most important con-

tribution of this dissertation is the observation that simple token counting rules can provide

safety in all cases. By requiring that a processor must hold at least one of a block’s tokens

to read it and all of a block’s tokens to write it, the correctness substrate guarantees safety

without unnecessarily constraining or complicating the protocol.

• Develops a persistent request mechanism for preventing starvation.Although token

counting enforces safety, it does nothing to guarantee that processors will receive the tokens

they need to complete their reads and writes; thus, the third contribution of this dissertation

is using a dedicated mechanism to prevent starvation. Such a mechanism is designed to be

invoked only rarely, and thus can have higher overhead and/or latency than the mechanism

used in the common case.

• Develops and evaluates three performance policies.We develop and quantitatively evalu-

ate a sequence of three performance protocols. TOKENB, our broadcast-based performance

policy, outperforms a traditional snooping protocol by avoiding the overhead of an ordering

interconnect. TOKEND, our directory-like performance policy, has performance characteris-

tics similar to a traditional directory protocol. TOKENM is a predictive protocol that borrows

from both TOKENB and TOKEND to capture most of TOKENB’s low-latency cache-to-cache

misses and TOKEND’s bandwidth efficiency. These three performance policies provide an

attractive set of alternatives to traditional coherence protocols.

1.7 Dissertation Structure

This dissertation is divided into two parts. The first part of the dissertation describes the general

Token Coherence framework. It begins with this introductory and motivational chapter (Chapter 1)

14

and continues with a chapter that describes the fundamentals of cache coherence protocols (includ-

ing interconnect networks, snooping protocols, and directory protocols), and how these concepts

and approaches relate to Token Coherence (Chapter 2). We then describe the correctness sub-

strate’s use of token counting to ensure safety (Chapter 3) and its use of persistent requests to

prevent starvation (Chapter 4). The first part of the dissertation ends by presenting an overview of

performance policies, describing the performance policies we explore later in the dissertation, and

discussing other potentially-attractive performance policies relegated to future work (Chapter 5).

The second part of this dissertation develops and evaluates three specific proof-of-concept per-

formance protocols. It begins by describing our evaluation methods and characterizing our work-

loads (Chapter 6). It then describes and evaluates each of three performance policies: TOKENB

(Chapter 7), TOKEND (Chapter 8), and TOKENM (Chapter 9). The dissertation ends with a chap-

ter that summarizes Token Coherence, reflects on the current state of cache coherence protocols

(especially in light of Token Coherence), discusses the future of multiprocessors, and identifies

other advantages of token coherence—such as simplicity—that are not evaluated in this disserta-

tion (Chapter 10).

15

Chapter 2

Understanding and Extending Traditional Coherence Protocols

This chapter describes the background and terminology for understanding the Token Coherence

framework for creating cache coherence protocols. Although this chapter reviews some basics of

cache coherence, it is not an introduction to cache coherence. It is instead intended to provide

a consistent terminology, to define the scope of the protocols we discuss in this dissertation, and

to provide insight into how current protocols relate to the Token Coherence framework. We refer

the reader to the established textbooks on this topic for further background and introductory ma-

terial (e.g., Chapter 6 of Hennessy and Patterson [53] and Chapters 5–8 of Culler and Singh [32]).

Since invalidation-based coherence has been used in favor of update-based coherence protocols in

most recent systems (e.g., [15, 21, 23, 25, 26, 58, 72, 91, 119]), this dissertation only considers

invalidation-based cache coherence protocols.

This chapter first discusses the problem of keeping the contents of caches coherent in shared-

memory multiprocessors (Section 2.1). Next, we describe the basic strategy and coherence states

used by invalidation-based cache coherence protocols to address this problem, and foreshadow

how these basic states relate to Token Coherence (Section 2.2). After describing the abstract op-

eration of coherence protocols, we discuss various alternatives for implementing multiprocessor

interconnection networks (Section 2.3). The chapter continues by describing snooping protocols

and directory protocols (the two main classes of cache coherence protocols), presenting a con-

crete design for both approaches, and discussing how these approaches relate to Token Coherence

(Section 2.4 and Section 2.5). Next, we discuss AMD’s Hammer protocol, one of several recent

and non-traditional coherence protocols that have some characteristics of both snooping and di-

16

rectory protocols (Section 2.6). We conclude this chapter with a brief summary of the chapter

(Section 2.7).

2.1 Coherent Caching in Multiprocessor Systems

This dissertation considers multiprocessor systems with multiple memory modules in which

each processor has one or more levels of private cache memory. When processors in such a system

share the samephysical memory address space, that system is called anshared-memory multipro-

cessor. These systems manage the shared memory address space by dividing the memory into

blocks. Managing and caching memory at the block granularity—typically 32 to 128 bytes in

size—amortizes overheads and allow caches to capture spatial locality. Each block has a single

home memory modulethat holds the architected state for the block when it is not present in any

caches. Processors cache copies of recently accessed data to both reduce the average memory ac-

cess latency and increase the effective bandwidth of the memory system. When a processor desires

to cache a copy of a block that it can read, it issues aread request. When a processor desires a

copy of the block it can both read and write, it issues awrite request. A coherence transactionis

the entire process of issuing a request and receiving any responses. Processors issue these requests

to satisfy load or store instructions that miss in the cache, as well as for software or hardware

non-binding prefetches. Requests and responses travel between system components over anin-

terconnection network, also (more simply) called theinterconnect. A system componentin this

context is either a processor or a memory module. A miss that requires another processor’s cache

to supply the data (often caused by an access to shared data) is called acache-to-cache miss. In

contrast, a miss that the memory fully satisfies is called amemory-to-cache miss.

Allowing multiple processors to cache local copies of the same block results in thecache

coherence problem, a problem solved by the introduction of a cache coherence protocol. The goal

of a cache coherence protocol is to interact with the system’s processors, caches, and memories

to provide a consistent view of the contents of a shared address space. The exact definition of a

consistent viewof memory is defined by amemory consistency model[5] specified as part of the

17

instruction set architecture of the system. The simplest and most intuitive memory consistency

model issequential consistency[71]. In this dissertation, we assume sequential consistency for

both describing and evaluating coherence protocols.

As part of enforcing a consistency model, invalidation-based cache coherence protocols main-

tain the global invariant—what we will call thecoherence invariant. The coherence invariant states

that for a block of shared memory either (a) zero or more processors are allowed to read it or (b)

exactly one processor is allowed to write and read it. For sequentially consistent systems, this

invariant can enforce the existence of a single, well-defined value of each block at all times (the

value generated by the most recent write to the block). Only this well-defined value may be read

by processors in the system; they are not allowed to read a stale version of the data. The coherence

invariant is most simply enforced in physical time, but it may also be enforced in logical time in

protocols that exploit ordering between requests (e.g., [20, 25, 41, 82, 114]).

2.2 Base States and Abstract Operation of Cache Coherence Protocols

To enforce the coherence invariant, coherence protocols use protocol states to track read and

write permissions of blocks present in processor caches. This section describes the well-established

MOESI states [116] that provide a set of common states for reasoning about cache coherence pro-

tocols, and it foreshadows how Token Coherence uses similar concepts to enforce cache coher-

ence. This section also discusses a progression of conceptualized protocols based on the MOESI

states. The section begins by discussing a simple MSI three-state protocol (Section 2.2.1), and it

continues by discussing the additions of the OWNED state (Section 2.2.2), the EXCLUSIVE state

(Section 2.2.3), an optimization for migratory sharing (Section 2.2.4), and an upgrade request

(Section 2.2.5).

2.2.1 The MODIFIED , SHARED , and INVALID States

We first consider the MSI subset of the MOESI states. A processor with a block in the INVALID

or I state signifies that it may neither read nor write the block. When a block is not found in a

cache, it is implicitly in the INVALID state in that cache. The SHARED or S state signifies that

18

Table 2.1 MSI State Transitions

.Processor Action. Incoming.
State Load Store Eviction Read Req. Write Req.

MODIFIED hit hit writeback send data send data
→ INVALID & writeback → INVALID

→ SHARED

SHARED hit write request silent evict (none) (none)
→ MODIFIED → INVALID → INVALID

INVALID read request write request (none) (none) (none)
→ SHARED → MODIFIED

a processor may read the block, but may not write it. A processor in the MODIFIED or M state

may both read and write the block. These three states (INVALID , SHARED, and MODIFIED) are

used to directly enforce the coherence invariant by (a) only allowing a single processor to be in the

MODIFIED state at a given time,1 and (b) disallowing other processors to be in the SHARED state

while any processor is in the MODIFIED state.2 The basic operation of a processor in an abstract

MSI coherence protocol is shown in Table 2.1.

When a processor requests a new block, it often mustevict a block currently in the cache

(also known as replacing or victimizing). The effort required to evict a block depends upon the

coherence state of the block and upon the specific protocol. For example, most protocols require

a datawritebackto memory when evicting blocks in the MODIFIED state and allow for a silent

eviction of cache blocks in the SHARED state. A protocol is said to supportsilent evictionsif it

allows a processor to evict blocks in SHARED without sending a message. Protocols that do not

support silent eviction require that aeviction notification message(but not the entire data block)

must be sent to the home memory upon eviction of blocks in the SHARED state (e.g., [13, 46, 123]).

1As previously stated, some protocols—ones that exploit ordering of requests in the system—enforce
coherence invariants not in physical time, but in logical time. Since Token Coherence and many of the other
protocols we consider in this dissertation enforce these invariants in physical time, the discussion in this
section assumes such protocols.

2Throughout this dissertation, we will often shorten a phrase such as “a processor with a block in its
cache in the SHARED state” to simply “a processor in SHARED.”

19

Table 2.2 MOSI State Transitions

.Processor Action. Incoming
State Load Store Eviction Read Req. Write Req.

MODIFIED hit hit writeback send data send data
→ INVALID → OWNED → INVALID

OWNED hit write request writeback send data send data
→ MODIFIED → INVALID → INVALID

SHARED hit write request silent evict (none) (none)
→ MODIFIED → INVALID → INVALID

INVALID read request write request (none) (none) (none)
→ SHARED → MODIFIED

As described later (in Section 3.1.1), Token Coherence enforces the coherence invariant by

assigning a fixed number of tokens to each block, in which holding all the tokens for a block

corresponds to the MODIFIED state, holding one or more tokens for the block corresponds to the

SHARED state, and holding no tokens for a block corresponds to the INVALID state. Encoding

these states using token counts directly disallows a processor from reading a block (which requires

only a single token) while another processor is writing the same block (which requiresall tokens).

Unlike most traditional protocols, Token Coherence must maintain a fixed number of tokens, and

thus Token Coherence requires that a processor issue either a writeback or a notification of eviction

operation whenever evicting a block for which it holds any tokens.

2.2.2 The OWNED State

The optional OWNED or O state in a processor’s cache allows read-only access to the block

(much like SHARED), but also signifies that the value in main memory is incoherent orstale. Thus

the processor in OWNED must update the memory before evicting a block. As with the MODIFIED

state, only a single processor is allowed to be in the OWNED state at one time. Unlike MODIFIED,

however, other processors are allowed to be in the SHARED state when one processor is in the

OWNED state. The basic operation of a processor in an abstract MOSI coherence protocol is

shown in Table 2.2.

20

The addition of the OWNED state has two primary advantages.

• First, the OWNED state can reduce system traffic by not requiring a processor to update

memory when it transitions from MODIFIED to SHARED during a read request. In a protocol

without the OWNED state, the responder would transition from MODIFIED to SHARED, both

providing data to the requesterand updating memory(as shown in Table 2.1). With the

addition of the OWNED state, the MODIFIED processor transitions to OWNED, and need not

send a message to the memory at that time (as shown in Table 2.2). If another processor

issues a write request for the block before it is evicted from the OWNED processor’s cache,

memory traffic is reduced.

• Second, in some protocols (e.g., systems based on IBM’s NorthStar/Pulsar processors [21,

22, 67]) a processor can respond more quickly by providing data from its SRAM cache than

the home memory controller can respond from its DRAM. To facilitate this optimization, a

processor in OWNED is often given the additional responsibility of responding to requests for

data, providing a convenient mechanism for selecting a single responder. In contrast, sup-

plying data from an OWNED copy can be significantly slower than a response from memory

in other protocols (e.g., most directory protocols). These systems often do not implement

the OWNED state (favoring lower latency at the cost of additional traffic).

As described later (in Section 3.1.4), Token Coherence incorporates the benefits of an OWNED

state by distinguishing a single token as theowner token. The owner token is always transfered

with valid data, and the processor that holds the owner token is responsible for updating memory

upon eviction.

2.2.3 The EXCLUSIVE State

The final MOESI state is the EXCLUSIVE or E state. The EXCLUSIVE state is much like the

MODIFIED state, except the EXCLUSIVE state implies the contents of memory match the contents

of the EXCLUSIVE block. By distinguishing thiscleanEXCLUSIVE state from its corresponding

21

Table 2.3 MOESI State Transitions

.Processor Action . Incoming
State Load Store Eviction Read Req. Write Req.

MODIFIED hit hit writeback send data send data
→ INVALID → OWNED → INVALID

EXCLUSIVE hit hit silent evict send data send data
→ MODIFIED → INVALID → SHARED † → INVALID

OWNED hit write request writeback send data send data
→ MODIFIED → INVALID → INVALID

SHARED hit write request silent evict (none) (none)
→ MODIFIED → INVALID → INVALID

INVALID read request write request (none) (none) (none)
(response: shared)→ MODIFIED

→ SHARED

– or –
read request

(response: clean)
→ EXCLUSIVE

† When a processor in EXCLUSIVE receives an incoming read request, some protocols will tran-
sition to SHARED (as shown here). In some protocols this transition will require notifying the
memory. Other protocols will transition to OWNED or possibly a special clean-OWNED state.

dirty MODIFIED state, a block in EXCLUSIVE can be evicted without updating the block at the

home memory.3 When no other processor is caching the block, the memory responds to a read

request with a clean-data response. The requesting processor transitions to EXCLUSIVE, granting

it read/write permission to the block without the added burden of updating memory. The block

can be later be quickly written without an external coherence request by silently transitioning from

EXCLUSIVE to MODIFIED (requiring a writeback upon subsequent eviction). The basic operation

of a processor in an abstract MOESI coherence protocol is shown in Table 2.3. The EXCLUSIVE

state can also be implemented without the OWNED state, resulting in a MESI protocol (not shown).

As described later (in Section 3.1.5), Token Coherence can incorporate the benefits of the

EXCLUSIVE state by allowing the owner token to be eithercleanor dirty. When the owner token is

3Depending on the specifics of the protocol, evicting a block in the EXCLUSIVE state can be either a
silent eviction or a require an eviction notification.

22

in the clean state, a processor can evict the block by sending only an eviction notification, avoiding

a full data block writeback.

2.2.4 Optimizing for Migratory Sharing

Although the standard MOESI coherence protocols are efficient for some multiprocessor ac-

cess patterns, researchers have proposed modifying the operation of these protocols to optimize for

migratory sharing patterns [31, 115]. Migratory sharing patterns are common in many multipro-

cessor workloads, and they result from data blocks that are read and written by many processors

over time, but by only one processor at a time [122]. For example, migratory sharing occurs when

shared data is protected by lock-based synchronization. In standard MOESI coherence protocols,

the resulting read-then-write sequences generate a read miss followed by a write miss.

The protocols we describe and evaluate in this dissertation target this read-then-write pattern

of sharing by making a minor modification to the basic MOESI protocol transitions. Although

somewhat different from the originally proposed migratory sharing proposals [31, 115], this en-

hancement successfully targets these same migratory sharing patterns. When a processor is in

MODIFIED, it has the choice of acting like a standard MOESI protocol by responding to an ex-

ternal read request with ashared-data responseand transitioning to OWNED. However, in our

variant, the processor also has the option of sending amigratory-data responseand transitioning to

INVALID . When the requesting processor receives the migratory-data response, it transitions im-

mediately to the MODIFIEDM IGRATORY state. This special state signifies that the block is dirty,

the processor can read and write it, and the block has not yet been writtenby this processor. A

processor in the MODIFIEDM IGRATORY state silently transitions to MODIFIED when it writes the

block.

If a workload contained only these read-then-write patterns, the policy of always responding

with migratory data would perform well; however, this policy substantially penalizes other sharing

patterns (e.g., widely shared data). To find a balance, we employ the heuristic of only sending

migratory data when the responding processor is in the MODIFIED state. In contrast, a processor

in MODIFIEDM IGRATORY behaves as a standard MOESI protocol (responding to read requests by

23

Table 2.4 MOESI State Transitions Optimized for Migratory Sharing

. Processor Action . Incoming.
State Load Store Eviction Read Req. Write Req.

MODIFIED hit hit writeback send migra- send data
→ INVALID tory data → INVALID

→ INVALID

MODIFIED- hit hit writeback send data send data
M IGRATORY → MODIFIED → INVALID → OWNED → INVALID

EXCLUSIVE hit hit silent evict send data send data
→ MODIFIED → INVALID → SHARED → INVALID

OWNED hit write request writeback send data send data
→ MODIFIED → INVALID → INVALID

SHARED hit write request silent evict (none) (none)
→ MODIFIED → INVALID → INVALID

INVALID read request write request (none) (none) (none)
(response: shared) → MODIFIED

→ SHARED

– or –
read request

(response: clean)
→ EXCLUSIVE

– or –
read request

(response: migratory)
→ MODIFIED-
M IGRATORY

giving away a SHARED copy and retaining an OWNED copy of the block). Because a processor in

MODIFIEDM IGRATORY transitions to MODIFIED when it writes the block, a processor will send

a migratory-data response only if it has written the block since the processor received it. The

operation of this optimized system is shown in Table 2.4.

2.2.5 Upgrade Requests

In addition to issuing read requests and write requests, some systems implement the optional

enhancement of allowing processors to issue anupgrade requestto transition from SHARED to

MODIFIED without redundantly transferring the data block. The decision to implement upgrade

24

requests in a protocol depends upon the possible advantages, the complexity of implementation,

and the frequency of SHARED to MODIFIED transitions.

Upgrade requests have two possible advantages. First, an upgrade request reduces traffic by

avoiding a data transfer when the requester already has a SHARED copy of the block in its cache.

(The OWNED to MODIFIED transition already avoids the data transfer,i.e., the OWNED processor

knows it does not need to send data to itself.) Second, upgrade requests can have lower latency

on some split-transaction bus-based multiprocessor designs by entirely avoiding the data response

phase of the coherence transaction. In other types of systems (e.g., directory protocols) upgrades

have little or no latency benefit, but are still often implemented to reduce traffic.

Although upgrade requests may be advantageous, adding upgrades to a protocol can introduce

substantial complexity. In our abstract model of coherence protocols, allowing upgrade requests

appears simple. However, concrete protocols (some of which are discussed later in this chapter)

are significantly more complicated due to the non-atomic nature of coherence transactions. For ex-

ample, although a processor may have a SHARED block when it initiates an upgrade request, it may

no longer have a SHARED copy of the block when the transaction would normally complete. This

window of vulnerability can be closed in various protocol-specific ways, but it does complicate the

cache coherence protocol.

Perhaps the most important consideration when deciding whether to implement upgrade re-

quests is their frequency. Although upgrade requests do occur, they are much less frequent when

employing the migratory sharing optimization we described in Section 2.2.4. Because this opti-

mization eliminates such a significant fraction of SHARED to MODIFIED transitions, the additional

complexity of upgrade requests may be too high a cost for a small reduction in traffic (and latency

in some protocols).

We decided not to implement upgrade requests in any of the protocols we describe and evalu-

ate in this dissertation. Since all of the protocols use the migratory sharing optimization, upgrade

requests are infrequent. Thus, we believe the extra complexity is too high a cost for this infre-

quent benefit. Although we do not evaluate protocols with upgrade requests, for completeness we

describe how Token Coherence could support the upgrade request in Section 3.1.6.

25

2.3 Interconnection Networks

The goal of a multiprocessor interconnect is to provide low-cost, low-latency, high-bandwidth,

and reliable message delivery between system components (processors and memory modules).

The relative cost, latency and bandwidth of an interconnect depends on many factors, including

topology, routing, and ordering properties. This section (1) briefly highlights the design consid-

erations that are relevant to our discussion of Token Coherence and (2) describes three concrete

interconnects that we use in our later evaluations. A more complete and detailed discussion of

interconnects can be found in a book dedicated to this subject by Duatoet al. [36].

2.3.1 Types of Interconnects: Buses, Indirect, Direct

We consider three main types of interconnects in this dissertation.

• Bus-based interconnects.A bus-based interconnectconnects many system components to

the same set of physical wires. A component sends a message by (1) arbitrating for the bus

(to avoid having multiple processors driving the bus at the same time), and (2) driving the

message on the bus (allowing all components on the bus to observe the message). Since

all components can observe or “snoop” transactions on the bus, such interconnects support

broadcast with little additional cost. Unfortunately, electrical implementation issues limit

the performance of shared-wire buses [35, 59]. Instead, designers are looking to high-speed

point-to-point links to build both indirect and direct interconnects.

• Indirect interconnects. An indirect interconnectuses dedicated switch chips to connect

many system components. The simplest indirect interconnect is a single crossbar switch

chip with multiple components attached to it. More sophisticated indirect interconnects use

a hierarchy of switches or many stages of switches to form a multi-stage interconnection

network (MIN). These interconnects are often used to provide uniform-latency and high-

bandwidth any-to-any communication. Single-switch crossbars and some hierarchical indi-

rect interconnects use a centralized root switch. Such interconnects are desirable because

26

they provide ordering properties required for snooping protocols, as discussed later in this

section.

• Direct interconnects. In contrast to indirect interconnects,direct interconnectsavoid dis-

tinct switch chips and instead directly connect nodes that contain a switch and one or more

system components (processors and memory controllers). Popular topologies include a grid-

like arrangement of nodes, naturally creating an interconnect with non-uniform latency and

bandwidth between various system components. Such interconnects may not scale available

bandwidth linearly with the number of nodes, but the interconnect cost per node generally

does not increase with larger systems.

The main advantage of direct interconnects over indirect interconnects is that direct intercon-

nects do not require dedicated switch chips [36]. Eliminating these dedicated switch chips can

reduce cost (fewer system components) and perhaps decrease latency (fewer chip crossings). The

main disadvantage of direct interconnects is that they do not provide the bus-like properties re-

quired for some coherence protocols. Because comparing direct and indirect interconnects in ab-

stract terms is difficult, we discuss concrete examples of both direct and indirect interconnects in

Section 2.3.4.

2.3.2 Interconnect Routing

Switched interconnects (i.e., direct and indirect interconnects) use various techniques to quickly

route messages from source to destination (while avoiding congestion and deadlock). Interconnects

use virtual channels and virtual networks which reserve buffers to prevent routing and protocol

deadlock, respectively. An interconnect designer must choose between store-and-forward (buffer

entire message before forwarding it), virtual-cut-through (pipeline by sending out the message

before it is completely buffered), and worm-hole routing (only buffer part of the message, using

back-pressure to stop the transmission mid-message when congestion occurs). Interconnects can

use simple fixed routes to send messages from source to destination, or they may use adaptive

27

routing to avoid congestion by dynamically adjusting the paths of messages to use less-congested

routes.

Multicast routing. To support protocols that send messages to multiple destinations, an in-

terconnect can send a separate point-to-point message to each destination. Alternatively, the in-

terconnect can initiate a single message that fans out across the interconnect [36]. For example,

sending a point-to-point message on a two-dimensional torus crosses on average1
2

√
n links, where

n is the number of nodes in the interconnect. Using fan-out multicast routing to send a broadcast

to all nodes uses onlyn−1 links [36]. Thus, supporting fan-out multicast routing can significantly

reduce interconnect traffic—fromΘ(n
√

n) to Θ(n)—at the cost of additional interconnect com-

plexity and extra control information in the messages. As all of the protocols we explore in this

dissertation gain some benefit from such multicast routing, all of the interconnects we use in our

evaluation and analysis assume multicast routing.

2.3.3 Ordering Properties: Unordered, Point-to-Point, Totally-Ordered

Interconnects must provide the desired ordering properties upon which the system’s coherence

protocol depends.

• Unordered. Many high-performance interconnects guarantee no ordering properties what-

soever, but these interconnects are only appropriate for protocols that do not require any

ordering (e.g., most directory protocols). For example, adaptive routing may cause the in-

terconnect to reorder messages because messages between the same source/destination pair

may travel along different routes.

• Point-to-point. An interconnect providespoint-to-point orderingwhen all messages sent

between a pair of components arrive in the order in which they were sent. Interconnects that

do not use adaptive routing can often provide point-to-point ordering with little additional

effort (e.g., ensuring that all messages sent between a pair of processors travel along the

same path). Some protocols exploit point-to-point ordering of one or more virtual networks

to more efficiently handle certain protocol corner cases. By requiring point-to-point ordering

28

on only some of the virtual networks, the interconnect can still employ adaptive routing on

the other virtual networks.

• Totally-ordered. An interconnect provides atotal order of messagesif all messages are

delivered to all destinations in some order. Atotal order requires an ordering among all the

messages (even those from different sources or sent to different destinations). For example,

if any processor receives messageA before messageB, then no processor receives message

B beforeA. Many protocols (e.g., snooping protocols) require an interconnect that provides

a total order of requests. This property must hold for all requests, for all blocks, and for

all messages from all sources. Unfortunately, establishing a total order of requests can add

complexity, increase cost, and increase latency. For example, totally-ordered interconnects

commonly use some centralized root switch or arbitration mechanism, and such mechanisms

are not a good match for direct interconnects. We further describe the importance (and

costs) of totally-ordered interconnects when discussing snooping (in Section 2.4) and when

describing two concrete example interconnects (next).

2.3.4 Our Interconnect Implementations: TREE and TORUS

To provide a concrete comparison of our protocols on different interconnects, we implemented

two conventional interconnects for use in our evaluations. The first interconnect, TREE, is an

indirect interconnect that provides a total order of requests (sufficient for supporting snooping).

The second interconnect is TORUS, a direct interconnect that doesnot provide a total order (and

thus is not appropriate for use in a conventional snooping protocol). Both of these interconnects

use bandwidth-efficient multicast routing (described in Section 2.3.2) when delivering messages

to multiple destinations. Each interconnect provides sufficient virtual channels to avoid routing

deadlock and provides several virtual networks (which coherence protocols use to avoid deadlock).

Like many recent systems [25, 72, 91, 119], we assume that these interconnects provide reliable

message delivery.

29

P P P P

Switch

PPPP

Switch

P P P P

Switch

PPPP

Switch

Root Switch
P P P P

P P P P

P P P P

P P P P

(a) (b)

Figure 2.1 Interconnection Network Topologies.(a) TREE: a 16-processor two-level indirect
interconnect and (b) TORUS: a 16-processor (4x4) two-dimensional bi-directional direct torus
interconnect. The boxes marked “P” represent highly-integrated nodes that include a proces-
sor, caches, memory controller, and coherence controllers. TREE uses discrete switches, while
TORUSis a directly connected interconnect. In this example, the torus has lower latency (two vs.
four chip crossings on average) and does not require any switch “glue” chips; however, unlike
the indirect TREE interconnect, TORUSprovides no request total order, making it unsuitable for
traditional snooping.

TREE interconnect. The TREE interconnect uses a two-level hierarchy of switches to form a

pipelined broadcast tree with a fan-out of four, resulting in a message latency of four link crossings.

This indirect interconnect provides the total order required for traditional snooping by using a

single switch at the root. To reduce the number of pins per switch, a 16-processor system using

this topology has nine switches (four incoming switches, four outgoing switches, and a single root

switch). This interconnect is illustrated in Figure 2.1a.

TORUS interconnect. The TORUSinterconnect is a directly-connected interconnect that uses a

two-dimensional, bidirectional torus like that used in the Alpha 21364 [91]. A torus has reasonable

latency and bisection bandwidth, especially for small to mid-sized systems. For 16-processor

systems, this interconnect has an average message latency of two link crossings. This interconnect

is illustrated in Figure 2.1b.

30

2.4 Snooping Protocols

This section describessnooping protocols, the most commonly used approach to building

shared-memory multiprocessors. The key characteristic that distinguishes snooping protocols from

other coherence protocols is their reliance on a “bus” or “virtual bus” interconnect. Early multi-

processors used a shared-wire, multi-drop bus to connect all processors and memory modules in

the system. Snooping protocols exploit such a bus-based interconnect by relying on two properties

of a bus: (1) all requests that appear on the bus are visible to all components connected to the

bus (processors and memory modules), and (2) all requests are visible to all components in the

same total order (the order in which they gained access to the bus) [32]. In essence, a bus provides

low-cost atomic broadcast of requests.

2.4.1 Snooping Protocol Background and Evolution

Some snooping protocols exploit the atomic nature of a bus by directly implementing the ab-

stract MOESI protocols previously described. In these systems, processors begin coherence trans-

actions by arbitrating for the shared bus. Once granted access to the bus, the processor puts its

request on the bus, and each of the other processors listens to orsnoopsthe bus (hence the name

snooping protocol). The snooping processors transition their state and may respond with data (as

specified in the abstract protocol operation). The memory determines if it should respond by ei-

ther storing state for each block in the memory (the approach used by the Synapse N+1 [38] as

described by Archibald and Baer [14]) or by observing thesnoop responsesgenerated by the pro-

cessors.4 Only after the requesting processor receives its data response (completing its coherence

transaction) is another processor allowed to initiate a request.

To increase effective system bandwidth, snooping protocols have introduced many evolution-

ary enhancements to these atomic-transaction system designs. Split-transaction designs pipeline

requests for more efficient bus usage by allowing the requesting processor to release the bus while

waiting for its response. Systems also use multiple address-interleaved buses and separate data-

4The state in memory or snoop response also determines if a requesting processor should transition to
SHARED or EXCLUSIVE on a read request.

31

response interconnects (buses or unordered point-to-point interconnects) to multiply available

bandwidth. Even more aggressive systems avoid the electrical limitations of shared-wire buses

entirely and implement avirtual bususing point-to-point links, dedicated switch chips, and dis-

tributed arbitration. However, these virtual-bus systems still rely on totally-ordered broadcasts for

issuing requests. Although each of these enhancements add significant complexity, many snoop-

ing systems use these techniques to create high-bandwidth systems with dozens of processors (e.g.,

Sun’s UltraEnterprise servers [25, 26, 27, 113]).

2.4.2 Advantages of Snooping Protocols

The primary current advantage of snoop-based multiprocessors is the low average miss latency,

especially for cache-to-cache misses. Since a request is sent directly to all the other processors

and memory modules in the system, the responder quickly knows it should send a response. As

discussed in Chapter 1, low cache-to-cache miss latency is especially important for workloads with

significant amounts of data sharing. If cache-to-cache misses have lower latency than fetching data

from memory (i.e., a memory-to-cache miss), replying with data from processor caches whenever

possible can reduce the average miss latency. Finally, the tightly-coupled nature of these systems

often results in low-latency memory access as well.

In the past, snooping has had two additional advantages, but these advantages are less important

in both current and future systems. First, shared-wire buses were cost-effective interconnects for

many systems and bus-based coherence provided a complexity-effective approach to implementing

cache coherence. Unfortunately, few future high-performance systems will use shared-wire buses

due to the difficulty of scaling the bandwidth of shared-wire buses. Second, bus-based snooping

protocols were relatively simple. This once-important advantage is now much less pronounced;

contemporary snooping protocols using virtual buses are often as complicated or more complicated

than alternative approaches to coherence. For example, one potential source of subtle complexity

in aggressive snooping protocols is the need to reason about the protocol operation in logical

(ordered) time, rather than in physical time. We touch on additional tangential disadvantages of

relying on a totally-ordered interconnect in Section 10.3.3.

32

2.4.3 Disadvantages of Snooping Protocols

The first main disadvantage of snooping is that—even though system designers have moved

beyond shared-wire buses—snooping designers are still constrained in their choice of interconnect

to those interconnects that can provide virtual-bus behavior (i.e., a total order of requests). These

virtual-bus interconnects may be more expensive (e.g., by requiring switch chips), may have lower

bandwidth (e.g., due to a bottleneck at the root), or may have higher latency (since all requests

need to reach the root).5 In contrast, an unordered interconnect (such as a directly connected grid

or torus of processors) perhaps has more attractive latency, bandwidth, and cost attributes.

The second main disadvantage is that snooping protocols are still by nature broadcast-based

protocols;i.e., protocols whose bandwidth requirements increase with the number of processors.

Even after removing the bottleneck of a shared-wire bus or virtual bus, this broadcast requirement

limits system scalability. To overcome this limitation, recent proposals [20, 79, 114] attempt to

reduce the bandwidth requirements of snooping by usingdestination-set prediction(also known as

predictive multicast) instead of broadcasting all requests. Although these proposals reduce request

traffic, they suffer from snooping’s other disadvantage: they rely on a totally-ordered interconnect.

2.4.4 Comparing Snooping Protocols with Token Coherence

Token Coherence captures snooping’s primary advantage (low-latency cache-to-cache misses)

by supporting direct request-response misses. However, Token Coherence aims to avoid snooping’s

disadvantages by (1) using token counting to remove the need for a totally-ordered interconnect

(explored in Chapter 7), and (2) using destination-set prediction to improve its bandwidth efficiency

(explored in Chapter 9).

5A recent proposal [82] attempts to overcome these disadvantages by using timestamps to reorder mes-
sages on an arbitrary unordered interconnect to reestablish a total order of requests; however, this proposal
adds significant complexity to the interconnect.

33

2.4.5 Our Snooping Protocol Implementation: SNOOPING

To provide a concrete comparison to Token Coherence, we implemented a traditional, but ag-

gressive, MOESI snooping protocol optimized for migratory sharing (described in Section 2.2.4).

This dissertation will use the notation SNOOPINGto refer to this specific protocol implementation.

We based our implementation on a modern snooping protocol [25], and we added additional non-

stable states to relax synchronous timing requirements. This change allows the protocol to use an

unsynchronized6—but totally ordered—interconnect (e.g., the TREE interconnect in Figure 2.1a).

To issue a request, a processor injects the request message into the interconnect, and the re-

quester waits to observe its own request return to it on the interconnect. This method of issuing

requests avoids an explicit global-arbitration mechanism by allowing the interconnect to decide the

exact total order that requests will be delivered (e.g., a indirect interconnect could order requests

at its root). Due to the total order of requests, all processors will observe the requests in the same

order, allowing them each to make a globally consistent decision (much like a shared-wire bus).

Once a processor has observed its own request, it logically has the permissions and responsibilities

associated with its new coherence state, even though in most cases the data response will have not

yet arrived. This window of vulnerability leads to many complex race cases.

The total order of requests is also necessary for avoiding explicit acknowledgment messages

from each processor. Instead of using explicit acknowledgment messages, when a requesting pro-

cessor observes its write request in the total order, it knows that all other processors have logically

invalidated any copies. However, since the delivery of coherence requests is allowed to be unsyn-

chronized, this invalidation guarantee only holds in logical time—not physical time. As long as

all processors enforce coherence permissions in logical time and are careful not to reorder various

types of messages, this approach to cache coherence can provide a sequentially consistent view of

the memory system to the software.

6We use the term “unsynchronized” to imply that a request will not need to arrive at all destinations in
the same system clock cycle and that this system clock does not need to be tightly synchronized. We do not
use this term to imply that the implementation of the system will use any sort of asynchronous logic.

34

Rather than using snooping response combining (as used in many snooping systems), SNOOP-

ING avoids the complexity and latency of snoop response combining by maintaining two bits per

block in memory. The first bit determines if the memory is responsible for responding to requests

for the block (i.e., no other processor is in OWNED, EXCLUSIVE, or MODIFIED). The second

bit determines if the memory can respond to a read request for the block with anexclusive-data

response (which enables the recipient to transition to EXCLUSIVE). Avoiding snoop response com-

bining is especially attractive in this protocol because of its non-synchronous nature. The memory

controller can encode these two bits using the memory’s error correction (ECC) bits, a technique

that we discuss in detail in Section 3.2.4.

To provide more specific implementation details, we have made protocol tables and the speci-

fication for SNOOPINGavailable on-line [78].

2.5 Directory Protocols

Directory protocols aim to avoid the scalability and interconnection limitations of snooping

protocols. Directory protocols actually predate snooping protocols, with Censier and Feautrier

[24] and Tang [117] performing early work on directory protocols in the late 1970s. Systems

that use these protocols—also know as distributed shared memory (DSM) or cache-coherent non-

uniform memory access (CC-NUMA) systems—are preferred when scalability (in the number

of processors) is a first-order design constraint. Although these protocols are significantly more

scalable than snooping protocols, they often sacrifice fast cache-to-cache misses in exchange for

this scalability. Examples of systems that use directory protocols include Stanford’s DASH [74, 75]

and FLASH [68], MIT’s Alewife [7], SGI’s Origin [72], the AlphaServer GS320 [41] and GS1280

[33], Sequent’s NUMA-Q [76], Cray’s X1 [2], and Piranha [18].

2.5.1 Directory Protocol Background

One goal of directory-based coherence is to avoid broadcasting requests by only communicat-

ing with those processors that might actually be caching data. To avoid broadcast, a processor

issues a request by sending it only to the home memory module for the block. The home memory

35

contains adirectory that encodes information about the state, and a superset of processors may be

caching each of the blocks in that memory module (hence the name directory protocol). When

the home memory receives a request, it uses the directory information to respond directly with the

data and/or forward the request to other processors. For example, if the home memory receives a

write request from processorP0 and the directory state signifies that no processors currently hold

copies of the data, the memory responds with the data block and updates the directory state to

reflect that processorP0 is now in MODIFIED. Later, when the memory module receives a write

request from processorP1 for the same block, it forwards the request to processorP0. Processor

P0 responds to the forwarded request by supplying the data to processorP1. The simplest encoding

for this information is a bit vector (one bit per processor) for the sharers and a processor identifier

(log2 n bits) for the owner. Alternatively, many researchers have proposed approximate encodings

to reduce directory state overheads (e.g., [8, 13, 45, 52, 97]). These approximate encodings may

specify a superset of sharers to invalidate, but must still include all processors that might be sharing

the block. Alternatively, some directory schemes use entries at the memory and caches to form a

linked list of processors sharing the block [46].

In addition to tracking sharers and/or owners of a block, the directory also plays a critical role

by providing a per-block ordering point to handle conflicting requests or eliminate various protocol

races. Aprotocol racecan occur anytime multiple messages for the same block are active in the

system at the same time. Since the directory observes all requests for a given block, the order

in which requests are processed by the directory unambiguously determines the order in which

these requests will occur in the system. Many directory protocols use variousbusy states(also

know aspendingor blocking states) to delay subsequent requests to the same block by queuing

or negatively acknowledging(nacking) requests at the directory while a previous request for the

same block is still active in the system. Only when the first request has completed are subsequent

requests allowed to proceed past the directory. A simple directory protocol might enter a busy

state anytime a request reaches the directory; a more optimized protocol enters busy states less

frequently. The directory responds or forwards the request as appropriate, and it only clears the

busy state when the requester sends the directory an acknowledgment message giving the “all

36

clear” signal. In contrast, some directory protocols can avoid all busy states, especially protocols

that rely on point-to-point ordering in the interconnect.

Another important aspect of directory-based cache coherence is the use of explicitinvalida-

tion acknowledgmentmessages to allow requesters to detect completion of write requests. Unlike

snooping protocols that use a total order of requests (for all blocks) to enable implicit acknowledg-

ments, most directory protocols eschew a totally-ordered interconnect, and thus these protocols

must rely on explicit invalidation acknowledgments.7 When a requester issues a write request,

the directory forwards the request to any potential sharers and/or the owner. When each of these

processors receive the forwarded requests they must send an explicit message acknowledging they

invalidated the block. Having a per-block ordering point (i.e., the directory) is not sufficient to

avoid explicit acknowledgments because for implementing a consistency model the requester must

know when its request has been ordered with all other accesses in the system (not just those for the

same block).

These three aspects of directory protocols—tracking sharers/owner in a directory, using the

directory as a per-block ordering point, and explicit acknowledgments—directly result in both the

advantages and disadvantages of directory protocols (described next).

2.5.2 Advantages of Directory Protocols

The two main advantages of directory protocols are their better scalability than snooping proto-

cols and avoidance of snooping’s virtual bus interconnect. The dramatically improved scalability

of directory protocols is perhaps its most discussed and studied advantage. By only contacting

those processors that might have copies of a cache block (or a small number of additional proces-

sors when using an approximate directory implementation), the traffic in the system grows linearly

with the number of processors. In contrast, the endpoint traffic of broadcasts used in snooping pro-

tocols grows quadratically. Combined with a scalable interconnect (one whose bandwidth grows

linearly with the number of processors), a directory protocol allows a system to scale to hundreds

7The AlphaServer GS320 is a notable exception; it uses a totally ordered interconnect to avoid explicit
acknowledgments [41].

37

or thousands of processors. At large system sizes, two scalability bottlenecks arise. First, the

amount of directory state required becomes a major consideration. Second, no interconnect of

reasonable cost is truly scalable. Both of these problems have been studied extensively, and actual

systems that support hundreds of processors exist (e.g., the SGI Origin 2000 [72]).

The second—and perhaps more important—advantage of directory protocols is the ability to

exploit arbitrary point-to-point interconnects. In contrast, snooping protocols are restricted to sys-

tems with virtual bus interconnects. Arbitrary point-to-point interconnects (e.g., the TORUS inter-

connect illustrated in Figure 2.1b) are often high-bandwidth, low-latency, and able to more easily

exploit increased levels of integration by including the switch logic on the main processor chip.

2.5.3 Disadvantages of Directory Protocols

Directory protocols have two primary disadvantages. First, the extra interconnect traversal

and directory access is on the critical path of cache-to-cache misses. Memory-to-cache misses

do not incur a penalty because the memory lookup is normally performed in parallel with the

directory lookup. In many systems, the directory lookup latency is similar to that of main memory

DRAM, and thus placing this lookup on the critical path of cache-to-cache misses significantly

increases cache-to-cache miss latency. While the directory latency can be reduced by using fast

SRAM to hold or cache directory information, the extra latency due to the additional interconnect

traversal is more difficult to mitigate. These two latencies often combine to dramatically increase

cache-to-cache miss latency. With the prevalence of cache-to-cache misses in many important

commercial workloads, these higher-latency cache-to-cache misses can significantly impact system

performance.

The second—and perhaps less important—disadvantage of directory protocols involves the

storage and manipulation of directory state. This disadvantage was more pronounced on earlier

systems that used dedicated directory storage (SRAM or DRAM) which added to the overall sys-

tem cost. However, several recent directory protocols have used the main system DRAM and

reinterpretation of bits used for error correction codes (ECC) to store directory state without ad-

ditional storage capacity overhead (e.g., the S3mp [96], Alpha 21364 [91], UltraSparc III [58],

38

and Piranha [18, 39]). Storing these bits in main memory does, however, increase the memory

traffic by increasing the number of memory reads and writes [39]. Since Token Coherence can use

this same technique to hold token counts in main memory, we further discuss this technique, its

effectiveness, and its overheads in Section 3.2.4.

2.5.4 Comparing Directory Protocols with Token Coherence

Token Coherence avoids some of the disadvantages of directory protocols while gaining some

of their advantages. Token Coherence and directory protocols share the advantage of being able

to exploit an unordered interconnect. They also share the disadvantage of needing to hold per-

block state in the memory module (the directory state or token count). Like a directory protocol,

Token Coherence requires some state to be held by the memory. However, the amount of state

per block required by Token Coherence is smaller; the memory is only required to hold a token

count (approximatelyΘ(log2 n), wheren is the number of processors in the system). In contrast,

directory protocols often require more bits because they encode (exactly or approximately) which

processors hold the block. Although Token Coherence requires only a token count in memory, we

later describe how Token Coherence performance policies can exploit additional in-memory state

for use as hints for finding tokens in a bandwidth-efficient manner (Chapter 8).

The primary difference between Token Coherence and directory protocols is that Token Co-

herence is a flexible framework for creating a range of coherence protocols, each with a unique

latency/bandwidth tradeoff. For example, in Chapter 7 we describe a Token Coherence protocol

that—much like a snooping protocol—has both low-latency cache-to-cache misses (by avoiding

indirection to the home memory) and poor scalability (by broadcasting). In Chapter 8 we describe

a different Token Coherence protocol that captures the scalability and higher-latency cache-to-

cache misses of a directory protocol. Finally, in Chapter 9 we show that prediction can be used

to achieve most of the bandwidth-efficiency (and thus scalability) of directory protocols with most

of the latency advantages of snooping protocols. Previous research by Acacioet al. [3, 4] has ex-

plored reducing the latency of standard directory protocols by using prediction. Token Coherence

39

exploits similar opportunities for prediction (Chapter 9), but does so within the more general Token

Coherence framework.

2.5.5 Our Directory Protocol Implementation: DIRECTORY

To provide a concrete comparison with Token Coherence, we implemented a directory proto-

col that we will refer to as DIRECTORY. This protocol is a standard full-map directory protocol

inspired by the Origin 2000 [72] and Alpha 21364 [91]. The base system stores the directory state

in the main memory DRAM [39, 58, 91, 96], but we also evaluate systems with perfect directory

caches by simulating a zero cycle directory access latency.

We designed DIRECTORY to be a low-latency directory protocol, and thus whenever facing a

choice between reducing message count or reducing latency, we choose to reduce latency. The

protocol requires no ordering in the interconnect (not even point-to-point ordering) and does not

use negative acknowledgments or retries, but it does queue requests at the directory controller

using busy states in some cases. The directory controller queues messages on a per-block basis,

allowing messages for non-busy blocks to proceed. The directory uses per-block fair queuing to

prevent starvation.

The directory enters a busy state each time it receives a request. The busy state prevents all

subsequent operations on the block if the operation results in a change of ownership; however, mul-

tiple read requests to the same block are allowed to proceed in parallel using a special busy state

that counts the number of parallel requests (and only unblocks when all of the parallel requests

have completed). When any operation completes, the initiating processor sends acompletion mes-

sageto the directory to (1) remove the busy state and (2) inform the directory whether the recipient

received a clean or migratory data response (so the directory knows if the responding processor

invoked the migratory sharing optimization). These additional completion messages create inter-

connect traffic and increase controller occupancy; however, they also allow the protocol to support

all the MOESI states and optimize for migratory sharing.

DIRECTORY supports silent eviction of SHARED blocks, but MODIFIED, OWNED, and EX-

CLUSIVE blocks require a three-phase eviction process. The process begins when the processor

40

sends a message to the directory asking permission to evict the block. The directory responds to

this message by sending the processor an acknowledgment, and the the directory transitions to

a waiting-for-writeback busy state. When the processor receives the acknowledgment, it sends

a writeback message with the data (for blocks in MODIFIED and OWNED) or a data-less eviction

message (for blocks in EXCLUSIVE). When the directory receives this message, it updates memory

and transitions to a non-busy state, completing the process.

Unlike many directory protocols (e.g., [72, 91]) which are MESI protocols, our DIRECTORY

protocol uses the MOESI states. As explained in Section 2.2.2, the OWNED state can reduce traffic,

but more importantly it can also lower latency by allowing the system to source data from the

OWNED processor rather than fetching it from memory. Fetching data from the OWNER processor

is faster than fetching data from memory when the combination of accessing the directory and

one additional interconnect traversal is faster than a DRAM memory lookup. For example, small

systems with a fast interconnect and fast SRAM directory may have faster cache-to-cache misses

than memory-to-cache misses. Another advantage of using an MOESI protocol is that it allows all

of our protocols to use the same base states, making them easier to compare quantitatively. In the

next section, we describe our third and final coherence protocol we use to compare and contrast

with token coherence.

To provide more specific implementation details, we have made protocol tables and the speci-

fication for DIRECTORY available on-line [78].

2.6 A Non-Traditional Protocol: AMD’s Hammer

Several recent designs have used non-traditional coherence protocols,i.e., protocols that are

not easily classified as either snooping or directory protocols (e.g., Intel’s E8870 Scalability Port

[15], IBM’s Power4 [119] and xSeries Summit [23] systems, and AMD’s Hammer [9, 65, 121]).

These systems have a small or moderate number of processors, use a tightly-coupled point-to-point

interconnect (but not a virtual bus), and send all requests to all processors. Unfortunately, these

systems are currently not well described in the academic literature. In this section we present our

41

understanding of the AMD Hammer protocol based on the little publicly-available documentation

[9, 65, 121]. Even if this description does not accurately reflect the operation of AMD’s actual

system, the approach we describe is a correctly functioning coherence protocol. After describing

the protocol, we then extended it to make it more comparable with our other protocols, describe

the advantages and disadvantages of this protocol, and compare it with Token Coherence.

2.6.1 The Hammer Protocol

Systems built from AMD’s Hammer chip (also know as the Opteron or Athlon 64 [9, 65, 121])

uses a protocol not previously described in the academic literature. The Hammer protocol targets

small systems (in which broadcast is acceptable) with unordered interconnects (in which traditional

snooping is not possible), while avoiding directory state overhead and directory access latency.

The protocol is interesting because it is being used in an actual system, and because it has a unique

blend of attributes of traditional directory and snooping protocols.

A requester first sends its request to the home memory module (much like a directory proto-

col), and the home memory module allocates a transaction entry to place the block into a busy state.

However, unlike a directory protocol, the memory contains no directory state, but instead immedi-

ately forwards the request (these forwarded requests are called probes) to all the processors in the

system (the broadcast nature and lack of state in memory is reminiscent of a snooping protocol).

In parallel with the sending of the forwarded requests, the memory module fetches data from the

DRAM and sends it to the requester. When each processor in the system receives the forwarded re-

quest, it sends an explicit response or acknowledgment to the requester (like a directory protocol),

and when the requester has collected all the responses (one from each processor and another from

the memory) it sends a message to the memory module to free the block from the busy state and

deallocate the transaction entry. By avoiding a directory lookup, this protocol has lower latency for

cache-to-cache misses than a standard directory protocol, but it still requires indirection through

the home node. Perhaps the best way to reason about this protocol is as a directory protocol with

no directory state (orDir0B, using the terminology from Agarwalet al. [8]).

42

This approach has many advantages and disadvantages compared with a traditional directory

or snooping protocol. The advantages are that (1) it does not rely on a totally-ordered interconnect

and (2) it does not add the latency of a directory lookup to the critical path of cache-to-caches

misses (the memory controller forwards the request as soon as it verifies that no other requests

are outstanding for the block). The disadvantages are that (1) all requests must first be sent to

the home memory (adding an extra interconnect traversal to the critical path of cache-to-cache

misses), (2) all requests are forwarded to all processors (creating the same traffic issues as in

snooping protocols), (3) all processors must respond with an acknowledgment to the forwarded re-

quest messages (adding even more traffic than in snooping protocols, because snooping protocols

do not use explicit acknowledgments), (4) when multiple sharers are invalidated the requester must

wait for acknowledgments to arrivefrom all processorsbefore it has write permission to the block

(in contrast, a directory protocol only needs acknowledgments from those processors to which

it forwarded the request, and thus it can avoid waiting for responses from distant non-sharers),

and (5) the system sends two data responses for each cache-to-cache miss (one response from the

memory—which is ignored—and another from the processor that owns the block). Due to dupli-

cate responses, broadcasting of forwarded request messages, and many explicit acknowledgments,

this protocol is most suitable for small systems.

2.6.2 Our Implementation: HAMMER OPT

HAMMEROPT is a reverse-engineeredapproximationof AMD’s Hammer protocol [9, 65, 121].

We actually enhanced the basic protocol by (1) adding our migratory sharing optimization and (2)

eliminating the redundant data responses for cache-to-cache transfers. To eliminate redundant data

responses, we added the same two bits of per-block state at the memory controller that we used

in SNOOPING (described in Section 2.4.5). In essence, HAMMEROPT removes one of Hammer’s

advantages (no per-block state in memory) in exchange for removing one of Hammer’s disad-

vantages (redundant data responses). To reduce the traffic created by broadcasting the forwarded

request messages, HAMMEROPT uses multicast routing to provide bandwidth-efficient broadcast.

43

To provide more specific implementation details, we have made protocol tables and the speci-

fication for HAMMEROPT available on-line [78].

2.7 Protocol Background Summary

In this chapter we briefly discussed many aspects of coherence, general approaches to coher-

ence, and how these relate to Token Coherence. This chapter also described specific interconnects

(TREE and TORUS) and coherence protocols (DIRECTORY, SNOOPING, and HAMMEROPT) that

we use later in this dissertation for evaluating Token Coherence. The next three chapters describe

the core of Token Coherence by presenting token counting (Chapter 3), persistent requests (Chap-

ter 4), and the concept of a performance policy (Chapter 5).

44

Chapter 3

Safety via Token Counting

Token Coherence uses acoherence substrateto both ensure safety and avoid starvation. This

chapter describes only the coherence substrate’s use of token counting to provide safety (i.e., en-

suring data are read and written in a coherent fashion); Chapter 4 describes the substrate’s use of

persistent requests to provide starvation freedom (i.e., guaranteeing that all reads and writes even-

tually succeed). The complete specification of the Token Coherence substrate is available on-line

[78].

In Token Coherence, token counting enforces safety in all cases. The system associates a fixed

number of tokens with each block of shared memory.1 A processor is only allowed to read a

cache block when it holds at least one token or write a cache block when holding all tokens. This

token-counting approach directly enforces the “single-writer or many-reader” coherence invariant

described earlier in Section 2.1. One of the primary benefits of token counting is that it allows

Token Coherence to ensure safety without relying on request ordering established by the home

memory or a totally-ordered interconnect. This chapter discusses both the rules that govern token

counting (Section 3.1) and token storage and manipulation overheads (Section 3.2).

3.1 Token Counting Rules

This section describes token counting by initially presenting a simplified version of token

counting—one that requires data to always accompany tokens as they travel throughout the sys-

tem (Section 3.1.1)—and discusses the invariants it maintains (Section 3.1.2) and how this simple

1The system associates tokens with each block of the physical memory (not with virtual block address)

45

scheme enforces a memory consistency model (Section 3.1.3). The section then continues by pre-

senting two important traffic-reduction refinements that reduce the number of cases that require

tokens to be sent with data (Section 3.1.4 and Section 3.1.5). The chapter continues by describ-

ing support for other type of requests—e.g., upgrades, cache allocate requests, and input/output

(Section 3.1.6). The chapter concludes with a brief discussion of reliability (Section 3.1.7) and

opportunities enabled by token counting (Section 3.1.8).

3.1.1 Simplified Token Counting Rules

During system initialization, the system assigns each block a fixed number of tokens,T .2 The

number of tokens for each block (T) is generally at least as large as the number of processors.

Tokens are tracked per block and can be held in processor caches, memory modules, coherence

messages (in-flight or buffered), and input/output devices. Acoherence messageis any message

sent as part of the coherence protocol. We collectively refer to those devices that can hold tokens

assystem components. Initially, the block’s home memory module holds all tokens for a block. To-

kens and data are allowed to move between system components as long as the substrate maintains

these four rules:

• Rule #1 (Conservation of Tokens):Once the system is initialized, tokens may not be cre-

ated or destroyed.

• Rule #2 (Write Rule): A system component can write a block only if it holds allT tokens

for that block.

• Rule #3 (Read Rule):A system component can read a block only if it holds at least one

token for that block.

• Rule #4 (Data Transfer Rule): If a coherence message contains one or more tokens, it must

contain data.
2In most implementations, each block will have the same number of tokens. However, token counting

continues to work if blocks have a different numbers of tokens as long as all system components know how
many tokens are associated with each block.

46

Rule #1 ensures that the substrate never creates or destroys tokens and enforces the invariant

that at all times each block in the system hasT tokens. Rules #2 and #3 ensure that a processor will

not write the block while another processor is reading it. Adding rule #4 ensures that processors

holding tokens always have a valid copy of the data block. In more familiar terms, token possession

maps directly to traditional coherence states (described in Section 2.2): holding allT tokens is

MODIFIED; one toT − 1 tokens is SHARED; and zero tokens is INVALID .

While our rules restrict the data and token content of coherence messages, the rules do not

restrict when or to which component the substrate can send coherence messages. For example, to

evict a block (and thus tokens) from a cache, the processor simply sends all its tokens and data to

the memory.3 Unlike most coherence protocols, token coherence does not allow silent evictions

(i.e., evicting the block without sending any messages). In contrast, many traditional protocols

allow silent evictions ofclean (i.e., SHARED and EXCLUSIVE) blocks. Both token coherence

and traditional protocols require writeback messages that contain data when replacingdirty (i.e.,

OWNED and MODIFIED) blocks.

The rules also allow for transferring data without the guarantee that the receiving processor’s

cache has sufficient space to hold the new data. To handle these “stray” data messages, a processor

that receives a message carrying tokens and/or data can choose to either accept it (e.g., if there

is space in the cache) or redirect it to the home memory (using another virtual network to avoid

deadlock as described in Section 4.2.1).

3.1.2 Invariants for Simplified Token Counting

By implementing the token-counting rules directly at each system component, these local rules

lead to several global system invariants (some of which are described below). The substrate main-

tains these global invariants by induction; the invariants hold for the initial system state, and the

locally-enforced rules ensure that all movements of data and tokens preserve the global invariants.

3Section 3.1.4 introduces a refinement that enables a processor to evict a clean block without sending
the data block back to memory; instead, the processor need send only a small eviction-notification message
to the memory.

47

Thus, in Token Coherence safety is guaranteed without reasoning about the interactions among

non-stable protocol states, request indirection, message ordering in the interconnect, or system

hierarchy. Examples of global invariants include:

• “The number of tokens for each block in the system is invariant” (because no component

creates or destroys tokens and the interconnect provides reliable message delivery4).

• “No component may read the block while another component may write the block” (because

the writer will be holding all tokens, no other component will have any tokens, and thus may

not read the block).

• “At a given point in time, there is only one valid value for every physical address in the

shared global address space” (because all tokens must be gathered to write the block and a

copy of new contents of the data block is required when subsequently transferring tokens).

Although this invariant holds in the memory system, a processor may relax this constraint

(e.g., when implementing a weaker memory consistency model or speculating on locks).

• A corollary to the previous invariant: “at a given time, all components that can read a block

will observe the same value” (because the contents of the data block are immutable between

write epochs, and a writer must collect all the tokens before it can write the block).

Some preliminary research using model checking techniques suggests that these and other in-

variants can be shown to hold using model checking. Alternatively, these invariants could be shown

to hold using other formal methods, possibly based upon “Lamport clocks” [30, 100, 114] or via

several other approaches [29, 42, 54, 101, 104, 112]. Further research in this effort is on-going and

has been relegated to future work.

4We discuss reliability issues in Section 3.1.7

48

3.1.3 Memory Consistency and Token Coherence

The processors and coherence protocol interact to enforce a memory consistency model [5]—

the definition of correctness for multiprocessor systems. Token Coherence plays a similar role

as that of a traditional invalidation-based directory protocol. Token Coherence and traditional

directory protocols both provide the same guarantee: each block can have either a single writer

or multiple readers (but not both at the same time). For example, the MIPS R10000 processors

[126] in the Origin 2000 [72] use this property to provide sequential consistency, even without a

global ordering point.5 The Origin protocol uses explicit invalidation acknowledgments to provide

the above property. Token Coherence provides the same property by explicitly tracking tokens

for each block. Although this property concerns only asingle blockand consistency involves the

ordering of reads and writes tomany blocks, this property is sufficient to allow the processor to

enforce sequential consistency or any weaker consistency model.

3.1.4 The Owner Token and Revised Token Counting Rules

An issue with the rules we presented in Section 3.1.1 is that data must always travel with

tokens. Requiring tokens to always travel with data is bandwidth inefficient because it leads to the

redundant transfer of the block’s data (e.g., when a request gathers tokens from many processors

or when many evictions of read-only blocks are redundantly sent to the memory).

To avoid these bandwidth inefficiencies, this section presents a modification to the substrate

that allows tokens to be transferred in small data-less messages (effectively behaving as either

eviction notification messages or invalidation acknowledgment messages in a directory protocol).

To enable this enhancement, the substrate distinguishes a unique per-blockowner token, adds a

per-blockvalid-data bit (distinct from the traditional valid-tag bit), and maintains the following

five rules (changes initalics):

5The Origin protocol uses a directory to serialize some requestsfor the same block; however, since
memory consistency involves the ordering relationship between different memory locations [5], using a
distributed directory is not sufficient to implement a memory consistency model.

49

• Rule #1′ (Conservation of Tokens): Once the system is initialized, tokens may not be

created or destroyed.One token for each block is the owner token.

• Rule #2′ (Write Rule): A system component can write a block only if it holds allT tokens

for that blockand has valid data.

• Rule #3′ (Read Rule): A system component can read a block only if it holds at least one

token for that blockand has valid data.

• Rule #4′ (Data Transfer Rule): If a coherence message containsthe owner token, it must

contain data.

• Rule #5′ (Valid-Data Bit Rule): A system component sets its valid-data bit for a block

when a coherence message arrives with data and at least one token. A component clears the

valid-data bit when it no longer holds any tokens.

Rule #1′ distinguishes one token as the owner token. Rules #2′ and #3′ continue to ensure that a

processor will not write the block while another processor is reading it. Rule #4′ allows coherence

messages with non-owner tokens to omit data, but it still requires that messages with the owner

token contain data (to prevent all processors from simultaneously discarding data). Possession of

the owner token but not all other tokens maps to the familiar MOESI state OWNED. Although the

owner token provides the traditional advantages of the OWNED state (described in Section 2.2.2),

in Token Coherence the owner token further reduces traffic by allowing the transfer of non-owner

tokens without including data.

System components (e.g., processors and the home memory) maintain a per-block valid-data bit

(in addition to the traditional valid-tag bit in the cache). This valid-data bit allows components to

receive and hold tokens for a block without valid data while also preventing them from responding

with, reading, or writing stale data. Rules #2′ and #3′ explicitly require the valid-data bit be set

before a processor can read or write data for a block. Rule #5′ ensures (1) the valid-data bit will

only be set when a component has received data and (2) the valid-data bit is only set while that

component is holding tokens for that block.

50

These revised rules provide three primary advantages. First, evictions of non-owner read-

only copies require only a small, data-less coherence message to carry the tokens back to the

memory. Second, a request invalidating many read-only copies does not generate a data response

for each copy it invalidates. Third, we later use the owner token to conveniently select a single data

responder for requests.

3.1.5 Rules for Supporting the EXCLUSIVE State

Using the rules described in Section 3.1.4, Token Coherence can only approximate the EXCLU-

SIVE state by allowing the memory to send data and all the tokens for a block when a processor

requests to read the block.6 This approach captures the primary latency benefit of the EXCLUSIVE

state (i.e., it allows the processor to later write the block without the latency of issuing another

request), but a processor evicting a block with all tokens would still be required to send a dirty-

writeback messageeven when the data was not written by the processor. In contrast, most tradi-

tional protocols (e.g., [72, 91]) can evict blocks in EXCLUSIVE either silently or with a data-less

eviction notification.

To allow token coherence to benefit from the EXCLUSIVE state without this extra writeback

traffic penalty, we further refine the token counting rules to distinguish between the EXCLUSIVE

and MODIFIED states by allowing the owner token to be eitherclean (signifying the value held

in memory matches the currently valid value for the block) ordirty (signifying the value held in

memory is stale)—changes to the rules are marked initalics:

• Rule #1′′ (Conservation of Tokens): Once the system is initialized, tokens may not be

created or destroyed. One token for each block is the owner token.The owner token may be

either clean or dirty.

• Rule #2′′ (Write Rule): A component can write a block only if it holds allT tokens for that

block and has valid data.After writing the block, the writer sets the owner token to dirty.

6Transient requests are described later in Section 5.2.

51

• Rule #3′′ (Read Rule): A component can read a block only if it holds at least one token for

that block and has valid data.

• Rule #4′′ (Data Transfer Rule): If a coherence message containsa dirty owner token, it

must contain data.

• Rule #5′′ (Valid-Data Bit Rule): A component sets its valid-data bit for a block when a

message arrives with data and at least one token. A component clears the valid-data bit

when it no longer holds any tokens.The home memory sets the valid-data bit whenever it

receives a clean owner token, even if the message does not contain data.

• Rule #6′′ (Clean Rule): Whenever the memory receives the owner token, the memory sets

the owner token to clean.

These six rules are designed to enforce the global invariant that if the owner token is clean, the

value in memory will match the current single value of the block (Section 3.1.2 introduced this

concept of a “single valid value”). Thus, as long as the owner token is clean, the system knows

the memory still holds the correct value. Once a processor dirties the owner token by writing the

block, the system can no longer rely on the contents of memory, and the system’s behavior (in

essence) reverts to using the rules described in Section 3.1.4. When a processor sends the dirty

owner token and data back to memory, the memory will set the owner token to clean (once again

allowing for the owner token to be transfered without data). Holding valid data and all the tokens

with a dirty owner token or clean owner token corresponds to the MODIFIED and EXCLUSIVE

state, respectively. Holding valid data and less than all the tokens with a clean or dirty owner token

corresponds to the OWNED and SHARED state, respectively.7 As before, holding valid data with at

least one token without the owner token corresponds to the SHARED state.

Rule #1′′ allows the owner token to be dirty or clean. Rule #6′′ instructs the memory to set

the owner token to clean whenever it receives the owner token (i.e., if the owner token is at the

7Holding a clean owner token (but not all tokens) is considered the SHARED state (not OWNED) since
evicting a clean owner token does not require a dirty-writeback. However, a performance policy may dictate
that a processor with a clean owner token will respond to requests for the block.

52

memory, it can only be clean). Since the memory initially holds all tokens, all owner tokens are

initially clean. Rule #6′′ allows the memory to transform the owner token from dirty to clean by

receiving a message with the dirty owner token, writing the data into the memory (data must always

accompany the dirty owner token), and setting the owner token to clean. Rule #2′′ now specifies

that the owner token becomes dirty whenever the block is written. Rule #3′′ is unchanged from

rule #3′. Rule #4′′ only requires data be sent when the owner token is dirty, further reducing the

number of cases in which data must be sent with tokens.

In Rule #5′′, the valid-data bit acts as before except the home memory module sets the valid-

data bit whenever it receives a clean owner token, even if the message does not contain data. The

way in which processors set and clear the valid bit is unchanged. In combination with rule #4′′,

this change allows a processor holding all tokens for a clean block (i.e., the owner token is still

clean) to evict a block by returning the tokens to memory without the contents of the data block.

When a clean owner token arrives at memory, the memory knows the block could not have been

written since the memory last held tokens (otherwise the owner token would be dirty), and thus the

content of memory is actually still valid.

One unfortunate side effect of these modified rules is that they do not prevent a processor from

holding all tokens without valid data (possible only when the owner token is clean), which prevents

the processor from reading, writing, or responding with the block. A processor can prevent this

undesirable situation from persisting by sending its tokens back to the memory to reassociate the

owner token with valid data. As this is a technically a starvation-avoidance issue and not an issue

with safety, we discuss this further in Section 4.2.3.

With these new rules, when the memory holds all tokens for a block, the memory can send a

message to a processor that contains a copy of the block, all the non-owner tokens, and a clean

owner token (giving the receiver an EXCLUSIVE copy of the block). If the receiving processor

only reads the block before it evicts the block, the processor needs to send only a small eviction

notification message. If the processor writes the block, it can do so quickly, without the latency of

collecting additional tokens. After a processor has written the block, any subsequent eviction will

generate a dirty writeback—the same behavior as in a traditional coherence protocol.

53

Even with the above refinement of the rules, Token Coherence still requires eviction notifi-

cations when evicting clean blocks, unlike many traditional protocols that allow silent eviction.

These non-silent evictions do create additional interconnect and memory traffic overheads. The

magnitude of these overheads and additional ways of reducing them are further discussed in Sec-

tion 3.2.

3.1.6 Supporting Upgrade Requests, Special-Purpose Requests, and I/O

Token Coherence also supports other types of common coherence operations.

Upgrade requests.As currently described, the token counting rules do not support upgrade

requests. Although these rules can be modified to included upgrade request (see below), we believe

Token Coherence has little to gain from upgrade requests (as mentioned in Section 2.2.5). In Token

Coherence, transitions from OWNED to MODIFIED already avoid transferring data in most cases,

and we find that SHARED to MODIFIED transitions are rare, especially when using the migratory

sharing optimization (described in Section 2.2.4).

The token counting rules can be modified to support upgrade requests by allowing the dirty

owner token to be transfered without data. The cost of this flexibility is requiring such a transfer to

be explicitly acknowledged to ensure the requesting processor still held a valid copy of the block

when it received the owner token. If the recipient of the owner token does not have a valid copy

of the block, the recipient must return the owner token to its sender (e.g., by returning the owner

token in a negative acknowledgment message). While waiting for the acknowledgment message to

arrive, the responding processor must continue to hold a valid copy of the data (to ensure at least

one system component maintains a valid copy of the block).

Special-purpose requests.Token Coherence can also support operations generated by special

memory instructions. One important example is the special instructions used to reduce traffic by

not fetching blocks that will be entirely overwritten (e.g., the destination in a memory copy or the

bzero() routine). Examples include Alpha’s “Write Hint 64” (WH64), PowerPC’s “Data Cache

Block Clear to Zero” (dcbz) and “Data Cache Block Allocate” (dcba), and SPARC’s block store

instructions. The exact semantics of these instructions vary between instruction set architectures,

54

but an efficient implementation of these instructions generally requires the coherence protocol to

allocate a writable copy of a cache block (often with undefined contents) into a processor’s cache

without generating a data transfer from memory.

In Token Coherence, a memory module can respond to such a coherence operation by sending

all the tokens and clean owner token for a block—but not the content of the data block—to the

initiator. The recipient processor will thus have permission to write the block, but the data-valid

bit will not be set. When the processor retires the instruction that writes or clears the cache block,

it simply sets the data-valid bit and changes the owner token from clean to dirty. This approach

allows Token Coherence to avoid the interconnect and memory traffic that would result from a

normal write request. If the home memory module does not have all the tokens, the system must

reinterpret or reissue the request as a traditional write request operation.

I/O in Token Coherence. Token Coherence supports DMA (direct memory access) I/O (in-

put/output) by allowing I/O devices (or their corresponding DMA controllers) to hold and manip-

ulate tokens, allowing them to coherently read and write the shared address space. I/O devices

can also use the techniques described above for obtaining a write-only copy of a block without a

data transfer. Alternatively, I/O devices can rely on a memory controller, processor, or processor’s

cache controller to perform read and writes on its behalf. Memory mapped (uncacheable) I/O ac-

cess is not affected by the choice of coherence protocol, and thus its implementation is unaffected

by Token Coherence.

3.1.7 Reliability of Token Coherence

Like most other coherence protocols, Token Coherence depends on reliable message deliv-

ery and fault-free logic to behave correctly. The system may provide these reliability guarantees

directly (e.g., with highly-reliable links) or indirectly (e.g., using error detection and message re-

transmission to recover from corrupted messages).

Although explicitly counting tokens may seem more fragile or more susceptible to errors due

to lost messages or corrupted state, it isn’t any more error prone than other coherence protocols.

55

For example, a lost invalidation message in a snooping protocol or a lost acknowledgment message

in a directory protocol with both cause either inconsistency or prevent forward progress.

In some ways, Token Coherence may be more resilient to faults that cause lost messages. For

example, the system may drop any message that is part of the performance policy (discussed in

Chapter 5) without affecting system correctness. Any token messages that are dropped will prevent

processors from writing the block, and will thus likely cause deadlock or livelock. However, the

system will act in a failsafe manner by not allowing processors to read or write data incoherently.

A deeper discussion of the reliability issues of both traditional coherence protocols and Token

Coherence is beyond the scope of this work.

3.1.8 Opportunities Enabled by Token Counting

By not restricting when and to which processors tokens must be sent, token counting grants

significant freedom while still ensuring safety. We exploit this freedom to create many performance

policies (Chapter 5). Unfortunately, the cost of this freedom is the need for a separate starvation-

prevention mechanism (Chapter 4). Before discussing these two aspects of Token Coherence, we

first discuss several overheads that arise when implementing token counting.

3.2 Token Storage and Manipulation Overheads

This section discusses several real-world implementation overheads of Token Coherence; as

such, this section is not strictly necessary for an understanding of the conceptual aspects of Token

Coherence. Thus, the reader may continue reading with Chapter 4 without a conceptual disconnect.

However, this section’s material is helpful for understanding (1) some of the implementation issues

of Token Coherence and (2) the evaluation of Token Coherence in later chapters.

By using tokens to explicitly track coherence permissions, Token Coherence incurs additional

overheads not found in traditional coherence protocols. Fortunately, these overheads are either

minor or can be mitigated using a variety of methods. This section describes, approximates, and

discusses how to reduce the impact of each of the four main sources of token-counting overhead:

holding tokens in caches, transferring tokens in messages, sending additional messages due to non-

56

silent evictions, and holding tokens in memory. These overheads are generally small because the

size of the token state is only a small fraction of the size of a cache block.

3.2.1 Token Storage in Caches

Although Token Coherence requires extra state in caches, the state is small compared to the size

of a datablock, and thus the overhead is low. Token Coherence requires that a processor maintain—

for each block in its cache(s)—a token count, an owner-token bit, a clean/dirty owner bit, and a

valid-data bit. The most straightforward approach for encoding this state is to add these bits to the

cache tags, much like other coherence protocols add bits to the cache tags to encode the MOESI

state of the block or adlog2 ne-bit pointer used in cache-based directory schemes (e.g., SCI [46],

or Sequent’s NUMA-Q [76]). Since Token Coherence only counts tokens (i.e., it does not need to

track which processors hold tokens), this information can be stored in3+ dlog2 T e bits (valid-data

bit, owner-token bit, clean/dirty bit, and non-owner token count). Encoding a maximum of 64

tokens—enough for a 32- or 64-processor system—requires only 9 bits. These extra bits result in

less than a 2% increase in the total number of bits in the cache (tags and data) for 64-byte cache

blocks (for 128-byte blocks the overhead is reduced to less than 1%). Thus, this overhead appears

to be a reasonable cost for the benefits that token coherence provides.

To ensure these additional bits do not increase the cache access latency, these bits can be

removed from the critical path of cache access. First, to reduce the number of bits that the processor

must examine on a cache hit, the cache tags could introduce a few additional bits for an MOSEI-

like encoding of the permissions derived from the token count. Second, to further reduce the token

bits from impacting the critical path, the tokens could be stored in a separate array that parallels

the tag array.

3.2.2 Transferring Tokens in Messages

Messages that transfer tokens between system components must encode token-counting infor-

mation. This information is similar to that information stored in caches: a token count, an owner-

57

token bit, and a clean/dirty owner bit. Tokens travel in two types of messages: data messages and

non-data messages.

• The overhead for data messages is low for the same reason that the overheads of holding

tokens in the cache is low: tokens are much smaller than data blocks. As a result, data

messages increases in size by less then 2%.

• Token Coherence allows for transfer of messages without a dirty owner token to omit data.

As these messages are significantly smaller than messages that carry data, the overheads of

encoding tokens is also larger. These data-less messages are used (1) as eviction notifications

when evicting non-dirty blocks or (2) as invalidation acknowledgment messages (much like a

directory protocol). For our system assumptions, these data-less messages are approximately

eight bytes in size. One byte of token-related state results in a 13% overhead.

Fortunately, these data-less messages are almost always paired with a previous data message.

In most cases, a processor that issues a data-less token message received those tokens in a

previous messagethat contained data. This occurs when data-less token messages are sent

as invalidation acknowledgments or as eviction notification messages. When these non-data

messages are paired with data messages, the amortized overhead is approximately 4% (or

twice the overhead of just a single data message).

Although data-less eviction messages are common, data-less messages used as invalidation

acknowledgments are infrequent because of (1) the small number readers between writes

[31, 44, 75, 79, 115], and (2) the migratory sharing optimization we employ (described in

Section 2.2.4). The other main source of data-less token messages is Token Coherence’s

non-silent evictions; we discuss this overhead separately in Section 3.2.3.

The overhead due to the increase in message size is not modeled in our simulations. In our

simulations, all message sizes are multiples of our 4-byte link width. Since a 4-byte message is

too small (due to a large physical address space) and an 8-byte message can encode all required

information, the size of all of our non-data messages in all our protocols is 8 bytes. Thus, in

58

our simulations Token Coherence messages are no larger than messages used by the other proto-

cols. However, our experimental results do provide a breakdown of distribution of message sizes,

allowing for an estimate of this overhead.

3.2.3 Non-Silent Evictions Overheads

Although the increase in message size is small, Token Coherence also increases the number

of messages sent by requiring non-silent evictions of clean blocks. Similar to our analysis in the

previous section, these 8-byte eviction messages only occur when a data message was previously

sent to the processor. The worst-case behavior for eviction notifications is a processor reading

many blocks without writing them. This pattern would generate an outgoing 8-byte eviction noti-

fication for each incoming 72-byte data block (64 bytes of data plus an 8-byte header), resulting

in an 11% increase in traffic (in bytes). Of course most real workloads also write to data, and the

resulting dirty writebacks reduce the relative overhead. For example, a workload that dirtied half

of the blocks it accessed would incur only a 3% traffic overhead (two 72-byte data responses and

a 72-byte dirty writeback versus these same messages plus an 8-byte eviction notification). This

worst-case estimate does not include any request traffic, which further reduces the overhead as a

percent of bytes of interconnect traffic.

All eviction-notification messages are explicitly modeled in our simulations (described later in

Chapter 6), and our experiments quantify this overhead by explicitly tracking the additional traffic

caused by non-silent evictions. Our results indicate that this overhead is small (for our workloads

and assumptions). These non-silent evictions also result in an increase the number of messages

processed by the memory controller and increase the frequency with which the memory must

update its token count; we discuss this overhead next (as we discussion the overheads of holding

tokens in memory).

3.2.4 Token Storage in Memory

The final—and perhaps most serious—overhead of token counting is holding and manipulating

the tokens for each block in memory. Although the relative overhead is the same as in caches (less

59

than 2% for our assumptions), the sheer number of memory block creates a potentially serious

issue. For example, with 9 bits of token state per 64-byte block, a memory module with 4GBs of

DRAM would need an additional 72MBs for token storage. Not only is the amount of state large,

but the system must provide high-bandwidth access to the state because it is both read and written

for each update of the token count (potentially each coherence request).

Fortunately, this problem is not unique to Token Coherence, but it is the same problem encoun-

tered by directory protocols (for holding the directory state that tracks the sharers and/or owner

for each block). In terms of the amount of state, the magnitude of the problem is actually smaller

for Token Coherence than for some directory protocols because the amount state required for To-

ken Coherence is only a token count, and not a full encoding of which processors are sharing the

block. In terms of required bandwidth, Token Coherence requires more frequent manipulations of

the information due to non-silent evictions.

The next few pages describe four standard alternatives used by directory protocols to mitigate

this problem and discuss their application to Token Coherence. In the discussion, the termper-

block statewill generically refer to both the token-counting state (in Token Coherence) and the

sharers/owner directory information (in a directory protocol).

Approach#1: Dedicated storage.The most straightforward approach to holding per-block

state is to use a large dedicated RAM (either SRAM or DRAM) at each memory module to store

the state (as adopted by many directory protocol systems in the 1990s [72, 74, 75, 76]). This

approach is simple, but it adds to the total system cost. Alternatively, the per-block state can be

stored in memory by reserving a range of physical memory to be used for per-block state (making

this range unavailable to the software). This approach does have the advantage of not increasing

the number of discrete system components, but it also reduces the amount of memory available to

software, and the operating system needs to recognize which addresses are unavailable to it.

Approach#2: Redefining the ECC bits. Encoding per-block state in the normal system

DRAM by redefining the memory’s ECC8 (error correction code) bits is an approach recently

8Chen and Hsiao [28] and Peterson and Weldon [99] provide an overview of various error correcting
codes.

60

adopted by several systems (e.g., the S3mp [96], Alpha 21364 [91], UltraSparc III [58], and Pi-

ranha [39]). In contemporary ECC DRAM, 72 bits are used to store 64 bits of data, and the

memory controller uses the remaining 8 bits to implement a SECDED (single error correct, double

error detect) code. If the memory controller is changed to calculate ECC more coarsely—e.g.,

on 128/144-bit blocks—not all 16 bits that are available for ECC are required to implement a

SECDED code. For example, Sun’s UltraSPARC III systems use this technique to gain seven “un-

used” bits per 128/144-bit block (for a total of 28 bits per 64-byte coherence block) to hold the

directory state for its coherence protocol [58].

This ECC-based approach has one main advantage (it is relative inexpensive), a few minor

disadvantages (it requires ECC DRAM, complicates the ECC circuitry, and weakens the ECC

code), and one serious disadvantage (it generates extra memory DRAM traffic). The main ad-

vantage of this approach is that it requires no additional state and only requires a localized and

well-understood change to the memory controller. One possible disadvantage is that currently not

all systems use ECC memory (which is more expensive than non-ECC memory). However, almost

all servers currently use ECC memory, and most future systems will use ECC memory due to the

increasing transient bit fault rates as DRAM becomes more dense [60, 87, 88]. To support this

coarser ECC, the ECC calculation logic must concurrently consider a larger number of bits, which

increases the size and complexity of the ECC circuitry. This technique also weakens the ECC code

(e.g., bit flips in each of two consecutive 64-bit blocks would have been correctable using stan-

dard ECC but might not be correctable using coarser ECC). This disadvantage is not too serious in

current systems due to (1) the presumed independence of transient faults, (2) the careful physical

layout of DRAM cells, and (3) memory controllers that proactively scan (or “scrub”) the memory

looking for and correcting bit errors. Systems that use stronger codes than SECDED (e.g., cor-

recting four consecutive bits to protect data against a “chipkill” fault of a 4-bit DRAM bank [61])

many not free up as many bits when using larger ECC blocks, but these systems should still be

able to use this general technique to encode per-block state.

The most serious disadvantage of this approach is the extra memory (DRAM) traffic it intro-

duces. Instead of just performing a read or write of main memory DRAM, updating the per-block

61

state in memory transforms many memory reads or writes into read-modify-write actions. Ghara-

chorloo et al. [39] studied this issue in detail for a directory protocol and identified situations

in which memory controllers can reduce the amount of extra traffic by limiting the number of

read-modify-write operations.9 Unfortunately, the extra memory traffic can be especially prevalent

due to the non-silent evictions required by Token Coherence. An alternative approach (described

next) uses an on-chip cache of per-block state to reduce both the access latency and the bandwidth

demands placed on the memory.

Approach#3: Directory/token cache.A SRAM token cacheor directory cachebehaves much

like a traditional cache, except that (1) it is logically part of the memory controller, and (2) it caches

only per-block state for blocks in the local memory. By keeping the most recently used per-block

state in on-chip SRAM, such a cache provides the memory controller with high-bandwidth, low-

latency access to the per-block state. When the desired information is not found in the cache, the

memory controller retrieves the per-block information either stored in dedicated storage or encoded

in the memory’s ECC bits. The memory controller can either access this cache and dedicated

storage in parallel (lower latency, but higher traffic) or in series (lower traffic, but higher latency),

or it can adaptively or predictively choose between these options for each request.

The size of the directory cache depends on the goal of the directory cache. As a small number

of commonly requested “hot blocks” account for a larger fraction of the misses in many workloads

[79], even a small directory cache (hundreds of entries) should exhibit a significant hit rate. Alter-

natively, a sufficiently large cache of per-block state—large enough to capture all the blocks from

its memory module that are cached by processors—can approach the hit rate of a infinite cache (at

the cost of a non-trivial amount of die area). For example, if the number of memory modules is

the same as the number of processors (as they are for some highly integrated systems like AMD’s

Hammer [9, 121] and Alpha 21364 [47, 91]), the average number of blocks cached per memory

module is the same as the number of blocks in each processor’s cache. If each processor had a

4-way set-associative 2MB second-level cache and the system had a 38-bit physical address space,

9For example, in Token Coherence a dirty writeback message withall tokens knows the memory holds
no tokens, and thus the memory can avoid reading the token count before updating the per-block state.

62

a token cache would require a 19-bit tag and 9-bits of token state (64 tokens and the associated

valid/owner/dirty bits). A cache with (1) the same number of entries as the second level cache and

(2) a 28-bit overhead per block results in a near-perfect cache that is approximately 5% of the size

of the second level cache.

A cache of per-block state magnifies bandwidth and reduces latency of per-block state access.

However, it has a couple of disadvantages: (1) it adds complexity to the system (yet another widget

to design and verify) and (2) it consumes a modest amount of on-chip resources. Although such

caches are not a new idea, they have not yet achieved widespread adoption in real systems or even

in academic studies.

Approach#4: Inclusive directory/token caching. The directory/token caching approach as-

sumes that when per-block state is evicted from the cache it can be written back to the main direc-

tory or token storage (i.e., dedicated storage or encoded in the ECC bits). An alternative approach

is to enforceinclusionbetween the per-block cache and systems caches. Enforcing inclusion al-

lows a cache of per-block state that does not rely upon a larger in-memory per-block state storage.

In this approach, when an entry is not found in the cache it is known to be in the default or un-

cached state (e.g., all tokens in memory for Token Coherence or that no processors are caching the

block for a directory protocol). The memory controllers enforce inclusion usingrecall messages.

We first explain the operation of inclusive directory cache; second, we’ll extend the approach to

include Token Coherence.

In a standard directory protocol that uses an inclusive directory cache, a directory controller

desires to evict an entry from its directory cache, it sends a recall message to any processor that

might be caching the block (some limited-pointer directory schemes such asDir1NB [8] use a

similar mechanism). Each processor acknowledges the recall message by responding with either

an acknowledgment message (for those processors in the, SHARED, and EXCLUSIVE states) or

a data writeback message (for those processors in MODIFIED and OWNED). When the memory

module has received the required responses it knows that no processor in the system could be

caching the block, allowing it to deallocate the entry (freeing the cache frame to hold another

block’s directory state). To avoid affecting the critical path of a miss, a memory controller can

63

reserve a few extra entries to allow the recall operation to proceed in parallel with handling the

request (much as a processor’s cache handles evictions in parallel with misses).

Extending this approach to Token Coherence is straightforward. The memory controller using

the same recall messages for evicting entries from the cache of per-block state. Processors respond

to these recall messages by sending any tokens they have back to the memory (using the processor’s

existing eviction mechanism); processors holding no tokens do not respond. When the memory

receives all a block’s tokens it can safely deallocate the block’s entry. In essence, the memory

issues a request to gather all tokens (much like a processor’s might issue a write request). To

ensure that the memory eventually receives all the tokens, it may need to invoke the correctness

substrate’s starvation prevention mechanism (Chapter 4).

Cache frames may also be freed when the entry reverts to the default setting (e.g., when a

processor writes back a MODIFIED copy of a block or the last sharer/token holder sends an eviction

notification message to the directory).10 This proactive deallocation of entries allows protocols

that support eviction notification—required in Token Coherence, but optional in many directory

protocols—to significantly reduce the number of recall operations. Without eviction notifications

a block that was read and silently replaced will occupy an entry until the memory controller recalls

the block or another processor later writes and evicts the block. The combination of a system

that (1) uses eviction notifications, (2) has a sufficiently large cache of per-block state, and (3)

is running a workload that exhibits a normal distribution of access to blocks from each memory

module should generate a negligible number of recall messages.

Of course, like the other approaches, this technique has advantages and disadvantages. The

main advantage of this approach is that it eliminates all need to store per-block state in DRAM,

avoiding any additional off-chip DRAM traffic. However, this approach has three significant dis-

advantages:

• First, implementing recall messages introduces extra protocol complexity—especially when

considering deadlock issues. To ensure that recall operations will not create circular depen-

10This early deallocation of cache frame entries can also be used to increase the effectiveness of caches
that do not use recall operations.

64

dencies among protocol messages, adding recalls to a directory protocol requires both (1)

additional virtual networks (e.g., additional virtual networks for recall messages and recall

responses) and (2) careful examination of transient states that block or queue messages.

Extending Token Coherence to support recall operations may be easier than some other

coherence protocols due to the flexible nature of the correctness substrate. For example, the

memory controller could use a modified version of Token Coherence’s existing persistent

request mechanism (described in Chapter 4) to implement the recall mechanism. Even with

the reuse of this mechanism, supporting the recall operation still adds unwanted subtlety to

the coherence protocol.

• Second, the cache of per-block state must be large enough (contain a similar number of

blocks as the second-level processor caches) to prevent excessive recall messages from pre-

maturely evict blocks from processor caches. As described previously, a straight-forward

implementation of such a cache results in a 5% increase in the number of bits as compared

with the number of bits in the second level cache.11

• Third, memory access patterns that exhibit a non-uniform distribution of accesses among

the many memory controllers may “thrash” a single memory controllers cache of per-block

state, greatly limiting the effective size of processor caches in pathological cases (i.e., all

processor are accessing blocks from a single memory module).

Summary for token storage in memory.While none of the four approaches are ideal, using a

substantial token cache backed up by storage in main memory’s ECC has moderate cost and should

generate little additional memory traffic. However, the possible methods for encoding per-block

state covers a large design space. In addition, this design choice effects not only Token Coherence,

but also directory protocols and snooping protocols that exploits per-block state. Because (1)

11A designer can reduce the number of bits in a token cache by encoding only certain token counts (such
as all tokens or no tokens) or by using sector-cache techniques (also know as sub-blocking). For example,
using a 4-subblocks per cache tag reduces size overhead by almost half. However, sector caches complicate
cache evictions and are susceptible to access patterns that lack spatial locality, reducing the effective size of
the cache.

65

much of this design space is tangential to the core ideas of Token Coherence and (2) we want to

avoid skewing our experimental results based on this implementation choice, our experiments use

a simplistic model of dedicated per-block storage with unbounded directory bandwidth for all of

the protocols we evaluate.

3.2.5 Overhead Summary

Overall, the overheads of maintaining tokens counts are modest. To support a moderate number

of tokens (e.g., 64 tokens) fewer than ten bits are required per 64-bytes or 128-byte data block,

resulting in a approximately a 1-2% increase in the number of bits in the processor caches. The

same small overhead is added to the size of coherence message that carry tokens and data; data-less

token messages have higher overheads, but are often paired with larger data messages. Non-silent

evictions cause additional messages, but the additional interconnect traffic (in terms of bytes) only

increases by 3% for a workload with equal numbers of clean and dirty evictions. The memory

controller can use techniques developed for directory protocols to both cache its token and encode

its tokens in the DRAM’s ECC bits, providing high-bandwidth access to the memory’s per-block

state with reasonable cost.

66

Chapter 4

Starvation Freedom via Persistent Requests

The previous chapter described the correctness substrate’s use of token counting to ensure

safety; however, safety is not sufficient for correct operation. In addition to ensuring safety (do

no harm), the correctness substrate must also prevent starvation (do some good). A starvation-free

system must ensure that every read and write attempt eventually succeeds.

This chapter extends the correctness substrate by adding a mechanism to explicitly prevent

starvation. Since the performance policy (described in Chapter 5) should enable processors to

quickly complete their requests in the common case, this new mechanism should be rarely invoked

(i.e., only a couple percent of misses should need to invoke persistent requests). A processor only

invokes the persistent request mechanism when it suspects it may be starving (e.g., it has failed

to complete a cache miss within a timeout period). This approach frees the performance policy to

focus on making the common case fast, allowing the starvation-prevention mechanism to handle

the rare cases that can lead to starvation.

The flexibility provided by Token Coherence is one of its key advantages, but this same flex-

ibility is directly responsible for complicating starvation prevention. To prevent starvation the

correctness substrate must ensure that all attempts to read or write a block will eventually succeed.

This guarantee must hold in all cases not explicitly disallowed by the token counting rules. For

example, tokens can be delayed arbitrarily in transit, tokens can “ping-pong” back and forth be-

tween processors, or many processors may wish to access the same block at the same time. In

many coherence protocols once a request isordered, it is guaranteed to succeed. These traditional

protocols rely on a total order of requests provided by the interconnect (snooping protocols) or a

67

per-block ordering point at the home memory (directory protocols). These methods of ordering

requests introduce penalties that Token Coherence seeks to avoid. As token counting does not use

a point-of-ordering of requests, Token Coherence must adopt a different approach to preventing

starvation.

Although many methods of preventing starvation are possible in this context, this dissertation

focuses on usingpersistent requests. A processor issues a persistent request when it detects it may

be starving (by noticing a lack of recent progress). The substrate arbitrates among the outstanding

persistent requests to determine the currentactive requestfor each block. The substrate sends the

persistent requests to all system components. These components must both remember all active

persistent requests and redirect their tokens—those tokens currently present and those to be re-

ceived in the future—to the requesting processor until the requester hasdeactivatedits persistent

request. The initiator deactivates its requests when it has received sufficient tokens to perform a

memory operation (e.g., a load or store instruction). Starvation-free arbitration and the persistent

nature of these requests enable the substrate to eventually find and redirect all the required tokens,

even in pathological cases.

To provide several reasonable design options, this chapter presents descriptions of multiple ap-

proaches for preventing starvation. We hope that the description of these techniques will inspire

other researchers to develop alternative approaches for preventing starvation in Token Coherence.

The chapter begins by introducing a simplified persistent request mechanism that uses a central-

ized arbiter (Section 4.1) and by outlining how such an approach prevents starvation (Section 4.2).

The chapter continues by describing an approach with multiple arbiters to increase throughput

(Section 4.3) and an enhancement to improve the handling of read requests (Section 4.4). The

penultimate section of this chapter describes a distributed arbitration technique for persistent re-

quests that has better behavior in worst-case situations (Section 4.5). The final section briefly

discusses the possibility of improving the scalability of these approaches (Section 4.6).

68

Interconnect

 P P P... ...

 M M M... ...

Processor Component
(CPU and caches)

Memory Module Component
(memory controller and DRAM)

A
Arbiter

Persistent
Request Table

AddressValid
Bit

Processor
Number

Persistent
Request Table

Figure 4.1 Single-Arbiter System.This figure shows an example system that includes a single
arbiter and multiple components (memory modules and processors/cache modules), each with
a single-entry persistent request table. This table has only a single entry, but other approaches
for implementing persistent requests (described later) use multiple-entry tables. In this single-
arbiter approach, the entry contains a valid bit, physical address, and the processor number of
the initiator of the request.

4.1 Centralized-Arbitration Persistent Requests

This section begins the discussion of persistent requests by describing a correct, but simplified,

implementation of persistent requests using a single centralizedarbiter. The substrate directs

persistent requests to the arbiter, queuing multiple requests in a dedicated virtual network1 or at the

arbiter itself. The arbiter state machineactivatesa single request by informing all processors and

the block’s home memory module. These components each remember the active persistent request

using a hardwarepersistent request table. Figure 4.1 shows a system with a single arbiter and the

contents of the persistent request table found at each component. In this centralized-arbitration

approach, each persistent request table has a single entry with three fields (a valid bit, an address,

and a processor number). We introduce the notion of a persistent request table in preparation for

1The virtual network must provide starvation-free message delivery.

69

P0
(starver)

P1 P2 P3Arbiter

Time
�

�

�

�

�

�

�

�

request
active

Done

Deactivation

Data &
 Token

Data & Token
delayed in
interconnect

Token

Activation
Persis
tent

Reque
st

Figure 4.2 Arbiter-based Persistent Request Example.This figure illustrates the operation
of the arbiter-based persistent request mechanism. The dotted vertical line represents the arbiter
and the other lines each represent a processor; to simplify the example memory modules are
not explicitly shown, but they act similarly. Time flows from top to bottom, and each angled
line represents a coherence message. At time❶, P1 sends a message with data and a token to
P2, but the interconnect significantly delays the message. Later, at time❷, P0 detects it may be
starving and sends a persistent request to the arbiter. The arbiter receives the message (at time
❸) and sends activation messages to all processors (and the home memory, not shown). At time
❹ each processor receives the persistent request activation and records the persistent request in
its persistent request table. After receiving the activation message, each processor will send to
P0 any tokens and data it currently has (asP3 does) or that arrive later (asP2 does at time❺).
WhenP0 has received data and both system tokens (at time❻), P0 performs a memory operation
and sends a completion message to inform the arbiter to deactivate the request (which it does at
time ❼). When each processor receives a deactivation message (at time❽), it deactivates the
request by clearing its persistent request table (reverting the system back to normal behavior).

other approaches to implementing persistent requests that use multiple-entry tables (described later

in this chapter).

While a persistent request is active for a block, each component must forward all the block’s

tokens (and data, if it has the owner token and valid data) to the requester. The component will also

70

forward tokens (and data) that arrive later, because the request persists until the requester explicitly

deactivates it. The initiator of the active persistent request2 must not give away any of its tokens,

except when it holds all tokens without valid data. As described in Section 3.1.5, a processor can

hold all tokens without valid data when a clean owner token is transfered without data. When this

situation occurs, the processor sends the tokens to the memory to reassociate the tokens with valid

data (via Rule #5′′ in Section 3.1.5). Once the requester has (1) received all tokens, (2) received

valid data, and (3) observed the activation of its own persistent request, it sends a message to the

arbiter todeactivateits request. The arbiter deactivates the request by informing all nodes, which

delete the entry from their tables. Figure 4.2 presents an example of arbiter-based persistent request

activation and deactivation.

As described, this approach requires that the system prevent the reordering of activation and

deactivation messages. Such reordering would allow starvation situations in which different pro-

cessors would permanently disagree which processor is the currently active processor. The system

can prevent reordering of these messages using point-to-point ordering in the interconnect or by

using rounds of explicit acknowledgments; these two alternatives and other approaches are further

discussed later in Section 4.7.

4.2 Showing That Persistent Requests Can Prevent Starvation

To show that this mechanism prevents starvation, we argue that (1) the system will eventually

deliver all messages, (2) each starving processor will receive all tokens, (3) the starving processor

will receive valid data (with all tokens), and (4) the mechanism deactivates the request in all cases

(to enable the next persistent request activation).

4.2.1 Deadlock-Free Message Delivery

First, because of a interconnect that is reliable, deadlock-free, and livelock-free, the system

eventually delivers all messages. Such an interconnect may require employing well-understood

2The initiating processor knows its request is active because it also receives the activation message.

71

techniques [36] such as additional virtual networks (to avoid protocol deadlocks), each with mul-

tiple virtual channels (to avoid routing deadlocks).

To prevent deadlocks, this implementation of persistent requests conservatively uses six virtual

networks: (1) persistent requests, (2) activations, (3) “to-processor” data/token messages, (4) “to-

memory” data/token messages, (5) persistent request completions, and (6) deactivations. To avoid

deadlock, the system uses these virtual networks only in increasing order (i.e., a message on a

higher virtual network cannot be blocked waiting for an equal or lower virtual network):

• Persistent requests (network #1) elicit only activation messages.

• An activation message (network #2) may elicit either no response or a “to-processor” data

response.

• A message on the “to-processor” data/token virtual network (network #3) can elicit no re-

sponse, a completion message, or a redirection of the data/tokens. If a persistent request

is active for the block, the processor either (1) redirects the message to the initiator of the

persistent request (if the “to-processor” virtual network is not blocked), or (2) redirects the

message to the memory on the “to-memory” virtual network (otherwise). The processor also

redirects to the memory any message for which its cache does not have an entry allocated

(using the “to-memory” virtual network).

• Memory alwayssinks “to-memory” data messages (network #4) without blocking, even

when a persistent request is active for the block. It does this by (1) writing the datablock

to the memory (it has capacity to hold all blocks) and (2) periodically scanning the persistent

request table for any blocks for which the memory holds tokens. Any tokens found during

this scan are forwarded as specified by the persistent request mechanism.

• Completion messages (network #5) elicit only deactivation messages.

• Finally, deactivations (network #6) can always be sunk because they never generate mes-

sages.

72

Thus, six virtual networks are sufficient, but perhaps not necessary. Although using six virtual

networks simplified the discussion, fewer virtual networks may be sufficient (e.g., if processors

can defer sending data in response to persistent request activations).

4.2.2 Receiving All Tokens

Second, this implementation guarantees that each persistent request will eventually be invoked,

be activated, and collect all tokens. A potentially starving processor will time out and invoke

a persistent request. Assuming that (1) all previously issued persistent requests will eventually

complete (assumed in an inductive fashion) and (2) the arbiter uses a starvation-free queuing policy

(e.g., first-in-first-out), all persistent requests will eventually reach the head of the arbiter’s queue

and the arbiter will activate it (i.e., all persistent requests in the arbiter’s queue ahead of this request

must eventually deactivate to guarantee the request will eventually reach the front of the queue,

causing the arbiter to activate it). Once the activation message has reached all components, each

component will agree to forward all tokens it holds to the single starving processor (and they are

not allowed to send tokens to any other processors). This property ensures that all tokens will

eventually be redirected to the starving processor (since components will eventually redirect all

in-flight tokens).

4.2.3 Receiving Valid Data

Third, a starving processor must obtain valid data (in addition to sufficient tokens). A starving

processor can hold all tokens without valid data only when holding a clean owner token (a dirty

owner token requires data with its transfer). When this situation occurs, the starving processor

rectifies the situation by sending its tokens to the home memory module. Once the tokens and

data are reunited at the memory, the owner token will always travel with data (at least while the

persistent request is active), ensuring that the starving processor will receive data the next time it

receives the owner token. Once a processor has sufficient tokens and valid data, it performs at least

one non-speculative memory operation before deactivating the request.

73

4.2.4 Persistent Request Deactivation Requirement

Fourth, in addition to completing its own request, a processor must also deactivate its request

and allow the arbiter to activate the next persistent request. The arbiter will forward the deactivation

message to all processors and the home memory. This deactivation guarantees that each component

will eventually reset all the state in the persistent request table for this request. After sending the

deactivation, the arbiter can then activate the next request.3

4.2.5 Summary

Thus, this persistent request mechanism prevents starvation by using an arbiter to order per-

sistent requests, and since it only affects system behavior during periods of possible starvation, it

prevents starvation without unduly restricting the flexibility of Token Coherence.

4.3 Banked-Arbitration Persistent Request

A single centralized persistent request arbiter may become a bottleneck in large systems. For-

tunately, a system can use multiple arbiters to scale persistent request throughput at the cost of

larger persistent request tables. The previous approach did not explicitly require a single arbiter.

As long as only one request is active per block and each component can remember all active per-

sistent requests, a similar approach—one that uses multiple arbiters—will also prevent starvation.

In this banked-arbitration approach, each arbiter is responsible for a fixed portion of the global ad-

dress space, and the persistent request table at each component must contain one entry per arbiter.

Each entry in this new multi-entry table encodes the same information as the previous single-entry

table (a valid bit, a physical address, and a processor). Figure 4.3 illustrates a system with multiple

arbiters and multi-entry persistent request tables.

Although the amount of state in each persistent request table grows linearly with the number of

arbiters, in practice the table is still modest in size. For example, a system with an arbiter co-located

3As later described in Section 4.7, if the interconnect does not provide point-to-point ordering of activa-
tions and deactivation, a round of explicit acknowledgments is required before the next persistent request
may be activated.

74

Interconnect

 P P P... ...

 M M M... ...

Processor Component
(CPU and caches)

Memory Module Component
(memory controller and DRAM)

A

Arbiter

Persistent
Request Table

AddressValid
Bit

Processor
Number

A

A

Persistent
Request Table

A

One Entry
Per Arbiter

......

Figure 4.3 Multiple-Arbiter System. This figure shows a system with multiple arbiters and
multiple-entry persistent request tables. Each entry in the table contains a valid bit, physical
address, and the processor number of the initiator of the request.

within each of 64 processor/memory nodes requires only a 512-byte table per node.4 Supporting

1024 nodes requires an 8KB table per node (0.3% of a 2MB on-chip second-level cache). The

access bandwidth of this structure is also modest; the component accesses the table only when

receiving persistent requests or messages with tokens (i.e., not transient requests). In addition,

since the table is indexed directly (i.e., a table lookup does not require an associative search) using

the memory controller number (assuming one arbiter per memory controller), a straightforward

implementation of this structure should provide adequate bandwidth.

4.4 Introducing Persistent Read Requests

As described, the correctness substrate handles read and write persistent requests identically.

While sufficient to prevent starvation, this approach has the undesirable side effect of stealing

tokens away from all sharers to satisfy a persistent read request. This effect can result in a situation

in which multiple processors trying to read a block devolve into continually issuing persistent

4This table may be shared among the node’s many caches and memory controllers, or each structure may
have its own table.

75

requests. To prevent this situation, a starving processor may use apersistent read requestwhen it

desires only a read-only copy of the block. In our implementation, a recipient of a persistent read

request keeps at most one non-owner token, but the recipient must give up the rest of its tokens. In

a system with at least as many tokens per block as processors, this approach guarantees both that

(1) the starving processor will receive the owner token and (2) no processor will hoard many tokens

at the expense of the others. Multiple processors trying to read the same block will eventually each

hold one token (and valid data), avoiding the problem of continual persistent read requests. As

in persistent write requests, a processor holding the (clean) owner token without valid data sends

the owner token back to the memory. Because of the active persistent request, the memory will

reassociate the owner token with valid data and promptly return it to the initiator of the persistent

request.

4.5 Distributed-Arbitration Persistent Requests

The previously described approach to implementing persistent requests requires that processors

first send persistent requests to an arbiter. This section describes a distributed-arbitration technique

that reduces the latency of persistent requests by avoiding any (per-block) arbiter and allows direct

communication of persistent requests between processors. This approach targets better worst-

case behavior for highly-contended blocks (perhaps caused by performance-critical and highly-

contended synchronization).

Unlike the previous approach that limits the number of active requests per arbiter, this approach

relies on limiting the number of outstanding persistent requests (e.g., only one) per processor. By

limiting the number of persistent requestsper processorto one, the processor number becomes the

index for the persistent request table and the table has as many entries as the maximum number of

processors in the system (as opposed to the maximum number of arbiters in the previous approach).

Figure 4.4 shows a system that uses distributed arbitration.

When a processor detects possible starvation, it invokes a persistent request (with the constraint

that each processor is allowed only a single outstanding persistent request at a time). To invoke

76

Interconnect

 P P P... ...

 M M M... ...

Processor Component
(CPU and caches)

Memory Module Component
(memory controller and DRAM)

Persistent
Request Table

Persistent
Request Table

requires associative
search by address

One Entry
Per Processor

AddressValid
Bit Marked

BitRead/Write
Bit

Figure 4.4 Distributed-Arbitration System. This figure shows a system without any discrete
arbiters. Each of the persistent request tables has one entry per processor. Each entry in the
table contains a valid bit, physical address, read/write bit (to distinguish between read and write
requests, as described in Section 4.4), and a marked bit (used to prevent a processor from starving
out lower priority processors, as described later in Section 4.5). Since each entry corresponds to
exactly one processor, the table entries do not explicitly encode the number of the processor that
initiated the request. Unlike the arbiter-based schemes, the same address is allowed in multiple
table entries, requiring an associative search of the table for each incoming token message.

the request, the processor sends a persistent request directly to all processors and the home mem-

ory module. Each of these components records the requests in its local persistent request table.

This persistent request table is indexed by processor number (since each processor is allowed only

a single outstanding persistent request, the table needs as many entries as the maximum number

of processors in the system), and each entry has an address, a read/write request type bit, a valid

bit, and a marked bit (used later). Since this table can now have multiple entries that contain the

same address, the entry for the processor with the lowest number is appointed the active persistent

request. Similar to the previous approaches, all components send tokens (and data) to the initiator

of the active persistent request. When a processor completes its request, it sends a deactivation

message directly to all processors, which clears the corresponding entry in the table. This deac-

tivation implicitly activates the next persistent request (the request with the next lowest processor

number). Like the previous approach, the system must not reorder activation and deactivation mes-

77

P0
(starver)

P1 P2 P3

Time

request
active

�

�

�

�

�

�

Deactivation

Data
& Tok
en

Data & Token
delayed in
interconnect

Token

Activation

Figure 4.5 Distributed Persistent Request Example.This figure illustrates the operation of
the distributed-arbitration persistent request mechanism using the same example as Figure 4.2.
Similarly to Figure 4.2, the vertical lines represent processors, time flows from top to bottom,
and each angled line represents a coherence message. At time❶, P1 sends a message with data
and a token toP2, but the interconnect significantly delays the message. Later, at time❷, P0

detects it may be starving and sends a persistent write request directly to all other processors
(and the home memory, not shown). At time❸ each processor receives the persistent request
activation and updates its persistent request table. After receiving the activation message, each
processor will send toP0 any tokens and data it current has (asP3 does) or that arrive later (asP2

does at time❹). WhenP0 has received data and both tokens (at time❺), P0 performs a memory
operation and sends deactivation messages to the system components. When each processor
receives a deactivation message (at time❻), it deactivates the request by clearing its persistent
request table (reverting the system back to normal behavior).

sages (Section 4.7 describes several implementation alternatives for enforcing this requirement).

Figure 4.5 illustrates the operation of this distributed-arbitration approach.

While this approach prioritizes to which processor the system should next send tokens, it does

not (yet) prevent starvation. To prevent higher-priority processors from starving out lower-priority

processors, this approach uses a simple mechanism inspired by techniques used to enhance mul-

78

tiprocessor bus arbitration mechanisms [118, 120]. Our mechanism prevents a higher-priority

processor from making a new persistent request for the block until all the lower priority processors

have completed their persistent requests. When a processor completes a persistent request, it sets a

markedbit on each of the entries for that block in its local persistent request table, and a processor

is not allowed to invoke a persistent request for any block with a marked entry in its table. The

processor will eventually receive deactivation messages for all the marked entries, allowing the

processor to once again issue a persistent request for that block. This approach prevents starvation

by bounding the number of higher-priority persistent requests that processors can invoke before

the substrate satisfies lower-priority persistent requests.

This decentralized-arbitration approach has advantages and disadvantages that prevent a clear

choice of the best persistent request mechanism. Lower latency (due to direct communication) and

lack of arbiter (and associated queuing) are the main advantages of the decentralized approach over

arbiter-based approaches. The distributed-arbitration approach has three main disadvantages. First,

the persistent request table requires associative matching and priority encoding logic, increasing

the hardware complexity, size, and access latency of the structure (especially for a large number

of processors). Second, the fixed-priority scheme might create load imbalance when using certain

types of non-fair synchronization primitives. Third, this approach is somewhat more subtle (and

possibly more error prone) than the arbiter-based approaches.

4.6 Improved Scalability of Persistent Requests

Although persistent requests are intended to be used infrequently, persistent requests are one

limit of the scalability of Token Coherence. Although scalability isnot a primary design goal of

Token Coherence (because most machines have a small to moderate number of processors), this

section briefly discusses the two main impediments to the scalability of these implementations of

persistent requests.

First, as currently described, the system broadcasts persistent requests to all processors. To

relax the broadcast-always nature of persistent requests, a starving processor (or the arbiter in

79

arbiter-based approaches) can initially send a persistent request only to a predicted subset of pro-

cessors that are actively manipulating the block. Only when the request is not satisfied within

another timeout window does the mechanism need to resort to broadcasting persistent requests

throughout the system.

Second, each persistent request table requires either one entry per arbiter (in arbiter-based

schemes) or one entry per processor (in decentralized-arbitration schemes). ThisΘ(n2) amount

of state limits the scalability of the proposed persistent request schemes. Fortunately the constant

factor of the equation is small (e.g., eight bytes per entry), allowing tables that support hundreds

or thousands of processors with modest hardware cost. The arbiter-based scheme may be more

appropriate for such large systems, because (1) it avoids associative search of the persistent request

tables, and (2) it can allow for fewer than one arbiter per processor. For example, consider a chip

multiprocessor (CMP) that consists of 16 processors and a single on-chip arbiter. A 1024-processor

system of 64 of these CMP nodes would require persistent request tables with only 64 entries (one

entry for each arbiter).

4.7 Preventing Reordering of Persistent Request Messages

Both the arbiter-based and distributed persistent request mechanisms assume that activation

and deactivation messages are never reordered. This section describes the problem that reordering

of these messages causes and presents several implementation approaches to avoiding the problem.

4.7.1 Problems Caused by Reordered Activations and Deactivations

Reordering of activation and deactivation messages can create confusion among the recipients

of the messages. For example, consider the following situation: the system activates a request by

sending it to all processors, and the processor with the tokens sends all its tokens to the initiator of

the request, but the message sent to another processor is delayed in the interconnect (e.g., due to

congestion). While the interconnect is delaying that message, the initiator deactivates its persistent

request (even before the persistent request has arrived at all its recipients). Furthermore, additional

requests might be activated and deactivated before the first activation arrives at its destinations.

80

Thus, if the interconnect is allowed to reorder these messages, a processor could receive the acti-

vations and deactivations in the wrong order, with disastrous consequences. This reordering could

cause a processor to erroneously conclude that an active request has been deactivated, a deactivated

request is still active, or that the oldest request is the most recent and the most recent request is

the oldest. Although these situations may be rare in practice, they can lead to starvation (in both

the arbiter-based and distributed-arbitration approaches). To prevent this undesirable situation, a

system designer has at least four choices, described in the next four sections.

4.7.2 Solution#1: Point-to-point Ordering

As we assumed in the initial discussion of persistent requests, the interconnect can prevent such

troublesome reordering by providing point-to-point ordering. Point-to-point ordering concerns

delivery ordering only between pairs of end points, and thus many interconnects naturally provide

this property. 5 However, some interconnects may not provide point-to-point ordering because

they exploit (1) adaptive routing or (2) message retransmission:

• Interconnects often use adaptive routing to reduce queuing delays caused by localized inter-

connect congestion. Unfortunately, adaptively routed interconnects allow messages to take

different paths between endpoints, and thus such systems do not naturally provide point-

to-point ordering. A reasonable compromise for capturing most of the benefits of adaptive

routing without compromising point-to-point ordering for persistent requests is to selectively

disable adaptive routing for those virtual networks that carry activation and deactivation mes-

sages.

• Interconnects that seek increased reliability using link-level or end-to-end retransmission of

messages may also violate point-to-point ordering when faults that require retransmission

occur. Although some such retransmission mechanisms will fail to maintain ordering, sys-

tems can adopt well-known techniques used in networking (e.g., sliding window retransmis-

5As discussed earlier (in Section 2.3), point-to-point ordering is a much weaker form of ordering in the
interconnect than the totally-ordered interconnect property required for snooping protocols (and directory
protocols that exploit implicit acknowledgments [41]).

81

sion) to reestablish the appearance of point-to-point ordering. For example, the networking

protocol TCP provides end-to-end message ordering over a unreliable substrate.

Relying on point-to-point ordering has advantages and disadvantages. Its main disadvantage is

that it requires the interconnect to provide point-to-point ordering on one or more virtual networks

(by disabling adaptive routing and/or using a retransmission protocol that reestablishes point-to-

point order). Its main advantages are that (1) it is conceptually straightforward at the coherence

protocol layer, (2) it does not complicate the persistent request mechanism, and (3) it avoids intro-

ducing additional messages that increase system traffic.

4.7.3 Solution#2: Explicit Acknowledgments

Instead of relying on the interconnect, a persistent request implementation can use explicit

acknowledgment messages to guarantee that each arbiter or processor (in the arbiter-based and

distributed approaches, respectively) has outstanding messages for only one active persistent re-

quest at a time. Before a component can issue another activation or deactivation, each previous

recipient must send an acknowledgment confirming that it received the message. As illustrated in

Figure 4.6, this approach adds two rounds of explicit acknowledgments for each persistent request.

This approach has the advantage of not relying on any specific interconnect ordering properties,

but it has the disadvantages of (1) adding complexity to the persistent request mechanism, (2)

requiring additional virtual networks for acknowledgment messages, and (3) increasing message

traffic.

Unfortunately, the relative cost (in terms of bytes of traffic on the interconnect) of the acknowl-

edgments is substantially worse for interconnects that support efficient broadcasts. For example, a

broadcast on a two-dimensional toroidal network that uses fan-out routing will crossΘ(n) inter-

connect links (in whichn is the number of processors). However, when each of these processors

sends an acknowledgment response, the responses (in aggregate) crossΘ(n
√

n) links. Due to the

larger order of growth, for large systems the traffic caused by these acknowledgments will greatly

exceed the traffic generated by the persistent request activation and deactivation messages. This

82

P0
(starver)

P1 P2 P3

Done

Deactivation

Acknowled
gment

Data &
 Token

Data & Token
delayed in
interconnect

Token

Activation

Acknowled
gment

Persis
tent

Reque
st

Arbiter

Time
�

�

�

�

�

�

�

�

�

request
active

(a)
Arbiter-based Mechanism

using Explicit Acknowledgments

P0
(starver)

P1 P2 P3

Deactivation

Acknow
ledgme

nt

Data
& Tok
en

Data & Token
delayed in
interconnect

Token

Activation

Acknow
ledgmen

t

Time

request
active

�

�

�

�

�

�

�

(b)
Distributed-arbitration Mechanism
using Explicit Acknowledgments

Figure 4.6 Using Explicit Acknowledgments. These two illustrations are identical to Fig-
ure 4.2 and Figure 4.5, except for the addition of explicit acknowledgments to show their use
in both arbiter-based and distributed-arbitration persistent requests. In part (a), in addition to
waiting for sufficient tokens before deactivating the persistent request, the arbiter must also wait
until it has received activation acknowledgments from all processors—including the comple-
tion message from the initiator—which occurs at time❼ in this example. Similarly, the arbiter
cannot activate the next persistent request until it has collected all the deactivation acknowledg-
ments (time❾ in this example). In part (b) the processor cannot deactivate its request until it has
received sufficient tokens and all activation acknowledgments (which occurs at time❺ in this
example). Similarly, the initiator must wait until it has received all deactivation acknowledg-
ments (at time❼) before it can issue another persistent request (and its persistent request table
can not contain any “marked” entries for the address, not shown).

greater cost of sending acknowledgments is known asack implosion, and its extreme effect is

illustrated by the traffic use of the HAMMEROPT protocol (as discussed later in Section 7.2).

4.7.4 Solution#3: Acknowledgment Aggregation

To reduce the negative consequences caused by acknowledgment implosion, the persistent re-

quest mechanism can aggregate (or batch) multiple acknowledgments in a single message. For

example, instead of acknowledging both the activation and deactivation, a recipient can reduce the

acknowledgment overhead by half by sending acknowledgments only after it has received both the

83

activation and deactivation. If the deactivation arrives before the activation, the recipient must rec-

ognize the situation and remember it has already received the deactivation for a future activation.

To further reduce the traffic caused by acknowledgments, the substrate can give each activation

and deactivation a source-specific sequence number (each activator has an incrementing counter),

and recipients use these sequence numbers to ignore any delayed activation or deactivation mes-

sages that arrive out of sequence order. Each recipient must annotate the persistent request table to

track (1) the highest sequence number it has received for the entry and (2) the number of messages

it has received since it last sent an acknowledgment. The recipient uses this extra information to

both ignore stale requests and send an acknowledgment when the count reaches a predetermined

number (e.g., 15 for a 4-bit sequence number space). When the activator reaches this limit, it must

wait for all acknowledgments before it can continue to activate persistent requests (starting again

with the sequence number zero).

Aggregating acknowledgments has the advantage of reducing the acknowledgment overhead by

a potentially large constant factor (the traffic is reduced by a factor equal to the number of sequence

numbers). The main disadvantage is the extra logic and state used to encode the sequence numbers

in the messages and persistent request table (and the associated increase in design complexity).

4.7.5 Solution#4: Large Sequence Numbers

The previous solution introduced the use of sequence numbers to mitigate acknowledgment

overhead by reducing the frequency of acknowledgments. Alternatively, by using a large enough

sequence number such that—in practice—messages always have unambiguous sequence numbers,

the system can simply eliminate persistent request acknowledgments. For example, if an arbiter

uses a 4-byte counter and activates a persistent request every 100ns, the sequence number space

would wrap around only every 3.4 minutes; if a message took that long to deliver, the system

software would have declared an error long before the time limit was exceeded. To correctly handle

sequence number wrap-around, the system components use an algorithm (based upon algorithms

for handling finite sequence numbers in retransmission schemes) to determine if they should ignore

the incoming message. For completeness, the algorithm is given in Figure 4.7. This approach of

84

function ignore(last_seq , incoming_seq):

diff = incoming_seq - last_seq

if diff > MAX_SEQ/2:

return diff <= MAX_SEQ

elif diff <= -MAX_SEQ/2:

return diff <= -MAX_SEQ

else:

return diff <= 0

Figure 4.7 Algorithm for determining when a recipient should ignore an incoming mes-
sage.If the ignore() function returnstrue, the recipient ignores the incoming message. In the
pseudo-code above,last seq is the sequence number of the last message that was not ignored,
incoming seq is the sequence number of the incoming message, andMAX SEQ is the maximum
sequence number allowed in a message.

using a sufficiently large sequence number space and handling sequence number wrap-around is

inspired by similar mechanisms used in wide-area networking protocols (e.g., TCP).

The main advantage of this approach is the removal of all acknowledgment traffic without

relying on the interconnect, while preserving the simplicity of the persistent request mechanism.

Its two main disadvantages are that (1) it adds a large sequence number (e.g., four bytes) to the

persistent request table and to each activation and deactivation message, and (2) additional logic is

needed to determine which messages the recipients should ignore.

4.7.6 Summary of Solutions

Any of these four approaches can address the problem of reordered activation and deactivation

messages. Although each approach has its benefits and liabilities, relying on interconnect point-to-

point ordering for a single virtual network is a pragmatic approach due to its bandwidth efficiency

85

and simple nature. For these two reasons, the quantitative evaluations later in this dissertation

adopt this approach.

4.8 Persistent Request Summary

This chapter has introduced persistent requests as one approach for preventing starvation in

Token Coherence. The chapter also presented several approaches for implementing persistent re-

quests and additional options for preventing the reordering of activation and deactivation messages.

Due to the large design space for implementing persistent requests, we selected a single proof-of-

concept design point for use in our quantitative evaluations. We selected the distributed-arbitration

scheme (Section 4.5) and use point-to-point ordering in the interconnect to avoid reordering ac-

tivation and deactivation messages (Section 4.7.2). Evaluation of the various persistent request

alternatives and development of other approaches are relegated to future work.

86

Chapter 5

Performance Policies Overview

The previous two chapters describe what is required for Token Coherence to provide correct

operation in all cases; in contrast, this chapter describes alternatives for making Token Coherence

fast in the common case. The system’sperformance policyis the set of specific policies the system

uses to instruct the correctness substrate to move tokens and data throughout the system. When

it is not overridden by a persistent request, the performance policy decides when and to which

processors the system should send various coherence messages. Token Coherence allows for many

possible performance policies, and since its correctness substrate guarantees safety and prevents

starvation, performance policy designers can innovate without fear of corner-case correctness er-

rors. The remainder of this dissertation describes and evaluates various performance policies and

shows that Token Coherence enables the creation of coherence protocols that exhibit lower latency

and are more flexible than traditional protocols.

This chapter first discusses performance policy obligations (Section 5.1) and opportunities

(Section 5.2). It then provides a brief overview of the performance policies explored in this dis-

sertation (Section 5.3) and discusses other possible performance policies that could be explored in

future work (Section 5.4).

5.1 Obligations

Performance policies have no obligations, because (1) the correctness substrate ensures cor-

rectness (safety via token counting and starvation prevention via persistent requests), and (2) pro-

cessors are responsible for asking the correctness substrate to invoke the persistent request mecha-

87

nism. Thus, even a null or random performance policy would not be incorrect (but might perform

poorly). Therefore, performance policies may aggressively seek performance without concern for

corner-case errors.

5.2 Opportunities via Transient Requests

Due to a lack of obligations, a performance policy has significant freedom to dictate system

behavior; as long as it is not overridden by a persistent request, the performance policy both (1)

determines how the substrate moves coherence messages throughout the system and (2) introduces

its ownhint messages to communicate between system components. When a performance policy

uses these hint messages to emulate request messages commonly found in traditional coherence

protocols, these hints are calledtransient requests(to clearly distinguish them from the substrate’s

persistent requests).

One way in which performance policies seek high performance is by specifying an approach

for using these transient requests. The system sends fast, unordered transient requests to one or

more components, and the components respond with all, some, or none of their tokens and possibly

data (all specified by the particular performance policy). Transient requests often succeed in col-

lecting data and sufficient tokens (one token to read the block, and all tokens to write it), but they

may also fail to obtain sufficient tokens due to races, insufficient recipients, or being overridden

by the correctness substrate. When a transient request fails to obtain sufficient tokens, the perfor-

mance policy may reissue the transient request or do nothing (because the memory operation will

eventually complete after the processor detects lack of progress and issues a persistent request). A

good performance policy will use transient requests to quickly satisfy most cache misses.

5.3 Performance Policy Forecast

This dissertation uses the flexibility of Token Coherence and transient requests to create a

progression of three performance polices. The end result of this progression is a coherence protocol

with lower latency than traditional snooping or directory protocols that also uses significantly

88

less bandwidth than snooping protocols. The three performance policies in this progression are

TOKENB (a low-latency broadcast-based protocol), TOKEND (a bandwidth-efficient directory-

like protocol), and TOKENM (a hybrid that uses predictive multicasting to create a low-latency

and bandwidth-efficient protocol).

5.3.1 TOKEN B

The goal of TOKENB is to provide the lowest possible latency for requests by (1) always

broadcasting transient requests (to directly find data anywhere in the system), and (2) avoiding

the performance bottlenecks of totally-ordered interconnects (since transient requests are simply

hints, they have no ordering requirements). In essence, TOKENB is a snooping protocol without

the difficulties caused by the totally-ordered interconnect required by traditional snooping systems.

To handle occasional situations in which a transient request fails to collect sufficient tokens, TO-

KENB reissues the transient request after a timeout period, ultimately relying on the correctness

substrate’s persistent request mechanism to prevent starvation.

5.3.2 TOKEN D

The goal of TOKEND is to provide a bandwidth-efficient performance policy to both (1) show

that Token Coherence can achieve similar bandwidth efficiency as a directory protocol and (2) pro-

vide a bandwidth-efficient base for the hybrid protocol TOKENM. TOKEND achieves this goal by,

in essence, emulating a directory protocol by using transient requests. Transient requests are first

sent to the home memory module, where a per-block “soft state” directory determines to which

processor, if any, it should forward the request. This policy results in a token-based coherence pro-

tocol that—to the first order—has the both the desirable traffic characteristics and the undesirable

directory-indirection latency penalty of directory protocols.

5.3.3 TOKEN M

The goal of TOKENM is to combine the low-latency of TOKENB with the bandwidth efficiency

of TOKEND to create a hybrid with more attractive bandwidth and latency characteristics than any

89

traditional cache-coherence protocol (i.e., capturing most of the latency benefits of TOKENB while

using only slightly more bandwidth than a directory protocol or TOKEND). TOKENM achieves

this goal by multicasting transient requests to a predicteddestination setof processors based on

the observation of past system behavior [3, 4, 20, 79]. A perfect destination-set prediction includes

only those processors that need to respond to a request, excluding uninvolved processors to reduce

traffic. A system with a perfect destination-set predictor would capture the low-latency of TOKENB

with the bandwidth-efficiency of TOKEND. This dissertation does not develop any new destination-

set predictors, but instead uses some of the predictors described by Martinet al. [79] as a proof of

concept that Token Coherence can capture the benefit from such a predictive scheme.

Previously proposed protocols that use destination-set prediction [3, 4, 20, 79] require com-

plicated protocols or protocol extensions. In contrast, Token Coherence exploits destination-set

prediction simply by changing the performance policy to multicast transient requests. In essence,

Token Coherence provides a simpler implementation of these proposals, while eliminating the

totally-ordered interconnect required by some proposals [20, 79] and complex races in other pro-

posals [3, 4, 20, 79].

5.4 Other Possible Performance Policies

Although this dissertation describes and evaluates three performance policies in detail, many

other performance policies are possible. We leave full exploration of further applications of To-

ken Coherence to future work, but we first briefly describe some of the promising avenues for

enhancement enabled by Token Coherence.

5.4.1 Bandwidth Adaptive Protocols

TOKENM is only one way of building a directory/snooping hybrid using Token Coherence.

Another promising approach to building a hybrid is to use bandwidth adaptive techniques that dy-

namically adjust to interconnect utilization [84]. For example, a performance policy could broad-

cast requests (like TOKENB) when interconnect utilization is low, and it could first send transient

requests to the home memory (like TOKEND) when the interconnect utilization is high. In addi-

90

tion, predictive techniques (like those used in TOKENM) can be incorporated into such a scheme

by sending to a predicted destination-set when the interconnect has moderate utilization. By dy-

namically adjusting the amount of request bandwidth available, such adaptive techniques create

robust protocols that adapt to both the workload and number of processors in the system. This

adaptive approach achieves similar performance or—for some configurations—significantly better

performance than the base protocols [84].

5.4.2 Predictive Push

In addition to using transient requests to reduce the latency of misses, Token Coherence also

provides an opportunity to reduce thenumberof cache misses by predictively pushing data be-

tween system components. For example, a performance policy will avoid a cache miss if it can

predictively send data and tokens to a processor before the processor accesses the block. This

predictive transfer of data can be triggered by a coherence protocol predictor [1, 66, 102], by soft-

ware (e.g., the KSR1’s “poststore” [111] and DASH’s “deliver” [75]), or by allowing the memory

to push data into processor caches. Similar mechanisms have been used to efficiently implement

software-controller message passing and coherent block transfer of data [50, 51]. Because Token

Coherence allows data and tokens to be transferred between system components without affect-

ing correctness,1 these schemes are easily implemented correctly as part of a performance policy.

While designers can modify other protocols to support predictive push, due to Token Coherence’s

separation of performance and correctness adding such an optimization to Token Coherence will

likely require fewer changes and have a lower risk of introducing design errors.

5.4.3 Multi-Block Request or Prefetch

Since transient requests are only hints, they can be used to request more than one block at a

time. For example, if a processor detected a unit-stride sequence of requests, the performance

1The substrate avoids deadlock using its second data/token virtual network that gives a processor the
choice of redirecting any data it receives to the memory. This pair of data/token virtual networks was
described in Section 4.2.1.

91

policy could use a special transient request to request that the memory send the next several blocks

of data to the processor. Alternatively, special software instructions could prefetch a large number

of blocks into the cache with low request overhead. This approach could both (1) reduce the request

traffic in the interconnect and (2) allow the memory to efficiently stream data directly from DRAM

to the requester.

5.4.4 Supporting Hierarchical Systems

Token Coherence may also accelerate hierarchical systems, an increasingly important concern

with the rise of chip multiprocessors (CMPs), such as IBM’s Power4 [119]. Power4’s coherence

protocol employs extra protocol states to enable neighboring processors to respond with data, re-

ducing traffic and average miss latency. A Token Coherence performance policy could achieve this

more simply by granting extra tokens to requesters, and allowing those processors to respond with

data and tokens to neighboring processors. Other hierarchical systems connect smaller snooping-

based modules into larger systems (e.g., [15, 23, 75]). Token Coherence may allow for a single

protocol to more simply achieve the latency and bandwidth characteristics of these hierarchical

systems, without requiring the complexity of two distinct protocols and the bridge logic between

them.

5.4.5 Reducing the Frequency of Persistent Requests

One shortcoming of the performance policies discussed in detail in this dissertation is that the

only action they take to avoid persistent requests is to reissue a transient request after a timeout

period. However, performance policies could use a significantly smarter mechanism to decrease

the frequency with which processors invoke persistent requests by detecting and more intelligently

handling conflicting requests. For example, the performance policy could observe conflicting tran-

sient requests in the system and predictively forward data and tokens to another processor without

waiting for a persistent request or reissued transient request. Such an approach might reduce the

frequency of persistent requests and reissued transient requests improving latency, traffic, and scal-

ability.

92

5.5 Roadmap for the Second Part of this Dissertation

This chapter concludes the first part of this dissertation. The previous two chapters described

the correctness substrate and this chapter provided an overview of possible performance policies

and forecasted the three performance policies we describe and evaluate in the second part of this

dissertation. The second part of this dissertation begins by presenting our evaluation methodology

(Chapter 6), and it continues with three chapters that fully describe and evaluate each of the three

performance policies: TOKENB (Chapter 7), TOKEND (Chapter 8), and TOKENM (Chapter 9).

The final chapter of the dissertation presents our conclusions (Chapter 10).

93

Chapter 6

Experimental Methods and Workload Characterization

We use simulation to provide insight into the effectiveness of Token Coherence by exploring

the behavior of several of its performance policies. The goal of this evaluation is to illuminate

the relative behavior of various coherence protocols (both traditional protocols and ones based on

Token Coherence). Our goal isnot to either (1) produce absolute execution times or through-

put rates for our simulated systems or (2) evaluate these protocols on all possible future system

configurations. Instead, we strive for accurate relative comparisons using an approximation of a

next-generation multiprocessor system. To achieve this goal we use full-system simulation and

model the first-order timing effects to approximate an aggressive multiprocessor system running

commercial workloads. We aim to capture the first-order effects, but—like most architectural

simulations—we do not attempt to model every aspect of the system in exact detail. This chapter

presents our simulation tools (Section 6.1), the specifics of our simulated system (Section 6.2),

our commercial workloads (Section 6.3), and a brief workload characterization to provide some

insight into the memory-system behavior of our workloads (Section 6.4).

6.1 Simulation Tools

We use the Simics full-system multiprocessor simulator [77], and we extend Simics with a

processor and memory hierarchy model to compute execution times [10]. Simics is a system-level

architectural simulator developed by Virtutech AB that can run unmodified commercial applica-

tions and operating systems. Simics is a functional simulator only, but it provides an interface to

support our detailed timing simulations. We use TFsim [86] to model superscalar processor cores

94

that are dynamically scheduled, exploit speculative execution, and generate multiple outstanding

coherence requests. Ruby, our detailed memory hierarchy simulator, models (1) a two-level cache

hierarchy, (2) the latency and bandwidth of the interconnect, and (3) timing races and all state

transitions (including non-stable states) of the coherence protocols. The next section describes the

specific system configuration, coherence protocols, interconnects, and timing parameters used in

our simulations. The timing of I/O operations is not modeled, but the operating system device

drivers still execute the normally required instructions, and the simulations capture the effects of

context switching and interrupts caused by I/O.

We performed limited validation of the memory system using test traces of memory opera-

tions. We verify various timing aspects of the system using these traces (e.g., replacement policy,

uncontended latencies, behavior under contention, correct implementation of the migratory sharing

optimization, and implementation of the EXCLUSIVE state). We also performed non-performance

validation using randomized testing with randomized message latencies. This approach stresses

protocol corner cases by making these cases more frequent.

6.2 Simulated System

To evaluate Token Coherence, we simulate a multiprocessor server running commercial work-

loads using multiple interconnects and coherence protocols. Our target system is a 16-processor

SPARC v9 system with highly integrated nodes that each include a dynamically-scheduled proces-

sor, split first level instruction and data caches, unified second level cache, coherence protocol con-

trollers, and a memory controller for part of the globally shared memory. The system implements

sequential consistency using invalidation-based cache coherence and an aggressive, speculative

processor implementation [40, 126].

We selected a number of coherence protocols, system interconnects, latencies, bandwidths,

cache sizes, and other structure sizes. Table 6.1 lists the system parameters for both the memory

system and the processors. We selected these parameters to approximate next-generation systems

based on the published parameters of the Alpha 21364/GS1280 systems [33, 47, 91]. We limit

95

the bandwidth of cache controllers and memory controllers. These limits also indirectly limit the

bandwidth that is caused by external requests for the DRAM, cache tag arrays, and cache data ar-

rays. We perform simulations both with unbounded interconnect link bandwidth and interconnects

with 4GB/sec links. These two types of simulations allow us to separate the effects of changes

in uncontended latency from changes in latency due to interconnect bandwidth constraints. The

coherence protocols and interconnection networks are described next.

6.2.1 Coherence Protocols

We compare simulated systems using a few distinct MOESI coherence protocols. All the pro-

tocols implement the previously described migratory sharing optimization (Section 2.2.4) which

improves the performance of all the protocols. None of the protocols support upgrade requests

(Section 2.2.5). Coherence is maintained on aligned 64-byte blocks. All request, acknowledg-

ment, invalidation, and dataless token messages are 8 bytes in size (including the 40+ bit physical

address and token count if needed); data messages include this 8-byte header and 64 bytes of data.

These message sizes do not include any extra bits used by the interconnect to detect and correct

bit errors. We use three base protocols: SNOOPING (an aggressive snooping protocol described

in Section 2.4.5), DIRECTORY (a traditional directory protocol described in Section 2.5.5), and

HAMMEROPT (an optimized version of a protocol that approximates AMD’s Hammer/Opteron

protocol described in Section 2.6.2).

6.2.2 System Interconnects

We use the two interconnects described in Section 2.3.4: (1) TREE, an ordered “virtual bus”

pipelined broadcast tree that is sufficient for traditional snooping, and (2) TORUS, an unordered

two-dimensional torus. Both of these interconnects are illustrated in Figure 2.1 on page 29. We

selected these two interconnects because they both use high-speed point-to-point links. We do not

consider shared-wire (multi-drop) buses, because designing high-speed buses is increasingly diffi-

cult due to electrical issues [35, section 3.4.1]. We selected the link bandwidth of 4 GBytes/second

(4-byte wide links at 1 Ghz) and latency of 15ns based on descriptions of current systems (e.g.,

96

Table 6.1 Simulation Parameters

Coherent Memory System Parameters

cache block size 64 bytes
L1 instruction cache 64KB, 4-way set associative, 1ns latency (2 cycles)
L1 data cache 64KB, 4-way set associative, 1ns latency (2 cycles)
L2 unified cache 4MB, 4-way set associative, 6ns latency (12 cycles)

6ns (12 cycles) to send data to external requester
main memory 4GB, 80ns (160 cycles), includes controller latency
standard directory Off-chip DRAM, 80ns (160 cycles), includes controller latency
fast directory On-chip SRAM, 6ns (6 cycles), includes controller latency
interconnect link high-speed point-to-point, 4GB/second or unbounded bandwidth

15ns latency (30 cycles); includes wire, sync., and routing delay
interconnect interface 4ns (8 cycles) to enter or exit the interconnect

Dynamically-Scheduled Processor Parameters

clock frequency 2 Ghz
issue/execute width 4 instructions
reorder buffer 128 entries
pipe stages 11 stages
direct branch predictor 1KB YAGS
indirect branch predictor 64 entry
return address stack 64 entry

Calculated Average Miss Latencies

TREE interconnect hop 4ns interface + 15ns x 4 links + 4ns interface = 68ns (136 cycles)
TORUS interconnect hop 4ns interface + 15ns x 2 links + 4ns interface = 38ns (76 cycles)
memory-to-cache L2 miss + 2 hops + mem

TREE: 6 + (2 x 68) + 80 = 222ns (444 cycles)
TORUS: 6 + (2 x 38) + 80 = 162ns (324 cycles)

direct cache-to-cache L2 miss + 2 hops + cache
TREE: 6 + (2 x 68) + 6 = 148ns (296 cycles)
TORUS: 6 + (2 x 38) + 6 = 88ns (176 cycles)

indirect cache-to-cache L2 miss + 3 hops + dir + cache
TREE– DRAM dir.: 6 + (3 x 68) + 80 + 6 = 296ns (592 cycles)
TREE– SRAM dir.: 6 + (3 x 68) + 6 + 6 = 222ns (444 cycles)
TORUS– DRAM dir.: 6 + (3 x 38) + 80 + 6 = 206ns (412 cycles)
TORUS– SRAM dir.: 6 + (3 x 38) + 6 + 6 = 132ns (264 cycles)

97

the Alpha 21364/GS1280 [33, 47, 91] and AMD’s Hammer/Opteron [9, 121]). We also perform

simulations with unbounded bandwidth to isolate the effect of limited bandwidth on performance.

Messages are multiplexed over a single shared interconnect using virtual networks and virtual

channels, and messages with more than one destination (e.g., broadcasts) use bandwidth-efficient

tree-based multicast routing [36, section 5.5]. Using multicast routing benefits all our protocols;

even our directory protocol benefits (by using multicast routing when forwarding requests to more

than one processor).

6.3 Workloads and Measurement Methods

This section describes the methods we use to generate meaningful results from simulations of

commercial workloads (Section 6.3.1) and describes our specific workloads (Section 6.3.2). In the

next section (Section 6.4), we present a brief characterization of these workloads.

6.3.1 Methods for Simulating Commercial Workloads

We use a transaction-counting methodology [10] for determining throughput of our systems

running commercial workloads. We initialize the system state using a full-system checkpoint

(to provide a well-define starting point) and simulate the execution until the simulated machine

has completed a fixed number of transactions (e.g., database transactions or web server requests).

We record the number of cycles needed to complete a fixed number of transactions. We use

this metric to calculate transactions per cycle (an inverse measure of throughput, the ultimate

metric of performance for server workloads). We use the runtime of a fixed number of trans-

actions to conclude that “protocolA is X% faster than protocolB” using the formulaX =

(runtime(B)/runtime(A)− 1.0) · 100.

We avoid using instructions per cycle (IPC) as a metric of performance. Because system tim-

ing effects of multiprocessor workloads can change the number of instructions executed, running

the simulator for a fixed number of instructions and measuring instructions per cycle (IPC) isnot

guaranteed to reflect the performance of the system [10, 11]. For example, consider a coherence

protocol improvement that reduces the time processors spend spinning on locks. Because proces-

98

sors can rapidly execute instructions while in tight spin loops, reducing idle spinning (usually a

good thing) will actually cause instructions per cycle to decrease (usually a bad thing) while the

system performance is actually improved (the desired effect).

In addition to reporting runtime, we measure and report the traffic in terms ofendpoint traffic

(in messages per miss) andinterconnect traffic(in terms of bytes on interconnect links per miss).

The endpoint traffic indicates the amount of controller bandwidth required to handle incoming

messages. The interconnect traffic indicates the amount of link bandwidth consumed by the mes-

sages as they traverse the interconnect. The former metric is mostly independent of the particular

interconnect and message size. In contrast, the latter metric is influenced by interconnect topology,

the use of bandwidth-efficient multicast routing, and message size.

Due to the computational intensity of detailed architectural timing simulations, we are limited

to simulating only a short segment of the workload’s entire execution. We use two techniques to

partially overcome the problems introduced by such limitations. First, all workloads were warmed

up and checkpointed to avoid system cold-start effects, and we ensure that caches are warm by

restoring the cache contents captured as part of our checkpoint creation process. Second, to ad-

dress the variability in commercial workloads, we adopt the approach of simulating each design

point multiple times with small, pseudo-random perturbations of request latencies [10, 11]. These

perturbations cause alternative operating system scheduling paths in our otherwise deterministic

simulations. Running many of these pseudo-randomly perturbed systems creates a distribution of

runtimes. We remove all data points further than 1.5 standard deviation from the mean to reduce

the effect of the skewed nature of the distribution.1 Error bars in our runtime results approxi-

mate a 95% confidence interval centered around the arithmetic mean of the remaining data points.

Each data point is the aggregate of approximately 5 to 15 data points, using a larger number of

simulations for those configurations and workloads that exhibit the most variation.

1To understand why the distribution is skewed, consider measuring the round-trip time of a car trip
between two destinations. The distribution of the times recorded from many trials would form a near-
normal distribution. However, a serious traffic jam or car breakdown could result in a trip with several
times the mean. With an extremely large number of samples, this would not significantly affect the results.
However, if only a handful samples are used, such outliers are best removed when calculating the expected
travel time.

99

6.3.2 Workload Descriptions

Our benchmarks consist of three commercial workloads: an online transaction processing

workload (OLTP), a Java middleware workload (SPECjbb), and a static web serving workload

(Apache). These workloads execute on a simulated 16-processor SPARC multiprocessor running

Solaris 9. The simulated system has 4GBs of main memory.

• Online Transaction Processing (OLTP): DB2 with a TPCC-like workload. The TPC-

C benchmark models the database activity of a wholesale supplier. Our OLTP workload

is based on the TPC-C v3.0 benchmark using IBM’s DB2 v7.2 EEE database management

system. Our experiments simulate 256 users (16 per processor) without think time. The

simulated users query a 5GB database with 25,000 warehouses stored on eight raw disks

and a dedicated database log disk. We reduced the number of districts per warehouse, items

per warehouse, and customers per district to allow more concurrency provided by a larger

number of warehouses. We use 100,000 transactions to warm the system and database buffer

pool, 500 transactions to warm simulated hardware caches, and detailed simulations of 50

transactions for our reported results.

• Java Server Workload: SPECjbb. SPECjbb2000 is a server-side Java benchmark that

models a 3-tier system, but its main focus is on the middleware server business logic. We

use Sun’s HotSpot 1.4.1-b21 Server JVM configured to use Solaris’s native thread imple-

mentation. To reduce the frequency of garbage collection, we set the JVM’s heap size to

2GB and the new object heap size to 600MB. Our experiments use 24 driver threads (1.5 per

processor) and 24 warehouses (with a total data size of approximately 500MB). We use over

a million transactions to warm the system, 100,000 transactions to warm simulated hardware

caches, and detailed simulations of 2000 transactions for our reported results.

• Static Web Content Serving: Apache.Web servers such as Apache are an important en-

terprise server application. We use Apache 2.0.43 configured to use a hybrid multi-process

multi-threaded server model with 64 POSIX threads per server process. Our experiments

100

use a hierarchical directory structure of 80,000 files (with a total data size of approximately

1.8GB) and a modified version of the Scalable URL Reference Generator (SURGE) [16] to

simulate 6400 users (400 per processor) with an average think time of 12ms. We use 800,000

requests to warm the system, 1000 requests to warm simulated hardware caches, and detailed

simulations of 100 requests for our reported results.

6.4 Workload Characterization

In this section we briefly characterize the commercial workloads used in this dissertation. We

refer interested readers to Alameldeenet al. [10] and Martinet al. [79] for a more detailed descrip-

tion and characterization of similar versions of these workloads.2

6.4.1 Characterization of our Base Coherence Protocols

Table 6.2 and Table 6.3 contain the basic simulation data for our base protocols on the TREEand

TORUS interconnects, respectively. We present these basic simulation metrics to both (1) provide

a brief characterization of our workloads, and (2) provide sufficient “raw” data to understand our

later performance results. The first column of these tables name the system configuration. The

second column shows that the number cycles per transaction metric is worse (larger) for slower

protocols (unsurprisingly). The third column shows that the number of misses per transaction is

relatively stable across different protocols and interconnects (also unsurprising).

In contrast, some of the data in these tables are surprising. The number of instructions per

transaction isnot stable across configurations for two of our three workloads. For example, the

difference in number of instructions per transaction for OLTP between SNOOPING and DIREC-

TORY is over a factor of three. Although we do not know the source of these extra instructions

per transaction, such a dramatic increase is consistent with more time spent spinning on contended

locks that are obtained more slowly or more time spent in the idle loop.

2Alameldeenet al. [10] and Martinet al. [79] report results using an earlier version of these workloads;
the workloads and coherence protocols used in this dissertation have been incrementally improved since
that work was published.

101

configuration al
lc

yc
le

s
pe

r
tr

an
sa

ct
io

n

L2
m

is
se

s
pe

r
tr

an
sa

ct
io

n

in
st

ru
ct

io
ns

pe
r

tr
an

sa
ct

io
n

cy
cl

es
pe

r
in

st
ru

ct
io

n

m
is

se
s

pe
r

th
ou

sa
nd

in
st

ru
ct

io
ns

en
dp

oi
nt

m
sg

s
pe

r
m

is
s

in
te

rc
on

ne
ct

by
te

s
pe

r
m

is
s

SPECjbb
Perfect L2 19,903 NA 54,820 0.36 NA NA NA
Snooping 44,941 185 57,884 0.78 3.20 20.63 274.94
Directory - fast 46,840 184 57,944 0.81 3.18 6.01 158.11
Directory - slow 48,921 184 58,105 0.84 3.18 6.01 158.01

Apache
Perfect L2 176,559 NA 273,711 0.65 NA NA NA
Snooping 718,417 4,041 401,851 1.79 10.10 19.32 242.85
Directory - fast 796,974 4,045 401,614 1.98 10.09 5.36 131.36
Directory - slow 913,395 4,201 439,611 2.07 9.49 5.35 131.10

OLTP
Perfect L2 1,747,629 NA 3,385,566 0.52 NA NA NA
Snooping 7,656,243 45,707 7,079,692 1.09 6.40 18.04 218.72
Directory - fast 12,932,199 50,725 20,061,525 0.62 2.39 4.69 111.05
Directory - slow 16,002,054 50,338 26,933,975 0.60 1.88 4.70 111.17

Table 6.2 Non-Token Coherence Protocol Results for the TREE Interconnect. This table con-
tains simulation data for our coherence protocols not based on Token Coherence. All of these
simulated configurations use unbounded interconnect link bandwidth. The left-most column is
the name of the configuration, including whether the simulation uses a “fast” SRAM directory or
“slow” DRAM directory (as applicable). The “perfect L2” configuration simulates an idealized
system in which all references hit in the second-level cache. The second column is the number
of cycles executed by all processors per transaction (i.e., the total runtime in cycles multiplied by
the number of processors). The next three columns (from left to right) are: second-level cache
misses per transaction, instructions per transaction, cycles per instruction, and misses per thousand
instructions. The remaining two columns are metrics of system traffic: (1) endpoint messages per
miss and (2) bytes on the interconnect links per miss. Since traffic per link on the TREE intercon-
nect is non-uniform, we report the sum of the traffic only on the incoming links to the processor on
this interconnect. In contrast, the link traffic in bytes per miss on the TORUS interconnect (shown
in Table 6.3) is the sum of the traffic on all links.

102

configuration al
lc

yc
le

s
pe

r
tr

an
sa

ct
io

n

L2
m

is
se

s
pe

r
tr

an
sa

ct
io

n

in
st

ru
ct

io
ns

pe
r

tr
an

sa
ct

io
n

cy
cl

es
pe

r
in

st
ru

ct
io

n

m
is

se
s

pe
r

th
ou

sa
nd

in
st

ru
ct

io
ns

en
dp

oi
nt

m
sg

s
pe

r
m

is
s

in
te

rc
on

ne
ct

by
te

s
pe

r
m

is
s

SPECjbb
Perfect L2 19,903 NA 54,820 0.36 NA NA NA
Directory - fast 39,307 182 57,201 0.69 3.20 6.01 319.32
Directory - slow 41,102 182 57,270 0.72 3.18 6.01 318.37

Apache
Perfect L2 176,559 NA 273,711 0.65 NA NA NA
Directory - fast 609,117 4,017 367,030 1.66 10.89 5.36 263.93
Directory - slow 702,715 4,063 390,853 1.78 10.31 5.35 263.71

OLTP
Perfect L2 1,747,629 NA 3,385,566 0.52 NA NA NA
Directory - fast 7,301,596 47,189 7,000,286 1.00 6.40 4.64 227.65
Directory - slow 9,463,958 48,304 11,557,401 0.85 4.32 4.65 227.30

Table 6.3 Non-Token Coherence Protocol Results for the TORUS Interconnect. The metrics
presented in this table were described in Table 6.2 on page 101. SNOOPINGresults are not included
because TORUSdoes not provide the necessary ordering properties for SNOOPING.

As a consequence of the varying number of instructions per transaction, normalizing by instruc-

tion count can be misleading. As suggested by these tables, the number of cycles per instruction

(CPI) is not always indicative of actual runtime or throughput. For example, consider OLTP on the

TREE interconnect: DIRECTORY with the fast directory has better (smaller) CPI than SNOOPING

(the fifth column of Table 6.2). Studying only the CPI, one might conclude SNOOPING is slower

than DIRECTORY. However, the cycles per transaction column shows that SNOOPING is signifi-

cantly faster than DIRECTORY (by almost a factor of two). The misses per thousand instructions

column is similarly skewed by the non-stable number of misses per transaction. As we mentioned

earlier, because of these effects, we use cycles per transaction as our only metric of performance.

In addition to our base protocols (SNOOPING and DIRECTORY), these tables also include the

performance of a perfect second-level cache. In these idealized simulations, all references hit in

the second-level cache. These tables show a significant difference in the number of cycles per

103

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
iz

ed
 m

is
se

s
pe

r t
ra

ns
ac

tio
n

11

12

15
182231

52

19

24

30
37435156

21

29

44
5366

7685

Miss Rate versus L2 Cache Size

Memory-to-cache misses
Cache-to-cache misses

25
6K

B
51

2K
B

1M
B

2M
B

4M
B

8M
B

16
M

B

SPECjbb

25
6K

B
51

2K
B

1M
B

2M
B

4M
B

8M
B

16
M

B
Apache

25
6K

B
51

2K
B

1M
B

2M
B

4M
B

8M
B

16
M

B

OLTP

Figure 6.1 Miss Rate vs. Cache Size.This graph shows the miss rate in normalized misses
per transaction for a range of second-level cache sizes (256KB to 16MB). Each bar in this graph
is divided into two segments: memory-to-cache misses and cache-to-cache misses. The number
at the top of each bar is the percent of misses that are cache-to-cache misses. These particular
results are generated using the DIRECTORY protocol on the TREE interconnect (although the
results are mostly independent of a particular protocol and interconnect).

transaction between the “perfect L2” configuration and our base protocols. For example, on the

TORUS interconnect the perfect L2 configuration is about twice as fast as our base protocols for

SPECjbb; for OLTP perfect L2 can be over 5 times faster. Because these workloads are spending

the majority of their time in the memory system, and many of the cache misses are cache-to-cache

misses, there is a significant performance opportunity for protocols that optimize for cache-to-

cache misses (discussed next).

6.4.2 Cache-to-Cache Misses Occur Frequently

In Chapter 1, we asserted that cache-to-cache misses are frequent in commercial workloads

and that their effect on performance is significant. To support this claim, Figure 6.1 shows the

104

normalized misses per transaction for our three workloads for a range of caches sizes. This graph

provides several different insights into our workloads:

• First, the overall second-level miss rate for these workloads is significant, even for systems

with large caches. For example, for the DIRECTORY with a fast directory and 4MB caches

with the TREE interconnect, the miss rate is 2.5–10.1 misses per thousand instructions (as

shown in Table 6.2 and Table 6.3). This corresponds to 98.6–393.9 instructions executed

between each second-level miss on average. Because each second-level miss is hundreds of

processor cycles long, these misses have a substantial impact on performance.

• Second, the graphs in Figure 6.1 show the unsurprising results that the overall number of

misses per transaction (total height of each bar) and the memory-to-cache miss rate (the

solid segment of each bar) both decrease as the cache size increases.

• Third, the number of cache-to-cache misses (the striped segment of each bar) actuallyin-

creasesas cache size increases. This increase occurs because (1) misses caused by sharing

are not eliminated by larger caches, and (2) larger caches increase the likelihood that a re-

quested block is being cached by another processor (this effect is especially pronounced for

systems that support the EXCLUSIVE and OWNED states). For example, in the limit of in-

finite caches, in a MOESI protocol only the first access by any processor to a block will

be a memory-to-cache miss and all other misses to that block (by any processor) will be

cache-to-cache misses.

If cache-to-cache misses are slower than memory-to-cache misses (e.g., in a directory pro-

tocol with a high-latency directory) the increasing cache-to-cache miss rate is a detriment

to performance. For such systems, researchers have proposed reducing cache-to-cache miss

rates by using predictive invalidation techniques to proactively evict blocks [70, 73]. In con-

trast, many snooping protocols and directory protocols with a low-latency directory have

faster cache-to-cache misses than memory-to-cache misses. In such systems, large caches

that transform memory-to-cache misses into cache-to-cache misses improve performance.

105

• Fourth, the combined effect of the previous two effects—the increasing number of cache-

to-cache misses and decreasing number of memory-to-cache misses—results in a large per-

centage of cache-to-cache misses (the number at the top of each bar in Figure 6.1). For our

workloads on a system with a 4MB second-level cache, 22–66% of all second-level misses

are cache-to-cache misses.

6.4.3 The Performance Cost of Indirection

Directory protocols use indirection to avoid broadcast, but this indirection places a third in-

terconnect traversal and directory access latency on the critical path of cache-to-cache misses.

Figure 6.2 shows the performance reduction due to these two sources of overhead for a range of

second-level cache sizes.3 We calculated the contribution of these sources of overhead (the indi-

vidual segments in the bars) from three simulations: (1) SNOOPING, (2) DIRECTORY with a fast

SRAM directory, and (3) DIRECTORY with a DRAM directory. This experiment uses the TREE

interconnect and—to isolate the effects due only to uncontended miss latency—unbounded link

bandwidth.

We quantify the two sources of directory protocol overhead by plotting bars with four seg-

ments. The bottom segment (solid dark grey) represents runtime of a system with a perfect L2

cache. The combined height of the bottom two segments is the runtime of SNOOPING, which

suffers from neither overhead. The solid light grey segment shows the effect of DIRECTORY’s

additional interconnect traversal, calculated as the difference in runtime between SNOOPING and

DIRECTORY with the a fast SRAM directory. The top segment (striped dark grey) shows the ef-

fect of DIRECTORY’s directory lookup latency, calculated as the difference in runtime between

DIRECTORY with a fast, SRAM directory and with a slow, DRAM directory.

As follows from the results in Figure 6.1, both (1) the absolute number of cycles of overhead

and (2) the percentage of the runtime due to indirection increase as cache size increases. In this

particular set of experiments, the directory latency and interconnect traversal each contribute ap-

3Although cache hit latency often increases with cache size, these simulations use the same cache hit
latency for all cache sizes to isolate the effect of the higher hit rate of larger caches.

106

0.0

0.2

0.4

0.6

0.8

1.0
no

rm
al

iz
ed

 ru
nt

im
e

Runtime versus L2 Cache Size

Effect of directory lookup
Effect of interconnect traversal
Snooping
Perfect L2

25
6K

B
51

2K
B

1M
B

2M
B

4M
B

8M
B

16
M

B

SPECjbb

25
6K

B
51

2K
B

1M
B

2M
B

4M
B

8M
B

16
M

B
Apache

25
6K

B
51

2K
B

1M
B

2M
B

4M
B

8M
B

16
M

B

OLTP

Figure 6.2 Runtime vs. Cache Size.This graph shows the normalized runtime of three proto-
cols for a range of second-level cache sizes (256KB to 16MB). The total height of each bar rep-
resents the runtime of DIRECTORYwith the directory information stored in main memory (80ns
access latency, including directory controller latency). The combined height of the bottom three
segments represents the runtime of DIRECTORY with a fast directory cache (6ns access latency,
including the directory controller latency). The height of the bottom two segments is the run-
time of SNOOPING. Finally, the bottom segment is the performance with a perfect second-level
cache. These results were generated using TREE interconnect with unbounded link bandwidth
(to isolate the effect of indirection latency).

proximately half of the runtime overhead. However, the relative importance of these two factors

depends directly on the relative latencies of average interconnect latency and directory access la-

tency.

Placing a directory looking and third interconnect traversal on the critical path of cache-to-

cache misses has a significant impact on performance. For example, for the 4MB cache con-

figuration with the TREE interconnect, eliminating the DRAM directory lookup using an SRAM

directory results in a protocol that is 4–24% faster; eliminating only the interconnect traversal re-

107

sults in a protocol that is 4–69% faster, and eliminating both overheads results in a protocol that is

9–109% faster (i.e., SNOOPING is 9–109% faster than DIRECTORY with a DRAM directory).

Although these performance differences seem large, a simple back-of-an-envelope calculation

shows these speeds are reasonable. For example, consider OLTP. 66% of OLTP’s misses are cache-

to-cache misses. For SNOOPINGon the TREE interconnect, memory-to-cache and cache-to-cache

misses are 444 cycles and 296 cycles long, respectively (these latencies were presented in Ta-

ble 6.1). The average miss latency for OLTP and SNOOPING is (296 x 0.66) + (444 x 0.34) =

346 cycles. For DIRECTORY using a DRAM directory on the TREE interconnect, the memory-to-

cache miss latency is the same (444 cycles), but the cache-to-cache miss latency increases to 592

cycles. The average miss latency for OLTP and DIRECTORY is (592 x 0.66) + (444 x 0.34) = 542

cycles. In this example, DIRECTORY’s average miss latency is 70% more than SNOOPING’s miss

latency. As these workloads spend a majority of their time in the memory system (shown by the

large gap between perfect and non-perfect second-level caches), a 70% increase in average cache

miss latency will have a significant effect on runtime.

6.4.4 The Bandwidth Cost of Broadcasting

Although directory protocols do suffer a performance penalty because of their use of indirec-

tion, the traffic-reduction benefits are substantial. The reduction in request traffic for directory

protocols (and later our destination-set predictors) directly corresponds to the average number of

processors that need to observe a request.

Figure 6.3 shows the percentage of misses that need to contact zero, one, or more than one

processor. This graph reinforces that a substantial fraction of misses need to contact at least one

processor (i.e., are cache-to-cache misses). However, the percent of requests that the directory must

forward to more than one other processor is extremely small (0.2–2.8%). This result is partially

due to the significant fraction of read requests (the solid portion of each bar), because a read request

needs to findat mostone other processor: the owner. The small percentage of misses that are write

requests (the striped portion of each bar) is partially due to (1) the migratory sharing optimization

and (2) support for the EXCLUSIVE state (both of which are used in all our simulated protocols). As

108

0

20

40

60

Pe
rc

en
t o

f m
is

se
s

78.6%

21.2%

0.2%

56.7%

41.5%

1.8%

38.2%

59.0%

2.8%

Degree of Sharing

Read requests
Write requests

0 1 2+

SPECjbb

0 1 2+

Apache

0 1 2+

OLTP

Figure 6.3 Degree of Sharing Histogram.For each of three workloads, this histogram shows
the number of processors that need to be contacted by a coherence request. Requests that need
to contact zero other processors are memory-to-cache misses. Those requests that contact more
than one processor are cache-to-cache misses. Each bar is divided into two segments: read
requests and write requests. The number at the top of the bar is the percent of all requests
than fall within that bar’s bin. We captured this data by instrumenting DIRECTORY to record
a histogram of the number of processors to which the directory forwards a request. The data
shown here use 4MB second-level caches and the TORUS interconnect.

part of evaluating the TOKENB performance policy, the next chapter further explores the relative

amount of traffic consumed by SNOOPING and DIRECTORY in terms of both bytes per miss and

coherence messages per miss.

This chapter presented our evaluation methods and a brief workload characterization focusing

on the potential benefits of reducing cache-to-cache miss latency and avoiding broadcasts. In each

of the next three chapters we describe and evaluate—using the methods described in this chapter–a

Token Coherence performance policy.

109

Chapter 7

TOKEN B: A Low-Latency Performance Policy Using Unordered
Broadcast

Ideally, a coherence protocol would both avoid indirection latency for cache-to-cache misses

(like snooping protocols) and not require any interconnect ordering (like directory protocols). One

seemingly obvious approach is to directly send broadcasts on an unordered interconnect. This

general approach has not been used, however, because it has previously suffered from numerous

race cases that were difficult or impossible to make correct using traditional coherence techniques.

With Token Coherence’s flexibility and strong correctness guarantees, such an approach now be-

comes both feasible and attractive. The TOKENB performance policy follows this approach by

broadcasting unordered transient requests to directly find the data in most cases, relying on the

correctness substrate to guarantee correctness and prevent starvation. This chapter explores TO-

KENB’s operation (Section 7.1) and performance (Section 7.2).

7.1 TOKEN B Operation

The TOKENB performance policy uses three policies to avoid both interconnect ordering and

indirection overheads.

7.1.1 Issuing Transient Requests

TOKENB broadcasts all transient requests (i.e., it sends them to all processors and the home

memory for the block). This policy works well (1) for moderate-sized systems in which intercon-

nect bandwidth is plentiful and (2) when racing requests are rare.

110

7.1.2 Responding to Transient Requests

Components (processors and the home memory module) react to transient requests as they

would in most MOESI protocols (as previously described in Section 2.2). A component with

no tokens (INVALID) ignores all requests. A component with only non-owner tokens (SHARED)

ignores transient read requests, but responds to a transient write request by sending all of its tokens

in a dataless message (like an invalidation acknowledgment in a directory protocol). A component

with the owner token but not all other tokens (OWNED) sends the data with one token (usually

not the owner token) on a read request, and it sends the data and all of its tokens on an write

request. A component with all the tokens (MODIFIED or EXCLUSIVE) responds in the same way

as a component in OWNED, with the exception given in the next paragraph.

To optimize for common migratory sharing patterns, TOKENB implements a well-known op-

timization for migratory data (described earlier in Section 2.2.4 and illustrated in Table 2.4). If a

processor with all tokens has written the block since it has received the block, it responds to read

requests by sending data and all tokens (instead of the data and one token). We also implement an

analogous optimization in all other protocols we compare against in the evaluation.

7.1.3 Reissuing Requests and Invoking Persistent Requests

If a transient request has not completed after a short timeout interval, the performance policy

reissues the transient request. If the request has still not completed after an even longer interval,

the processor invokes the persistent request mechanism. This approach allows the occasional race

to be handled without the overhead of persistent requests, but yet it invokes persistent requests

soon enough not to waste bandwidth and time reissuing transient requests many times. We use

the distributed-arbitration approach for implementing persistent requests (previously described in

Section 4.5).

To adjust to different interconnect topologies and congestion, the transient request timeout

interval is set to twice the processor’s average miss latency. Using twice the average miss latency

prevents a slightly delayed response from causing a reissued request, but it also reissues quickly

111

enough to avoid to large a performance penalty for reissued requests. The persistent request interval

is set to four times the average miss latency (for similar reasons). This policy adapts to the average

miss latency of the system (to avoid reissuing too soon), but it also quickly reissues requests that

do not succeed because of occasional races.

These intervals are tracked by a hardware counter that increments each cycle. The counter

is reset (1) when a request is first issued and (2) when the request completes. When the counter

reaches each of the two interval thresholds, it triggers its respective event. To prevent the estimate

from growing without bound in pathological situations (e.g., all requests are reissued), the estimate

is capped at several times the uncontended interconnect’s round-trip latency.

A processor can calculate the average latency of its recent misses by using a single unsigned

accumulator and tracking the latency of each miss. The latency of each miss is easily recorded by

sampling the value of the timer counter described in the last paragraph. The accumulator is initially

set to an initial estimate (E0), and each time a miss completes the new value of the accumulator is

set to the weighted average of the old value in the accumulator and the most recent sample (i.e.,

En ≡ w · Ln + (1 − w) · En−1, whereEn is the new estimate,En−1 is the previous estimate,Ln

is the most recent sample, andw is a constant between zero and one that controls the amount of

hysteresis). This approach weighs recent samples more heavily in calculating the estimate while

utilizing sufficient history to provide the desired hysteresis. Figure 7.1 shows that this approach

results in a diminishing weighted average, and Figure 7.2 describes a hardware implementation

of this algorithm that uses only bit selection, addition, and subtraction (but only whenw is of the

form 1
2k). In our experiments,w is 1

28 (≈ .0039) and the initial estimate (E0) is 500.

7.2 Evaluation of TOKEN B

We answer seven questions as evidence that TOKENB can improve performance over snooping

and directory protocols. Table 7.1 and Table 7.2 contain the raw data for TREE and TORUS,

respectively, used to answer these questions.

112

Figure 7.1 A Diminishing Weighted Average. TOKENB uses the following recurrence to
calculate a diminishing-weight weighted average of the miss latency (En) using only a single
accumulator:

E0 ≡ L0

En ≡ wLn + (1− w)En−1, n > 0

wherew is a constant between zero and one, andLn is the nth latency sample. This recurrence
can be expressed as a summation by lettingv be1− w and repeatedly substituting forEn−1:

En = wLn + v(wLn−1 + vEn−2)

= wLn + wvLn−1 + v2En−2

= wLn + wvLn−1 + wv2Ln−2 + v3En−3

= wv0Ln + wvLn−1 + wv2Ln−2 + wv3Ln−3 + v4En−4

=

(
n−1∑
i=0

wviLn−i

)
+ vnL0

This summation shows that this recurrence calculates a diminishing weighted sum of the miss la-
tency samples. To show that this summation results in a proper weighted average, we next show
that the sum of the weights is equal to one. We show this result below by (1) splitting the finite
summation into the difference of two infinite geometric series summations, and (2) converting
these summations using the closed form of the geometric series (the summation

∑∞
i=0 xi = 1

1−x
,

when|x| < 1). Sincev is defined as1− w, the summation
∑∞

i=0 vi is 1
w

.

(
n−1∑
i=0

wvi

)
+ vn =

(∞∑
i=0

wvi −
∞∑

i=n

wvi

)
+ vn

=

(∞∑
i=0

wvi − vn
∞∑
i=0

wvi

)
+ vn

=

(
w

∞∑
i=0

vi − wvn
∞∑
i=0

vi

)
+ vn

= w
1

w
− wvn 1

w
+ vn

= 1− vn + vn

= 1

113

Figure 7.2 Implementing a Diminishing Weighted Average in Hardware. The recurrence
for calculating a diminishing weighted average, illustrated in Figure 7.1, can be implemented
efficiently in hardware by restrictingw to be of the form 1

2k . The constantk determines the
rate at which the weighting diminishes, effectively controlling the amount of hysteresis in the
calculation. With this restriction, the recurrence for the diminishing weighted average can be
rewritten as:

En = wLn + (1− w)En−1

=
1

2k
Ln + (1− 1

2k
)En−1

=
Ln

2k
+ En−1 −

En−1

2k

=
Ln + 2kEn−1 − En−1

2k

Dividing an unsigned binary representation of a number by a power of two can be approximated
with a right shift (using C-like notation,n

2k = n >> k), and multiplication can be performed
using a left shift (n · 2k = n << k). These properties allow us to rewrite the recurrence as:

En = (Ln + (En−1 << k)− En−1) >> k

Thus, the system can calculate the new estimate of the average (En) using only shifts by a con-
stant (implemented without logic by simply selecting the proper bits), addition, and subtraction.
For increased precision, the accumulator (An) holds the pre-shifted value (i.e., An = En << k):

An = Ln + An−1 − (An−1 >> k)

En = An >> k

7.2.1 Question#1: Are reissued and persistent requests uncommon?

Answer: Yes; for our workloads, 97.5–99.5% of TOKENB’s cache misses are issued only

once. Since reissued requests are slower and consume more bandwidth than misses that succeed

on the first attempt, reissued requests must be uncommon for TOKENB to perform well. Races are

rare in our workloads, because—even though synchronization and sharing are common—multiple

114

configuration al
lc

yc
le

s
pe

r
tr

an
sa

ct
io

n

L2
m

is
se

s
pe

r
tr

an
sa

ct
io

n

in
st

ru
ct

io
ns

pe
r

tr
an

sa
ct

io
n

cy
cl

es
pe

r
in

st
ru

ct
io

n

m
is

se
s

pe
r

th
ou

sa
nd

in
st

ru
ct

io
ns

en
dp

oi
nt

m
sg

s
pe

r
m

is
s

in
te

rc
on

ne
ct

by
te

s
pe

r
m

is
s

SPECjbb
Perfect L2 19,903 NA 54,820 0.36 NA NA NA
TokenB 43,483 182 57,627 0.75 3.16 18.14 255.24
TokenNull 43,186 182 57,595 0.75 3.16 34.04 382.01
Snooping 44,941 185 57,884 0.78 3.20 20.63 274.94

Apache
Perfect L2 176,559 NA 273,711 0.65 NA NA NA
TokenB 689,765 3,949 361,509 1.90 10.86 18.13 233.58
TokenNull 690,699 3,968 364,189 1.90 10.87 33.96 358.98
Snooping 718,417 4,041 401,851 1.79 10.10 19.32 242.85

OLTP
Perfect L2 1,747,629 NA 3,385,566 0.52 NA NA NA
TokenB 7,931,573 45,233 7,375,716 1.08 6.09 18.36 221.38
TokenNull 7,958,491 45,936 7,742,584 1.08 6.30 33.70 342.34
Snooping 7,656,243 45,707 7,079,692 1.09 6.40 18.04 218.72

Table 7.1 TOKEN B Results for the TREE Interconnect. The metrics presented in this table were
described in Table 6.2 on page 101.

processors rarely access the same data simultaneously due to the large amount of shared data.

Table 7.3 shows the percentage of all TOKENB misses that are not reissued, are reissued once,

and that invoke persistent requests. For our workloads, only 0.2–1.6% of cache misses are reissued

once and only 0.2–1.0% resort to persistent requests. (Table 7.3 shows TORUSinterconnect results,

but TREE results, not shown, are similar.)

To quantify the latency and bandwidth costs of reissued and persistent requests, we created a

new performance policy, TOKENNULL . The TOKENNULL performance policy does nothing; it

simply waits for the correctness substrate to issue a persistent request. As we use the low-latency

distributed-arbitration persistent request mechanism (Section 4.5), the miss latency of TOKEN-

NULL is actually quite good: the uncontended latency of a transient and persistent request is the

same.

115

configuration al
lc

yc
le

s
pe

r
tr

an
sa

ct
io

n

L2
m

is
se

s
pe

r
tr

an
sa

ct
io

n

in
st

ru
ct

io
ns

pe
r

tr
an

sa
ct

io
n

cy
cl

es
pe

r
in

st
ru

ct
io

n

m
is

se
s

pe
r

th
ou

sa
nd

in
st

ru
ct

io
ns

en
dp

oi
nt

m
sg

s
pe

r
m

is
s

in
te

rc
on

ne
ct

by
te

s
pe

r
m

is
s

SPECjbb
Perfect L2 19,903 NA 54,820 0.36 NA NA NA
TokenB 36,604 180 56,911 0.64 3.17 18.20 376.51
Directory - fast 39,307 182 57,201 0.69 3.20 6.01 319.32
Directory - slow 41,102 182 57,270 0.72 3.18 6.01 318.37
HammerOpt 39,504 182 57,181 0.69 3.18 35.56 682.82

Apache
Perfect L2 176,559 NA 273,711 0.65 NA NA NA
TokenB 534,197 3,833 339,043 1.56 11.15 18.16 332.93
Directory - fast 609,117 4,017 367,030 1.66 10.89 5.36 263.93
Directory - slow 702,715 4,063 390,853 1.78 10.31 5.35 263.71
HammerOpt 614,838 3,981 354,503 1.71 11.16 34.37 619.88

OLTP
Perfect L2 1,747,629 NA 3,385,566 0.52 NA NA NA
TokenB 5,727,614 42,412 5,802,205 0.99 7.28 18.36 306.82
Directory - fast 7,301,596 47,189 7,000,286 1.00 6.40 4.64 227.65
Directory - slow 9,463,958 48,304 11,557,401 0.85 4.32 4.65 227.30
HammerOpt 7,640,467 47,538 8,281,252 0.91 5.53 33.19 576.64

Table 7.2 TOKEN B Results for the TORUS Interconnect. The metrics presented in this table
were described in Table 6.2 on page 101.

SPECjbb Apache OLTP
0 1 P.R. 0 1 P.R. 0 1 P.R.

TokenB 99.5 0.2 0.3 99.1 0.7 0.2 97.5 1.6 1.0

Table 7.3 TOKEN B Reissued Requests.This table shows the percent of cache misses that suc-
ceed on the first transient request and thus are not reissued (the “0” column), are reissued once
and succeed on this second transient request (the “1” column), and those that invoke a persistent
request (the “P.R.” column).

116

0.0

0.5

1.0

no
rm

al
iz

ed
 ru

nt
im

e

Runtime: TokenB and TokenNull

Tree
Torus
Perfect L2

T
ok

en
B

 -
T

re
e

T
ok

en
N

ul
l -

 T
re

e

T
ok

en
B

 -
T

or
us

T
ok

en
N

ul
l -

 T
or

us

SPECjbb

T
ok

en
B

 -
T

re
e

T
ok

en
N

ul
l -

 T
re

e

T
ok

en
B

 -
T

or
us

T
ok

en
N

ul
l -

 T
or

us

Apache
T

ok
en

B
 -

T
re

e

T
ok

en
N

ul
l -

 T
re

e

T
ok

en
B

 -
T

or
us

T
ok

en
N

ul
l -

 T
or

us

OLTP

Figure 7.3 Runtime of TOKEN B and TOKEN NULL . This graph shows the runtime of TO-
KENB and TOKENNULL for both the TREE and TORUS interconnects with unbounded link
bandwidth.

For the simulations of TOKENNULL we also make two changes to the correctness substrate.

First, we change the substrate to issue persistent requests immediately (i.e., it does not wait for

a timeout). Second, we extend the persistent request mechanism to support multiple outstand-

ing persistent requests per processor. This change greatly increases the persistent request table

size, but without this change TOKENNULL ’s performance would be artificially limited by a single

outstanding miss (because TOKENNULL only uses persistent requests).

Figure 7.3 shows that TOKENB and TOKENNULL perform similarly for two of the three work-

loads on both interconnects (this graph plots runtime with unbounded bandwidth to separate the

effect of contention-free latency from interconnect contention). For OLTP, TOKENNULL is per-

haps faster than TOKENB, although the large error bars make determining the exact magnitude

117

0.0

0.5

1.0

1.5

en
dp

oi
nt

 m
es

sa
ge

s
(n

or
m

al
iz

ed
 m

es
sa

ge
s

pe
r m

is
s) Endpoint Traffic: TokenB and TokenNull

Writeback control messages
Acknowledgment & miscellaneous control messages
Reissued & persistent requests (token only)
Requests & forwarded requests
Data response and writeback data messages

T
ok

en
B

T
ok

en
N

ul
l

SPECjbb

T
ok

en
B

T
ok

en
N

ul
l

Apache

T
ok

en
B

T
ok

en
N

ul
l

OLTP

Figure 7.4 Endpoint Traffic of T OKEN B and TOKEN NULL . This graph shows the endpoint
traffic (in normalized messages per miss) of TOKENB and TOKENNULL on the TREE intercon-
nect.

difficult. OLTP’s largest difference in performance among the three workloads is consistent with

its highest rate of reissued and persistent requests of these workloads.

The generally small difference in performance between TOKENNULL and TOKENB is impor-

tant for two reasons. First, it shows that TOKENB is not suffering an experimentally-significant

performance loss due to reissued requests. Second, it shows that this implementation of persistent

requests has the same low latency as transient requests.

In contrast, the traffic of TOKENNULL is substantially higher than TOKENB because of the

additional overhead of persistent requests due to deactivation messages. The implementation of

persistent requests used in this evaluation avoids persistent request acknowledgments (as described

118

0.0

0.5

1.0

1.5
T

re
e

en
dp

oi
nt

 tr
af

fi
c

(n
or

m
al

iz
ed

 b
yt

es
 p

er
 m

is
s)

Interconnect Traffic: TokenB and TokenNull

Writeback control messages
Acknowledgment & miscellaneous control messages
Reissued & persistent requests (token only)
Requests & forwarded requests
Data response and writeback data messages

T
ok

en
B

T
ok

en
N

ul
l

SPECjbb

T
ok

en
B

T
ok

en
N

ul
l

Apache

T
ok

en
B

T
ok

en
N

ul
l

OLTP

Figure 7.5 Interconnect Traffic of TOKEN B and TOKEN NULL . This graph shows the in-
terconnect traffic (in normalized bytes per miss) of TOKENB and TOKENNULL on the TREE

interconnect.

in Section 4.7.2). This implementation results in persistent requests that use twice the bandwidth

(an activation and a deactivation versus only a transient request). In terms ofendpoint messages

per missdelivered to system components, TOKENNULL ’s traffic is 84–87% more than TOKENB

(as shown in Figure 7.4). In terms of interconnect linkbytes per missdelivered to system com-

ponents, TOKENNULL ’s traffic is 32–36% more then TOKENB (as shown in Figure 7.5). The

interconnect traffic overhead is lower because 72-byte data messages are much larger than 8-byte

request messages (as illustrated by the increase in size of the solid grey segment from Figure 7.4

to Figure 7.5.

119

0.0

0.5

1.0

no
rm

al
iz

ed
 ru

nt
im

e

Runtime: TokenB and Snooping

Tree
Torus
Perfect L2

T
ok

en
B

 -
T

re
e

Sn
oo

pi
ng

 -
T

re
e

T
ok

en
B

 -
T

or
us

no
t a

pp
lic

ab
le

Sn
oo

pi
ng

 -
T

or
us

SPECjbb

T
ok

en
B

 -
T

re
e

Sn
oo

pi
ng

 -
T

re
e

T
ok

en
B

 -
T

or
us

no
t a

pp
lic

ab
le

Sn
oo

pi
ng

 -
T

or
us

Apache
T

ok
en

B
 -

T
re

e

Sn
oo

pi
ng

 -
T

re
e

T
ok

en
B

 -
T

or
us

no
t a

pp
lic

ab
le

Sn
oo

pi
ng

 -
T

or
us

OLTP

Figure 7.6 Runtime of SNOOPING and TOKEN B. This graph shows the runtime of SNOOPING

and TOKENB for both the TREE and TORUS interconnects with unbounded link bandwidth.
SNOOPING on TORUS is not applicable because the TORUS interconnect does not provide the
total order of requests required by SNOOPING.

7.2.2 Question#2: Can TOKEN B outperform SNOOPING?

Answer: Yes; with the same interconnect, TOKENB and SNOOPINGperform similarly for our

workloads; however, by exploiting the lower-latency unordered TORUS, TOKENB on the TORUSis

faster than SNOOPINGon the TREE interconnect (23–34% faster). Figure 7.6 shows the normalized

runtime (smaller is better) of TOKENB on the TREE and TORUS interconnects and SNOOPINGon

the TREE interconnect. SNOOPINGon the TORUS is not applicable, because the TORUSdoes not

provide the required total order of requests.

120

On the TREE interconnect, SNOOPING’s performance is similar to TOKENB (as shown in Fig-

ure 7.6).1 However, since SNOOPING requires a totally-ordered interconnect, only TOKENB can

exploit a lower-latency unordered interconnect. Thus, by using the TORUS, TOKENB is 23–34%

faster with unlimited bandwidth links (Figure 7.6), and 47–82% faster than SNOOPING on TREE

with limited bandwidth links (not shown). This speedup results from (1) lower latency for all

misses (cache-to-cache or otherwise) due to lower average interconnect latency, and (2) lower

contention in TORUS(by avoiding TREE’s central-root bottleneck).

7.2.3 Question#3: Is TOKEN B’s traffic similar to S NOOPING?

Answer: Yes; to the first order, both TOKENB’s endpoint traffic and interconnect traffic are

similar to or less than SNOOPING. Figure 7.7 shows the endpoint traffic (in normalized messages

per miss received at each endpoint coherence controller), and Figure 7.8 shows the interconnect

traffic (in normalized bytes per miss). When considering only data and non-reissued request traffic,

TOKENB and SNOOPINGare practically identical. TOKENB adds some additional traffic overhead

(as shown by the light grey striped segment, only visible for OLTP), but the overhead is small for all

three of our workloads. SNOOPINGand TOKENB both use additional traffic for writeback control

messages (the solid black segment), but due to detailed implementation decisions in SNOOPING

involving writeback acknowledgment messages, SNOOPINGuses more traffic for writebacks than

TOKENB. SNOOPING sends a writeback request on the ordered interconnect to both the memory

and to itself as a marker message. If it is still the owner of the block, it receives the marker message

and sends the data back to the memory. Ignoring this specific implementation overhead leads us to

the conclusion that these protocols generate similar amounts of traffic.

As TORUS is faster and has more effective bandwidth then TREE, the remainder of the results

in this dissertation use the TORUS interconnect to compare protocols.

1Although TOKENB and SNOOPING have the same uncontended miss latencies, TOKENB is actually
slightly faster then SNOOPING for SPECjbb. Limited investigation of this phenomenon indicates it may be
caused by SNOOPING’s handling of incoming requests while in certain transient states. SNOOPINGrefuses
to process an incoming request for a block for which (1) it has received its own marker message, and (2) it is
waiting a data response. As SNOOPINGprocesses incoming requests in order (to maintain both consistency
and a total order of requests), this situation delays all requests—including requests for other blocks.

121

0.0

0.5

1.0
en

dp
oi

nt
 m

es
sa

ge
s

(n
or

m
al

iz
ed

 m
es

sa
ge

s
pe

r m
is

s) Endpoint Traffic: TokenB and Snooping

Writeback control messages
Acknowledgment & miscellaneous control messages
Reissued & persistent requests (token only)
Requests & forwarded requests
Data response and writeback data messages

T
ok

en
B

Sn
oo

pi
ng

SPECjbb

T
ok

en
B

Sn
oo

pi
ng

Apache

T
ok

en
B

Sn
oo

pi
ng

OLTP

Figure 7.7 Endpoint Traffic of SNOOPING and TOKEN B. This graph shows the endpoint
traffic (in normalized messages per miss) of SNOOPINGand TOKENB on the TREE interconnect.

7.2.4 Question#4: Can TOKEN B outperform D IRECTORY or H AMMER OPT?

Answer: Yes; by removing the directory lookup latency and interconnect traversal from the

critical path of cache-to-cache misses, TOKENB is faster than both DIRECTORYand HAMMEROPT

(12–65% and 8–33% faster, respectively). Figure 7.9 shows the normalized runtime (smaller is

better) for TOKENB, HAMMEROPT, and DIRECTORYon the TORUSinterconnect with unbounded

link bandwidth. The solid grey bar for DIRECTORY illustrates the runtime increase due to the

DRAM directory lookup latency.

TOKENB is faster than DIRECTORY and HAMMEROPT because it (1) avoids the third inter-

connect traversal for cache-to-cache misses, (2) avoids the directory lookup latency (DIRECTORY

122

0.0

0.5

1.0

T
re

e
in

te
rc

on
ne

ct
 tr

af
fi

c
(n

or
m

al
iz

ed
 b

yt
es

 p
er

 m
is

s) Interconnect Traffic: TokenB and Snooping

Writeback control messages
Acknowledgment & miscellaneous control messages
Reissued & persistent requests (token only)
Requests & forwarded requests
Data response and writeback data messages

T
ok

en
B

Sn
oo

pi
ng

SPECjbb

T
ok

en
B

Sn
oo

pi
ng

Apache
T

ok
en

B

Sn
oo

pi
ng

OLTP

Figure 7.8 Interconnect Traffic of SNOOPING and TOKEN B. This graph shows the intercon-
nect traffic (in normalized bytes per miss) of SNOOPING and TOKENB on the TREE intercon-
nect.

only), and (3) removes blocking states in the memory controller. Even if the directory lookup

latency is reduced to 6ns (to approximate a fast SRAM directory or directory cache), shown by

disregarding the solid grey bar in Figure 7.9, TOKENB is still faster than DIRECTORY by 7–27%.

HAMMEROPT is 4–24% faster than DIRECTORY with a DRAM directory, because HAMMEROPT

avoids the directory lookup latency (but not the third interconnect traversal). DIRECTORYwith the

fast directory latency has similar performance as HAMMEROPT.

We also simulated TOKENB on the TORUS interconnect with 4GB/s link bandwidth (not

shown), and we found that for this 16-processor system, the performance impact of TOKENB’s

additional traffic is not statistically significant for these workloads. The impact is negligible be-

123

0.0

0.5

1.0

1.5
no

rm
al

iz
ed

 ru
nt

im
e

Runtime: TokenB, Directory, and HammerOpt

Effect of directory access latency
Perfect L2

T
ok

en
B

 -
T

or
us

D
ir

ec
to

ry
 -

T
or

us

H
am

m
er

O
pt

 -
T

or
us

SPECjbb

T
ok

en
B

 -
T

or
us

D
ir

ec
to

ry
 -

T
or

us

H
am

m
er

O
pt

 -
T

or
us

Apache
T

ok
en

B
 -

T
or

us

D
ir

ec
to

ry
 -

T
or

us

H
am

m
er

O
pt

 -
T

or
us

OLTP

Figure 7.9 Runtime of DIRECTORY , HAMMER OPT, and TOKEN B. This graph shows the
runtime of DIRECTORY, HAMMEROPT, and TOKENB on the TORUS interconnect with un-
bounded link bandwidth.

cause (1) the TORUS interconnect has sufficient bandwidth due to high-speed point-to-point links,

and (2) the additional traffic of TOKENB is moderate, discussed next.

7.2.5 Question#5: How does TOKEN B’s traffic compare to DIRECTORY and
HAMMER OPT?

Answer: TOKENB generates less endpoint traffic and interconnect traffic than HAMMEROPT,

but it generates more traffic than DIRECTORY. Figure 7.10 shows a traffic breakdown in normal-

ized endpoint messages per miss (smaller is better) for TOKENB, HAMMEROPT, and DIRECTORY.

Figure 7.11 shows traffic in terms of interconnect traffic in bytes per miss (smaller is better) for the

same three protocols. The dark segment at the top of each bar is the traffic due to writeback control

messages, and this segment is larger on HAMMEROPT and DIRECTORY due to their use of three-

124

0.0

0.5

1.0

1.5

en
dp

oi
nt

 m
es

sa
ge

s
(n

or
m

al
iz

ed
 m

es
sa

ge
s

pe
r m

is
s) Endpoint Traffic: TokenB, Directory, and HammerOpt

Writeback control messages
Acknowledgment & miscellaneous control messages
Reissued & persistent requests (token only)
Requests & forwarded requests
Data response and writeback data messages

T
ok

en
B

D
ir

ec
to

ry

H
am

m
er

O
pt

SPECjbb

T
ok

en
B

D
ir

ec
to

ry

H
am

m
er

O
pt

Apache

T
ok

en
B

D
ir

ec
to

ry

H
am

m
er

O
pt

OLTP

Figure 7.10 Endpoint Traffic of D IRECTORY , HAMMER OPT, and TOKEN B. This graph
shows the endpoint traffic (in normalized messages per miss) of DIRECTORY, HAMMEROPT,
TOKENB on the TORUS interconnect.

phase writebacks. These figures show: (1) that HAMMEROPT generatesmoretraffic than TOKENB

(81–95% more endpoint traffic and 81–88% more interconnect traffic), and (2) that DIRECTORY

generateslesstraffic than TOKENB (67–75% less endpoint traffic and 15–26% less interconnect

traffic).

The extra interconnect traffic of TOKENB over DIRECTORY is not as large as one might expect

(only 18–35% more), because (1) both protocols send a similar number of 72-byte data messages

(more than 80% of DIRECTORY’s interconnect traffic), (2) request messages are small (8 bytes),

and (3) TORUS supports broadcast tree routing (as stated in Section 6.2.2 and described in Sec-

tion 2.3.2). HAMMEROPT, which targets smaller systems, uses much more bandwidth than TO-

125

0.0

0.5

1.0

1.5

T
or

us
 in

te
rc

on
ne

ct
 tr

af
fi

c
(n

or
m

al
iz

ed
 b

yt
es

 p
er

 m
is

s) Interconnect Traffic: TokenB, Directory, and HammerOpt

Writeback control messages
Acknowledgment & miscellaneous control messages
Reissued & persistent requests (token only)
Requests & forwarded requests
Data response and writeback data messages

T
ok

en
B

D
ir

ec
to

ry

H
am

m
er

O
pt

SPECjbb

T
ok

en
B

D
ir

ec
to

ry

H
am

m
er

O
pt

Apache
T

ok
en

B

D
ir

ec
to

ry

H
am

m
er

O
pt

OLTP

Figure 7.11 Interconnect Traffic of DIRECTORY , HAMMER OPT, and TOKEN B. This graph
shows the interconnect traffic (in normalized bytes per miss) of DIRECTORY, HAMMEROPT,
TOKENB on the TORUS interconnect.

KENB or DIRECTORY, because every processor acknowledges each request (shown by the white

segment). The acknowledgment messages generate more interconnect traffic than the broadcast

requests, becausen unicasts on the TORUS interconnect useΘ(n
√

n) links; a broadcast uses only

Θ(n) links.

Although TOKENB’s greater use of interconnect bandwidth (when compared with DIREC-

TORY) is modest (DIRECTORY uses 15–26% less interconnect traffic than TOKENB), TOKENB’s

endpoint traffic is significantly higher than DIRECTORY (DIRECTORY uses 67–75% less endpoint

traffic). As a result, TOKENB requires significantly higher bandwidth coherence controllers. For-

tunately, researchers have proposed several techniques for creating high-bandwidth and low-power

126

state DIRECTORY TOKENB SPECjbb Apache OLTP

MODIFIED writeback writeback 84% 48% 20%
OWNED writeback writeback 3% 10% 8%
EXCLUSIVE eviction notification eviction notification 6% 6% 4%
SHARED silent eviction eviction notification 6% 23% 25%
INVALID null null 0% 14% 43%

Table 7.4 Distribution of Evictions per State. This table shows the distribution of states for
blocks evicted from the second-level cache. The first column is the state of the evicted block, in
which INVALID means the block is either not present or invalid. The second the third columns
indicate the action required to evict a block in that state for DIRECTORY and TOKENB protocols,
respectively. The final three columns show the percentage of evictions for our three workloads for
each state.

coherence controllers (e.g., [89, 93, 103]), and these techniques can be readily applied to Token

Coherence. Since Token Coherence does not rely upon a total order of requests—in contrast with

traditional snooping protocols—the coherence controllers can be aggressively banked by address

with low complexity (without the worry of synchronizing the banks to prevent subtle memory

consistency model violations).

7.2.6 Question#6: How frequently do non-silent evictions occur?

Answer: Table 7.4 shows that TOKENB generates more eviction messages due to non-silent

replacements than DIRECTORY. For our workloads, TOKENB initiated 7–80% more non-silent

evictions that DIRECTORY. These additional eviction messages increase interconnect and memory

controller traffic. However, when the size of the messages is taken into account, the additional

traffic in bytes is only 1–10% greater, because data messages are much larger than token-only

messages. When the total system traffic is considered, the overhead is even smaller.

7.2.7 Question#7: Does TOKEN B scale to an unlimited number of processors?

Answer: No; TOKENB relies on broadcast, limiting its scalability. TOKENB is more scalable

than HAMMEROPT, because HAMMEROPT uses broadcast and many acknowledgment messages.

TOKENB is less scalable than DIRECTORY, because DIRECTORY avoids broadcast. A simple

127

Figure 7.12 An Analytical Model of the Traffic of T OKEN B and DIRECTORY . We use the
following analytical model of the traffic of TOKENB and DIRECTORY to explore the relative
traffic generated by these protocols over a range of processors. To simplify the model, we focus
on a simple memory-to-cache miss and ignore writeback data and control messages. This model
has several parameters:

• n is the number of processors in the system. The cost of a unicast point-to-point message
on TORUS is 1

2

√
n link crossings on average. A broadcast on TORUScrossesn− 1 links.

• C is the size of control messages such as request and acknowledgment messages.C is 8
bytes for our simulations and for this model.

• D is the size of data messages such as data responses.D is 72 bytes (64-byte datablock
plus a 8-byte header) for our simulations and for this model.

• p is the fraction of misses that invoke persistent requests. As a simplification, this model
assumes that a persistent request is invoked after the first transient request fails to complete
(i.e., transient requests are not reissued). We assume this rate is constant as system size
increases.

• Eprotocol is the endpoint traffic in messages per miss per endpoint forprotocol.

• Iprotocol is the TORUS interconnect traffic in bytes per miss per link forprotocol.

ETokenB ≡
transient request︷ ︸︸ ︷
1 · (n− 1)︸ ︷︷ ︸

broadcast

+

persistent request︷ ︸︸ ︷
p · (n− 1)︸ ︷︷ ︸

broadcast

+

data response︷ ︸︸ ︷
1 · 1︸︷︷︸

unicast

EDirectory ≡
request︷ ︸︸ ︷

1 · 1︸︷︷︸
unicast

+

data response︷ ︸︸ ︷
1 · 1︸︷︷︸

unicast

+

completion︷ ︸︸ ︷
1 · 1︸︷︷︸

unicast

≡ 3

ITokenB ≡
transient request︷ ︸︸ ︷
C · (n− 1)︸ ︷︷ ︸

broadcast

+

persistent request︷ ︸︸ ︷
C · p · (n− 1)︸ ︷︷ ︸

broadcast

+

data response︷ ︸︸ ︷
D · 1

2

√
n︸ ︷︷ ︸

unicast

IDirectory ≡

request︷ ︸︸ ︷
C · 1

2

√
n︸ ︷︷ ︸

unicast

+

data response︷ ︸︸ ︷
D · 1

2

√
n︸ ︷︷ ︸

unicast

+

completion︷ ︸︸ ︷
C · 1

2

√
n︸ ︷︷ ︸

unicast

≡ 1

2
(D + 2C)

√
n

The above definitions calculate the traffic caused by a single miss on the assumption that a
linearly-increasing system-wide miss rate and a linearly-increasing number of interconnect links
and endpoints offset each other.

128

n TOKENB v. DIRECTORY, p = 0.05
4 1.1x
8 1.3x
16 1.5x
32 1.9x
64 2.3x
128 3.0x
256 3.9x
512 5.1x

Table 7.5 Results from an Analytical Model of Traffic: TOKEN B versus DIRECTORY . This
table shows the increase in interconnect traffic on TOKENB over DIRECTORY on the TORUS in-
terconnect using the simple analytical model of traffic described in Figure 7.12. The left column
is the number of processors. The right column is the amount of traffic used by TOKENB over DI-
RECTORYexpressed as a traffic multiple (i.e., 2.0x means TOKENB uses twice as much bandwidth
as DIRECTORY). For these results, the persistent request rate (p) is 0.05 (5%).

analytical model (described in Figure 7.12) indicates that the endpoint bandwidth of TOKENB

increases linearly as the number of processors increases. The interconnect traffic difference be-

tween TOKENB and DIRECTORY increases more slowly (Θ(
√

n)). As shown in Table 7.5, for a

64-processor system, this model predicts TOKENB will use 2.3 times the interconnect bandwidth

of DIRECTORY on the TORUS interconnect. A 128-processor system would use 3 times the band-

width. Thus, TOKENB can perform well for perhaps 32 or 64 processors if bandwidth is abundant

(by using high-bandwidth links and high-throughput coherence controllers). However, TOKENB

is a poor choice for larger or more bandwidth-limited systems.

7.2.8 TOKEN B Results Summary

TOKENB is both (1) better than SNOOPINGand (2) faster then DIRECTORYwhen bandwidth is

plentiful. TOKENB is better than SNOOPINGbecause it uses similar amounts of traffic and can out-

perform SNOOPINGby exploiting a faster, unordered interconnect. As discussed in Chapter 1, such

interconnects may also provide high bandwidth more cheaply by avoiding dedicated switch chips.

TOKENB is faster than DIRECTORY in bandwidth-rich situations by avoiding placing directory

lookup latency and a third interconnect traversal on the critical path of common cache-to-cache

129

misses. However, for small systems, TOKENB uses a moderate amount of additional interconnect

traffic and significantly more endpoint message bandwidth than DIRECTORY. Thus, in a bandwidth

constrained situation, DIRECTORY will outperform TOKENB. Although TOKENB is a message-

intensive protocol, it is only one of many possible performance policies; Chapter 8 and Chapter 9

present more bandwidth-efficient performance policies that do not always rely on broadcast.

130

Chapter 8

TOKEN D: A Directory-Like Performance Policy

The last chapter described TOKENB and showed that it performs well when bandwidth is plen-

tiful, but TOKENB can use significantly more bandwidth than a directory protocol. In contrast,

TOKEND’s goal is to exhibit similar performance and traffic as a traditional directory protocol

(e.g., DIRECTORY). By achieving this goal, TOKEND (1) shows that Token Coherence is a suit-

able framework for bandwidth-efficient protocols, and (2) provides a foundation for TOKENM,

our predictive hybrid protocol described in the next chapter. This chapter explores TOKEND’s

operation (Section 8.1), implementation (Section 8.2), and performance (Section 8.3).

8.1 TOKEN D’s Operation

The TOKEND performance policy uses transient requests to emulate a directory protocol. In

a directory protocol, processors send their requests to the directory located at the home mem-

ory module. This directory is responsible for forwarding read requests to the current owner and

forwarding write requests to the current owner and all sharers. TOKEND operates similarly: pro-

cessors send transient requests to a directory at the home memory module only. This directory

forwards the transient request to one or more processors that are likely to be holding tokens (i.e.,

it forwards read requests to the processor that is likely holding the owner token and forwards write

requests to any processor that is likely holding a token). Processors respond to these forwarded

transient requests in a traditional MOESI-like fashion, sending tokens and data directly to the re-

quester (using the same policy as TOKENB, including the migratory sharing optimization). This

131

basic policy of forwarding transient requests closely imitates a directory protocol, giving TOKEND

much of the same first-order performance characteristics.

Transient requests in TOKEND may fail to complete (e.g., when forwarded transient requests

are reordered or a request is forwarded to an insufficient set of processors). To handle the oc-

casional failure of transient requests, TOKEND borrows TOKENB’s policy for reissuing transient

requests: the processor reissues transient requests once (after twice the average miss latency) and

the processor invokes a persistent request (after four times the average miss latency). In contrast

to TOKENB, in TOKEND all transient requests (even reissued ones) are sent only to the home

memory module.

In TOKEND, how does the memory module know to which processors it should forward the re-

quest? Much like a directory protocol, TOKEND uses per-block state at memory to decide to which

processors (if any) it should forward the request; however, unlike the count of tokens held at mem-

ory, TOKEND’s per-block information for forwarding requests issoft state(i.e., it is not required to

be accurate). In contrast, all the per-block state in a traditional directory protocol ishard statethat

must correctly identify a superset of the sharers for the protocol to function correctly. TOKEND’s

operation is always correct—even when the directory information is inaccurate—because (1) the

token counting rules prevent unsafe behavior1 and (2) the processors eventually invoke persistent

requests to avoid starvation. Although the directory-like soft state should reflect the actual state of

the system as accurately as possible for performance reasons, it is not required to be correct.

The lack of correctness requirements of the soft-state directory in TOKEND grants significant

design flexibility. Unlike many directory protocols that use blocking or busy states to prevent

ambiguous concurrent requests, TOKEND has no such requirement because it can rely on the

correctness substrate to correctly handle these situations. For example, TOKEND can make use

of a directory cache that simply evicts entries without needing to worry about recall messages or

writing the information to a full-sized directory (directory caches and associated implementation

options were described in Section 3.2.4). Verifying traditional directory structures can be difficult,

especially when using non-trivial coarse vectors or other efficient encodings (e.g., [8, 13, 45, 52,

1The token counts are hard state.

132

97]). In contrast, verifying TOKEND’s directory structure should be simpler because errors in

updating the soft-state directory will not cause incorrect operation.

8.2 Soft-State Directory Implementations

This section presents two implementations of TOKEND’s soft-state directory.

8.2.1 A Simple Soft-State Directory

The simplest approach to implementing the soft-state directory is to update the approximate

sharing information whenever the memory controller receives a transient or persistent request. In

many cases, this approach will allow the memory controller to draw the same conclusions as in

a traditional directory protocol. Whenever the memory controller receives a read request, it adds

that processor to the list of sharers; when it receives a write request, it clears the set of sharers and

updates the current owner of the block.

Although this approach works well in the absence of races, racing requests can confuse this

scheme. For example, due to delays in the interconnect, a pair of forwarded write requests could

arrive at all the processors in one order (P0 beforeP1), but arrive at the home memory in the reverse

order (P1 beforeP0). In this situationP1 will likely hold all the tokens, but the soft-state directory

will believe thatP0 holds all the tokens. Thus, the soft-state directory may not always accurately

reflect that current location of tokens in the system. Fortunately, the next time a non-racing write

miss occurs for the block, the soft-state entry for that block will once again correctly reflect the

current state of the block.

The advantage of this approach is that it is familiar and simple (due to its similarly to a directory

protocol and lack of blocking states). Unfortunately, with this approach the soft-state directory can

easily become confused and lose track of which processors are holding tokens (in which case the

system may need to resort to a persistent request). Another disadvantage of this approach arises

from our use of the migratory sharing optimization; that is, the memory cannot easily distinguish

between a read request that receives a single-token response (in which case the memory controller

should add the requester to the list of sharers) and a request that receives a response with all tokens

133

(in which case the memory controller should clear the sharers and change the owner). This problem

is solved by adding explicit completion messages, described next.

8.2.2 A More Accurate Soft-State Directory

Although the previously described approach is reasonable, TOKEND adopts an approach that

better handles racing requests and migratory sharing. In this approach, processors sendcompletion

messagesto the home memory whenever they complete a request. The 8-byte completion mes-

sage includes the identify of the processor, the address of the block, and the new MOESI state

of the processor. Although these completion messages increase interconnect traffic, DIRECTORY

introduces similar overheads due to its analogous messages that “unblock” the directory.

In this scheme, the soft-state directory is updated in response to three events. First, when the

memory receives a read or write request, it adds the processor to a specialpendingset of processors

(much like the set of sharers). When the memory forwards a request to the sharers or the owner,

the memory also forwards the request to all processors in the pending set. Second, when the home

memory receives a completion message, it (1) removes that processor from the pending set, (2)

uses the MOESI state of the processor included in the completion message to update the soft-state

directory. For example, if a processor enters the MODIFIED state, the directory updates the entry

for that block by clearing the list of sharers and updating the owner. If the processor enters the

SHARED state, it is added to the list of sharers. Third, the memory module also uses writeback

and eviction notification messages to update the soft-state directory. If the memory receives the

writeback of the owner token, it clears the owner entry in the soft-state directory. If the memory

receives a non-owner token, it removes that processor from the set of sharers.

8.3 Evaluation of TOKEN D

We use four questions to present evidence that TOKEND has similar characteristics (perfor-

mance and traffic) as directory protocols. Table 8.1 contains the raw simulation data used to an-

swer these questions. In these experiments, the soft-state directory tracks the owner and uses a

simple bit-vector (one bit per processor) for encoding sharers and pending processors. As with DI-

134

configuration al
lc

yc
le

s
pe

r
tr

an
sa

ct
io

n

L2
m

is
se

s
pe

r
tr

an
sa

ct
io

n

in
st

ru
ct

io
ns

pe
r

tr
an

sa
ct

io
n

cy
cl

es
pe

r
in

st
ru

ct
io

n

m
is

se
s

pe
r

th
ou

sa
nd

in
st

ru
ct

io
ns

en
dp

oi
nt

m
sg

s
pe

r
m

is
s

in
te

rc
on

ne
ct

by
te

s
pe

r
m

is
s

SPECjbb
Perfect L2 19,903 NA 54,820 0.36 NA NA NA
TokenD - fast 38,764 182 57,121 0.68 3.20 4.53 295.07
TokenD - slow 41,985 182 57,370 0.73 3.18 4.52 295.73
Directory - fast 39,307 182 57,201 0.69 3.20 6.01 319.32
Directory - slow 41,102 182 57,270 0.72 3.18 6.01 318.37
TokenB 36,604 180 56,911 0.64 3.17 18.20 376.51

Apache
Perfect L2 176,559 NA 273,711 0.65 NA NA NA
TokenD - fast 599,928 3,910 361,479 1.66 10.92 4.62 252.38
TokenD - slow 727,229 4,176 405,382 1.79 10.14 4.60 251.13
Directory - fast 609,117 4,017 367,030 1.66 10.89 5.36 263.93
Directory - slow 702,715 4,063 390,853 1.78 10.31 5.35 263.71
TokenB 534,197 3,833 339,043 1.56 11.15 18.16 332.93

OLTP
Perfect L2 1,747,629 NA 3,385,566 0.52 NA NA NA
TokenD - fast 6,978,361 47,241 6,515,156 0.99 6.39 4.90 229.78
TokenD - slow 9,109,960 45,520 10,398,260 0.89 4.45 4.98 230.54
Directory - fast 7,301,596 47,189 7,000,286 1.00 6.40 4.64 227.65
Directory - slow 9,463,958 48,304 11,557,401 0.85 4.32 4.65 227.30
TokenB 5,727,614 42,412 5,802,205 0.99 7.28 18.36 306.82

Table 8.1 TOKEN D Results for the TORUS Interconnect. The metrics presented in this table
were described in Table 6.2 on page 101.

RECTORY in the last chapter, we perform simulations in which TOKEND’s per-block information

is either held in fast SRAM or in the main memory’s DRAM (both of these approaches to storing

per-block state were described in Section 3.2.4).

8.3.1 Question#1: Is TOKEN D’s soft-state directory effective?

Answer: Yes; an ineffective soft-state directory would increase the number of reissued re-

quests; since TOKEND has similar rates of reissued requests, the soft-state directory is effective.

135

SPECjbb Apache OLTP
0 1 P.R. 0 1 P.R. 0 1 P.R.

TokenB 99.5 0.2 0.3 99.1 0.7 0.2 97.5 1.6 1.0
TokenD 99.6 0.1 0.3 99.4 0.4 0.2 98.3 0.9 0.8

Table 8.2 TOKEN D Reissued Requests.This table shows the percent of cache misses that (a)
succeed the first transient request and thus are not reissued even once (the “0” column), (b) are
reissued once and succeed on this second transient request (the “1” column), and (c) invoke a
persistent request (the “P.R.” column).

Table 8.2 shows the percent of reissued requests and persistent requests for TOKENB and TO-

KEND. Interestingly, TOKEND actually has slightlyfewer reissued requests than TOKENB. We

suspect the memory is acting as a per-block ordering point (because all requests in TOKEND are

first sent to the directory, and messages are commonly delivered in order by the interconnect),

resulting in a slight drop in the number of reissued requests.

8.3.2 Question#2: Is TOKEN D’s traffic similar to D IRECTORY ?

Answer: Yes; to the first order, TOKEND’s endpoint and interconnect traffic is similar to DI-

RECTORY. However, TOKEND actually uses more bandwidth in some cases. Figure 8.1 compares

the endpoint traffic of TOKEND and DIRECTORY. As with previous traffic graphs, the traffic is

segmented into five categories as described in the graph’s legend. Starting with the lowest segment

(the solid grey segment), TOKEND and DIRECTORY (unsurprisingly) generate the same about of

data traffic . The second-lowest segment (dark grey striped) shows that TOKEND generates slightly

more request and forwarded request traffic, likely due to the extra “pending” processors included

by the soft-state directory when forwarding requests. The next segment (light grey striped)—only

present for TOKEND—shows that reissued requests and persistent requests do increase TOKEND’s

traffic. The white segment shows a similar amount of traffic due to DIRECTORY’s unblock mes-

sages and TOKEND’s completion messages. Both protocols send one completion/unblock message

per request, and both protocols could perhaps be improved to reduce the frequency of these mes-

sages.

136

0.0

0.5

1.0

en
dp

oi
nt

 m
es

sa
ge

s
(n

or
m

al
iz

ed
 m

es
sa

ge
s

pe
r m

is
s) Endpoint Traffic: TokenD and Directory

Writeback control messages
Acknowledgment & miscellaneous control messages
Reissued & persistent requests (token only)
Requests & forwarded requests
Data response and writeback data messages

T
ok

en
D

D
ir

ec
to

ry

SPECjbb

T
ok

en
D

D
ir

ec
to

ry

Apache

T
ok

en
D

D
ir

ec
to

ry

OLTP

Figure 8.1 Endpoint Traffic of D IRECTORY and TOKEN D. This graph shows the endpoint
traffic (in normalized messages per miss) of DIRECTORYand TOKEND on the TORUS intercon-
nect.

When taking only the four lower segments into account, TOKEND actually generates some-

what more traffic than DIRECTORY. However, when adding in the overhead of writeback control

messages, DIRECTORY uses more bandwidth than TOKEND for two of the three workloads. The

large amount of traffic caused by writebacks in DIRECTORY is due to its three-phase writeback

implementation (Section 2.5.5) and lack of support for silent replacement of blocks in EXCLU-

SIVE. (Recall that we described a similar effect when comparing SNOOPING and TOKENB in

Section 7.2.3.) In contrast, TOKEND uses a simple, bandwidth-efficient eviction mechanism that

requires only a single “fire-and-forget” message (i.e., it does not require an acknowledgment from

the memory). A different directory protocol implementation might reduce the writeback over-

137

0.0

0.5

1.0

T
or

us
 in

te
rc

on
ne

ct
 tr

af
fi

c
(n

or
m

al
iz

ed
 b

yt
es

 p
er

 m
is

s) Interconnect Traffic: TokenD and Directory

Writeback control messages
Acknowledgment & miscellaneous control messages
Reissued & persistent requests (token only)
Requests & forwarded requests
Data response and writeback data messages

T
ok

en
D

D
ir

ec
to

ry

SPECjbb

T
ok

en
D

D
ir

ec
to

ry

Apache
T

ok
en

D

D
ir

ec
to

ry

OLTP

Figure 8.2 Interconnect Traffic of DIRECTORY and TOKEN D. This graph shows the in-
terconnect traffic (in normalized bytes per miss) of DIRECTORY and TOKEND on the TORUS

interconnect.

heads, but this graph shows that the amount of traffic would still be similar. In contrast, TOKEND

does not support silent evictions (in any state), but a directory protocol often supports silent evic-

tions in both EXCLUSIVE and SHARED. A directory protocol with full support for silient evictions

and traffic-efficient writebacks could thus use less traffic than TOKEND.

Examination of the traffic in terms of bytes of interconnect traffic (Figure 8.2) shows a sim-

ilar comparison, but because data traffic is at least 80% of the interconnect traffic, the relative

contribution of the non-data message is much smaller.

To investigate the scalability of TOKEND, we extended the analytical model from the last chap-

ter to model TOKEND (described in Figure 8.3). The largest detriment to TOKEND’s scalability is

138

Figure 8.3 An Analytical Model of the Traffic of T OKEN D and DIRECTORY . Similarly to
the model we introduced in Figure 7.12, we use the following analytical model of the traffic
of TOKEND and DIRECTORY to explore the relative traffic generated by these protocols over a
range of processors. To simplify the model, we focus on a simple memory-to-cache miss and
ignore writeback data and control messages. This model has several parameters:

• n is the number of processors in the system. The cost of a unicast point-to-point message
on TORUS is 1

2

√
n link crossings on average. A broadcast on TORUScrossesn− 1 links.

• C is the size of control messages such as request and acknowledgment messages.C is 8
bytes for our simulations and for this model.

• D is the size of data messages such as data responses.D is 72 bytes (64-byte datablock
plus a 8-byte header) for our simulations and for this model.

• p is the fraction of misses that invoke persistent requests. As a simplification, this model
assumes that a persistent request is invoked after the first transient request fails to complete
(i.e., transient requests are not reissued). We assume this rate is constant as system size
increases.

• Eprotocol is the endpoint traffic in messages per miss per endpoint forprotocol.

• Iprotocol is the TORUS interconnect traffic in bytes per miss per link forprotocol.

ETokenD ≡
transient request︷ ︸︸ ︷

1 · 1︸︷︷︸
unicast

+

persistent request︷ ︸︸ ︷
p · (n− 1)︸ ︷︷ ︸

broadcast

+

data response︷ ︸︸ ︷
1 · 1︸︷︷︸

unicast

+

completion︷ ︸︸ ︷
1 · 1︸︷︷︸

unicast

EDirectory ≡
request︷ ︸︸ ︷

1 · 1︸︷︷︸
unicast

+

data response︷ ︸︸ ︷
1 · 1︸︷︷︸

unicast

+

completion︷ ︸︸ ︷
1 · 1︸︷︷︸

unicast

≡ 3

ITokenD ≡

transient request︷ ︸︸ ︷
C · 1

2

√
n︸ ︷︷ ︸

unicast

+

persistent request︷ ︸︸ ︷
C · p · (n− 1)︸ ︷︷ ︸

broadcast

+

data response︷ ︸︸ ︷
D · 1

2

√
n︸ ︷︷ ︸

unicast

+

completion︷ ︸︸ ︷
C · 1

2

√
n︸ ︷︷ ︸

unicast

IDirectory ≡

request︷ ︸︸ ︷
C · 1

2

√
n︸ ︷︷ ︸

unicast

+

data response︷ ︸︸ ︷
D · 1

2

√
n︸ ︷︷ ︸

unicast

+

completion︷ ︸︸ ︷
C · 1

2

√
n︸ ︷︷ ︸

unicast

≡ 1

2
(D + 2C)

√
n

The above definitions calculate the traffic caused by a single miss on the assumption that a
linearly-increasing system-wide miss rate and a linearly-increasing number of interconnect links
and endpoints offset each other.

139

n TOKEND v. DIRECTORY, p = 0.00 TOKEND v. DIRECTORY, p = 0.05
4 1.00 1.01
8 1.00 1.02
16 1.00 1.03
32 1.00 1.05
64 1.00 1.07
128 1.00 1.10
256 1.00 1.14
512 1.00 1.21

Table 8.3 Results from an Analytical Model of Traffic: TOKEN D versus DIRECTORY . This
table shows the increase in interconnect traffic on TOKEND over DIRECTORY on the TORUS in-
terconnect using the simple analytical model of traffic described in Figure 8.3. The left column is
the number of processors. The other two columns show the amount of traffic used by TOKEND
over DIRECTORY, expressed as a traffic multiple (i.e., 2x means TOKEND uses twice as much
bandwidth as DIRECTORY). The middle column assumes the rate of persistent requests (p) is zero;
the right column assumes the rate of persistent requests is 0.05 (5%).

our broadcast-based persistent request mechanism. Assuming the rate of persistent requests does

not increase dramatically as the number of processors increases, the results from this new analyt-

ical model (Table 8.3) show that TOKEND scales almost as well as DIRECTORY. For example,

TOKEND generates 21% more interconnect traffic than DIRECTORY for a 512-processor system

with a 5% persistent request rate.

8.3.3 Question#3: Does TOKEN D perform similarly to D IRECTORY ?

Answer: Yes; TOKEND’s performance is similar to DIRECTORY, because they use the same

interconnect and add the same indirection latency to cache-to-cache misses. Figure 8.4 shows that

the performance of DIRECTORY and TOKEND is similar (i.e., the differences in runtime between

the two protocols is not statistically significant).

8.3.4 Question#4: Does TOKEN D outperform T OKEN B?

Answer: With sufficient bandwidth, no. TOKENB is faster than TOKEND due to TOKEND’s

slower cache-to-cache transfers. Figure 8.4 shows that with unbounded link bandwidth TOKENB

140

0.0

0.5

1.0

no
rm

al
iz

ed
 ru

nt
im

e

Runtime: TokenD and Directory

Effect of directory access latency
Perfect L2

T
ok

en
D

 -
T

or
us

D
ir

ec
to

ry
 -

T
or

us

T
ok

en
B

 -
T

or
us

SPECjbb

T
ok

en
D

 -
T

or
us

D
ir

ec
to

ry
 -

T
or

us

T
ok

en
B

 -
T

or
us

Apache
T

ok
en

D
 -

T
or

us

D
ir

ec
to

ry
 -

T
or

us

T
ok

en
B

 -
T

or
us

OLTP

Figure 8.4 Runtime of DIRECTORY , TOKEN D, and TOKEN B This graph shows the run-
time of DIRECTORY, TOKEND, and TOKENB on the TORUS interconnect with unbounded link
bandwidth.

is 15–59% faster than TOKEND with a slow directory and 6–22% faster then TOKEND with a

fast directory. As TOKENB performs similarly even when the link bandwidth is limited to 4GB/s

for these 16-processor simulations (as discussed in Section 7.2.4), TOKENB is still faster than

TOKEND in such systems. However, TOKEND will become relatively faster as the link bandwidth

becomes more constrained or the system becomes larger.

8.3.5 TOKEN D Results Summary

TOKEND has similar performance and traffic characteristics as DIRECTORY. The bandwidth-

efficiency of these protocols is desirable for cost and scalability reasons. The effective soft-state

directory implementation and low rate of persistent requests allows TOKEND’s traffic to scale

similarly to DIRECTORY. Although these protocols use less traffic than TOKENB, they are slower

141

than TOKENB when bandwidth is plentiful. Thus, neither TOKENB nor TOKEND is “better” than

the other; the relative merits of these protocols depend on the specific system configuration. In

essence, the differences between TOKENB and TOKEND are an example of a bandwidth/latency

tradeoff. In the next chapter we evaluate TOKENM, a performance policy that attempts to improve

this bandwidth/latency tradeoff by capturing both the bandwidth efficiency of TOKEND and the

low latency of TOKENB.

142

Chapter 9

TOKEN M: A Predictive-Multicast Performance Policy

TOKENM is a hybrid protocol that uses predictive multicast to capture most of the latency

benefits of TOKENB, while capturing some of the bandwidth efficiency of TOKEND. TOKENB

avoids the overhead of directory indirection for cache-to-cache misses (reducing average miss

latency) by broadcasting all requests, but uses substantial interconnect bandwidth. In contrast,

TOKEND is bandwidth efficient, but it adds indirection through a directory for cache-to-cache

misses (like all directory protocols). An ideal protocol would achieve the low latency of TOKENB

with the bandwidth efficiency of TOKEND. Figure 9.1 illustrates this bandwidth/latency tradeoff.

TokenD

TokenBideal

traffic

cache-to-cache
miss latency
(indirections)

Figure 9.1 A Bandwidth/Latency Tradeoff. TOKENB has low-latency cache-to-cache misses,
but uses significant amounts of bandwidth. In contrast, TOKEND is bandwidth efficient, but has
higher-latency cache-to-cache misses. An ideal protocol would have the low latency of TOKENB
with the bandwidth efficiency of TOKEND. TOKENM attempts to achieve this ideal design point
by using destination-set prediction.

143

TOKENM strives for this ideal design point by extending TOKEND to support destination-set

prediction. In TOKENM, when a processor issues a request, it sends the transient request to a

predicted destination set. Adestination setis the set of system components (processors and mem-

ory modules) to which a processor sends its request. The components react to incoming transient

requests in the same manner as TOKENB and TOKEND, and when the recipients respond with

sufficient tokens, the requester completes its request without indirection and without broadcast.

When the predicted destination set is insufficient (e.g., it does not include all the processors that

need to see the request), a soft-state directory forwards the request to all processors that it believes

the requester left out of the destination set (TOKENM’s operation is an extension to TOKEND). To

allow the soft-state directory to filter out those processors that received the request initially, request

messages are extended to include the destination set to which each request was sent. TOKENM’s

operation is further described in Section 9.1). TOKENM—like all performance policies—is al-

ways correct because transient requests are only hints and the system relies upon the correctness

substrate to enforce safety and prevent starvation.

TOKENM uses a destination-set predictor to improve the bandwidth/latency characteristics of

the system. In the limit of perfect prediction, TOKENM provides a near-ideal bandwidth/latency

design point, capturing both the low latency of TOKENB and the bandwidth efficiency of TOKEND.

Section 9.2 describes three destination-set predictors we developed in our prior work [79]. In this

earlier work we explored the destination-set predictor design space and evaluated several predictors

in the context of Multicast Snooping [20, 114]. This dissertation does not include a detailed design

space exploration, but it instead relies on the predictors Martinet al. [79] found to be the most

promising. Our evaluations (in Section 9.3) show that these predictors are accurate enough to

create attractive alternatives in the bandwidth/latency design space. As we are not the first to use

prediction to accelerate coherence protocols, we discuss related work in Section 9.4.

9.1 TOKEN M’s Operation

TOKENM is a minor extension of TOKEND that uses a sequence of two predictions. The re-

quester performs the first prediction—the destination-set prediction—when it selects the set of

144

destinations that will receive its request (Section 9.2 describes our specific predictors). The re-

quester sends the transient request to these destinations (which—for our predictors—will always

include the home memory module). The memory module performs the second prediction by us-

ing TOKEND’s soft-state directory to determine which additional processors it believes need to

see the request. In essence, this operation is also a prediction, because it is not guaranteed to al-

ways be correct. The directory forwards the transient request to those processors (if any) that it

thinks should have been included, but were not included, in the predicted destination set. Using

TOKEND’s soft-state directory efficiently handles the situation in which the first prediction was

insufficient. This second prediction may also fail to gather sufficient tokens (just as TOKEND’s

soft-state directory is not always successful). To recover from this double mis-prediction, the re-

quester will reissue the request (again, much like TOKEND). Unlike TOKEND, TOKENM makes a

destination-set prediction on both the initial and reissued request.

TOKENM’s operation is identical to TOKEND’s operation with only two exceptions. First, in

TOKENM processors send transient requests to the predicted destination set (which includes the

home memory module). Second, the soft-state directory forwards the transient requests as in TO-

KEND, but removes any destinations in the original destination set from the set of destinations to

which it forwards the request. For example, if the soft-state directory determines that the memory

should forward the request to bothP0 andP1, but the original destination-set included onlyP0,

the memory forwards the request to onlyP1. This filtering of forwarded requests is an optional

traffic-reduction enhancement to prevent processors from receiving redundant transient requests.

The main cost of this enhancement is that processors must encode the destination set (or an ap-

proximation of it) in the transient request message sent to the memory. The size of this encoding

is determined by the destination sets generated by the predictors.1

In the extreme cases of always predicting broadcast or always predicting to send the request

only to the home memory, TOKENM degenerates to TOKENB and TOKEND, respectively. Thus,

1For example, a predictor that includes at most one processor could encode its destination set inlog2 n
bits. A predictor that is restricted to either broadcasting or sending a request only to the home memory could
encode this difference using a single bit. A predictor that can generate a general destination-set prediction
requires a n-bit vector.

145

by building upon TOKENB and TOKEND, TOKENM (mostly) subsumes them. The only disadvan-

tages that TOKENM has over TOKENB are (1) the cost of implementing the soft-state directory, (2)

the overhead of the completion messages (both described previously in Section 8.1), and (3) en-

coding of the destination set in request messages. The two additional mechanisms that TOKENM

adds over TOKEND are (1) a small amount of logic to filter the recipients of forwarded requests,

and (2) encoding of the destination set in request messages.

TOKENM reissues requests that fail to complete using a similar approach as TOKEND. In

TOKENM, the initial request and first reissued request are each sent to the predicted destination-

set. The system resorts to a broadcast-based persistent request after the first reissued request fails

to complete.

9.2 Destination-Set Predictors

This section describes the goals of destination-set prediction (Section 9.2.1), our approach

to prediction (Section 9.2.2), common mechanisms used for all our predictors (Section 9.2.3),

three specific predictors (Section 9.2.4), and the use of macroblock indexing to capture spatial

predictability (Section 9.2.5). This discussion is a more focused version of the discussion found in

our prior work [79].

9.2.1 Predictor Goals

The goal of the predicted destination set in TOKENM is the same as that of the soft-state

directory in TOKEND: include all of the token holders for a write request and include the holder of

the owner token for a read request. Over-predicting (i.e., including unnecessary processors in the

destination set) increases system traffic, but does not directly increase the miss latency (because

unnecessary processors do not respond, and thus the requester does not need to wait for responses

from them). Under-predicting (i.e., not including all necessary processors) increases the miss

latency. In most cases of under prediction, the soft-state directory will forward the request to the

remaining necessary processors (adding indirection latency to the critical path of the miss). If this

forwarded transient request fails to find sufficient tokens (due to racing requests or an inaccurate

146

soft-state directory), the processor will reissue the request after a timeout interval (and eventually

resort to a persistent request, if necessary).

9.2.2 Our Approach

Like most predictors used throughout computer architecture, our destination-set predictors use

past behavior to make guesses about the future. Since the processor is predicting a property of

coherence events, it uses coherence events as training input to its predictor. For example, if two

processors are sharing the same block (i.e., pairwise sharing), both processors can observe the

consistent sharing pattern. This allows each processor to know it should predict that the other

processor is the only processor holding the block when issuing a request for the block.

The prediction policies we discuss use two types of training cues to predict sharing behav-

ior: (1) transient and persistent requests from other processors and (2) coherence responses. In

both cases, the predictor learns the identity of a processor that has recently accessed the block.

On requests from other processors, the predictor automatically receives the requesting processor’s

identity (since this information is required to permit a response). For responses, we assume that

data response messages include the sender’s identity. Specific policies (described later in Sec-

tion 9.2.4) use this information either to “train up” or “train down” (i.e., increase or decrease the

destination set).

9.2.3 Common Predictor Mechanisms

Each second-level cache controller in the system contains a destination-set predictor. Because

only coherence controllers are responsible for interacting with the predictor, we require no mod-

ifications to the processor core. Predictors are tagged, set-associative, and indexed by data block

address (actually they are indexed by macroblock index, described later in Section 9.2.5). Our

evaluation of TOKENM uses 4-way set-associate predictors with 8,192 entries. Such a table ranges

from 32kB to 64kB, because each entry ranges from 4 to 8 bytes in size (depending on the specific

prediction policies described in Section 9.2.4). Predictors of this size have modest cost, but achieve

most of the benefit of predictors of unbounded size [79].

147

The predictor generates a prediction whenever a processor issues a transient request. The

coherence controller accesses the predictor in parallel with the second-level cache access.2 In the

event of a cache miss, the controller uses the predicted destination set when sending the resulting

transient request. If the predictor hits, it generates a prediction according to the policies discussed

next. On a predictor miss, the requester sends the request to only the home memory module.

A processor updates its persistent request table based on incoming training information. To

update existing entries for a block, a predictor uses (1) its own incoming responses and (2) requests

from other processors. A predictor entry for a block is allocated—and the least-recently-used

(LRU) entry discarded—when the processor receives a token response from another processor (but

not when it receives a response from memory). That is, it allocates an entry when it receives

a response signifying that another processor was sharing the data (i.e., the miss was a cache-to-

cache miss). This approach results in efficient utilization of the predictor entries because (1) a

processor’s predictor allocates entries only for blocks the processor has recently requested, and (2)

a processor does not allocate entries for blocks that can always be found at the home memory (e.g.,

private data, instructions, or read-only data structures).

9.2.4 Three Specific Predictor Policies

Different prediction policies use training information to target different points in the band-

width/latency spectrum [79]. Figure 9.2 shows the approximate bandwidth/latency tradeoff space

targeted by our three predictors: (1) OWNER, a predictor with similar traffic but fewer indirections

than TOKEND, (2) BCAST-IF-SHARED (broadcast-if-shared), a predictor with similar latency but

lower traffic than TOKENB, and (3) GROUP, a predictor that strives to provide a design point close

to ideal. This section describes these three prediction policies, and Table 9.1 specifies them in table

format.

2Predictor updates complete in a single cycle, and the predictors train only on data responses or on
requests from other processors. Because multiple misses are generated in parallel, later misses do not
always benefit from the training responses from the earlier misses before being issued into the memory
system.

148

TokenD

TokenBideal

traffic

cache-to-cache
miss latency
(indirections)

Owner
Group

Broadcast-If-Shared

TokenM

Figure 9.2 Destination-Set Predictors as Bandwidth/Latency Tradeoffs.This figure illus-
trates the three specific predictors we explore in this dissertation and (approximately) where they
fall in the bandwidth/latency design space.

The OWNER predictor. OWNER provides lower latency than TOKEND while capturing most

of TOKEND’s bandwidth efficiency. OWNER targets scenarios in which either (a) only one other

processor needs to be in the destination set (e.g., pairwise sharing) (b) the number of processors

in the system is large, or (c) bandwidth is limited. The predictor records the last processor that

requested the block3 or responded with a block. On a prediction, the predictor returns the union of

the predicted owner and the home memory module. OWNER works well for pairwise sharing, be-

cause both processors include each other in their predictions. OWNER also works well for systems

with many processors or with limited bandwidth because it sends at most one additional control

message for each request, independent of the number of processors in the system.

The BCAST-I F-SHARED predictor. BCAST-IF-SHARED uses less traffic than TOKENB while

capturing most of the low latency of TOKENB. BCAST-IF-SHARED targets scenarios in which ei-

ther (a) most shared data are widely shared, (b) most data are not shared, (c) the number of pro-

cessors in the system is small, or (d) bandwidth is plentiful. BCAST-IF-SHARED selects either a

broadcast destination set (if the block is predicted to be shared) or only the home memory module

(otherwise). A two-bit saturating counter—incremented on requests and responses from other pro-

3We update the owner on read requests because the migratory sharing optimization allows ownership to
transfer on read requests.

149

Table 9.1 Predictor Policies
Name Owner Broadcast-If-Shared Group

Entry Structure Owner ID and Valid bit 2-bit saturating counter,
Counter

N 2-bit saturating counters, Counters[0..N-1]
saturating RolloverCounter

Entry Size
log2N bits + 1 bit + tag
(approximately 4 bytes)

2 bits + tag
(approximately 4 bytes)

2N bits + (1+log2N) bits + tag
(approximately 8 bytes)

Prediction Action
If Valid, predict Owner
Otherwise, predict home

If Counter > 1, broadcast
Otherwise, predict home

For each processor n, if Counters[n] > 1, add n
to predicted set; always include home

Tr
ai

ni
ng

A
ct

io
n Data

Response

If response from memory,
clear Valid. Else, set Owner
to responder, and set Valid

If response from memory,
decrement Counter. Else,
increment Counter

If response not from memory, increment
Counters[responder].
Increment RolloverCounter†

Other Request
Set Owner to requester and
set Valid Increment Counter Increment Counters[requester].

Increment RolloverCounter†

N is the number of processors in the system. †If RolloverCounter rolls over, decrement Counter[i] for all i.

cessors and decremented otherwise—determines which prediction to make. BCAST-IF-SHARED

performs comparably to snooping in many cases, but it uses less bandwidth by not broadcasting all

requests.

BCAST-IF-SHARED implicitly adapts to common characteristics of some classes of workloads.

For example, BCAST-IF-SHARED should perform well in two common situations: (1) a “latency-

bound” commercial workload with a moderate miss rate, lots of sharing, and few parallel misses

(e.g., some OLTP workloads) by broadcasting many requests and (2) a “bandwidth-bound” tech-

nical workload with a high miss rate, limited sharing, and many parallel misses (e.g., a DAXPY

kernel) by broadcasting few requests. To more explicitly adapt to workloads, a predictor could use

bandwidth adaptive techniques [84] (not explored further in this dissertation).

The GROUP predictor. GROUPtargets scenarios in which (a) stable groups of processors (less

than all processors) share blocks and (b) bandwidth is neither extremely limited nor plentiful. Each

predictor entry contains a two-bit counter per processor in the system. On each request or response,

the predictor increments the corresponding counter. GROUP also increments the entry’s rollover

counter; when the value of this counter reaches twice the number of processors, the predictor

decrements all 2-bit counters in the entry and resets the rollover counter to zero. This train-down

mechanism ensures that the predictor eventually removes inactive processors from the destination

set (i.e., removes processors that are no longer accessing the block). GROUPshould work well on

a large multiprocessor system in which not all processors are working on the same aspect of the

computation or when the system is logically partitioned.

150

9.2.5 Capturing Spatial Predictability via Macroblock Indexing

Our predictors capture the significant spatial predictability exhibited by cache-to-cache misses

[79] by aggregating training information from several contiguous blocks (amacroblock) into a

single predictor entry. Consider a processor reading a large buffer that was recently written by

another processor. The last processor to write the buffer may be difficult to predict; however, once

a processor observes that several data blocks of the buffer were supplied by the same processor, a

macroblock-based predictor can learn to find other spatially-related blocks at that same processor.

To exploit this spatial predictability, we index these predictors with 1024-byte macroblock ad-

dresses by simply dropping the least significant four bits of the 64-byte coherence block address.

Macroblock indexing has the additional benefit of increasing the effective reach of the predictor,

thereby reducing pressure on the predictor’s capacity. Martinet al. [79] also explored program-

counter based prediction and some hybrid predictors. We use macroblock index predictors because

this previous work indicated they perform well in practice.

9.3 Evaluation of TOKEN M

We use four questions to present evidence that TOKENM captures much of the bandwidth-

efficiency of TOKEND while achieving much of the low latency for cache-to-cache transfers as

with TOKENB. Table 9.2 contains the raw data used to answer these questions.

9.3.1 Question#1: Does TOKEN M Use Less Traffic than TOKEN B?

Answer: Yes; TOKENM uses the same as or less traffic than TOKENB. As shown in Fig-

ure 9.3 and Figure 9.4, the specific amount of traffic reduction depends on the predictor employed:

BCAST-IF-SHARED uses 26–51% less endpoint traffic and 7–14% less interconnect traffic than

TOKENB, GROUP uses 62–69% less endpoint traffic and 19–20% less interconnect traffic than

TOKENB, and OWNER uses 72–75% less endpoint traffic and 21–24% less interconnect traffic

than TOKENB.

151

configuration al
lc

yc
le

s
pe

r
tr

an
sa

ct
io

n

L2
m

is
se

s
pe

r
tr

an
sa

ct
io

n

in
st

ru
ct

io
ns

pe
r

tr
an

sa
ct

io
n

cy
cl

es
pe

r
in

st
ru

ct
io

n

m
is

se
s

pe
r

th
ou

sa
nd

in
st

ru
ct

io
ns

en
dp

oi
nt

m
sg

s
pe

r
m

is
s

in
te

rc
on

ne
ct

by
te

s
pe

r
m

is
s

SPECjbb
Perfect L2 19,903 NA 54,820 0.36 NA NA NA
TokenB 36,604 180 56,911 0.64 3.17 18.20 376.51
TokenM (BcastShared) - fast 37,015 180 56,878 0.65 3.17 8.86 322.54
TokenM (BcastShared) - slow 37,849 182 56,913 0.67 3.20 8.95 322.95
TokenM (Group) - fast 37,504 181 56,999 0.66 3.18 5.64 305.84
TokenM (Group) - slow 38,696 181 57,053 0.68 3.19 5.64 305.14
TokenM (Owner) - fast 37,853 180 57,049 0.66 3.16 4.64 296.22
TokenM (Owner) - slow 39,638 181 57,158 0.69 3.18 4.64 295.29
TokenD - fast 38,764 182 57,121 0.68 3.20 4.53 295.07
TokenD - slow 41,985 182 57,370 0.73 3.18 4.52 295.73

Apache
Perfect L2 176,559 NA 273,711 0.65 NA NA NA
TokenB 534,197 3,833 339,043 1.56 11.15 18.16 332.93
TokenM (BcastShared) - fast 565,363 3,922 356,656 1.60 11.16 10.46 288.80
TokenM (BcastShared) - slow 559,364 3,833 335,966 1.68 11.44 10.43 289.46
TokenM (Group) - fast 561,300 3,883 345,907 1.62 11.29 6.22 265.61
TokenM (Group) - slow 619,625 3,978 375,616 1.65 10.62 6.21 265.21
TokenM (Owner) - fast 559,769 3,802 340,426 1.63 10.90 4.79 255.01
TokenM (Owner) - slow 666,077 4,113 403,831 1.66 10.23 4.81 254.02
TokenD - fast 599,928 3,910 361,479 1.66 10.92 4.62 252.38
TokenD - slow 727,229 4,176 405,382 1.79 10.14 4.60 251.13

OLTP
Perfect L2 1,747,629 NA 3,385,566 0.52 NA NA NA
TokenB 5,727,614 42,412 5,802,205 0.99 7.28 18.36 306.82
TokenM (BcastShared) - fast 5,761,074 40,861 5,469,998 1.04 7.38 13.53 283.99
TokenM (BcastShared) - slow 6,464,493 43,578 5,937,644 1.09 7.34 13.48 283.54
TokenM (Group) - fast 6,005,692 41,863 5,866,853 1.03 7.10 6.97 248.04
TokenM (Group) - slow 6,972,473 44,364 6,576,820 1.07 6.78 6.96 247.80
TokenM (Owner) - fast 6,741,946 44,638 7,050,252 0.98 6.54 5.18 233.26
TokenM (Owner) - slow 7,829,489 45,522 8,768,484 0.91 5.17 5.22 233.86
TokenD - fast 6,978,361 47,241 6,515,156 0.99 6.39 4.90 229.78
TokenD - slow 9,109,960 45,520 10,398,260 0.89 4.45 4.98 230.54

Table 9.2 TOKEN M Results for the TORUS Interconnect. The metrics presented in this table
were described in Table 6.2 on page 101.

152

0.0

0.5

1.0
en

dp
oi

nt
 m

es
sa

ge
s

(n
or

m
al

iz
ed

 m
es

sa
ge

s
pe

r m
is

s) Endpoint Traffic: TokenM

Writeback control messages
Acknowledgment & miscellaneous control messages
Reissued & persistent requests (token only)
Requests & forwarded requests
Data response and writeback data messages

T
ok

en
B

T
ok

en
M

 (B
ca

st
Sh

ar
ed

)
T

ok
en

M
 (G

ro
up

)
T

ok
en

M
 (O

w
ne

r)
T

ok
en

D
D

ir
ec

to
ry

SPECjbb

T
ok

en
B

T
ok

en
M

 (B
ca

st
Sh

ar
ed

)
T

ok
en

M
 (G

ro
up

)
T

ok
en

M
 (O

w
ne

r)
T

ok
en

D
D

ir
ec

to
ry

Apache

T
ok

en
B

T
ok

en
M

 (B
ca

st
Sh

ar
ed

)
T

ok
en

M
 (G

ro
up

)
T

ok
en

M
 (O

w
ne

r)
T

ok
en

D
D

ir
ec

to
ry

OLTP

Figure 9.3 Endpoint Traffic of T OKEN M, T OKEN D, TOKEN B and DIRECTORY . This
graph shows the endpoint traffic (in normalized messages per miss) of TOKENB, TOKENM,
TOKEND, and DIRECTORY on the TORUS interconnect. The TOKENM policy uses three spe-
cific prediction policies: BCAST-IF-SHARED, GROUP, and OWNER.

9.3.2 Question#2: Does TOKEN M Outperform T OKEN D?

Answer: Yes; TOKENM performs the same as or better than TOKEND. Figure 9.5 shows the

relative performance of TOKENM without the effect of interconnect contention. In such a situation,

TOKENB will always be fastest. However, we already discussed the relative traffic comparison of

the protocols in question #1. The specific amount of performance increase of TOKENM over

TOKEND depends on the predictor employed and speed of the directory:

153

0.0

0.5

1.0
T

or
us

 in
te

rc
on

ne
ct

 tr
af

fi
c

(n
or

m
al

iz
ed

 b
yt

es
 p

er
 m

is
s) Interconnect Traffic: TokenM

Writeback control messages
Acknowledgment & miscellaneous control messages
Reissued & persistent requests (token only)
Requests & forwarded requests
Data response and writeback data messages

T
ok

en
B

T
ok

en
M

 (B
ca

st
Sh

ar
ed

)
T

ok
en

M
 (G

ro
up

)
T

ok
en

M
 (O

w
ne

r)
T

ok
en

D
D

ir
ec

to
ry

SPECjbb

T
ok

en
B

T
ok

en
M

 (B
ca

st
Sh

ar
ed

)
T

ok
en

M
 (G

ro
up

)
T

ok
en

M
 (O

w
ne

r)
T

ok
en

D
D

ir
ec

to
ry

Apache

T
ok

en
B

T
ok

en
M

 (B
ca

st
Sh

ar
ed

)
T

ok
en

M
 (G

ro
up

)
T

ok
en

M
 (O

w
ne

r)
T

ok
en

D
D

ir
ec

to
ry

OLTP

Figure 9.4 Interconnect Traffic of TOKEN M, T OKEN D, TOKEN B and DIRECTORY . This
graph shows the interconnect traffic (in normalized bytes per miss) of TOKENB, TOKENM, TO-
KEND, and DIRECTORY on the TORUS interconnect. The TOKENM policy uses three specific
prediction policies: BCAST-IF-SHARED, GROUP, and OWNER.

• When using the fast directory: OWNER is 2–7% faster than TOKEND, GROUP is 3–16%

faster then TOKEND, and BCAST-IF-SHARED is 5–21% faster then TOKEND. For compar-

ison, TOKENB is 6–22% faster than TOKEND.

• When using the slow directory: OWNER is 6–16% faster than TOKEND, GROUP is 9–31%

faster then TOKEND, and BCAST-IF-SHARED is 11–41% faster then TOKEND. For compar-

ison, TOKENB is 15–59% faster than TOKEND.

154

0.0

0.5

1.0

1.5
no

rm
al

iz
ed

 ru
nt

im
e

Runtime: TokenM

Effect of directory access latency
Perfect L2

T
ok

en
B

 -
T

or
us

T
ok

en
M

 (B
ca

st
Sh

ar
ed

) -
 T

or
us

T
ok

en
M

 (G
ro

up
) -

 T
or

us
T

ok
en

M
 (O

w
ne

r)
 -

T
or

us
T

ok
en

D
 -

T
or

us
D

ir
ec

to
ry

 -
T

or
us

SPECjbb

T
ok

en
B

 -
T

or
us

T
ok

en
M

 (B
ca

st
Sh

ar
ed

) -
 T

or
us

T
ok

en
M

 (G
ro

up
) -

 T
or

us
T

ok
en

M
 (O

w
ne

r)
 -

T
or

us
T

ok
en

D
 -

T
or

us
D

ir
ec

to
ry

 -
T

or
us

Apache

T
ok

en
B

 -
T

or
us

T
ok

en
M

 (B
ca

st
Sh

ar
ed

) -
 T

or
us

T
ok

en
M

 (G
ro

up
) -

 T
or

us
T

ok
en

M
 (O

w
ne

r)
 -

T
or

us
T

ok
en

D
 -

T
or

us
D

ir
ec

to
ry

 -
T

or
us

OLTP

Figure 9.5 Runtime of TOKEN M, T OKEN D, TOKEN B and DIRECTORY . This graph shows
the runtime of TOKENB, TOKENM, TOKEND, and DIRECTORY on the TORUS interconnect
with unbounded link bandwidth. The TOKENM policy uses three specific prediction policies:
BCAST-IF-SHARED, GROUP, and OWNER.

As discussed next, the relative performances of these protocols is also affected by interconnect

contention (because they use more traffic than TOKEND).

9.3.3 Question#3: Is TOKEN M Always Better than T OKEN B and TOKEN D?

Answer: No; While TOKENM captures many of the benefits of TOKENB and TOKEND by

providing an attractive bandwidth/latency tradeoff, TOKENB has a lower average latency and TO-

KEND is more bandwidth efficient than TOKENM. Neither protocol is always best; as with the

155

SPECjbb Apache OLTP
0 1 P.R. 0 1 P.R. 0 1 P.R.

TokenB 99.5 0.2 0.3 99.1 0.7 0.2 97.5 1.6 1.0
TokenM (BcastShared)99.5 0.2 0.3 99.0 0.7 0.3 97.7 1.4 0.9
TokenM (Group) 99.5 0.2 0.3 99.1 0.6 0.2 97.9 1.3 0.8
TokenM (Owner) 99.5 0.1 0.3 99.1 0.6 0.3 97.9 1.2 0.9
TokenD 99.6 0.1 0.3 99.4 0.4 0.2 98.3 0.9 0.8

Table 9.3 TOKEN M Reissued Requests.This table shows the percent of cache misses that
succeed the first transient request and thus are not reissued even once (the “0” column), are reissued
once and succeed on this second transient request (the “1” column), and invoke a persistent request
(the “P.R.” column).

comparison between TOKEND and TOKENB, TOKENM provides additional design points in the

space of bandwidth/latency tradeoffs in cache coherence protocols.

9.3.4 TOKEN M Results Summary

The relative attractiveness of TOKENB, TOKEND, and TOKENM is a bandwidth/latency trade-

off. It depends on the cost of bandwidth, the amount of interconnect bandwidth, the amount of

endpoint controller bandwidth, and system size. Experiments with 4GB/second link bandwidth

for 16 processors (not shown), indicates no significant performance advantage for TOKENM or

TOKEND over TOKENB.

However, TOKENM provides some attractive design points that might result in a cheaper or

more scalable system than TOKENB while capturing most of TOKENB’s performance. For ex-

ample, TOKENM with the OWNER predictor uses 21–24% less interconnect traffic than TOKENB

(only 0–2% more than TOKEND), and OWNER is 6–16% faster than TOKEND. Since the OWNER

predictor only includes one other processor, its traffic is independent of number of processors in

the system, and thus it maintains its bandwidth efficiency as system size increases. The end re-

sult is a protocol that is faster than TOKEND (and thus DIRECTORY) with a negligible amount of

additional traffic. Similarly, BCAST-IF-SHARED results in a protocol that is slightly slower than

TOKENB with a significant reduction in traffic.

156

9.4 Related Work

We are not the first to apply prediction to coherence protocols or observe that processor can

predict the necessary recipients of coherence protocol messages. However, these previous pro-

posals required complicated protocols or protocol extensions. By multicasting transient requests,

Token Coherence provides a simpler implementation of these proposals, while eliminating the

totally-ordered interconnect required by some proposals (e.g., [20, 79, 114]) and complex races in

other proposals (e.g., [3, 4, 20, 79]). This chapter relied heavily on our previous investigation of

destination-set prediction [79].

In many respects, TOKENM is a simpler implementation of Multicast Snooping [20, 114] with-

out any interconnect ordering requirements. Sorinet al. [114] introduced an optimization to Mul-

ticast Snooping that reduced the latency of failed destination-set predictions by allowing the direc-

tory to immediately reissue the request (similar to forwarding the request in a directory protocol);

TOKENM adopts a similar approach to handling insufficient destination-set predictions.

Acacio et al. [3, 4] extended a traditional directory protocol to exploit a limited form of

destination-set prediction. These two proposals target read requests and write requests separately,

and rely upon complicated race-resolution mechanisms that limit cases in which a processor can

use prediction. Although these two proposals do not require a totally-ordered interconnect (un-

like Multicast Snooping [20, 114]), they are still significantly more complicated than a traditional

directory protocol.

Many other researchers have examined or exploited other forms of coherence prediction (e.g.,

dynamic self-invalidation [70, 73]). Coherence predictors have been indexed with addresses [92],

program counters [63], message history [69], and other state [64]. Researchers have also developed

protocols that optimize for specific sharing behaviors [19], read-modify-write sequences [94, 95],

and migratory sharing [31, 115]. Other hybrid protocols adapt between write-invalidate and write-

update [12, 34, 62, 90, 110], by migrating data near to where it is being used [37, 48, 125] or by

adapting to available bandwidth [84].

157

Chapter 10

Conclusions

In this chapter we review our finds on Token Coherence (Section 10.1), and outline Token

Coherence’s future directions and further challenges (Section 10.2). Finally, I reflect on the current

state of cache coherence and provide some unsubstantiated opinions concerning the design of

future multiprocessors (Section 10.3).

10.1 Token Coherence Summary and Conclusions

We have introduced Token Coherence, a new framework for cache coherence that decouples

performance and correctness. We motivated the desire for such a framework by highlighting the

performance limiting attributes of current protocols (indirection and totally-ordered interconnects).

We described the relationship between Token Coherence and the traditional MOESI states and dis-

cussed the current state of the art of coherence protocol design. We described the operation and

implementation of the correctness substrate which uses token counting to ensure safety and persis-

tent requests to prevent starvation. We outlined the approach of using performance policies to guide

the operation of the system, and explained that such policies have no correctness requirements be-

cause the correctness substrate is ultimately in control. We then showed the general applicability

and flexibility of this decoupled approach by exploring three proof-of-concept performance poli-

cies: TOKENB, TOKEND, and TOKENM.

We motivated and described these three performance policies, and used a state-of-the-art sim-

ulation infrastructure to quantitatively evaluate the protocols. Our results show:

158

• TOKENB, our broadcast-based performance policy, can outperform both snooping protocols

(by avoiding the higher latency of a totally-ordered interconnect) and directory protocols (by

avoiding indirection for frequent cache-to-cache misses).

• TOKEND allows Token Coherence to approximate the latency and traffic characteristics of

a directory protocol. Although TOKEND is not faster than TOKENB for the 16-processor

systems with high-speed links that we simulated, TOKEND uses much less bandwidth as the

number of processors in the system increases.

• TOKENM, a hybrid of TOKENB and TOKEND that uses destination-set prediction, provides

a range of design points in the space of bandwidth/latency tradeoffs. Depending on the

specific predictor being used, TOKENM can achieve (1) the low latency of TOKENB while

using less bandwidth, (2) the bandwidth efficiency of TOKEND while reducing the number

of indirections, or (3) most of both the latency benefits of TOKENB and the traffic advantages

of TOKEND.

We conclude that Token Coherence is an attractive substrate for building future cache-coherent

multiprocessors. Token Coherence can emulate the desirable characteristics of existing protocols

while reducing protocol requirements by not relying on a totally-ordered interconnect or on the

accuracy of the directory state that encodes the sharers and owner. In addition, Token Coherence’s

flexibility allows for the creation of hybrid protocols with only minor changes over the base proto-

cols, and the resulting hybrid protocols can provide attractive protocols that provide a good balance

between uncontended latency and system traffic.

10.2 Future Directions and Further Challenges

Although this dissertation has mostly focused on the performance characteristics of three par-

ticular performance policies, we believe that Token Coherence has other desirable attributes that

were not fully explored in this dissertation.

159

10.2.1 How Else Can Systems Exploit Token Coherence’s Flexibility?

Token Coherence’s separation of correctness and performance provides great flexibility. We

exploit this flexibility in this dissertation by creating better implementations of existing proto-

cols (TOKENB and TOKEND) and creating a hybrid protocol based on destination-set prediction

(TOKENM). However, Token Coherence’s flexibility may provide significant additional opportu-

nities. In Section 5.4 we briefly described several other potentially attractive performance poli-

cies. These examples include bandwidth-adaptive hybrids, protocols that reduce miss frequency

by predictively pushing data between system components, multi-block prefetch, more pragmatic

hierarchical systems, and techniques for reducing the frequency of persistent requests. By using

the substrate to ensure correctness, system designers can implement these optimizations with lit-

tle impact on system complexity. These policies are just a few examples of the many possible

applications of Token Coherence’s flexibility.

Token Coherence may also be a good synergistic match for implementing recently proposed

synchronization enhancements [105, 106, 107, 108]. Implementations of these proposals might

benefit from Token Coherence’s flexibility by allowing the system to defer responses and change

the order in which processors receive responses or observe requests. It may even be possible

to combine the conflict resolution techniques proposed for Transactional Lock Removal (TLR)

[107] and our starvation-avoidance mechanism, resulting in one mechanism for handling these

two somewhat similar issues. An investigation into combining these mechanisms might result in

new insights into both proposals.

10.2.2 Is There a Better Way to Prevent Starvation?

In this dissertation, we presented several mechanisms for preventing starvation based upon

persistent requests. Although the worst-case performance, traffic, implementation overhead, and

complexity of these persistent request mechanisms appears reasonable, other approaches not yet

invented may provide a better solution. However, a greatly simplified approach for preventing star-

vation would make Token Coherence a more attractive option for future multiprocessor systems.

160

In essence, if further research produced a better approach than token counting for enforcing safety,

we would be disappointed; however, if further research produced a better approach for preventing

starvation, we would be delighted.

10.2.3 Does Token Coherence Simplify Coherence Protocol Implementation?

Cache coherence protocols are traditionally complicated and error prone, and errors in the co-

herence protocol can cause system deadlocks (bad) or silently corrupt data (worse). These protocol

errors are often difficult to diagnose because they can be subtle and difficult to reproduce. Coher-

ence errors often manifest as unintended behavior in low-level system software (such as a system

crash or software deadlock), further obscuring the design mistake. As a result, designers invest sig-

nificant resources verifying the protocol’s design and implementation by employing a combination

of model checking, other formal methods, and extensive simulation-based design validation.

We believe (but have not yet convincingly shown) that Token Coherence is a simpler and less

error prone approach to building a cache-coherent memory system. We describe four reasons this

assertion might be true.

• First, some aspects of our token-based protocols are conceptually simpler than in traditional

protocols. For example, writing back a dirty block in Token Coherence involves simply

sending a message back the memory. No extra writeback acknowledgment messages or rea-

soning about complicated writeback races are needed. In contrast, writebacks in traditional

protocols often create difficult to resolve races that substantially complicate the protocol. In

Token Coherence, if a request and writeback occur at the same time, the request will simply

be reissued later and likely find the block at the memory. In general, Token Coherence uses

its ability to reissue requests as a powerful and unified mechanism for handling many types

of races and uncommon-case situations.

• Second, the token-counting rules provide a strong and simple foundation for safety. De-

signers can focus the bulk of the verification effort on the safety aspect of the correctness

substrate, and as long as these token rules are enforced, the state of the system cannot be

161

corrupted. For example, if a design mistake manifests while sending a transient request or

when updating the soft-state directory, the system will still function correctly.

• Third, if a protocol design mistake causes incorrect behavior, deadlock or livelock is greatly

preferred over data corruption.1 Much of the new complexity in Token Coherence as de-

scribed in this dissertation lies in the starvation prevention mechanism described in Chap-

ter 4. An implementation error in such a mechanism might cause system livelock, but it

will not corrupt system data. In some cases, software may interpose and recover from these

deadlocks or livelocks by temporarily suspending system activity. Alternatively, the hard-

ware may be able to halt the system, drain the interconnect, enter a slow-start mode, and

eventually resume normal execution. Many current systems have such mechanisms, and

they may be even more effective when applied to a system that uses Token Coherence.

• Fourth, the delegation of many performance enhancements to the performance policy en-

ables simple correctness reasoning, even about complicated protocols. This ability allows

for simple implementation of some protocols that might otherwise be too complicated to

implement. For example, in our experience with both TOKENM and protocols based on the

original Multicast Snooping protocol [20, 84, 114], TOKENM is much simpler than these

other two protocols—even though both protocols exploit destination-set prediction. Feed-

back that we received on Multicast Snooping [20, 114] and our bandwidth adaptive protocol

[84] indicated that while interesting academic proposals, these protocols would perhaps be

too complicated to implement as proposed. Based on our table-driven specification of these

protocols [114] and our experience with Token Coherence, we find that the versions of these

protocols based on Token Coherence are much simpler.

In an effort to more solidly support out above assertions, we are actively working toward a

more formal (and quantitative) understanding of Token Coherence’s complexity.

1An example of this “fail-safe” design philosophy is using parity in memory; parity cannot correct
memory errors (ECC is needed to correct bit errors), but a hardware parity error alerts the operating system
to crash the system before the corrupt data affects the system. Colloquially, designers sometimes talk about
using such a mechanism to “avoid issuing an (erroneous) million-dollar check.”

162

10.3 Reflections on Cache-Coherent Multiprocessors

In this section, I share some observations and opinions concerning multiprocessor systems.2

These opinions are based on five years of academic research on multiprocessor systems and work-

loads, many conversations with system designers, and a summer spent working in industry. These

opinions are based my experiences, and they are just that: opinions. Although these opinions are

not supported by hard evidence, they may provide insight to those interested in Token Coherence.

Some of these options may be obvious and some may be controversial, but they reflect my current

thoughts on multiprocessor system design; I reserve the right to change my mind about them later.

I advocate optimizing for migratory sharing (Section 10.3.1), decoupling coherence and consis-

tency (Section 10.3.2), avoiding relying on a total order of requests (Section 10.3.3), revisiting the

snooping versus directory protocol debate (Section 10.3.4), designing cost-effective multiproces-

sor systems (Section 10.3.5), and embracing the increasing influence of chip multiprocessors on

system design (Section 10.3.6).

10.3.1 Optimize For Migratory Sharing

Multiprocessors should optimize for migratory sharing using either the approach described in

Section 2.2.4 or a similar approach [31, 115]. Anecdotal evidence from our past experiments

using protocols thatdid notoptimize for migratory sharing and our more recent experiment using

protocols thatdid optimize for migratory sharing, indicates that such an optimization has a first-

order performance impact in that it reduces the number of misses, improving both average memory

access latency and system traffic. The Alpha 21364/G1280 multiprocessor [33, 91] implements

such an optimization (although it is not well documented that it does), and I advocate that all

future systems should also include such an optimization. Academic research evaluations should

also use protocols that include this optimization to avoid skewing their results by capturing the

same improvements that might be more easily captured by targeting migratory sharing patterns.

2To emphasize that my past and current co-authors may not share these opinions, I use singular pronouns
in this section.

163

10.3.2 Decouple Coherence and Consistency

All cache coherence protocols should be designed to support sequential consistency. This state-

ment, however, does not imply that all multiprocessorsystemsshould support sequential consis-

tency,3 but rather the system should decouple coherence and consistency: thecoherence protocol

should provide a strict coherence interface and mechanisms sufficient to provide a serializable view

of memory. Theprocessorshould interact with that interface to provide whatever memory model

the processor designer deems necessary (using prefetching and various speculative techniques to

aggressively implement the consistency model [6, 40, 43, 83, 98, 109, 126]).

The only role of the coherence protocol should be to inform the processor when it can read

a block and when it can write a block. This notion closely corresponds with the multiple-reader-

single-writer coherence invariant described earlier in Section 2.1, and it can be directly enforced

using token counting (i.e., all to write, at least one to read). Such a coherence protocol (1) pro-

vides a simple interface to the processor and (2) allows the processor to aggressively implement

the desired consistency model. To clarify these points, consider the implementation of memory

barrier/ordering operations (used to establish memory ordering). A system that follows the above

philosophy can quickly handle memory barriers completely within the processor core, freeing the

coherence protocol from providing special-purpose operations with complicated semantics.

Although some systems have adopted such a design philosophy (e.g., the SGI Origin 2000

[72]), many systems do not. Those systems intertwine coherence and consistency through the

system, often relying on a patchwork of special ordering properties of processor queues and a

total order of requests via a totally-ordered interconnect to carefully and delicately orchestrate the

desired consistency model.

3Although—like Hill [56]—I believe multiprocessor systems should support simple memory consistency
models.

164

10.3.3 Avoid Reliance on a Total Order of Requests

We have argued in this dissertation that a protocol that relies on total order of requests4 is

undesirable due to the higher latency or cost of a totally-ordered interconnect. In this section I argue

that relying on a total order is undesirable because it fundamentally intertwines the processing of

different addresses.

In protocols that do not rely on a total order of requests—e.g., traditional directory proto-

cols (Section 2.5), AMD’s Hammer protocol (Section 2.6), and all Token Coherence protocols—

requests and responses for different blocks have no need to unduly influence each other. Only

when a processor decides to commit a read or write to a block does the processor need to consider

the interactions with reads and writes to other blocks to ensure the particular access is within the

bounds allowed by the system’s consistency model. In contrast, in systems that rely on a total order

of requests, requests (and sometimes responses) for different addresses must be kept in order with

respect to each other throughout the system. This requirement forces cache controllers to process

the requests in order (or give the appearance that the requests were processed in order). To use a

uniprocessor analogy, relying on a total order of requests introduces “dependences” (both true and

false dependencies) between requests for various blocks.

More concretely, relying on a total order of requests has one minor advantage and three sig-

nificant disadvantages. The minor advantage is that relying on a total order of requests allows the

system to avoid explicit acknowledgment messages, because the total order enables the requester

to infer when invalidations have logically occurred. In essence, invalidations occur in logical time

and not physical time (as we briefly discussed in Section 2.1). The traffic savings of implicit ac-

knowledgments is minor because the non-data acknowledgment messages are both small and sent

infrequently (as shown in Figure 6.3 on page 108). In certain cases, implicit acknowledgments may

reduce the latency of upgrade requests, but—as we argued in Section 2.2.5—upgrade requests are

often infrequent (especially when a migratory sharing optimization is employed).

4Recall that we defined the termtotal order in Section 2.3. Systems that depend on a total order of re-
quests include traditional snooping protocols (Section 2.4) and some directory protocols (e.g., AlphaServer
GS320 [41]).

165

First disadvantage: logical time issues.The reliance on logical time directly results in the

first disadvantage of relying on a total order of requests: the coherence invariants must be speci-

fied in logical time, significantly complicating protocol verification. In such a system—even one

that provides sequential consistency—one processor is allowed to read an “old” value at the same

instant as another processor is reading a different, new value. Only after the processor reading

the old value’s logical time advances (by ingesting requests that might involve many different ad-

dresses) is the processor forbidden from reading the old value. In contrast, consider a system that is

both based on explicit invalidations (Token Coherence and traditional directory protocols) and sub-

scribes to the philosophy of decoupling coherence and consistency (as described in Section 10.3.2).

In such a system, processors are allowed to read only the most recently created value for a block;

i.e., only a single value for an address is allowed at any instant. We referred to this as thecoher-

ence invariantand discussed it earlier in Section 2.1. Enforcing such an invariant in physical time

should simplify verification of the protocol. In my experience, debugging protocols that rely on a

total order of requests5 is more difficult, partially because of the difficulty in separating true bugs

from false positives (events that were legal due to strange distortions in logical time). In contrast,

I found it easier to develop protocols that use a strong physical-time coherence invariant, because

it was simpler to detect and correct not just coherence bugs, but also subtle errors that would lead

to consistency violations.

Second disadvantage: in-order handling of messages.The second disadvantage of relying

on a total order of requests is that internal pathways and coherence controllers are perhaps more

difficult to bank (in the same manner in which memory and caches are banked for increased band-

width). For example, in a system that doesnot rely on a total order of requests, a second-level

cache can be easily segmented into many independent banks, each with its own coherence con-

troller that operates asynchronously with respect to the other banks. Each of these controllers need

provide only a small amount of bandwidth, because—in aggregate—all the controllers together

would provide sufficient bandwidth. Such unsynchronized banking is more difficult when the sys-

5I have collaborated with others to implement various snooping protocols, a GS320-like directory pro-
tocol [41], Timestamp Snooping [82], and Multicast Snooping [20, 114].

166

tem relies on a total order of requests. In such systems, the order in which requests are processed

by a cache controller is restricted. Although the processor may be able to process invalidations

early or delay its own incoming marker messages (borrowing the terminology used by Gharachor-

loo et al. [41]), other reordering may not be allowed. Enforcing these constraints complicates the

design and requires interaction between requests from different banks. Protocols that avoid such

restrictions can simplify high-performance controller design.

Third disadvantage: cost and latency of interconnect.The third disadvantage is the first-

order latency and cost issues of implementing a totally-ordered interconnect (described in Sec-

tion 2.3). Martinet al. [82] described both the problem and a technique to avoid these overheads;

however the technique is complex, delays non-speculative responses, and still suffers from the first

two disadvantages of relying on a total order of requests.

10.3.4 Revisit Snooping vs. Directory Protocols

The choice of coherence protocol is as complicated and subtle today as it has ever been, and

much of my research has focused on the relative merits of snooping protocols and directory pro-

tocols. In the past I have advocated the approach of improving coherence protocols by enhancing

snooping protocols to mitigate many of their disadvantages (e.g., [82, 84, 114]). Unfortunately,

these aggressive snooping protocols all rely on a total order of requests (and suffer from all the

related disadvantages). Token Coherence was originally invented to address the most serious dis-

advantages of these aggressive and/or predictive snooping systems (i.e., relying on a total order

of requests and complexity of predictive approaches). TOKENB provides a snooping-like system

without many of its disadvantages (a much better solution than Timestamp Snooping [82]) while

TOKENM enables a less complex approach for using destination-set prediction. Thus, Token Co-

herence achieved the goal of enabling better snooping systems.

In retrospect, however, the disadvantages of directory protocols are perhaps mitigated more

easily than the disadvantages of snooping protocols. The high latency of directory indirection

can be significantly reduced (but not eliminated) using a directory cache, and the cost of storing

directory information is greatly reduced by encoding these bits in the main memory’s DRAM

167

(as described in Section 2.5.3). In addition, the complexity of directory protocols and aggressive

broadcast snooping protocols is comparable, especially when considering that directory protocols

are a better match for the philosophy of decoupling coherence and consistency (Section 10.3.2).

When compared to snooping protocols, directory protocols still suffer extra indirection latency

for cache-to-cache misses. However, I believe that directory protocols are perhaps preferable to

traditional snooping protocols because of the cost, latency, and complexity advantages of avoiding

a total order of requests and the benefits of cleanly separating coherence and consistency. Another

attractive option might be to use a variant of one of the recent non-traditional protocols (e.g., a

more bandwidth-efficient variant of AMD’s Hammer protocol [9, 121]).

Fortunately, Token Coherence is not just a proposal for improving snooping protocols. Instead,

it is a framework for building a wide range of protocols that both subsumes and blurs the distinction

between snooping and directory protocols. Such protocols (1) can act as a better form of snooping

(e.g., TOKENB) or as a directory protocol (e.g., TOKEND), (2) avoid totally-ordered interconnects,

(3) subscribe to the separation of coherence and consistency, (4) can exploit prediction of various

forms (e.g., TOKENM), and (5) are perhaps less complicated than aggressive implementations of

traditional protocols.

10.3.5 Design Cost-Effective Multiprocessor Systems

Although the volume of academic research on multiprocessor computer architecture has de-

clined in recent years [57], the volume of multiprocessor systems being sold has never been

greater. The success of multiprocessor systems is not due to expensive large-scale multiproces-

sors with custom software (as many thought it would). Instead, the success of multiprocessor

systems has been due to moderate-size servers and cost-effective cluster nodes running commod-

ity operating systems. For example, vast computing infrastructures have been created by cluster-

ing cost-effective dual-processor systems (e.g., Intel x86) using commodity local area networking

(e.g., gigabit Ethernet) running an open-source operating system (e.g., Linux or a variant of BSD

Unix). Multiprocessor systems are used as cluster nodes because of their cost effectiveness over

single-processor systems (in terms of both hardware costs and total cost of ownership).

168

Cost effectiveness.The popularity of clusters has made cost effectiveness the primary design

criteria of multiprocessor systems and has forever doomed the possibility of wide-spread adoption

of scalable multiprocessors sold at a substantial price premium. Instead, multiprocessor designs

need to focus on being the most cost-effective source of computational resources. A multiprocessor

design should first be cost effective and then incrementally scaled to larger systems. A much more

difficult route is to design a system to be infinitely scalable (at great expense and higher latency)

and then trying to make the system cost effective.6 Unfortunately, much academic research has

focused on the second of these two approaches (by focusing on methods that allow for scaling

systems to hundreds or thousands of processors).

Cost-effective multiprocessors via resource sharing.Multiprocessor systems can be more

cost effective then uniprocessors—even if they are more expensiveper processor—by using re-

sources more efficiently by dynamically sharing them [124]. Multiprocessors allow many tasks to

dynamically share a large pool of system-wide resources (e.g., memory capacity, memory band-

width, disk capacity, disk bandwidth, and local-area network bandwidth). By using these resources

more efficiently, fewer resources are often required. Consider the following three examples:

• Dynamic resource allocation. Eight uniprocessor servers that each use 30% of a single

disk’s bandwidth (or capacity) could be coalesced into a single eight-processor server with

four disks used at 60% utilization (or capacity), reducing system cost by eliminating four

disks. Similarly, a cluster of uniprocessor servers with less than 100% average CPU utiliza-

tion can be coalesced into a smaller number of servers with fewer total processors.7

• Resource sharing.Greater benefit results when resources are shared among the tasks. For

example, consider several tasks that are all accessing the same 2GB read-only in-memory

6Hill [55] expressed a similar opinion in 1990 by stating “Thus, a company designing a new architecture
for which initial, low-end systems will have four processors may wish to consider ramifications for 80-
processor systems when making architectural decisions, but should probably implement the first system
with a bus. Furthermore, systems implementors should consider using ugly, unscalable things (e.g., buses
and broadcast) if such things simplify the design, reduce system cost, and improve performance.”

7System administrators can consolidate servers by simply running many tasks on one system, or they
may use more sophisticated techniques such as logical system partitioning or multiplexing many virtual
machines on one multiprocessor.

169

database. A cluster of eight uniprocessors might require 2GBs of DRAMeachto cache the

database (a total of 16GBs). In contrast, a single eight-processor system might require only

4GBs or 8GBs of DRAMtotal (by avoiding redundant copies of the database). Considering

that DRAM is often a major source of system cost, such sharing of resources can greatly

increase cost effectiveness [124].

• Reducing resource fragmentation.Finally, pooling resources reduces the amount of re-

sources wasted due to fragmentation. For example, a user has three 1.2 GB jobs to run on

two 2GB dual-processor machines. In this situation, the user can only run two jobs (a single

job on each machine). If the resources were pooled into a 4GB quad-processor system, the

user could run all three jobs in parallel.8

Although multiprocessor systems have many opportunities to provide cost-effective systems,

moderate-sized multiprocessors are currently priced too expensively to provide cost-effective com-

putation for many application domains. For example, although dual-processor systems are cost-

effective (currently approximately $3,000 each), eight-processor systems are currently 10 to 30

times more expensive (ideally they would be only four times more expensive). Only when system

cost is reduced through better design and system price is reduced by further competitive pressures

will these mid-sized multiprocessors become more common (which, in turn will further reduce

costs due to economies of scale). Currently, many companies price these systems to maintain high

margins from customers that demand servers with dozens of processors (and are willing to pay the

price premium).9

8This situation is not contrived; while generating results for this dissertation, I was often forced to run
only a single simulation task on a dual-processor cluster node due to memory capacity limitations.

9I had hoped AMD’s Opteron [9, 65, 121] (also known by its codename “Hammer”) would have sub-
stantially reduced the price of 8-processor systems. However, as of this writing, Opteron systems have not
yet become mainstream, and the Opteron processors for use in 4-processor and 8-processor systems are
priced more than three times higherper processorthan the almost-identical part for 2-processor systems
(as of November 2003, $3199 versus $913 per processor for the fastest model, $749 versus $198 per pro-
cessor for the slowest model). I believe that future products will be forced by market pressures to target
more cost-effective design points by bringing unit cost and price in greater parity. Such market forces may
present an opportunity for companies that either (1) do not have an established market for expensive mid-

170

10.3.6 The Increasing Importance of Chip Multiprocessors

The trend of increasingly integrated systems will continue to have a first-order effect on mul-

tiprocessor system design. We have argued in this dissertation that higher levels of integration

are influencing multiprocessor design by making totally-ordered interconnects less attractive. The

influence of increasing integration will perhaps be even stronger as increasing transistor budgets

make chip multiprocessors (CMPs) commonplace. All major manufactures have either shipped or

announced CMP designs. Just as the single-chip microprocessor provided a point of inflection in

the implementation trade-offs for processors, CMPs will change the implementation of multipro-

cessor systems. CMPs will have several major effects on multiprocessors:

• CMPs will enable even more cost-effective multiprocessors by reducing the number of dis-

crete components in the system.

• CMPs may change the design tradeoff between large processor cores (for highest unipro-

cessor performance using a large number of transistors) and more area-efficient cores (for

moderate per-core performance using dramatically fewer transistors).

• Scalability will be less important in both intra-chip and inter-chip coherence protocols. A

system with eight chips in the system, eight processors per chip, and four threads per pro-

cessor has 256 virtual processors. In such a system, the coherence protocol will likely be

arranged hierarchically, reducing the need for a protocol that focuses on scalability at any

single level of the protocol.

• Such multi-level and hierarchical coherence protocols often add complexity to already com-

plex systems.

The trend toward chip multiprocessors provides an opportunity for adoption of Token Coher-

ence. Token Coherence might reduce the complexity of the system by replacing a true hierarchical

sized multiprocessors (e.g., Intel, AMD, and Apple) or (2) are struggling to find new markets (e.g., Sun
Microsystems).

171

system with a single-level Token Coherence protocol that uses a performance policy to emulate the

performance characteristics of a multi-level coherence protocol. Such an approach should provide

the advantages of a multi-level protocol with less complexity. Token Coherence is also an attractive

protocol for use with on-chip point-to-point interconnects. Although some might advocate using a

bus-based snooping system on the chip, a highly-connected point-to-point interconnect avoids any

centralized arbitration or structures. In essence, Token Coherence is a good choice for CMPs for

the same reasons it is good choice for traditional multiprocessor systems.

172

Bibliography

[1] H. Abdel-Shafi, J. Hall, S. V. Adve, and V. S. Adve. An Evaluation of Fine-Grain Producer-
Initiated Communication in Cache-Coherent Multiprocessors. InProceedings of the Third
IEEE Symposium on High-Performance Computer Architecture, Feb. 1997.

[2] D. Abts, D. J. Lilja, and S. Scott. So Many States, So Little Time: Verifying Memory
Coherence in the Cray X1. InProceedings of the 17th International Parallel and Distributed
Processing Symposium (IPDPS), Apr. 2003.

[3] M. E. Acacio, J. Gonźalez, J. M. Garćıa, and J. Duato. Owner Prediction for Accelerating
Cache-to-Cache Transfers in a cc-NUMA Architecture. InProceedings of SC2002, Nov.
2002. URLhttp://doi.acm.org/10.1145/762761.762762.

[4] M. E. Acacio, J. Gonźalez, J. M. Garćıa, and J. Duato. The Use of Prediction for Accel-
erating Upgrade Misses in cc-NUMA Multiprocessors. InProceedings of the International
Conference on Parallel Architectures and Compilation Techniques, pages 155–164, Sept.
2002. URLhttp://doi.acm.org/10.1145/645989.674321.

[5] S. V. Adve and K. Gharachorloo. Shared Memory Consistency Models: A Tutorial.IEEE
Computer, 29(12):66–76, Dec. 1996.

[6] S. V. Adve, V. S. Pai, and P. Ranganathan. Recent Advances in Memory Consistency Models
for Hardware Shared Memory Systems.Proceedings of the IEEE, 87(3):445–455, Mar.
1999.

[7] A. Agarwal, R. Bianchini, D. Chaiken, K. L. Johnson, D. Kranz, J. Kubiatowicz, B.-H. Lim,
K. Mackenzie, and D. Yeung. The MIT Alewife machine: Architecture and Performance. In
Proceedings of the 22nd Annual International Symposium on Computer Architecture, pages
2–13, June 1995. URLhttp://doi.acm.org/10.1145/223982.223985.

[8] A. Agarwal, R. Simoni, M. Horowitz, and J. Hennessy. An Evaluation of Directory Schemes
for Cache Coherence. InProceedings of the 15th Annual International Symposium on Com-
puter Architecture, pages 280–289, May 1988.

[9] A. Ahmed, P. Conway, B. Hughes, and F. Weber. AMD Opteron Shared Memory MP
Systems. InProceedings of the 14th HotChips Symposium, Aug. 2002. URLhttp://www.
hotchips.org/archive/hc14/program/28_AMD_Hammer_MP_HC_v8.pdf.

http://doi.acm.org/10.1145/762761.762762
http://doi.acm.org/10.1145/645989.674321
http://doi.acm.org/10.1145/223982.223985
http://www.hotchips.org/archive/hc14/program/28_AMD_Hammer_MP_HC_v8.pdf
http://www.hotchips.org/archive/hc14/program/28_AMD_Hammer_MP_HC_v8.pdf

173

[10] A. R. Alameldeen, M. M. K. Martin, C. J. Mauer, K. E. Moore, M. Xu, D. J. Sorin, M. D.
Hill, and D. A. Wood. Simulating a $2M Commercial Server on a $2K PC.IEEE Computer,
36(2):50–57, Feb. 2003. URLhttp://dx.doi.org/10.1109/MC.2003.1178046.

[11] A. R. Alameldeen and D. A. Wood. Variability in Architectural Simulations of Multi-
threaded Workloads. InProceedings of the Ninth IEEE Symposium on High-Performance
Computer Architecture, pages 7–18, Feb. 2003.

[12] C. Anderson and A. R. Karlin. Two Adaptive Hybrid Cache Coherency Protocols. In
Proceedings of the Second IEEE Symposium on High-Performance Computer Architecture,
Feb. 1996.

[13] J. Archibald and J.-L. Baer. An Economical Solution to the Cache Coherence Problem. In
Proceedings of the 11th Annual International Symposium on Computer Architecture, pages
355–362, June 1984. URLhttp://doi.acm.org/10.1145/800015.808205.

[14] J. Archibald and J.-L. Baer. Cache Coherence Protocols: Evaluation Using a Multiprocessor
Simulation Model. ACM Transactions on Computer Systems, 4(4):273–298, Nov. 1986.
URL http://doi.acm.org/10.1145/6513.6514.

[15] M. Azimi, F. Briggs, M. Cekleov, M. Khare, A. Kumar, and L. P. Looi. Scalability Port: A
Coherent Interface for Shared Memory Multiprocessors. InProceedings of the 10th Hot In-
terconnects Symposium, pages 65–70, Aug. 2002. URLhttp://www.hoti.org/archive/
hoti10/program/Kumar_ScalabilityPort.pdf.

[16] P. Barford and M. Crovella. Generating Representative Web Workloads for Network and
Server Performance Evaluation. InProceedings of the 1998 ACM Sigmetrics Conference on
Measurement and Modeling of Computer Systems, pages 151–160, June 1998.

[17] L. A. Barroso, K. Gharachorloo, and E. Bugnion. Memory System Characterization of
Commercial Workloads. InProceedings of the 25th Annual International Symposium on
Computer Architecture, pages 3–14, June 1998.

[18] L. A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer, B. Sano, S. Smith,
R. Stets, and B. Verghese. Piranha: A Scalable Architecture Based on Single-Chip Mul-
tiprocessing. InProceedings of the 27th Annual International Symposium on Computer
Architecture, pages 282–293, June 2000.

[19] J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Adaptive Software Cache Management for
Distributed Shared Memory Architectures. InProceedings of the 17th Annual International
Symposium on Computer Architecture, pages 125–135, May 1990.

[20] E. E. Bilir, R. M. Dickson, Y. Hu, M. Plakal, D. J. Sorin, M. D. Hill, and D. A. Wood.
Multicast Snooping: A New Coherence Method Using a Multicast Address Network. In
Proceedings of the 26th Annual International Symposium on Computer Architecture, pages
294–304, May 1999.

http://dx.doi.org/10.1109/MC.2003.1178046
http://doi.acm.org/10.1145/800015.808205
http://doi.acm.org/10.1145/6513.6514
http://www.hoti.org/archive/hoti10/program/Kumar_ScalabilityPort.pdf
http://www.hoti.org/archive/hoti10/program/Kumar_ScalabilityPort.pdf

174

[21] J. Borkenhagen and S. Storino. 4th Generation 64-bit PowerPC-Compatible Commercial
Processor Design. IBM Server Group Whitepaper, Jan. 1999. URLhttp://www.ibm.

com/servers/eserver/pseries/hardware/whitepapers/nstar.html.

[22] J. M. Borkenhagen, R. J. Eickemeyer, R. N. Kalla, and S. R. Kunkel. A Multithreaded
PowerPC Processor for Commercial Servers.IBM Journal of Research and Development,
44(6):885–898, Nov. 2000.

[23] J. M. Borkenhagen, R. D. Hoover, and K. M. Valk. EXA Cache/Scalability Controllers.
In IBM Enterprise X-Architecture Technology: Reaching the Summit, pages 37–50. Interna-
tional Business Machines, 2002.

[24] L. M. Censier and P. Feautrier. A New Solution to Coherence Problems in Multicache
Systems.IEEE Transactions on Computers, C-27(12):1112–1118, Dec. 1978.

[25] A. Charlesworth. Starfire: Extending the SMP Envelope.IEEE Micro, 18(1):39–49, Jan/Feb
1998.

[26] A. Charlesworth. The Sun Fireplane Interconnect. InProceedings of SC2001, Nov. 2001.

[27] A. Charlesworth. The Sun Fireplane SMP Interconnect in the Sun 6800. InProceedings of
the 9th Hot Interconnects Symposium, Aug. 2001.

[28] C. L. Chen and M. Y. Hsiao. Error-Correcting Codes for Semiconductor Memory Applica-
tions: A State-of-the-Art Review.IBM Journal of Research and Development, 28(2), Mar.
1984.

[29] A. Condon and A. J. Hu. Automatable Verification of Sequential Consistency. InProceed-
ings of the Thirteenth ACM Symposium on Parallel Algorithms and Architectures, pages
113–121, July 2001.

[30] A. E. Condon, M. D. Hill, M. Plakal, and D. J. Sorin. Using Lamport Clocks to Reason
About Relaxed Memory Models. InProceedings of the Fifth IEEE Symposium on High-
Performance Computer Architecture, pages 270–278, Jan. 1999.

[31] A. L. Cox and R. J. Fowler. Adaptive Cache Coherency for Detecting Migratory Shared
Data. InProceedings of the 20th Annual International Symposium on Computer Architec-
ture, pages 98–108, May 1993.

[32] D. E. Culler and J. Singh.Parallel Computer Architecture: A Hardware/Software Approach.
Morgan Kaufmann Publishers, Inc., 1999.

[33] Z. Cvetanovic. Performance analysis of the Alpha 21364-based HP GS1280 multiproces-
sor. InProceedings of the 30th Annual International Symposium on Computer Architecture,
pages 218–229, June 2003. URLhttp://doi.acm.org/10.1145/859618.859643.

http://www.ibm.com/servers/eserver/pseries/hardware/whitepapers/nstar.html
http://www.ibm.com/servers/eserver/pseries/hardware/whitepapers/nstar.html
http://doi.acm.org/10.1145/859618.859643

175

[34] F. Dahlgren. Boosting the Performance of Hybrid Snooping Cache Protocols. InProceed-
ings of the 22nd Annual International Symposium on Computer Architecture, pages 60–69,
June 1995.

[35] W. J. Dally and J. W. Poulton.Digital Systems Engineering. Cambridge University Press,
1998.

[36] J. Duato, S. Yalamanchili, and L. Ni.Interconnection Networks: An Engineering Approach.
Morgan Kaufmann, revised edition, 2003.

[37] B. Falsafi and D. A. Wood. Reactive NUMA: A Design for Unifying S-COMA and CC-
NUMA. In Proceedings of the 24th Annual International Symposium on Computer Archi-
tecture, pages 229–240, June 1997.

[38] S. J. Frank. Tightly Coupled Multiprocessor System Speeds Memory-access Times.Elec-
tronics, 57(1):164–169, Jan. 1984.

[39] K. Gharachorloo, L. A. Barroso, and A. Nowatzyk. Efficient ECC-Based Directory Imple-
mentations for Scalable Multiprocessors. InProceedings of the 12th Symposium on Com-
puter Architecture and High-Performance Computing (SBAC-PAD 2000), Oct. 2000.

[40] K. Gharachorloo, A. Gupta, and J. Hennessy. Two Techniques to Enhance the Performance
of Memory Consistency Models. InProceedings of the International Conference on Parallel
Processing, volume I, pages 355–364, Aug. 1991.

[41] K. Gharachorloo, M. Sharma, S. Steely, and S. V. Doren. Architecture and Design of Al-
phaServer GS320. InProceedings of the Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 13–24, Nov. 2000.

[42] P. B. Gibbons, M. Merritt, and K. Gharachorloo. Proving Sequential Consistency of High-
Performance Shared Memories. InProceedings of the Third ACM Symposium on Parallel
Algorithms and Architectures, pages 292–303, July 1991.

[43] C. Gniady, B. Falsafi, and T. Vijaykumar. Is SC + ILP = RC? InProceedings of the 26th
Annual International Symposium on Computer Architecture, pages 162–171, May 1999.

[44] A. Gupta and W.-D. Weber. Cache Invalidation Patterns in Shared-Memory Multiprocessors.
IEEE Transactions on Computers, 41(7):794–810, July 1992.

[45] A. Gupta, W.-D. Weber, and T. Mowry. Reducing Memory and Traffic Requirements for
Scalable Directory-Based Cache Coherence Schemes. InInternational Conference on Par-
allel Processing (ICPP), volume I, pages 312–321, 1990. URLhttp://citeseer.nj.
nec.com/gupta90reducing.html.

[46] D. Gustavson. The Scalable Coherent Interface and related standards projects.IEEE Micro,
12(1):10–22, Feb. 1992.

http://citeseer.nj.nec.com/gupta90reducing.html
http://citeseer.nj.nec.com/gupta90reducing.html

176

[47] L. Gwennap. Alpha 21364 to Ease Memory Bottleneck.Microprocessor Report, Oct. 1998.

[48] E. Hagersten and M. Koster. WildFire: A Scalable Path for SMPs. InProceedings of the
Fifth IEEE Symposium on High-Performance Computer Architecture, pages 172–181, Jan.
1999.

[49] E. Hagersten and G. Papadopoulos. Parallel Computing in the Commercial Marketplace:
Research and Innovation at Work.Proceedings of the IEEE, 87(3):405–411, March 1999.

[50] J. Heinlein, R. P. Bosch, K. Gharachorloo, M. Rosenblum, and A. Gupta. Coherent Block
Data Transfer in the FLASH Multiprocessor. InProceedings of the 11th International Par-
allel Processing Symposium, pages 18–27, Apr. 1997. URLhttp://citeseer.nj.nec.
com/heinlein97coherent.html.

[51] J. Heinlein, K. Gharachorloo, S. Dresser, and A. Gupta. Integration of Message Passing and
Shared Memory in the Stanford FLASH Multiprocessor. InProceedings of the Sixth Inter-
national Conference on Architectural Support for Programming Languages and Operating
Systems, Oct. 1994.

[52] M. Heinrich, V. Soundararajan, J. Hennessy, and A. Gupta. A Quantitative Analysis of the
Performance and Scalability of Distributed Shared Memory Cache Coherence Protocols.
IEEE Transactions on Computers, 28(2):205–217, Feb. 1999.

[53] J. L. Hennessy and D. A. Patterson.Computer Architecture: A Quantitative Approach.
Morgan Kaufmann, third edition, 2003.

[54] T. A. Henzinger, S. Qadeer, and S. K. Rajamani. Verifying Sequential Consistency on
Shared-Memory Multiprocessor Systems.Lecture Notes in Computer Science, 1633:301–
315, 1999.

[55] M. D. Hill. What is Scalability? Computer Architecture News, 18(4):18–21, 1990. URL
http://doi.acm.org/10.1145/121973.121975.

[56] M. D. Hill. Multiprocessors Should Support Simple Memory Consistency Models.IEEE
Computer, 31(8):28–34, Aug. 1998.

[57] M. D. Hill and R. Rajwar. The Rise and Fall of Multiprocessor Pa-
pers in the International Symposium on Computer Architecture (ISCA).
http://www.cs.wisc.edu/ markhill/mp2001.html, Mar. 2001.

[58] T. Horel and G. Lauterbach. UltraSPARC-III: Designing Third Generation 64-Bit Perfor-
mance.IEEE Micro, 19(3):73–85, May/June 1999.

[59] M. Horowitz, C.-K. K. Yang, and S. Sidiropoulos. High-Speed Electrical Signaling:
Overview and Limitations.IEEE Micro, 18(1), Jan/Feb 1998.

http://citeseer.nj.nec.com/heinlein97coherent.html
http://citeseer.nj.nec.com/heinlein97coherent.html
http://doi.acm.org/10.1145/121973.121975

177

[60] T. Juhnke and H. Klar. Calculation of the Soft Error Rate of Submicron CMOS Logic
Circuits. IEEE Journal of Solid-State Circuits, 30(7):830–834, July 1995.

[61] S. Kaneda. A Class of Odd-Weight-Column SEC-DED-SbED Codes for Memory System
Applications.IEEE Transactions on Computers, 33(8):737–739, Aug. 1984.

[62] A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator. Competitive Snoopy Caching.
Algorithmica, 3(1):79–119, 1988.

[63] S. Kaxiras and J. R. Goodman. Improving CC-NUMA Performance Using Instruction-
Based Prediction. InProceedings of the Fifth IEEE Symposium on High-Performance Com-
puter Architecture, Jan. 1999.

[64] S. Kaxiras and C. Young. Coherence Communication Prediction in Shared-Memory Multi-
processors. InProceedings of the Sixth IEEE Symposium on High-Performance Computer
Architecture, Jan. 2000.

[65] C. N. Keltcher, K. J. McGrath, A. Ahmed, and P. Conway. The AMD Opteron Processor
for Multiprocessor Servers.IEEE Micro, 23(2):66–76, March-April 2003.

[66] D. A. Koufaty, X. Chen, D. K. Poulsen, and J. Torrellas. Data Forwarding in Scalable
Shared-Memory Multiprocessors. InProceedings of the 1995 International Conference on
Supercomputing, July 1995.

[67] S. Kunkel. Personal Communication, Apr. 2000.

[68] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo, J. C. apin,
D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum, and J. Hennessy. The Stan-
ford FLASH Multiprocessor. InProceedings of the 21st Annual International Symposium
on Computer Architecture, pages 302–313, Apr. 1994.

[69] A.-C. Lai and B. Falsafi. Memory Sharing Predictor: The Key to a Speculative Coherent
DSM. In Proceedings of the 26th Annual International Symposium on Computer Architec-
ture, pages 172–183, May 1999.

[70] A.-C. Lai and B. Falsafi. Selective, Accurate, and Timely Self-Invalidation Using Last-
Touch Prediction. InProceedings of the 27th Annual International Symposium on Computer
Architecture, pages 139–148, June 2000.

[71] L. Lamport. How to Make a Multiprocessor Computer that Correctly Executes Multiprocess
Programs.IEEE Transactions on Computers, C-28(9):690–691, Sept. 1979.

[72] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA Highly Scalable Server. In
Proceedings of the 24th Annual International Symposium on Computer Architecture, pages
241–251, June 1997.

178

[73] A. R. Lebeck and D. A. Wood. Dynamic Self-Invalidation: Reducing Coherence Over-
head in Shared-Memory Multiprocessors. InProceedings of the 22nd Annual International
Symposium on Computer Architecture, pages 48–59, June 1995.

[74] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The Directory-Based
Cache Coherence Protocol for the DASH Multiprocessor. InProceedings of the 17th Annual
International Symposium on Computer Architecture, pages 148–159, May 1990.

[75] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. Hennessy, M. Horowitz,
and M. Lam. The Stanford DASH Multiprocessor.IEEE Computer, 25(3):63–79, Mar.
1992.

[76] T. D. Lovett and R. M. Clapp. STiNG: A CC-NUMA Computer System for the Commercial
Marketplace. InProceedings of the 23th Annual International Symposium on Computer
Architecture, May 1996.

[77] P. S. Magnussonet al. Simics: A Full System Simulation Platform.IEEE Computer, 35(2):
50–58, Feb. 2002.

[78] M. M. K. Martin et al. Protocol Specifications and Tables for Four Comparable MOESI
Coherence Protocols: Token Coherence, Snooping, Directory, and Hammer, 2003. URL
http://www.cs.wisc.edu/multifacet/theses/milo_martin_phd/.

[79] M. M. K. Martin, P. J. Harper, D. J. Sorin, M. D. Hill, and D. A. Wood. Using Destination-
Set Prediction to Improve the Latency/Bandwidth Tradeoff in Shared Memory Multiproces-
sors. InProceedings of the 30th Annual International Symposium on Computer Architecture,
pages 206–217, June 2003.

[80] M. M. K. Martin, M. D. Hill, and D. A. Wood. Token Coherence: A New Framework for
Shared-Memory Multiprocessors.IEEE Micro, November-December 2003.

[81] M. M. K. Martin, M. D. Hill, and D. A. Wood. Token Coherence: Decoupling Performance
and Correctness. InProceedings of the 30th Annual International Symposium on Computer
Architecture, pages 182–193, June 2003.

[82] M. M. K. Martin, D. J. Sorin, A. Ailamaki, A. R. Alameldeen, R. M. Dickson, C. J. Mauer,
K. E. Moore, M. Plakal, M. D. Hill, and D. A. Wood. Timestamp Snooping: An Approach
for Extending SMPs. InProceedings of the Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 25–36, Nov. 2000.

[83] M. M. K. Martin, D. J. Sorin, H. W. Cain, M. D. Hill, and M. H. Lipasti. Correctly Imple-
menting Value Prediction in Microprocessors that Support Multithreading or Multiprocess-
ing. In Proceedings of the 34th Annual IEEE/ACM International Symposium on Microar-
chitecture, Dec. 2001.

http://www.cs.wisc.edu/multifacet/theses/milo_martin_phd/

179

[84] M. M. K. Martin, D. J. Sorin, M. D. Hill, and D. A. Wood. Bandwidth Adaptive Snooping. In
Proceedings of the Eighth IEEE Symposium on High-Performance Computer Architecture,
pages 251–262, Feb. 2002.

[85] J. R. Mashey. NUMAflex Modular Design Approach: A Revolution in Evolution. Posted
on comp.arch news group, Aug. 2000.

[86] C. J. Mauer, M. D. Hill, and D. A. Wood. Full System Timing-First Simulation. InProceed-
ings of the 2002 ACM Sigmetrics Conference on Measurement and Modeling of Computer
Systems, pages 108–116, June 2002.

[87] T. May and M. Woods. Alpha-Particle-Induced Soft Errors in Dynamic Memories.IEEE
Transactions on Electronic Devices, 26(2), 1979.

[88] D. Milojicic, A. Messer, J. Shau, G. Fu, and A. Munoz. Increasing Relevance of Memory
Hardware Errors: A Case for Recoverable Programming Models. In9th ACM SIGOPS
European Workshop ’Beyond the PC: New Challenges for the Operating System’, Sept.
2000.

[89] A. Moshovos, G. Memik, B. Falsafi, and A. Choudhary. JETTY: Filtering Snoops for Re-
duced Power Consumption in SMP Servers. InProceedings of the Seventh IEEE Symposium
on High-Performance Computer Architecture, Jan. 2001.

[90] F. Mounes-Toussi and D. J. Lilja. The Potential of Compile-Time Analysis to Adapt the
Cache Coherence Enforcement Strategy to the Data Sharing Characteristics.IEEE Trans-
actions on Parallel and Distributed Systems, 6(5):470–481, May 1995.

[91] S. S. Mukherjee, P. Bannon, S. Lang, A. Spink, and D. Webb. The Alpha 21364 Network
Architecture. InProceedings of the 9th Hot Interconnects Symposium, Aug. 2001.

[92] S. S. Mukherjee and M. D. Hill. Using Prediction to Accelerate Coherence Protocols. In
Proceedings of the 25th Annual International Symposium on Computer Architecture, pages
179–190, June 1998.

[93] A. K. Nanda, A.-T. Nguyen, M. M. Michael, and D. J. Joseph. High-Throughput Coherence
Controllers. InProceedings of the Sixth IEEE Symposium on High-Performance Computer
Architecture, Jan. 2000.

[94] J. Nilsson and F. Dahlgren. Improving Performance of Load-Store Sequences for Transac-
tion Processing Workloads on Multiprocessors. InProceedings of the International Confer-
ence on Parallel Processing, pages 246–255, Sept. 1999.

[95] J. Nilsson and F. Dahlgren. Reducing Ownership Overhead for Load-Store Sequences in
Cache-Coherent Multiprocessors. InProceedings of the 2000 International Parallel and
Distributed Processing Symposium, May 2000.

180

[96] A. Nowatzyk, G. Aybay, M. Browne, E. Kelly, and M. Parkin. The S3.mp Scalable Shared
Memory Multiprocessor. InProceedings of the International Conference on Parallel Pro-
cessing, volume I, pages 1–10, Aug. 1995.

[97] B. W. O’Krafka and A. R. Newton. An Empirical Evaluation of Two Memory-Efficient Di-
rectory Methods. InProceedings of the 17th Annual International Symposium on Computer
Architecture, pages 138–147, May 1990.

[98] V. Pai, P. Ranganathan, S. Adve, and T. Harton. An Evaluation of Memory Consistency
Models for Shared-Memory Systems with ILP Processors. InProceedings of the Seventh
International Conference on Architectural Support for Programming Languages and Oper-
ating Systems, pages 273–298, Oct. 1996.

[99] W. W. Peterson and E. J. Weldon, Jr.Error-Correcting Codes. MIT Press, 1972.

[100] M. Plakal, D. J. Sorin, A. E. Condon, and M. D. Hill. Lamport Clocks: Verifying a Direc-
tory Cache-Coherence Protocol. InProceedings of the Tenth ACM Symposium on Parallel
Algorithms and Architectures, pages 67–76, June 1998.

[101] F. Pong and M. Dubois. Verification Techniques for Cache Coherence Protocols.ACM
Computing Surveys, 29(1):82–126, Mar. 1997.

[102] D. Poulsen and P.-C. Yew. Data Prefetching and Data Forwarding in Shared-Memory Mul-
tiprocessors. InProceedings of the International Conference on Parallel Processing, vol-
ume II, pages 296–280, Aug. 1994.

[103] I. Pragaspathy and B. Falsafi. Address Partitioning in DSM Clusters with Parallel Coherence
Controllers. InProceedings of the International Conference on Parallel Architectures and
Compilation Techniques, Oct. 2000.

[104] S. Qadeer. On the Verification of Memory Models of Shared-Memory Multiprocessors.
In Tutorial and Workshop on Formal Specification and Verification Methods for Shared
Memory Systems, Oct. 2000.

[105] R. Rajwar.Speculation-Based Techniques for Transactional Lock-Free Execution of Lock-
Based Programs. PhD thesis, Computer Sciences Department, University of Wisconsin-
Madison, 2002.

[106] R. Rajwar and J. R. Goodman. Speculative Lock Elision: Enabling Highly Concurrent
Multithreaded Execution. InProceedings of the 34th Annual IEEE/ACM International Sym-
posium on Microarchitecture, Dec. 2001.

[107] R. Rajwar and J. R. Goodman. Transactional Lock-Free Execution of Lock-Based Pro-
grams. InProceedings of the Tenth International Conference on Architectural Support for
Programming Languages and Operating Systems, Oct. 2002.

181

[108] R. Rajwar, A. Kagi, and J. R. Goodman. Inferential Queueing and Speculative Push for
Reducing Critical Communication Latencies. InProceedings of the 17th International Con-
ference on Supercomputing, June 2003.

[109] P. Ranganathan, V. S. Pai, and S. V. Adve. Using Speculative Retirement and Larger Instruc-
tion Windows to Narrow the Performance Gap between Memory Consistency Models. In
Proceedings of the Ninth ACM Symposium on Parallel Algorithms and Architectures, pages
199–210, June 1997.

[110] A. Raynaud, Z. Zhang, and J. Torrellas. Distance-Adaptive Update Protocols for Scalable
Shared-Memory Multiprocesors. InProceedings of the Second IEEE Symposium on High-
Performance Computer Architecture, Feb. 1996.

[111] E. Rosti, E. Smirni, T. Wagner, A. Apon, and L. Dowdy. The KSR1: Experimentation
and Modeling of Poststore. InProceedings of the 1993 ACM Sigmetrics Conference on
Measurement and Modeling of Computer Systems, pages 74–85, May 1993.

[112] X. Shen and Arvind. Specification of Memory Models and Design of Provably Correct
Cache Coherence Protocols. Group Memo 398, Massachusetts Institute of Technology,
June 1997.

[113] A. Singhal, D. Broniarczyk, F. Cerauskis, J. Price, L. Yaun, C. Cheng, D. Doblar, S. Fosth,
N. Agarwal, K. Harvery, E. Hagersten, and B. Liencres. Gigaplane: A High Performance
Bus for Large SMPs. InProceedings of the 4th Hot Interconnects Symposium, pages 41–52,
Aug. 1996.

[114] D. J. Sorin, M. Plakal, M. D. Hill, A. E. Condon, M. M. K. Martin, and D. A. Wood.
Specifying and Verifying a Broadcast and a Multicast Snooping Cache Coherence Protocol.
IEEE Transactions on Parallel and Distributed Systems, 13(6):556–578, June 2002.

[115] P. Stenstr̈om, M. Brorsson, and L. Sandberg. Adaptive Cache Coherence Protocol Optimized
for Migratory Sharing. InProceedings of the 20th Annual International Symposium on
Computer Architecture, pages 109–118, May 1993.

[116] P. Sweazey and A. J. Smith. A Class of Compatible Cache Consistency Protocols and their
Support by the IEEE Futurebus. InProceedings of the 13th Annual International Symposium
on Computer Architecture, pages 414–423, June 1986.

[117] C. K. Tang. Cache Design in the Tightly Coupled Multiprocessor System. InProceedings
of the AFIPS National Computing Conference, pages 749–753, June 1976.

[118] D. M. Taub. Improved Control Acquisition Scheme for the IEEE 896 Futurebus.IEEE
Micro, 7(3), June 1987.

182

[119] J. M. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy. POWER4 System Microarchi-
tecture. IBM Server Group Whitepaper, Oct. 2001. URLhttp://www.ibm.com/servers/

eserver/pseries/hardware/whitepapers/power4.pdf.

[120] M. K. Vernon and U. Manber. Distributed round-robin and first-come first-serve protocols
and their applications to multiprocessor bus arbitration. InProceedings of the 15th An-
nual International Symposium on Computer Architecture, pages 289–279, May 1988. URL
http://doi.acm.org/10.1145/633625.52431.

[121] F. Weber. AMD’s Next Generation Microprocessor Architecture, Oct. 2001. URL
http://www.amd.com/us-en/assets/content_type/DownloadableAssets/MPF_

Hammer_Presentation.PDF.

[122] W.-D. Weber and A. Gupta. Analysis of Cache Invalidation Patterns in Multiprocessors. In
Proceedings of the Third International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 243–256, Apr. 1989.

[123] D. A. Wood, S. Chandra, B. Falsafi, M. D. Hill, J. R. Larus, A. R. Lebeck, J. C. Lewis, S. S.
Mukherjee, S. Palacharla, and S. K. Reinhardt. Mechanisms for Cooperative Shared Mem-
ory. InProceedings of the 20th Annual International Symposium on Computer Architecture,
May 1993.

[124] D. A. Wood and M. D. Hill. Cost-Effective Parallel Computing.IEEE Computer, pages
69–72, Feb. 1995.

[125] Q. Yang, G. Thangadurai, and L. N. Bhuyan. Design of Adaptive Cache Coherence Protocol
for Large Scale Multiprocessors.IEEE Transactions on Parallel and Distributed Systems, 3
(3):281–293, May 1992.

[126] K. C. Yeager. The MIPS R10000 Superscalar Microprocessor.IEEE Micro, 16(2):28–40,
Apr. 1996.

http://www.ibm.com/servers/eserver/pseries/hardware/whitepapers/power4.pdf
http://www.ibm.com/servers/eserver/pseries/hardware/whitepapers/power4.pdf
http://doi.acm.org/10.1145/633625.52431
http://www.amd.com/us-en/assets/content_type/DownloadableAssets/MPF_Hammer_Presentation.PDF
http://www.amd.com/us-en/assets/content_type/DownloadableAssets/MPF_Hammer_Presentation.PDF

183

Appendix A: Differences from Martin et al., ISCA 2003

This appendix summarizes the most important differences between this dissertation and our

prior work [79, 80, 81]. This dissertation extends our earlier work which introduced Token Co-

herence [80, 81] by refining the token-counting rules, describing the overheads associated with

token counting, introducing another approach for implementing persistent requests, and evaluating

three distinct performance policies (in contrast, the earlier work explored only one performance

policy). One of these performance policies, TOKENM, is based upon the destination set predictors

described by Martinet al. [79].

The following is a list in text order of the most important differences from our prior work.

• Additional Background. The coherence background in Chapter 2 emphasizes Token Co-

herence’s relationship to the traditional MOESI-based coherence protocols. Chapter 2 also

provides additional background information on our base coherence protocols and intercon-

nects.

• Token Counting. The description of token counting in Chapter 3 significantly refines the

token counting rules (called invariants in the original paper). This chapter introduces the no-

tion of a clean/dirty owner token for fully supporting the EXCLUSIVE state. We also discuss

support for cache allocation instructions that avoid data transfers (such as Alpha’s Write

Hint 64 instruction). Finally, Section 3.2 contains a detailed discussion of token storage

and manipulation overheads including (1) token storage in caches, (2) transferring tokens in

messages, (3) non-silent cache evictions, and (4) token storage in memory.

• Persistent Requests.The discussion of persistent requests in Chapter 4 significantly ex-

tends our prior work. The most important addition is the introduction of a new distributed-

arbitration approach to implementing persistent requests. We also introduce persistent read

requests. In contrast, our prior work described only a single persistent request that gathered

all tokens. The chapter sketches an argument for why persistent requests prevent starvation.

Finally, the chapter also includes a substantial discussion of advantages and disadvantages

184

of several implementation alternatives for preventing the reordering of persistent request

messages.

• Performance Policies.Chapter 5 describes Token Coherence’s performance policies (pre-

viously called performance protocols) and discusses other possible performance protocols

not further explored. The most significant difference between this dissertation and our prior

work is that we explore three performance policies (Chapter 7, Chapter 8, and Chapter 9). In

contrast, our prior work only explored a single performance policy. The inclusion of these

two additional performance policies is critical for showing the flexibility of Token Coher-

ence.

• Quantitative Evaluation. The methods for our experimental evaluation have also improved

(Chapter 6). The workloads we use have been improved (larger working sets, larger number

of concurrent users, and more recent versions of system software). We also provide a brief

quantitative characterization of the new versions of these workloads. We evaluate three

different performance protocols, and we report traffic metrics in terms of messages per miss

(in addition to the bytes per miss presented in our prior work).

• Destination-Set Prediction Applied to Token Coherence.Chapter 9 presents a perfor-

mance protocol that is a straightforward application of destination-set prediction to Token

Coherence. We used the destination-set predictors for multicast snooping we found to be

the best in our prior work [79], and we do not repeat the detailed design space exploration

included in this original paper. As described in Chapter 9, the predictors were modified

slightly to work within the Token Coherence framework.

	List of Tables
	List of Figures
	Abstract
	 Introduction & Motivation
	 Understanding and Extending Traditional Coherence Protocols
	 Safety via Token Counting
	 Starvation Freedom via Persistent Requests
	 Performance Policies Overview
	 Experimental Methods and Workload Characterization
	 TokenB: A Low-Latency Performance Policy Using Unordered Broadcast
	 TokenD: A Directory-Like Performance Policy
	 TokenM: A Predictive-Multicast Performance Policy
	 Conclusions
	Bibliography

