
PRACTICAL LOW-OVERHEAD ENFORCEMENT OF

MEMORY SAFETY FOR C PROGRAMS

Santosh Ganapati Nagarakatte

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2012

Milo M. K. Martin, Associate Professor of Computer and Information Science
Supervisor of Dissertation

Val Tannen, Professor of Computer and Information Science
Graduate Group Chairperson

Dissertation Committee

Rajeev Alur, Professor of Computer and Information Science

André DeHon, Professor of Electrical and System Engineering

Steve Zdancewic, Associate Professor of Computer and Information Science

Emery Berger, Associate Professor, University of Massachusetts Amherst

PRACTICAL LOW-OVERHEAD ENFORCEMENT OF MEMORY SAFETY FOR C

PROGRAMS

COPYRIGHT

2012

Santosh Ganapati Nagarakatte

This dissertation is dedicated to my parents.

Without them, this would not have been possible.

iii

Acknowledgments

This dissertation is a direct result of constant support and encouragement from my parents who

had more confidence in my abilities than I had, at times, in my ability. Apart from my parents,

there are numerous people who have been instrumental in the growth of my research career and my

development as an individual.

My adviser, Milo Martin has had a transformative influence on me as a researcher. I am fortunate

to have worked with him for the last five years. Milo provided me the initial insights, the motivation

to work on the problem, and eventually has nourished my ideas. He was generous with his time and

wisdom. He provided me an excellent platform where I could excel. Apart from the research under

him, he gave me freedom to collaborate with other researchers independently. I have also learned a

great deal about teaching, presentations, and mentoring that will be amazingly useful in my future

career.

Among the other faculty members at Penn, Steve Zdancewic was like a second adviser to me.

Collaborating with Steve kept my programming language interests active and thriving. Amir Roth

convinced me to join Penn. I had a great time working with Amir for the first two years. I would

like to thank other faculty members—Rajeev Alur, Benjamin Pierce, Boon Thau Loo, Andreas

Haeberlen, and Sudipto Guha—for their great courses, advice, encouragement and discussions on

various topics.

I would like to thank my committee—Rajeev Alur, Steve Zdancewic, Andre DeHon, and Emery

Berger—for carefully reading my dissertation, providing great feedback, useful advice and sugges-

tions along the way. I would also like to thank Madanlal Musuvathi and Sebastian Burckhardt

for mentoring during my internship at MSR and for the subsequent collaboration over the last few

years. I would also like to thank my adviser at IISc, R. Govindarajan for encouraging me to pursue

this path in my initial years.

iv

Jianzhou Zhao and Andrew Hilton have been two of my closest collaborators. I learned a great

deal about computer architecture, programming, and a passion for teaching from Drew. Jianzhou

has been my primary collaborator from my first day at Penn. We did course projects, research

projects, and papers together. He inspired and amazed me with his devotion to work, work ethics,

and the constant focus on the task at hand. Other members of the safety project—Jianzhou Zhao,

Christian Delozier, Peter Michael Osera and Richard Eisenberg—have provided me help, encour-

agement, and have spent time polishing and refining ideas together.

I also thank the past and the present members of ACG group—Tingting Sha, Andrew Hilton,

Colin Blundell, Vivek Rane, Arun Raghavan, Christian Delozier, Sela Mador Haim, Abhishek

Udupa, James Anderson, and Laurel Emurian—for the interesting reading groups, numerous dis-

cussions, and for attending my practice talks.

I have had many amazing friends here, who made graduate school pleasant. Numerous dis-

cussions with Arun Raghavan on a wide variety of topics—cricket, politics, books, research, and

many others—was stimulating and fun. I also enjoyed spending time with other friends—Adam

Aviv, Michael Greenberg, Marie Jacob, Changbin Liu, Annie Louis, Emily Pitler, Sudeepa Roy,

and Wenchao Zhao. Thank you all.

I want to thank the LLVM community for building a robust and a modular compiler, answering

our questions, and for the entire ecosystem. I also thank Mike Felker, who single handedly managed

numerous things for me and many others in the department. I also want to thank all other faculty

members at Penn, other students at Penn, Moore business office, and the CIS departmental staff for

the various activities at Penn. I also want to thank Penn recreation for the great squash courts and

my numerous squash partners: Rick Titlebaum, Richard Burgos, John Hansen, Vivek Rane, Riju

Ray, Shivjit Patil, Christina Castelino, and many others. I had a great time playing squash with you

all.

The dissertation research at Penn was also funded in part from grants by numerous fund-

ing agencies1: National Science Foundation (NSF) grants CNS-0524059, CCF-0644197, CNS-

1116682, CCF-1065166, and CCF-0810947, Defense Advanced Research Projects Agency (DARPA)
1This research was funded in part by the U.S. Government. The views and conclusions contained in this document

are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of
the U.S. Government.

v

contracts HR0011-10-9-0008, Office of Naval Research (ONR) award N000141110596, and dona-

tions from Intel Corporation.

Finally, I would like to thank my family for all their sacrifices, motivation, and encouragement.

I would like to thank my parents for providing me good education throughout my childhood.

vi

ABSTRACT

PRACTICAL LOW-OVERHEAD ENFORCEMENT OF MEMORY SAFETY FOR C

PROGRAMS

Santosh Ganapati Nagarakatte

Milo M. K. Martin

The serious bugs and security vulnerabilities that result from C’s lack of bounds checking and unsafe

manual memory management are well known, yet C remains in widespread use. Unfortunately,

C’s arbitrary pointer arithmetic, conflation of pointers and arrays, and programmer-visible memory

layout make retrofitting C with memory safety guarantees challenging. Existing approaches suffer

from incompleteness, have high runtime overhead, or require non-trivial changes to the C source

code. Thus far, these deficiencies have prevented widespread adoption of such techniques.

This dissertation proposes mechanisms to provide comprehensive memory safety that works

with mostly unmodified C code with a low performance overhead. We use a pointer-based ap-

proach where we maintain metadata with pointers and check every pointer dereference. To enable

compatibility with existing code, we maintain the metadata for the pointers in memory in a disjoint

metadata space leaving the memory layout of the program intact. For detecting spatial violations,

we maintain bounds metadata with every pointer. For detecting temporal violations, we maintain

a unique identifier with each pointer. This pointer metadata is propagated with pointer operations

and checked on pointer dereferences. Coupling disjoint metadata with a pointer-based approach

enables comprehensive detection of all memory safety violations in unmodified C programs. This

dissertation demonstrates the compatibility of this approach by hardening legacy C/C++ code with

minimal source code changes. Further, this dissertation shows the effectiveness of the approach

by detecting new memory safety errors and previously known memory safety errors in large code

bases. To attain low performance overheads, this dissertation proposes efficient instantiations of

this approach (1) within a compiler, (2) within hardware, and (3) with a hybrid hardware acceler-

ated compiler instrumentation that reduces the overhead of enforcing memory safety, and thereby

enabling their use in deployed systems.

vii

Contents

1 Introduction 1

1.1 Challenges with Existing Proposals . 4

1.2 Pointer-Based Checking with Disjoint Metadata 5

1.3 Can Pointer-Based Checking be Performed within the Compiler? 6

1.4 Can Pointer-Based Checking be Performed within the Hardware? 7

1.5 Can Pointer-Based Checking be Performed with a Hardware/Compiler Hybrid? . . 8

1.6 Contributions of this Dissertation . 9

1.7 Dissertation Structure . 10

1.8 Differences from Previously Published Versions of this Work 11

2 Overview of Memory Safety Enforcement 12

2.1 The Problem of Memory Safety in C . 13

2.1.1 Spatial and Temporal Safety Violations 13

2.1.2 Why are Memory Safety Violations Common with C? 14

2.1.3 Consequences of Memory Safety Violations 15

2.2 Enforcing Memory Safety . 16

2.2.1 Relationship Between Type Safety and Memory Safety 16

2.2.2 Memory Safety with Safe Languages . 17

2.2.3 Design Alternatives in Enforcing Memory Safety for C 17

2.2.4 Bug Finding vs Always-on Dynamic Checking Tools 18

2.3 Detecting Spatial Safety Violations . 19

2.3.1 Tripwire Approaches . 19

2.3.2 Object-Based Approaches . 20

viii

2.3.3 Pointer-Based Approaches . 22

2.3.4 Source Incompatibility with Fat Pointers and Arbitrary Type Casts 23

2.3.5 Comparison of Spatial Safety Approaches 24

2.4 Detecting Temporal Safety Violations . 26

2.4.1 Garbage Collection in Safe Languages . 26

2.4.2 Garbage Collection in Type-Unsafe Languages like C 27

2.4.3 Location-Based Temporal Checking . 28

2.4.4 Identifier-Based Temporal Checking . 29

2.4.5 Analysis of the Temporal Checking Design Space 30

2.5 Program Instrumentation . 31

2.6 Summary . 32

3 Pointer-Based Checking with Disjoint Metadata 34

3.1 Approach Overview . 34

3.2 Metadata with Pointers . 35

3.3 Spatial Memory Safety Metadata and Checking 36

3.4 Temporal Memory Safety Metadata and Checking 37

3.4.1 Lock and Key Metadata . 37

3.4.2 Temporal Safety Checks . 40

3.5 Control Flow Integrity Checks . 40

3.6 Propagation on Pointer Arithmetic and Assignment 41

3.7 Optional Narrowing of Pointer Bounds . 42

3.8 Disjoint Metadata . 43

3.8.1 Mapping Pointers to their Metadata . 43

3.8.2 Comprehensive and Compatible Detection with Disjoint Metadata 45

3.9 Modular Checking with Separate Compilation . 47

3.10 Checking Modes With Disjoint Metadata . 48

3.11 Usage Model . 48

3.12 Evaluation of Effectiveness in Detecting Errors 49

3.12.1 Spatial Safety . 49

3.12.2 Temporal Safety . 51

ix

3.12.3 Previously Unknown Safety Errors . 51

3.13 Evaluation of Source Compatibility . 52

3.14 Summary . 53

4 Compiler Instrumentation for Pointer-Based Memory Safety 55

4.1 Background on LLVM . 55

4.1.1 Structure of the LLVM IR . 56

4.1.2 Operations in the LLVM IR . 58

4.2 Memory Safety Instrumentation on the LLVM IR 59

4.2.1 Metadata Propagation for Pointer Parameters and Returns 61

4.2.2 Metadata Organization . 65

4.2.3 Instrumentation Handlers for Compiler Instrumentation 69

4.2.4 The SoftBoundCETS Instrumentation Algorithm 69

4.2.5 Advantages of Compiler Instrumentation 74

4.2.6 Instrumenting Optimized Code . 74

4.2.7 Pointer Identification . 74

4.2.8 Other Instrumentation Considerations . 76

4.3 Optimizations to SoftBoundCETS . 79

4.3.1 Implementing Custom Check Elimination 79

4.3.2 Optimizing Type-Safe Programs . 81

4.4 Performance Evaluation . 82

4.4.1 Prototype . 82

4.4.2 Benchmarks . 83

4.4.3 Runtime Overheads of Enforcing Spatial and Temporal Safety 84

4.4.4 Benefits of Compiler Instrumentation . 86

4.4.5 Enforcing Spatial-only Safety and Temporal-only Safety 87

4.4.6 Comparison With Other Approaches . 88

4.4.7 Impact of Custom Check Elimination . 89

4.4.8 Impact of Custom Check Elimination with Type-Safe Programs 90

4.4.9 Instruction Overheads with SoftBoundCETS 91

4.4.10 Memory Overheads with SoftBoundCETS 91

x

4.5 Summary . 92

5 Hardware Enforced Memory Safety 93

5.1 The Watchdog Approach . 94

5.1.1 Operation Overview . 94

5.1.2 Metadata Assignment on Memory Allocation/Deallocation 95

5.1.3 Checks on Memory Accesses . 96

5.1.4 In-Memory Pointer Metadata . 98

5.1.5 In-Register Metadata . 99

5.2 Identifying Pointer Load/Store Operations . 99

5.2.1 Conservative Pointer Identification . 100

5.2.2 ISA-Assisted Pointer Identification . 100

5.3 Decoupled Register Metadata . 102

5.3.1 Strawman: Monolithic Register Data/Metadata 102

5.3.2 Decoupled Register Data/Metadata . 103

5.3.3 Decoupled Metadata Example . 104

5.4 Summary of Hardware Changes . 105

5.5 Performance Evaluation . 106

5.5.1 Methodology . 106

5.5.2 Runtime Overheads of Watchdog . 107

5.6 Summary . 113

6 Hardware-Accelerated Compiler Instrumentation for Memory Safety 114

6.1 Sources of Instruction Overhead with Compiler Instrumentation 115

6.2 New Instructions for Accelerating Checking and Metadata Lookups 117

6.2.1 SChk Instruction . 118

6.2.2 TChk Instruction . 120

6.2.3 Revisiting Metadata Organization for New Metadata Instructions 121

6.2.4 MetaLoad Instruction . 122

6.2.5 MetaStore Instruction . 123

6.3 Packed Metadata to Reduce Register Pressure and Multiple Loads/Stores 124

xi

6.4 New Instructions for Packed Metadata Checking and Metadata Loads/Stores 126

6.4.1 SChkXMM . 126

6.4.2 TChkXMM Instruction . 127

6.4.3 MetaLoadXMM and MetaStoreXMM Instructions 127

6.5 Summary of Hardware Changes . 129

6.6 Qualitative Comparison of HCH and Watchdog 129

6.6.1 Differences between HCH and Watchdog 129

6.6.2 Advantages and Disadvantages of HCH 130

6.6.3 Advantages and Disadvantages of Watchdog 131

6.7 Support for Multithreading . 131

6.7.1 Handling Well-Synchronized Programs without Data Races 132

6.7.2 Handling Well-Synchronized Programs with Synchronization Races 133

6.7.3 Handling Programs with Data Races . 134

6.8 Experimental Evaluation . 135

6.8.1 Experimental Methodology . 135

6.8.2 Runtime Performance Overhead with Packed Metadata 136

6.8.3 Overheads with New Instructions . 137

6.8.4 Impact of Various Instructions . 139

6.9 Summary . 146

7 Related Work 147

7.1 Language Extensions and Static Analysis Based Solutions 147

7.2 Probabilistic Approaches with Randomization . 149

7.3 Dynamic Checking Solutions . 150

7.3.1 Pointer Checking Tools . 151

7.3.2 Object-Based Checking Tools . 152

7.3.3 Enforcing Memory Safety on Binaries . 152

7.3.4 Indirect Approaches for Memory Safety 153

7.3.5 Software Fault Isolation . 154

7.4 Hardware Support for Memory Safety . 154

7.4.1 Checking with Hardware . 154

xii

7.4.2 Hardware Acceleration for Garbage Collection 156

7.4.3 Taint checking and Intrusion Detection 156

7.4.4 Cryptographic and Tamper Resistant Hardware 157

7.5 Other Acceleration Techniques . 157

7.5.1 Region-Based Memory Management . 157

7.5.2 Acceleration for Metadata and Checks . 158

8 Conclusions 159

8.1 Dissertation Summary . 159

8.2 Impact and Adoption . 162

8.3 Future Directions and Further Challenges . 162

8.4 Reflections on Memory Safety . 164

Bibliography 167

xiii

List of Tables

2.1 Comparison of spatial checking approaches . 25

2.2 Comparison of temporal checking approaches . 30

3.1 Various synthetic attacks proposed by Wilander et al. [129] and our approach’s ability

to detect them with full checking and store-only checking. 50

3.2 Error detection with BugBench’s applications . 51

4.1 Execution time overheads of Valgrind’s Memcheck, SAFECode and SoftBoundCETS . 88

5.1 Simulated processor configurations . 108

xiv

List of Figures

2.1 Examples of spatial and temporal safety violations 13

2.2 Example of a sub-object overflow. 21

2.3 Memory layout changes and metadata overwrites with fat pointers 23

3.1 Metadata and checks for detecting spatial safety violations. 37

3.2 Bounds and identifier metadata with each pointer . 38

3.3 Metadata and checks for detecting temporal safety violations. 39

3.4 Temporal metadata management for the stack frame 39

3.5 Metadata and checks for function pointers . 40

3.6 Pointer metadata propagation with pointer arithmetic and pointer loads/stores 41

3.7 Optional shrinking of bounds for structure field accesses 42

3.8 Type casts manufacturing only pointers but not metadata with disjoint metadata 46

3.9 Pointer metadata with extern globals . 52

4.1 Syntax for the LLVM IR. 57

4.2 A circular linked list example in C. 59

4.3 A circular linked list example LLVM IR. 60

4.4 This figure illustrates the stores/loads to/from the shadow stack in the caller and the callee. 63

4.5 Operation of the shadow stack with variable argument functions 65

4.6 Errors with variable argument functions caught using the shadow stack 66

4.7 Organization of the trie for pointer metadata . 67

4.8 C code for the metadata accesses with trie lookups 68

4.9 Code after the first pass of SoftBoundCETS instrumentation for the entry block 70

4.10 Code after the first pass of the SoftBoundCETS instrumentation for the for.cond block . 71

xv

4.11 Code for the entry block after all three passes of SoftBoundCETS instrumentation . . . 72

4.12 Code for the for.cond block after all three passes of SoftBoundCETS instrumentation . 73

4.13 Percentage of pointer loads/stores with SoftBoundCETS 75

4.14 Wrappers for SoftBoundCETS instrumentation. 77

4.15 Percentage of redundant spatial checks removed . 79

4.16 Percentage of redundant temporal checks removed 79

4.17 Optimizing redundant temporal checks. 81

4.18 Optimizations for Type Safe Programs . 83

4.19 Execution time performance overhead of SoftBoundCETS 84

4.20 SoftBoundCETS’s overheads with three modes: full, store-only and propagation-only . 85

4.21 Execution time performance overhead when instrumented without optimizations 86

4.22 Performance overheads of providing spatial safety alone and temporal safety alone . . 87

4.23 Execution time performance overhead with custom check elimination 89

4.24 Execution time performance overhead with check elimination for typesafe programs . . 90

4.25 Instruction overheads with SoftBoundCETS . 90

4.26 Memory overheads with SoftBoundCETS . 91

5.1 Metadata propagation and checking with Watchdog 94

5.2 Metadata allocation by runtime with Watchdog . 95

5.3 Metadata management by Watchdog on calls and returns 97

5.4 Placement of the lock location cache (shaded). 97

5.5 Shadow space accesses with Watchdog . 100

5.6 Register renaming with Watchdog . 104

5.7 Watchdog specific changes to the hardware . 105

5.8 Watchdog’s overhead with conservative and ISA-assisted pointer identification 108

5.9 Watchdog’s overhead with a single check uop and two check uops 109

5.10 Watchdog’s uop overhead . 110

5.11 Watchdog’s overhead with and without lock location cache 110

5.12 Misses per thousand instructions with a lock location cache of 4KB 111

5.13 Watchdog’s overhead when there are no metadata misses in the cache 111

5.14 Watchdog’s overhead reduction as a result of physical register sharing 112

xvi

5.15 Watchdog’s memory overhead . 112

6.1 The x86 instructions for checks . 115

6.2 The x86 instructions for metadata loads/stores . 116

6.3 Hardware check instructions . 120

6.4 Hardware metadata load and store instructions . 122

6.5 Instruction overhead using packed metadata in XMM registers 125

6.6 Hardware check instructions in packed mode . 127

6.7 Hardware metadata load and store instructions in packed mode 128

6.8 Runtime overhead of compiler instrumentation with and without packed metadata . . . 136

6.9 Runtime performance improvements with new instructions in scalar and packed mode . 138

6.10 Instruction overheads with new instructions in scalar and packed mode 138

6.11 Runtime improvements with check and metadata access instructions in scalar mode . . 139

6.12 Instruction overheads with check instructions and all instructions in scalar mode 139

6.13 Impact of check instructions on runtime in scalar mode 141

6.14 Impact of check instructions on instruction overheads in scalar mode 141

6.15 Runtime improvements with check and metadata access instructions in packed mode . 142

6.16 Instruction overheads with check and metadata access instructions in packed mode . . 142

6.17 Impact of check instructions on runtime in packed mode 143

6.18 Impact of check instruction on instruction overheads in packed mode 143

6.19 Breakdown of the remaining instructions in scalar mode 144

6.20 Breakdown of the remaining instructions in packed mode 145

xvii

Chapter 1

Introduction

The C programming language was originally designed to be a simple and efficient language with a

lightweight runtime for the purpose of writing operating systems. As a result, the C programming

language was assembly-like to harness the full performance of underlying hardware. Beyond the

original purpose of building the UNIX operating system, C became widely popular because it pro-

vided the programmer the ability to get performance similar to hand-written assembly code while

being higher level than assembly. Performance was crucial as the computing resources were at a

premium during C’s initial years.

As C gave primary importance to performance, a large number of software projects that were

performance critical were written in C. An entire ecosystem of libraries and utilities emerged. This

enabled languages like C and its variants (C++, Objective-C, CUDA, and many others) to become

the gold standard for implementing a wide range of software systems from low-level system soft-

ware (operating systems, virtual machine monitors, language runtimes, and embedded software) to

performance-critical software of all kinds. Features such as low-level control over memory layout,

explicit manual memory management (e.g., malloc() and free()), and proximity to the underlying

hardware made C the dominant language for many domains. Further, C and its variants also be-

came popular in the parallel programming world with its focus on performance (Cilk [55], Unified

Parallel C [26], C++, and CUDA). With its primary focus on performance and a rich ecosystem,

C and its variants are the among the most widely used languages even today with majority of the

client-side applications written in them. Altogether such systems comprise millions of lines of C

code, preventing the complete transition away from C or its variants anytime soon.

1

A key drawback of C is that it does not ensure that the programmers use many of its low-level

performance oriented features correctly and safely. The lack of memory safety is one such major

drawback. Informally, memory safety is the property that ensures that all memory accesses adhere

to the language specification (i.e., all accesses to only allocated memory and within the prescribed

object bounds). Memory safety violations in C arise as a result of two reasons: (1) accessing

memory locations beyond the allocated region for the object or an array, which is termed as a spatial

memory safety violation (also known as buffer overflows) and (2) accessing memory locations that

have already been deallocated (typically while managing memory manually), which is termed as a

temporal memory safety violation (also known as dangling pointer errors). Although the reason for

the lack of memory safety is perhaps not fundamental, ensuring memory safety requires checking

that can have performance overheads and is hard to perform in the presence of C’s weak typing

and other features (as described in Chapter 2). Further, avoiding temporal safety violations with

automatic memory management using a garbage collector requires a sophisticated runtime. These

are the likely reasons that made C originally eschew such checking.

Without memory safety, seemingly benign program bugs anywhere in the code base can cause

silent memory corruption, difficult-to-diagnose crashes, and incorrect results. For example, stor-

ing arbitrary values at an out-of-bound array location can potential overwrite other data structures.

Suppose if the overwritten location holds a function pointer, then the program can jump to arbitrary

memory locations. The memory locations that have been overwritten using a memory safety error

may not be used immediately but may be used sometime later in the program after executing mil-

lions or billions of instructions. Debugging such memory corruption arising out of memory safety

errors can be a nightmare. Further, the manifestation of such memory corruption can be depen-

dent on the way data objects are laid out in memory. This non-determinism makes the problem of

diagnosing the root cause of memory corruption challenging.

Worse yet, the lack of memory safety is the root cause of multitude of security vulnerabilities,

which result by exploiting a memory safety error with a suitably crafted input. The buffer overflow

vulnerabilities, use-after-free vulnerabilities, and other low-level vulnerabilities resulting as a lack

of memory safety have compromised the security of the computing ecosystem as a whole [3, 7, 38,

107, 108, 127, 136]. We will describe some of the recent notable security vulnerabilities that have

exploited memory safety errors in Section 2.1.3 of Chapter 2. These vulnerabilities are particularly

nefarious because (1) they can occur anywhere in the code (not just in those parts deemed security-

2

critical) and (2) they break the abstractions of the programming language. Such vulnerabilities

allow the attacker to manipulate the program into doing their bidding, either by injecting binary

code directly into the program or by manipulating the program into making malicious system calls

to install malware and otherwise completely compromise the system. Memory safety vulnerabilities

are found in all sorts of programs that are written in low-level languages, including: operating

systems, virtual machine monitors, web browsers, databases, user applications, shared libraries,

and embedded software.

In contrast, safe languages such as Java and C#, enforce memory safety using a combination of

language restrictions (restricted casts), dynamic checking (checked array accesses and checked type

casts), and automatic memory management (using garbage collection). We will describe the ratio-

nale and the mechanisms in Section 2.2.2 of Chapter 2. Thereby these safe languages completely

prevent this entire class of bugs and security vulnerabilities [38]. To avoid memory safety errors

with C, one alternative would be to port existing legacy C code to these safe languages. However,

porting legacy C applications to safe languages is non-trivial. Further, these safe languages may not

be appropriate in some domains.

Given that C is continuing to be relevant, this dissertation seeks to enforce memory safety for

C and thus eliminate the entire class of bugs and security vulnerabilities that result from memory

safety errors. In that process, this dissertation tries to answer the following questions. First, can C

be made completely memory safe? Second, what checking needs to be performed to enforce safety?

Third, is it possible to provide memory safety for existing C source code? Fourth, how can memory

safety be enforced with low performance overheads?

This dissertation seeks to retrofit C with memory safety that satisfies the following goals (we

call it the 3 C’s of memory safety): (1) comprehensiveness - provide the ability to detect all memory

safety errors, (2) compatibility - provide the ability to enforce memory safety without source code

modifications, and (3) competitive performance - provide the ability to run on deployed systems

with low performance overheads. In the rest of this chapter, we describe how the existing proposals

fail to attain these goals (Section 1.1), and describe our pointer-based checking with disjoint meta-

data that can attain comprehensiveness and compatibility goals (Section 1.2). We also describe the

instantiations of this approach within the compiler (Section 1.3), within hardware (Section 1.4), and

with a hybrid hardware compiler runtime (Section 1.5) to attain the competitive performance goal.

3

1.1 Challenges with Existing Proposals

The security problems as a consequence of the lack of memory safety in C programs has a long

history. Recognizing the importance of the problem caused by the lack of memory safety, there

has been significant prior work on proposals for detecting memory safety errors [13, 14, 16, 20,

27, 29, 32, 35, 43, 44, 47, 51, 54, 73, 92, 94, 97, 103, 111, 141]. At one end of the spectrum are

partial countermeasures that prevent some memory safety violations. Although, modern operating

systems and compilers employ many partial countermeasures (e.g., guarding the return address

on the stack, address space randomization, non-executable stack), vulnerabilities still persist [31].

Although these are reasonably effective [117] at times, these countermeasures are responses to

vulnerabilities created by the adversary. Moreover, new vulnerabilities [2, 3, 9, 10, 31, 108, 136]

that defeat these countermeasures keep emerging resulting in an enduring arms race.

The fundamental cause of memory safety violations is that languages like C provide low-level

features such as arbitrary type casts, array-pointer conflation, and manual memory management

but do not ensure that the programmers use these features safely. Unlike strongly typed languages

where the bounds of the object is readily available with the object, such metadata may not be readily

available in C as its weakly typed. Hence, maintaining and propagating the appropriate metadata so

that pointer dereferences can be checked is a crucial step in enforcing memory safety.

There are two main design choices that the checking approaches make to enforce memory

safety: (1) what metadata to maintain and (2) where to maintain the metadata. The type of metadata

determines the ability to detect various errors. The placement of the metadata determines the ability

to work with existing code. Common approaches maintain metadata in one of the following ways:

(1) metadata with pointer, (2) metadata with the object, and (3) metadata in a separate metadata

space. We describe many approaches using these design choices in detail in Chapter 2. Many of the

prior approaches are primarily debugging aids providing varying degrees of memory safety. Hence,

the design choices chosen by them are different from what would be required to prevent security

vulnerabilities in deployed code.

To summarize, all prior solutions suffer from one or more of the following problems: failure

to detect all spatial errors (e.g. stack) and/or temporal errors (e.g. due to reallocation of memory),

have high runtime overheads, and/or require significant changes to the source code. The above

mentioned drawbacks have resulted in these techniques being restricted to debugging contexts,

4

rather than being used all the time in deployed code. With recurring security vulnerabilities, the

comprehensiveness in enforcing memory safety and the associated performance overhead of such

enforcement matters. This shift in concerns guides the design of our approach to enforce memory

safety.

1.2 Pointer-Based Checking with Disjoint Metadata

This dissertation builds on top of the prior pointer-based checking approaches for enforcing mem-

ory safety [16, 73, 94, 131], which detect memory safety violations at runtime. In a pointer-based

checking approach, metadata is maintained with pointers and all pointer dereferences are concep-

tually checked. Prior pointer-based checking approaches change the representation of the pointer

into a multi-word fat pointer. The use of a fat pointer changes the memory layout in programmer

visible ways thereby requiring (1) source code changes in presence of arbitrary type casts, and (2)

metadata marshaling while interacting with external libraries. We describe the problems with fat

pointers in detail in Chapter 2. In contrast to prior pointer-based approaches that maintained meta-

data with the pointer using a fat pointer, our approach maintains the pointer metadata in a disjoint

metadata space. The use of disjoint metadata enables us to revisit pointer-based checking generally

considered invasive for retrofitting memory safety for real world C applications.

Separating the pointer and the metadata in memory requires an efficient mapping between the

pointer and its disjoint metadata. We use the address of the pointer (note it is different from the

address that the pointer points to) to load/store the metadata when the pointer is being loaded/stored

using table lookups. The use of disjoint metadata with a pointer-based approach ensures that (1)

arbitrary type casts do not manufacture metadata providing comprehensive detection and (2) pro-

vides compatibility as memory layout of the program is not changed. However, disjoint metadata

requires table lookups to obtain metadata for pointers, which can result in performance overheads.

To provide memory safety, we need to detect both spatial and temporal safety violations. To

provide spatial safety, bounds metadata is associated with pointers when pointers are created. The

bounds metadata is propagated on pointer operations and explicitly loaded/stored from the disjoint

metadata space on pointer loads/stores. The pointer dereferences are checked to ensure that the

pointer is within bounds. To provide temporal safety, we associate a unique identifier with the

pointer that points to allocated memory on every memory allocation. The identifier is marked as

5

invalid on memory deallocations. This identifier metadata is propagated with every pointer opera-

tion. A temporal safety check inserted conceptually before every pointer dereference, checks that

the identifier metadata associated with the pointer is still valid. As identifiers are never reused,

pointer-based approach with identifier metadata in a disjoint metadata space detects all temporal

safety violations even in the presence of reallocations. Chapter 3 describes our approach in detail.

The use of disjoint metadata with pointer-based checking enables us to attain the comprehen-

siveness and compatibility goals. We accomplish the goal of competitive performance with an

efficient implementation. In the next few subsections, we describe the instantiation of pointer-based

checking approach with disjoint metadata within the compiler, within the hardware, and with hard-

ware acceleration for the compiler instrumentation to attain low performance overheads.

1.3 Can Pointer-Based Checking be Performed within the Compiler?

As we described in the previous section, pointer-based checking approach with disjoint metadata

can provide comprehensive and compatible memory safety. To provide low performance overheads,

we perform the instrumentation within the compiler unlike prior approaches [16, 94, 131] that have

used source-to-source translation. Our compiler instantiation of the pointer-based checking ap-

proach with disjoint metadata called SoftBoundCETS (unification of our prior work: SoftBound [92]

and CETS [93]) operates on the intermediate representation (IR) of the LLVM compiler. To per-

form pointer-based checking within the compiler, SoftBoundCETS instrumentation needs to identify

pointers. SoftBoundCETS instrumentation leverages the type information in the LLVM IR to iden-

tify pointers, and adds additional code only for operations that manipulate pointers. To shadow

every word of memory for the disjoint metadata space, SoftBoundCETS uses a two-level trie data

structure that is allocated on-demand. The two-level trie lookups are performed only when pointers

are loaded/stored, which are identified using the type information in the IR. Thus, the use of type

information minimizes the amount of added instrumentation code.

A compiler instrumentation also requires a mechanism to propagate metadata with function

calls in an ISA independent manner. To propagate metadata for pointers arguments/return values

with function calls, SoftBoundCETS uses a shadow stack that mirrors the call stack of the program.

Unlike the call stack that holds the activation record, the shadow stack holds the metadata for the

pointer arguments and return values for the frames in the call stack. Further, shadow stack provides

6

a mechanism for dynamic typing between the arguments pushed at the call site and the arguments

retrieved by the callee preventing memory safety errors with mismatched function signatures.

Finally, SoftBoundCETS further reduces the performance overhead by performing its instru-

mentation on optimized code, which is obtained after executing an entire suite of existing compiler

optimizations. Our experimentation with SPEC benchmarks show that full memory safety can be

enforced for unmodified C programs with 108% performance overhead on average. The SoftBound-

CETS prototype is publicly available for download [6] and is also available in the experimental

LLVM subversion repository. We have used the prototype with approximately one million lines of

code detecting previously unknown (new) and known memory safety violations.

1.4 Can Pointer-Based Checking be Performed within the

Hardware?

To implement pointer-based checking approach with disjoint metadata on mostly unmodified bi-

naries with low performance overheads, this dissertation proposes a hardware proposal Watchdog.

Unlike prior approaches for instrumenting binaries that have primarily used dynamic binary transla-

tion, Watchdog proposes instrumentation within the hardware using micro-operation injection. An

optimized injection of micro-operations within the hardware avoids the huge performance over-

heads that is common with either dynamic binary instrumentation or binary translation.

To implement pointer-based checking on binaries, Watchdog needs to identify instructions ma-

nipulating pointers. The binaries typically do not provide any such information. In the absence of

such information, Watchdog could perform additional instrumentation to perform checks, metadata

accesses and propagation on each instruction. To mitigate such unnecessary operations especially

the disjoint metadata access overheads, we propose two pointer identification schemes: (1) conser-

vative pointer identification that treats every word sized load/store as a pointer load/store, and (2)

extensions to the instruction set architecture to identify pointer loads/stores.

Once pointers are identified, Watchdog obtains information about memory allocations and deal-

locations from the runtime to associate bounds and identifier metadata with pointers. Watchdog

injects micro-operations to (1) propagate the metadata with pointer operations, (2) check the meta-

data on memory accesses, and (3) access the metadata from the disjoint metadata space on pointer

loads/stores. To streamline the implementation and reduce runtime overhead, Watchdog eliminates

7

metadata copies among registers via modified register renaming and uses a dedicated metadata

cache to reduce the checking overhead.

Further, Watchdog implements pointer-based checking with small localized changes to the hard-

ware: (1) modified instruction decoder to inject micro-operations, (2) changes to the register renam-

ing logic, and (3) extra hardware for the dedicated metadata cache. Using these hardware exten-

sions, Watchdog reduces the overhead of providing full memory safety to just 24% on average for

our benchmarks, which is an order of magnitude better than prior binary instrumentation and binary

translation schemes.

1.5 Can Pointer-Based Checking be Performed with a

Hardware/Compiler Hybrid?

From our experience building SoftBoundCETS instrumentation within the compiler and Watchdog

hardware for instrumenting mostly unmodified binaries, we propose a synergistic hardware acceler-

ated compiler instrumentation. We use the name HCH for this hardware-assisted-compiler instru-

mentation hybrid design. One of the bottlenecks with SoftBoundCETS instrumentation is the large

number of instructions required to perform the checks and the metadata accesses. In contrast, iden-

tifying pointers precisely to minimize the amount of extra micro-operations is reasonably difficult

with Watchdog as binaries lack such information.

We alleviate both these concerns in the hybrid design HCH by (1) leveraging the compiler

to perform the instrumentation using the type information in the LLVM IR and (2) accelerating

the checks and the metadata accesses using new ISA instructions provided by the hardware. We

propose four new instructions to be added to the ISA: (1) a spatial check, (2) a temporal check, (3)

a metadata load and (4) a metadata store. We explore variants of these instructions by leveraging

the wide vector registers in modern processors. We find that the use of vector registers can reduce

the register pressure that arises in the presence of pointer metadata. Hence, using vector registers

with the new instructions is a promising option for accelerating pointer-based checking with disjoint

metadata. Using the new ISA instructions along with the compiler instrumentation, we are able to

reduce the performance overhead of the hybrid scheme to 39% on average with simpler hardware

for our benchmarks.

8

1.6 Contributions of this Dissertation

This dissertation makes the following contributions:

• Proposes the use of disjoint metadata with pointer-based checking to provide spatial and

temporal safety. Prior approaches that explored pointer-based checking primarily used inline

metadata with pointers, which required complicated analyses to protect the metadata. The use

of disjoint metadata as proposed in this dissertation leaves the memory layout of the program

unchanged while ensuring the integrity of the metadata. Thus, disjoint metadata enables a

simple local instrumentation to provide comprehensive and compatible memory safety. This

approach has been recently adopted in the Intel’s production compiler (see Section 8.2 of

Chapter 8 for details) [57].

• Proposes the use of type information in the compiler to perform pointer-based check-

ing. Unlike prior pointer-based checking schemes that have source-to-source translations,

our SoftBoundCETS instrumentation is structured within the compiler and leverages the type

information within the compiler to minimize the instrumentation. Use of type information to

identify pointers and minimize instrumentation overheads enables us to revisit pointer-based

checking with simple local instrumentation.

• Proposes hardware micro-operation injection to perform pointer-based checking on

mostly unmodified binaries. The injection of micro-operations with Watchdog streamlines

the implementation of pointer-based checking by (1) accelerating the checks and the meta-

data accesses, and (2) avoiding the inefficiencies (such as spills and restores) resulting as a

consequence of small number of registers available to the compiler.

• Proposes new instructions to accelerate a hardware-assisted compiler instrumentation.

We propose the use of the hardware-assisted compiler instrumentation where the type in-

formation available to the compiler is leveraged to minimize instrumentation and new in-

structions are used to accelerate the checks and the metadata accesses further minimizing the

hardware required to accelerate pointer-based checking. We propose the use of vector regis-

ter in modern processors along with new instructions as an attractive option for reducing the

performance overheads of pointer-based checking.

9

• Quantitatively evaluates pointer-based checking with disjoint metadata with above three

design points. We evaluate pointer-based checking with our SoftBoundCETS prototype with

real world applications to determine its ability to (1) detect all memory safety errors, (2) han-

dle real world code, and (3) instrument code with low performance overheads. We evaluate

the hardware extensions and the hybrid using an x86 simulator. Our experiments indicate that

pointer-based checking with disjoint metadata can enforce memory safety with low perfor-

mance overheads without requiring source code changes enabling it to be deployed in live

systems.

1.7 Dissertation Structure

The dissertation can be broadly organized into three parts: first, background on enforcing memory

safety (Chapter 2); second, our proposal for enforcing memory safety using a pointer-based check-

ing approach with disjoint metadata (Chapter 3); and third, our instantiations of the pointer-based

checking with disjoint metadata within the compiler, in hardware, and with a hardware-compiler

hybrid instrumentation (Chapters 4, 5, and 6).

Chapter 2 provides background on enforcing memory safety, closely related approaches for en-

forcing memory safety, and problems with existing approaches in the presence of arbitrary casts.

Chapter 3 describe the basic checking approach where we maintain metadata with pointers in a

disjoint metadata space, and it also describes how the use of disjoint metadata enables the pointer-

based checking approach to detect all memory safety errors while requiring no source code changes.

Chapter 4 provides a background on the LLVM compiler, describes our SoftBoundCETS instrumen-

tation that leverages the type information in the LLVM IR, describes the shadow stack mechanism

to propagate metadata for pointer arguments and returns with function calls, and evaluates the per-

formance overheads of the SoftBoundCETS prototype. Chapter 5 describes Watchdog, our hardware

instantiation of the pointer-based checking approach. The chapter describes the mechanisms used

to identify pointers, and inject instrumentation within the hardware. Chapter 6 describes the bot-

tlenecks with both pure compiler and hardware instrumentation. Further, the chapter describes the

new instructions added to accelerate the compiler instrumentation. Chapter 7 describes the other

related work that indirectly enforce memory safety. We conclude in Chapter 8 by summarizing our

10

proposals and expressing our opinions on future challenges and barriers in the universal adoption of

memory safety enforcement techniques.

1.8 Differences from Previously Published Versions of this Work

This dissertation builds upon the previous published results of Nagarakatte et al. [91, 92, 93]. The

key idea of pointer-based checking with disjoint metadata for the compiler-based instrumentation

is derived from our PLDI 2009 paper on providing spatial safety [92]. The presentation of the

pointer-based checking approach in this dissertation extends prior work [92, 93] in three directions:

(1) unifies both spatial and temporal safety enforcement mechanisms, (2) provides a consolidated

and unified discussion on how disjoint metadata enables the pointer-based checking approach to

provide comprehensive and compatible memory safety, and (3) provides a streamlined implemen-

tation, which has more optimizations and is more robust, in a new LLVM compiler. The com-

piler instrumentation for providing spatial and temporal safety were proposed earlier in our earlier

papers [92, 93]. The SoftBoundCETS compiler instrumentation described in this dissertation pro-

vides a new mechanism for propagating metadata for pointer arguments with function calls using

a shadow stack. Further SoftBoundCETS is evaluated comprehensively highlighting the benefits of

compiler-based instrumentation with a more robust and streamlined prototype. The presentation

of the Watchdog chapter in this dissertation integrates bounds checking along with use-after-free

checking proposed in our prior work [91]. Chapter 6 describes our new results in enforcing mem-

ory safety using a hardware-assisted compiler instrumentation hybrid.

11

Chapter 2

Overview of Memory Safety

Enforcement

This chapter provides an overview of memory safety and the prior techniques that have been pro-

posed to enforce memory safety. The goal of this chapter is provide background, terminology, and

context to understand the rest of the dissertation. The problem of providing memory safety for C

is a well researched topic and a large number of proposals that provide partial or complete mem-

ory safety have been proposed [15, 16, 20, 32, 43, 45, 46, 47, 51, 60, 67, 73, 75, 92, 93, 94, 103,

116, 131]. In this chapter, we will describe approaches that are essential to understand the disserta-

tion’s contribution. We defer the discussion of other less related prior work that indirectly provide

memory safety [1, 5, 11, 12, 13, 17, 27, 29, 31, 88, 99, 100, 123, 132, 135] to Chapter 7.

We describe the problem of memory safety violations in C and their two kinds: spatial safety

violations and temporal safety violations in Section 2.1. We discuss the dimensions involved in

enforcing memory safety in Section 2.2. We present the essence of three broad approaches to

detect spatial violations in Section 2.3 and temporal violations in Section 2.4. In Section 2.5, we

describe the instrumentation mechanisms for enforcing memory safety and their tradeoffs. Finally,

we present the challenges and inefficiencies with existing approaches and close the chapter with a

summary.

12

int *p, *q, *r;
p = malloc(8);
...
q = p;
...
free(p);
r = malloc(8);
...
... = *q;

int* q;
void foo() {
 int a;
 q = &a;
}
int main() {
 foo();
 ... = *q;
}

Heap based
temporal error

Stack based
temporal error

int *p, *q, *r;
void foo(int i) {
 p = malloc(8);
 ...
 q = p + i;
 ...
 *q = ...;
 ...
}

Spatial error

Figure 2.1: Examples of spatial and temporal safety violations both on the stack and the heap.

2.1 The Problem of Memory Safety in C

The C programming language was originally designed to write low-level systems code as it pro-

vides proximity to the underlying hardware, control over the memory layout, and minimal runtime

support. However, several features of C, such as the use of pointers, pointer arithmetic, unsafe type

casts, pointers to middle of objects, its conflation of arrays and singleton pointers, and unchecked

array indexing can cause simple programming mistakes to corrupt the values of arbitrary memory

locations eventually breaking fundamental programming abstractions. Such memory corruption can

inadvertently cause a program to crash either immediately or in a non-deterministic manner, pro-

duce wrong results, and can be the root cause of multitude of security vulnerabilities. Moreover,

such memory corruption can cause crashes at a later instant of time making debugging extremely

difficult. Accessing and corrupting the values of arbitrary memory locations beyond the memory

locations that are allowed by the programming abstractions is termed as a memory safety violation.

Memory safety violations occur as a result of violation of type safety in the program, unchecked

array accesses, and unsafe manual memory management. The relationship between providing mem-

ory safety and ensuring type safety is discussed in Section 2.2.

2.1.1 Spatial and Temporal Safety Violations

A memory safety violation could be either a spatial safety violation or a temporal safety violation. A

spatial safety violation occurs when a program accesses a memory location outside the bounds of the

object associated with the pointer or an array. Spatial safety violations include bounds violations,

13

accessing uninitialized pointers, dereferencing NULL pointers and pointers manufactured using

arbitrary casts from integers. Bounds violation arise as a result of pointers pointing to memory

locations outside the bounds of the allocated object through arbitrary pointer arithmetic and type

casts. Further, conflation of pointers and arrays in C makes it easier for programmers to erroneously

access out-of-bound locations. Similarly uninitialized pointers can have arbitrary values (as they

are uninitialized) and therefore can access arbitrary memory locations. A NULL pointer when

combined with pointer arithmetic can overwrite and corrupt arbitrary memory locations.

A temporal safety violation occurs when a pointer is used to access a memory location after the

object has been deallocated. Temporal safety violations include: dangling pointer dereferences (ref-

erencing an object that has been deallocated) and invalid frees (calling free() with a non-heap ad-

dress or pointer to the middle of a heap allocated or freeing already freed pointer). Using a dangling

pointer, a program can write to deallocated memory locations which could have been potentially re-

allocated to other objects thereby corrupting the values at arbitrary memory locations. On the other

hand, invalid frees are not temporal memory safety violations per say but can corrupt the metadata

maintained by the memory manager causing arbitrary memory corruption.

Figure 2.1 shows examples of common kinds of memory safety errors, including a spatial viola-

tion and a temporal safety violation. The left-most example in Figure 2.1 on page 13 demonstrates

a spatial error where pointer q is dereferenced beyond the bounds. The examples on the right in

Figure 2.1 on page 13 show dangling pointer errors involving the heap and stack. In the example in

the middle, freeing p causes q to become a dangling pointer. The memory pointed to by q could

be reallocated by any subsequent call to malloc(). In the right-most example in Figure 2.1, foo()

assigns the address of stack-allocated variable a to global variable q. After foo() returns, its stack

frame is popped, thereby q points to a stale region of the stack, which any intervening function call

could alter. In both cases, dereferencing q can result in garbage values or data corruption.

2.1.2 Why are Memory Safety Violations Common with C?

There are multiple features in C code that can cause simple programming errors to result in memory

safety violations. The fundamental reason behind memory safety violations is that C provides many

features such as weak typing that allow arbitrary type casts, array-pointer conflation, and man-

ual memory management but does not provide mechanisms (either static or dynamic) that check

14

whether programmers use these features in a safe manner. Further, many of C’s features makes

the job of checking the usage difficult. Some examples include: (1) the lack of singleton type that

requires every memory access to be checked, and (2) weak typing with unsafe type casts loses all

the information about object sizes. As a result, a void * in the C code can be: (1) a pointer to an

object allowed by the language specification (arrays, structures, singletons, sub-fields in a struc-

ture), (2) an out-of-bounds pointer, (3) a dangling pointer, (4) a NULL pointer, (5) an uninitialized

pointer, and (6) a pointer manufactured from an integer. To check whether a pointer dereference

is valid according to the language specification, appropriate metadata should be maintained with

the pointer. Maintaining the appropriate metadata and checking the maintained metadata before a

pointer dereference makes the problem of enforcing correct usage hard.

2.1.3 Consequences of Memory Safety Violations

The serious bugs and security vulnerabilities facilitated by C’s lack of memory safety are well

known. The lack of memory safety leads to bugs that cause difficult-to-diagnose crashes, silent

memory corruption, and incorrect results. Worse yet, it is the underlying root cause of a multitude

of security vulnerabilities [3, 4, 7, 8, 10, 31, 38, 49, 71, 72, 107, 107, 108, 127]. These violations

allow an attacker to corrupt values in memory [31], inject malicious code, and initiate return-to-libc

attacks [107] breaking fundamental programming abstractions. These memory safety violations are

particularly insidious because even small coding mistakes anywhere within a large codebase can

result in a catastrophic compromise of the entire system.

Both spatial and temporal safety violations have been used as the root-cause of security vulner-

abilities. For one example, in November 2008 Adobe released a security update that fixed several

serious buffer overflows [8]. Attackers have reportedly exploited these buffer-overflow vulnerabil-

ities by using banner ads on web-sites to redirect users to a malicious PDF document crafted to

take complete control of the victim’s machine [7]. For another example, as of March 2009, mil-

lions of computers worldwide were infected with the Conficker worm, which spreads primarily via

a buffer-overflow vulnerability [108].

Security vulnerabilities exploiting spatial memory safety violations have a long history. On the

other hand, vulnerabilities exploiting temporal safety violations are becoming increasingly common

in the recent years. Temporal safety violations have been used in real-world attacks [49, 71, 72] and

15

many such vulnerabilities have been disclosed recently, including several in mainstream software

such as Microsoft’s Internet Explorer [3], Adobe’s Acrobat Reader, Firefox [10], and OpenSSL [4].

In one notable incident, a use-after-free vulnerability was exploited in the widely publicized attack

on Google and other companies in early 2010 [2, 3].

2.2 Enforcing Memory Safety

Memory safety violations and the concomitant security vulnerabilities can be avoided completely by

moving to safe languages such as C# and Java or by enforcing memory safety for C. In the next few

subsections, we describe the relationship between type safety and memory safety, and describe how

safe languages provide memory safety using a combination of type safety and dynamic checking.

Subsequently, we revisit how memory safety can be enforced for C with dynamic checking, and

describe the trade-offs in various domains with dynamic checking.

2.2.1 Relationship Between Type Safety and Memory Safety

A type system in a statically typed language is a static analysis technique that can be used to prove

the absence of certain program behaviors by classifying the expressions in the language according to

the values they compute. A type system calculates a static approximation of the runtime behaviors

of the expressions in the program. Like any static analysis technique, they are conservative and can

reject programs that are well behaved during the execution. In contrast to static type systems, type

tags can be maintained and checked at runtime. These runtime type tags dynamically check that the

expressions have the correct type tags in accordance with the values they compute.

Type safety is closely linked to memory safety. To provide type safety, memory safety needs

to be enforced apart from ensuring the proper use of abstract data types in the program. Mem-

ory safety needs to be enforced to provide type safety due to the following reasons: (1) spatial

safety violations can break type safety (for example, unchecked array accesses can corrupt arbitrary

memory locations breaking type safety) and (2) temporal safety violations similarly can break type

safety (accesses to deallocated memory locations that have been potentially reallocated to a totally

different data structure can corrupt arbitrary data structures breaking type safety). In contrast to the

type safety enforcement that implicitly provides memory safety, memory safety enforcement does

not necessarily imply type safety. A memory-safe program is not necessarily type safe as memory

16

safety only ensures that each pointer dereference accesses a memory location that is legal to access

according to the language specification but memory safety does not necessarily ensure that runtime

values of expressions are consistent with their types.

As memory safety violations can easily break the type safety guarantees and statically check-

ing that program is memory safe without false positives is infeasible, a program still needs extra

dynamic checking to ensure memory safety. However, the type information in the program can be

leveraged to reduce the amount of memory safety checking performed. In the next section, we will

describe the goals in performing dynamic checking to enforce memory safety.

2.2.2 Memory Safety with Safe Languages

Safe languages such as Java and C# enforce memory safety using a combination of strong typing,

extra runtime checks, and automatic memory management. Safe languages avoid temporal safety

violations by relinquishing manual memory management and relying on garbage collection. To pro-

vide spatial safety, these language rely on the type system and the runtime bounds checks. However,

performing such checks is easier than for C as the type system explicitly distinguishes pointers (ref-

erences) to objects from arrays. Further, these languages allow only certain type casts (i.e. type

cast between objects in the same class hierarchy using upcasts and downcasts), and it dynamically

checks that these type casts are valid using runtime tags during downcasts. The upcasts move the

object up in the class hierarchy. Hence, upcasts cannot cause a spatial safety violation. A strong

type system coupled with runtime checks on array access and downcasts enable safe languages to

prevent spatial safety violations.

2.2.3 Design Alternatives in Enforcing Memory Safety for C

There are three broad alternatives to retrofit memory safety to C. One alternative is to restrict the lan-

guage to disallow all the idioms that make the task of enforcing memory safety harder as described

in Section 2.1.2. To enforce memory safety in this manner, one would have to disallow pointer type

casts, provide explicit identification of singletons and pointers, avoid manual memory management

and check array accesses at runtime similar to safe languages. However, such restrictions would

likely rule out a large number of C programs and may be applicable in only a few domains.

17

The second alternative would be to use a static analysis to check that the program is memory-

safe. A static analysis can prove that each memory accesses is safe with respect to memory safety

for all inputs. Hence such an analysis will not incur any performance overhead once the analysis

is performed. However, the key problem with such static analyses is the numerous false posi-

tives (erroneous classification of programs to be memory unsafe when are indeed memory-safe).

As precisely identifying memory unsafe accesses is equivalent to solving the halting problem, re-

cent proposals [22, 48] have explored improving the precision by either restricting the classes of

memory safety errors detected in the program (such as array indexing and string manipulation [48])

or by leveraging extra information in the program and using abstract interpretation [22]. Distin-

guishing false positives from the real memory safety errors is a tedious and time consuming task,

many static analysis techniques have sacrificed soundness and have been targeted towards specific

kinds of bugs.

The third alternative is to perform dynamic checking. A dynamic checking technique would

need to maintain metadata and check the metadata on pointer accesses. Any dynamic checking

technique that attempts to retrofit memory safety has to make tradeoffs and design choices along

three dimensions of completeness, compatibility and performance overhead. First, completeness

determines the ability of the technique to detect all memory safety errors without any false positives.

As even simple errors could be exploited as security vulnerabilities, any scheme would ideally want

to achieve completeness. Second, compatibility determines the ability of the technique to work with

existing and legacy code. Significant restrictions to the language requires a significant rewrite of the

existing code, thereby preventing adoption due to incompatibility with existing source code. Third,

the runtime performance overhead determines the cost of enforcing memory safety with dynamic

checking. As untested inputs can have memory safety violations, the memory safety enforcement

techniques need to be adopted even in deployed systems. To encourage their adoption in deployed

systems, all techniques strive to reduce the runtime performance overhead.

2.2.4 Bug Finding vs Always-on Dynamic Checking Tools

Dynamic checking techniques that enforce memory safety can be broadly classified into two cate-

gories based on their goals: (1) bug-finding tools and (2) always-on enforcement tools. Bug finding

tools are primarily employed during the development stages (testing/debugging) with the goal of

18

detecting memory safety violations. They are generally best-effort detection techniques without

false positives. As they are not necessarily employed in the released software runs, performance

overheads tend to be higher. On the other hand, always-on checking seek to be deployed even in

the released software runs as the program may have memory safety violations with different inputs

and these untested inputs can lead to security vulnerabilities. Having low performance overheads is

important for always-on enforcement tools, which in-turn is important to detect security vulnerabil-

ities.

Beyond completeness and performance overheads, compatibility with existing C code without

requiring source code changes is also desirable. As we discuss later in Section 2.3.4, retrofitting

memory safety while supporting all the idiosyncratic features of legacy C code to maintain com-

patibility could add additional overhead. The next few subsections describe and compare the ap-

proaches that detect memory safety violations, focusing on their performance, completeness, and

compatibility attributes.

2.3 Detecting Spatial Safety Violations

The techniques that detect and prevent spatial safety violations can be classified into three categories

described below: tripwire approaches, object-based approaches, and pointer-based approaches.

2.3.1 Tripwire Approaches

Tripwire approaches place a guard block of invalid memory between memory objects. The guard

block prevents contiguous overflows caused by walking past an array boundary with a small stride.

Although small strides will hit the guard block flagging spatial violations, a larger stride can jump

over the tripwire and access data from another object undetected, causing a spatial safety violation.

Hence these schemes are not complete.

The tripwire approaches are generally implemented by tracking a few bits of state for each

byte in memory; the additional bits indicate whether the location is currently valid [65, 97, 110,

126, 133]. When the memory is allocated, these bytes are marked as valid. Every load or store is

instrumented to check the validity of the location.

Purify [65] and Valgrind’s MemCheck [97] implement the tripwire approach using binary rewrit-

ing, but their large performance overhead restricts their use. Address Sanitizer [115] uses compiler-

19

based instrumentation reducing their overheads to approximately 2×. Yong et al. [133] use static

analysis and check only memory writes to reduce the runtime overhead of this approach to under

2× in many cases. Further, hardware can used to reduce the overhead by either using invalid ECC

signatures to encode invalid memory locations [110] or adding hardware support for updating and

checking the valid/invalid blocks [126]. Although useful for finding spatial violations (and many

temporal safety violations as discussed in Section 2.4), a significant drawback of these schemes is

that they cannot guarantee the detection of all spatial violations.

2.3.2 Object-Based Approaches

Object-based approaches [40, 44, 51, 75, 113] are based on the principle that all pointers are prop-

erly derived pointers to their intended referent (the object they point to). Hence these approaches

check pointer manipulations to ensure that the resultant pointer points to a valid object. To perform

such checking, these approaches track all allocated regions of memory in a separate data structure.

This data structure maps any location inside of an allocated region to the bounds information associ-

ated with the corresponding object. Pointer manipulation operations are checked to ensure that they

remain within the bounds of the same object. The distinguishing characteristic of this approach

is that bounds information is tracked per object and associated with the location of the object in

memory, not with each pointer to the object. Every pointer to the object therefore shares the same

bounds information.

The object-based approach has at least two important advantages. First, the memory layout of

objects is unchanged, which improves source and binary compatibility. Second, all heap memory

allocations (i.e., calls to malloc()) update the object-lookup data structure, which allows every valid

pointer to be mapped to an object, even if it was allocated by un-instrumented code. This behav-

ior allows object-based schemes to transparently interact with legacy libraries that have not been

instrumented, therefore improving the overall compatibility of the system.

However, the object-based approach has three disadvantages. First, out-of-bounds pointers,

which are allowed by the C language specification as long as they are not dereferenced, require

special care. Moreover, such pointers are relatively common in existing C code [75]. Object-

based schemes use special out-of-bounds proxy objects [44, 75] when out-of-bound pointers occur.

If an out-of-bound pointer is modified so that it is back in bounds, this proxy object is used to

20

struct {
 char id[8];
 int account_balance;
} bank_account;

...

char * ptr = &(bank_account.id);
strcpy(ptr, "overflow......");

...

Sub object overflow

Figure 2.2: Example of a sub-object overflow.

recreate a valid pointer to the original object. Second, the object-lookup is a range lookup: a

pointer to anywhere in the object must correctly map to the object’s bounds information. This

range lookup is often implemented as a splay tree, which can be a performance bottleneck, yielding

runtime overheads of 5× or more [51, 75, 113]. Subsequent proposals have considerably mitigated

this issue, reducing the overhead of the object-table by checking only strings [113], using whole-

program analysis to perform automatic pool allocation to partition the splay trees and eliminate

lookup and checking for many scalar objects [40, 44], and by using efficient checks facilitated by

enforcing allocation bounds (using binary buddy allocator) rather than precise object bounds [14].

The third significant drawback of the object-based approach is that its implementations are

generally incomplete—they do not detect all spatial violations. For example, arrays inside struc-

tures are not always checked. To see why, consider a contrived example in Figure 2.2, where

pointers to bank account and bank account.id are indistinguishable as they point to the

same location and thus are associated with the same object-based bounds information. Hence the

pointer &(bank account.id) inherits the bounds of the whole object. When ptr is passed to

strcpy() an overflow of bank account.id can overwrite the rest of the struct, including

the struct’s account balance field—even if strcpy() is instrumented. Although con-

trived, this example demonstrates that sub-object overflows have the potential to result in serious

bugs or security vulnerabilities.

Although object-based implementations have typically not targeted or addressed the detection of

such sub-object overflows, some object-based proposals are more successful at preventing internal

21

overflows. For example, SAFECode [44, 46], a recent instance of the object-based approach, uses

whole-program static type analysis and type-homogeneous pool allocation to significantly improve

coverage in such cases; it is capable of detecting many, but not all, such sub-object violations.

2.3.3 Pointer-Based Approaches

An alternative approach is the pointer-based approach, which tracks base and bound information

with each pointer. This is typically implemented using a fat pointer representation that replaces

some or all pointers with a multi-word pointer/base/bound. Such a fat pointer records the actual

pointer value along with the addresses of the upper and lower bounds of the object pointed by the

pointer. Two distinct pointers can point to the same object and have different base and bound as-

sociated with them, so this approach avoids the sub-object problem with object-based approaches

discussed above. When a pointer is involved in arithmetic, the actual pointer portion of the fat

pointer is incremented/decremented. On a dereference, the actual pointer is checked to see whether

it is within the base and bound associated with it. Proposals such as SafeC [16], CCured [94],

Cyclone [73], MSCC [131], and others [43, 95, 103] use this pointer-based approach to provide

spatial safety guarantees. The pointer-based approach is attractive in that it can be used to detect

sub-object overflows and avoid the extra mechanisms required to handle out-of-bound pointers.

However, propagating and checking bounds for all pointers can result in significant runtime over-

heads.

To reduce these overheads, CCured [94] used whole-program type inference to identify point-

ers that do not require bounds checking. CCured classifies pointers into various kinds: SAFE, SEQ,

and WILD. SAFE pointers have negligible performance overhead and are not involved in pointer

arithmetic, array indexing, or unsafe typecasts. SEQ pointers are fat pointers that allow only pointer

arithmetic and array indexing and are not involved in unsafe typecasts. WILD pointers allow ar-

bitrary type casts, but require additional metadata and also any non-pointer store through a WILD

pointer is required to update the additional metadata. This approach reduces the runtime overhead

significantly, but CCured requires modifications to the source code to: (1) avoid introducing ineffi-

cient WILD pointers and (2) handle the memory layout incompatibility introduced by CCured’s use

of fat pointers.

22

struct A {
 size_t t1;
 void* ptr;
 size_t t2;
};

struct B {
 size_t f1;
 size_t f2;
 size_t f3;
 size_t f4;
};

void foo(struct A * p) {
 struct B * q;
 q= (struct B *)p;
 ...
 q->f3 = ...;
 ...
}

0x50
0x58
0x60

t1
ptr
t2

0x50
0x58
0x60

t1
ptr
base
bound
t2

0x68
0x70

struct A
 in
memory

memory layout
with regular pointers

memory layout
with fat pointers

struct A
 in
memorym

et
a

-d
at

a

Figure 2.3: Memory layout changes in a program with fat pointers. The code snippet also shows
how pointer involved in arbitrary type casts can overwrite the pointer metadata.

2.3.4 Source Incompatibility with Fat Pointers and Arbitrary Type Casts

The most significant disadvantage of the fat pointer-based approach is that fat pointers change mem-

ory layout in programmer-visible ways. This introduces significant source code compatibility issues

requiring the source code to be modified [94]. Figure 2.3 illustrates the memory layout changes that

occur with the use of fat pointers resulting in source incompatibilities. The code snippet in Fig-

ure 2.3 has a structure type A with three sub-fields: (1) an unsigned integer field (t1), (2) a void

pointer field (ptr), and (3) another unsigned integer field (t2). In a normal program without fat

pointers, this structure would be laid out in memory as shown in Figure 2.3, with each field adjacent

to each other. With the use of fat pointers, the structure laid out in memory will have additional

metadata along with original member fields as shown in Figure 2.3.

The first major problem with fat pointers is that it changes the memory layout in programmer

visible ways. The modified memory layout makes interfacing with library code challenging. The

libraries expect the structure fields to be at certain offsets, which will be different when the structure

contains a fat pointer. To avoid such problems with external libraries, wrappers marshal the data

structures with pointers. Such marshaling of data structures may require deep copies. Further,

such deep copies of data structures are required even when the library just reads the data structures

without performing any updates making the task of writing wrappers cumbersome while incurring

23

performance overhead. To address this issue, attempts have been made to split the metadata from

the pointer [94, 131]. These approaches partially mitigate some of the interfacing issues, but such

techniques can increase overhead by introducing linked shadow structures that mirror entire existing

data structures.

The second major challenge with the fat pointers is the protection of in-line metadata in the

program. Arbitrary typecasts in the program can corrupt the metadata. The code snippet in Fig-

ure 2.3 presents a contrived yet feasible example of how the metadata maintained with fat pointers

in memory can be corrupted in the presence of an arbitrary type cast. The function foo has a pointer

argument that points to a structure of type struct A, which has a pointer field. The function creates

a new pointer q by type casting the pointer p to be a pointer of type struct B, which has unsigned

integer fields. Subsequent writes to the fields of struct B through q can overwrite the fat pointer

metadata resulting in non-comprehensive detection of memory safety violations as shown in Fig-

ure 2.3.

To address metadata integrity problem, prior approaches have either forbidden the use of arbi-

trary type casts in the program or introduced extra metadata structures to protect the metadata in

the presence of casts [94]. Forbidding unsafe type casts requires a rewrite of the existing code base

losing source compatibility. Further many schemes ignore the problem with casts losing compre-

hensive protection. On the other hand, CCured uses WILD pointers that are dynamically typed to

provide protection in the presence of casts. A WILD pointer in CCured comes equipped with a base

field and a pointer field. The base field points to the start of a dynamically typed area, where there

is a length field indicating the size of the area. At the end of the area, there is a set of tag bits that

indicate which words in the dynamically typed area contain CCured’s base pointers. To protect the

metadata, every memory access through a WILD pointer must access the tag bits apart from the

regular metadata. Using extra metadata structures to protect inline-metadata introduces significant

performance overheads, as with WILD pointers in CCured, restricting the use of such schemes.

2.3.5 Comparison of Spatial Safety Approaches

Tripwires do not provide comprehensive detection. Further their overheads depend on the instru-

mentation method and implementation technique. Object-based and pointer-based approaches have

complementary strengths and weaknesses in detecting spatial memory safety violations. Object-

24

Checking Approach Instrument. Runtime Metadata Compatible Compre.
Taxonomy method overhead with casts Protection

Tripwire MC [97] Binary > 10× Disjoint

Yes

No

Object
J&K [75]

Compiler

> 10×

Disjoint No
Mudflap [51] > 40×

based Baggy [14] 1.1− 2×
SAFECode [44] 4×

Pointer

SafeC [16]

Source

> 10×

Inline
No

No
CCured –

1.3×
Safe/Seq [94]

CCured –

2×based Wild [94]
MSCC [131] Disjoint* Yes/No

MemSafe [120] Compiler Disjoint Yes Yes
Dissertation Comp/HW 1.1− 2×

Table 2.1: Comparison of spatial safety approaches. The * indicates that the MSCC provides
multiple implementations of the metadata. MSCC’s high performance configuration does not use
disjoint metadata losing comprehensive protection. This dissertation explores both compiler and
hardware instrumentation approaches, and is represented by Comp/HW.

based approaches are highly compatible because they use a separate lookup tree for tracking object

metadata, and thus they do not change the memory layout. In fact, they have been successfully

applied to the entire Linux kernel [40]. However, object-based approaches cannot always enforce

complete spatial safety because of sub-object overflows. In contrast, pointer-based approaches typi-

cally change the pointer representation and memory layout causing source code compatibility prob-

lems. Handling arbitrary casts is another important problem. For example, in CCured, arbitrary

casts result in WILD pointers (which further complicate library compatibility) and may have signif-

icant performance ramifications. When whole-program analysis is applied to reduce the overhead of

either scheme [44, 94], it can complicate the use of precompiled and dynamically loaded libraries.

Table 2.1 summarizes the various object-based and pointer-based approaches in contrast with

the dissertation’s approach. Object-based approaches such as Jones & Kelley [75] satisfy most

of the attributes except for the detection of all sub-object violations. CCured with only Safe/Seq

pointers has low overhead and is complete but lacks source code compatibility. MSCC [131] uses

split metadata and run-time type information, but it has difficulties handling arbitrary casts and it

does not detect sub-object overflows in the configuration with the lowest runtime overhead.

25

This dissertation proposes the use of disjoint metadata with pointer-based checking addressing

the memory layout compatibility and arbitrary type cast problem while providing comprehensive

detection of all errors. An arbitrary type cast can only manufacture pointers. The disjoint meta-

data is unchanged with such cast operations. This property enables us to handle casts and still

provide comprehensive protection. Chapter 3 provides a detailed explanation of our approach. A

recent proposal, MemSafe [120], builds on our idea of disjoint metadata to provide comprehensive

protection.

2.4 Detecting Temporal Safety Violations

Beyond providing spatial safety, preventing temporal safety errors is important with an increase

in the number of security vulnerabilities exploiting temporal safety violations. Temporal errors

result as a consequence of unchecked manual memory management. With manual memory man-

agement in C, programmers allocate memory on the heap using the malloc function (also using

similar allocation functions like calloc). Similarly, the programmers deallocate the memory us-

ing the free function provided by the runtime library. When the program erroneously dereferences

a pointer that points to a deallocated memory (also called a dangling pointer), it can access/cor-

rupt arbitrary memory locations resulting in temporal safety violations. Several approaches have

been proposed to prevent and detect temporal safety violations with varying degrees of protec-

tion [16, 20, 45, 47, 65, 97, 101, 103, 126, 131]. We discuss few of the previously proposed closely

related approaches in this section. Other related approaches are discussed in Chapter 7.

2.4.1 Garbage Collection in Safe Languages

Languages like Java, C#, ML and many others avoid temporal safety errors by relinquishing man-

ual memory management. These languages use garbage collection. As garbage collection works

on heap allocated storage, these languages disallow the allocation of objects on the stack (through

language design). The programmer allocates the objects on the heap using the memory allocation

routines. Garbage collector frees the unused objects when the program runs out of memory or

reaches a memory threshold. When an object is no longer used and there are no references to the

object, the garbage collector reclaims the allocated space. To perform such tracking, the garbage

collector needs to locate all program locations that hold live pointer variables at runtime, and au-

26

tomatically free the unused locations. Further, these languages are type-safe, and can use accurate

garbage collection. Although automatic memory management is widely using with safe languages,

garbage collection is not always an answer in some domains. For example, non-deterministic pause

times makes garbage collection unsuitable for real time systems.

2.4.2 Garbage Collection in Type-Unsafe Languages like C

An alternative to avoid temporal safety violations with C is to use garbage collection. However, as

C is not type-safe, C can use only conservative garbage collection [24]. As with manual memory

management, the programmer allocates memory using the garbage collection provided malloc func-

tion. However, deallocation operations using free do nothing. When the garbage collector kicks-in,

it tracks all references contained in registers, on the execution stack, or nested inside other objects.

The garbage collector reclaims memory that is unreachable. A conservative garbage collector [24]

cannot move live objects in the heap as it does not know which memory location holds a pointer.

This prevents the use of generational and compacting garbage collection algorithms that are widely

used with type-safe languages. Further, conservative garbage collector can suffer from memory

leaks due to integer values that accidentally appear like pointer addresses.

Allocating objects on the stack is common in C. To enable conservative garbage collection to

work with C and prevent dangling pointers on the stack as illustrated in Figure 2.1 on page 13, all

stack objects that can escape from the functions need to be allocated on the heap (heapification [94]).

A conservative garbage collector when coupled with heapification can eliminate all dangling point-

ers in these programs. However, such a conservative garbage collector similar to garbage collectors

with type-safe languages may not be appropriate for long running programs as it can leak memory.

Further, non-deterministic pause times with garbage collector makes it unsuitable for writing low

systems code, C’s niche domain. Unlike our fault model where the program halts on a manual

memory management error, garbage collector can tolerate memory management errors by masking

them while preventing preventing security exploits. Hence, garbage collector may not be ideal in a

debugging context as it masks errors rather than reporting them in a fail-stop fashion.

Alternatives to Garbage Collection for C As garbage collection is not ideal for low-level sys-

tems code written in C, manual memory management is still widely used. A temporal safety vi-

olation arises when the program dereferences a pointer that points to a deallocated memory loca-

27

tion. Such pointers are also called dangling pointers. Memory writes through dangling pointers

can corrupt arbitrary memory locations, which can become the root cause of security vulnerabil-

ities. However, such temporal safety violations can be prevented by checking dangling pointer

dereferences. We broadly call schemes that try to detect dangling pointer dereferences as temporal-

checking schemes. We discuss the temporal checking schemes related to the dissertation in the

following subsections.

2.4.3 Location-Based Temporal Checking

Location-based approaches (e.g., [65, 75, 97, 126]) use the location (address) of the object to de-

termine whether it is allocated or not. An auxiliary data structure records the allocated/deallocated

status of each location. This data structure is updated on memory allocations (e.g., malloc()) and

deallocations (e.g., free()). On a memory access, these auxiliary structures are consulted to deter-

mine whether the dereferenced address is currently valid (allocated) memory. As long as deallocated

memory locations are never reallocated, this approach will detect all dangling pointer dereferences.

However, if a location has been reallocated, this approach erroneously allows the pointer deref-

erence to proceed—the information tracked by this approach is insufficient to determine that the

pointer’s original allocation area was freed and is now being used again for a potentially unrelated

purpose. Thus, although such techniques are able to detect many dangling pointer dereferences,

they cannot detect all temporal errors. These location-based approaches can also detect some spa-

tial safety violations that access unallocated allocations beyond the allocated region.

There are two distinct ways of organizing the auxiliary data structures for recording the alloca-

tion information, each with different space/time trade-offs: (1) recording allocation ranges in a tree

structure and (2) using a shadowspace to track the allocation status of each word in memory.

Tree-Based Location Lookup One approach to implementing the auxiliary data structure is to

record all allocated regions of memory in a tree structure [75]. On a pointer dereference, a range

lookup in the tree identifies whether the address pointed to by the pointer is currently allocated

(when a mapping is found) or unallocated (when no mapping is found). The memory overhead

of this approach is low because it is proportional to the number of live objects, but it requires a

potentially slow range lookup (i.e., splay tree walk) for each dereference check. Unlike the object-

28

based approach to detect spatial safety violations that check pointer arithmetic, to detect temporal

safety violations such schemes need to check dereferences.

Shadowspace-Based Location lookup An alternative approach is to use a shadowspace in which

allocation/deallocation status is maintained with each byte (or word) of memory [65, 96, 126]. A

shadowspace may be implemented as a large, directly accessed memory region, a hashtable [92],

or a trie-based data structure [96, 138]. Accessing a shadow space entry is typically an efficient

O(1) operation, and thus provides fast checks. The memory usage is proportional to the size of the

memory rather than just the number of allocated objects (as in the tree-based scheme), but tracking

a bit per word is only a few percent memory overhead.

2.4.4 Identifier-Based Temporal Checking

An alternative approach is the allocation identifier approach, which associates a unique identifier

with each memory allocation. Each allocation is given a unique identifier and identifiers are never

reused. To ensure that this unique identifier persists even after the object’s memory has been deal-

located, the identifier is associated with pointers. On a pointer dereference, the system checks that

the unique allocation identifier associated with the pointer is still valid. One implementation of

pointer-based metadata is to expand all pointers into multi-word fat pointers. As described earlier

in Section 2.3.3, fat pointers suffer from (1) compatibility problems as a result of memory layout

changes, (2) library interfacing problems, and (3) the combination of fat pointers and arbitrary casts

can lead to metadata corruption weakening the complete protection as illustrated in Figure 2.3 on

page 23.

Set-Based Identifier Checking A set data structure (such as a hash table) is one approach for de-

termining whether an allocation identifier is still valid (i.e., the object has not been deallocated) [16].

The allocation identifier is inserted into the set during allocation (e.g., malloc()) and removed from

the set at deallocation (e.g., free()), and thus the set contains an identifier if and only if the identifier

is valid. Although set lookups can take just O(1) time, performing a hash table lookup on every

memory reference has the potential for introducing significant runtime overheads.

29

Checking Approach Instrument. Runtime Metadata Compatible Complete
Taxonomy method overhead with casts protection

Location

MC [97] Binary
10×

Disjoint Yes No
JK [75] Compiler

LBA [29]
H/W 1.2×SProc [60]

MTrac [126]

Identifier

SafeC [16]
Source

10× Inline

No
Yes

P&F [103] 5×
Split

MSCC [131] 2×
Chuang [32] Hybrid 1.2× Inline
Dissertation Compiler/HW 1.1x-2× Disjoint Yes

Table 2.2: Comparison of temporal checking approaches.

Lock-and-Key Identifier Checking To avoid a set lookup on each check, an alternative is to pair

each pointer with two pieces of metadata: an allocation identifier—the key—and a lock that points

to a location in memory called lock location [103, 131]. The key and value at the lock location will

match if and only if the pointer is valid. A dereference check is then a direct lookup operation—a

simple load from the lock location and a comparison with the key—rather than a hash table lookup.

Freeing an allocation region changes the value at the lock location, thereby invalidating any other

(now-dangling) pointers to the region. Because the keys are unique, a lock location itself can be

reused after the space it guards is deallocated. As we use the lock and key method for providing

complete memory safety, it is described later in detail in Chapter 3.

2.4.5 Analysis of the Temporal Checking Design Space

The general approaches described above have complementary strengths and weaknesses. Using

identifiers permits detection of dangling pointer dereferences even if the memory has been reallo-

cated to a new object. The disadvantages of identifiers stem from tracking per-pointer metadata,

which adds potentially significant overhead to loads and stores of pointer values. Fat-pointer im-

plementations also change data layout, which can reduce source compatibility and make interaction

with libraries difficult.

Location-based checking is attractive because its disjoint metadata does not change the pro-

gram’s memory layout. By re-linking with a different malloc() library, this approach works even

30

for objects allocated within libraries, and thus is highly compatible—using it requires fewer source

program changes. However, because this approach tracks only allocations and does not maintain

metadata with pointers, it does not detect pointers that erroneously point to reallocated regions of

memory.

This dissertation adopts the identifier-based checking to detect all errors even in the presence

of reallocations. To avoid the memory layout problems, it maintains the identifier metadata with

pointers in a disjoint metadata space providing the best of both worlds: identifier-based checking

and location-based checking.

2.5 Program Instrumentation

Given the approaches explained above, there are several different options for adding the checks

necessary to enforce memory safety.

Binary Instrumentation One option is to instrument the program at the binary level, after com-

pilation. Mechanisms for doing so range from completely static binary rewriting [65] (i.e., produce

a new executable from the old one) to partial emulation at the instruction level, intercepting control-

flow transfers and interpolating new code [97]. The benefit of binary translation is that it operates

on unmodified binary code and dynamically linked libraries, even when the source code is unavail-

able. However, the emulation and instrumentation overhead can contribute to high runtimes (10×

slowdown is common [97]), in part because it is difficult to perform high-level optimizations. Fur-

ther, typically binaries do not have much information and may be lacking the information (such as

stack allocation sizes, pointers) to perform pointer-based checking. Moreover, these tools are also

inherently tied to a specific instruction-set architecture.

Hardware-Assisted Instrumentation There are numerous ways in which the hardware can ac-

celerate/implement the memory safety checking scheme. Hardware instrumentation schemes that

augment the instruction execution with extra instructions to perform safety checking such as Mem-

tracker [126], HardBound [43], LBA [29] are attractive as they capture desirable properties of binary

instrumentation but with potentially lower runtime overhead and good backwards-compatibility.

However, the key disadvantage is that such instrumentation requires new hardware. Further, such

31

instrumentation is limited by the amount of information available in the binary which may be miss-

ing information such as allocation sizes and pointer information.

Source-Level Instrumentation The third option is source-level transformation to insert runtime

checks (e.g., [16, 94, 131]). This approach allows for use of source-code type information, and

the resulting instrumented source is independent of any specific C compiler or instruction-set archi-

tecture. The instrumentation is applied before the code is optimized by the compiler (e.g., before

variables are register allocated or code is hoisted out of loops). Unfortunately, once the instrumenta-

tion code has been added, the additional memory operations introduced may limit the effectiveness

of subsequent compiler optimization passes.

Compiler-Based Instrumentation Another option is for the compiler to instrument the code dur-

ing compilation. This approach is similar to source-level instrumentation, but adds one key advan-

tage that it can introduce instrumentation after the compiler has applied standard code optimizations.

This reduces the amount of instrumentation code introduced and thereby reducing the performance

overhead. Naively introducing safety checks before optimizations results in high performance over-

head as the optimizer then would have to remove checks and instrumentation code, which is not

necessarily straightforward.

2.6 Summary

In this chapter we provided a basic overview of memory safety enforcement techniques that pro-

vides the context for the rest of the dissertation. We described the goals and problems in retrofitting

memory safety for C in Section 2.1. Any memory safety enforcement technique would ideally pro-

vide (1) completeness by detecting all memory safety violations, (2) compatibility with existing

code, and (3) low or no performance and memory overhead. From the discussion of prior ap-

proaches, it was evident that pointer-based checking with appropriate metadata (bounds and iden-

tifier) can detect spatial and temporal safety violations. However, changing the representation of

the pointer which changes the memory layout causes source code incompatibilities as discussed in

Section 2.3.4. We observed that the high compatibility of object-based and location-based schemes

32

is primarily attributed to the use of disjoint metadata. This motivates us to use disjoint metadata

with pointer-based checking scheme to attain the above mentioned goals.

In the next chapter we describe our approach for providing complete memory safety using a

pointer-based approach that maintains the bounds and identifier metadata in a disjoint metadata

space providing completeness and compatibility. The subsequent chapters discuss the instrumenta-

tion strategies to reduce the performance overhead.

33

Chapter 3

Pointer-Based Checking with Disjoint

Metadata

In this chapter we describe a pointer-based checking approach that maintains the metadata in a

disjoint metadata space for enforcing memory safety. Subsequent chapters describe concrete in-

stantiations of this high level approach within the compiler (Chapter 4), purely in hardware (Chap-

ter 5), and with compiler assisted hardware support (Chapter 6). Although pointer-based check-

ing [16, 73, 94, 131] has been proposed and investigated earlier, the primary advantage of our

approach is that it maintains the metadata in a disjoint space that provides an opportunity to revisit

pointer-based checking (generally considered invasive) for retrofitting C with practical memory

safety. A practical scheme would enforce memory safety for existing programs without any source

modifications. Hence, the primary goals of our approach are to retrofit memory safety for C by (1)

detecting all the memory safety violations both spatial safety and temporal safety errors, (2) main-

taining source compatibility with existing programs, and (3) performing such checking keeping the

overheads low enough to be widely deployed in live systems.

3.1 Approach Overview

To meet the goal of comprehensive memory safety, we use a pointer-based approach where we

maintain metadata with each pointer similar to prior schemes described in Chapter 2. However, one

of the key advantages of our work is that it maintains the metadata in a disjoint metadata space,

34

which leaves the memory layout of the program intact. The key challenge is to efficiently map a

pointer to its disjoint metadata. After we narrow down our approach to a scheme that does pointer-

based checking with disjoint metadata, the rest of the work is in streamlining the instrumentation

to attain the required safety goals and performance targets. In a nutshell, each pointer has metadata

that is assigned when pointers are created and propagated with pointer operations. To detect spatial

safety errors, each pointer has bounds metadata. To detect temporal safety errors, each pointer has

identifier metadata (organized as lock and key identifier).

The pointer’s metadata is checked before memory accesses to detect memory safety errors. To

detect spatial safety errors, a spatial check performed before a pointer dereference checks whether

the pointer is within the bounds. To detect temporal safety errors, the identifier associated with the

pointer being dereferenced is checked for validity. As unique identifiers, which are not reused, are

allocated on memory allocations and the identifiers are marked as invalid on memory deallocations,

temporal errors are detected even in the presence of reallocations as described in Section 2.4.4 of

Chapter 2.

Pointer-based checking with disjoint metadata provides both binary compatibility (i.e. the li-

brary interfaces and data layout are unchanged) and provides good source compatibility (i.e. negli-

gible to no source code changes), thereby enabling our approach to retrofit comprehensive memory

safety to unmodified legacy C code base. We describe the conceptual operation of the pointer-based

checking in the rest of this chapter. We conclude this chapter by demonstrating the compatibility

and comprehensiveness of this approach by detecting previously known/unknown memory safety

errors and by working with existing legacy code with negligible source code changes. We defer

the efficient implementation of this approach in various parts of the tool chain to subsequent chap-

ters: Chapter 4 describes an instrumentation on the intermediate representation of the compiler,

Chapter 5 describes an instrumentation purely within the hardware, and Chapter 6 describes an

instrumentation using hardware accelerated checks with compiler assistance .

3.2 Metadata with Pointers

Our approach maintains metadata with pointers. Hence we need mechanisms to identify pointers

and maintain metadata with them. Pointers can be identified in one of the many ways: (1) directly

from the information available in the source code, (2) using the type information in the typed in-

35

termediate representation within the compiler (assuming that such information is preserved by the

compiler from the source code) as in Chapter 4, or (3) inferring all machine word (64-bit) sized

integer data as pointers as in Chapter 5. To simplify exposition, we assume perfect identification of

pointers in this chapter.

New pointers in C are created in two ways: (1) explicit memory allocation (i.e. malloc()) and

(2) taking the address of a variable using the & operator. Whenever such pointers are created, our

approach creates and associates metadata with each pointer by inserting additional operations. Our

approach maintains separate pieces of metadata with each pointer to detect spatial and temporal

safety violations as described in the following sections unlike prior approaches that maintain same

metadata for both [120]. Further, maintaining different pieces of metadata enables us to optimize the

spatial checks and temporal checks separately in our implementations of these schemes as described

in Section 4.3 of Chapter 4.

3.3 Spatial Memory Safety Metadata and Checking

For detecting spatial violations, we maintain two pieces of metadata with each pointer, (1) the base

and (2) the bound of the memory area pointed by each pointer. The base and bound metadata

is created whenever a pointer is created on memory allocations using malloc() and by taking the

address of a stack or a global variable using the address-of & operator.

At every malloc() call site, we insert code to set the corresponding base and bound. The base

value is set to the pointer returned by malloc(). The bound value is set to either the pointer plus the

size of the allocation (if the pointer is non-NULL) or to NULL (if the pointer is NULL) as shown

in Figure 3.1(a). The bounds of global objects and stack allocated objects are known statically and

the base and bound for a pointer pointing to a global variable/stack allocated object is set from the

statically known size information as shown in Figure 3.1(b).

Spatial Safety Check Whenever a pointer is being dereferenced in the program, the pointer-based

checking approach inserts a spatial dereference check for checking the bounds to detect spatial

errors as shown in Figure 3.1(c). The spatial dereference check explicitly includes the size of the

memory access to ensure that the entire access is in bounds (and not just the first byte). For example,

36

int array[100]
ptr = &array[0]

Spatial metadata
with globals & stack

Spatial check

p = malloc(size);

 p_base = p;
 p_bound = p + size;
 if (p == null)
 p_bound= null;

 p_base = ptr;
 p_bound = ptr + sizeof(array);

*p = ...;

 spatial_check(p, p_base, p_bound, size){
 if(p < p_base || p + size >= p_bound)
 raise exception();
 }

Spatial metadata
with malloc

(a) (b) (c)

Figure 3.1: Metadata and checks for detecting spatial safety violations.

if a pointer to a single character is cast to be a pointer to an integer, dereferencing that pointer is a

spatial violation.

3.4 Temporal Memory Safety Metadata and Checking

Temporal errors are consequence of accessing memory locations that have been deallocated. To

detect temporal errors, our approach needs to track memory allocations and deallocations along

with maintaining appropriate metadata with pointers. Memory allocations occur when (1) memory

is explicitly allocated on the heap using a memory manager, (2) on the creation of stack frames on

function entry, and (3) when the program initially allocates a global segment. Memory deallocations

occur when memory is explicitly freed (i.e. using free()) or when a function returns. On every

memory allocation, our approach assigns a unique identifier and the identifier is associated with

the pointer pointing to the allocated memory. On memory deallocations, the identifier associated

with the pointer to memory being deallocated is marked as invalid. On every memory access, the

approach checks to ascertain if the identifier associated the pointer being dereferenced is still valid.

3.4.1 Lock and Key Metadata

Checking whether an identifier associated with the pointer is valid can be implemented by using

a hashtable. However performing lookups into the hastable on every memory access can have

significant overheads [96]. To meet our low overhead goals, inspired by prior proposals such as

MSCC [131] and Patil & Fischer [103], we engineer the unique identifier into two sub-components

to make the lookups fast: a key (a 64-bit unsigned integer) and a lock (a 64-bit address which

37

q:0x70

5
 lock
locations0xB0

0x50

0x70
0x54

0x74

metadata in a disjoint space

p:0x50

Spatial

0x70 0x74 5 0xB0

0x50 0x54 5 0xB0

Temporal

0xa0
key lockbase bound

0x08

Figure 3.2: Metadata with each pointer: Bounds metadata and identifier (ID) metadata organized
as key and lock where lock points to a lock location. The lock location pointed by the lock part of
the ID has the same key as the key associated with the pointer. Here two pointers p and q point to
different parts of the same object and hence have the same ID but different bounds.

points to a location in memory).1 The memory location pointed by the lock is called the lock

location. The lock provides an efficient mechanism for determining whether the memory allocated

for the pointer has been deallocated. When memory is deallocated, we “change the lock” on the

memory, preventing pointers with the now-stale key from accessing the memory (analogously to

how a landlord might change the lock on a door after tenants move out). To accelerate checks, the

system maintains the invariant that if the identifier is valid, the value stored in the lock location is

equal to the key’s value. Figure 3.2 shows the lock and key metadata maintained by each pointer to

provide comprehensive memory safety.

In the subsections below, we describe the actions performed by our approach on memory allo-

cations and deallocations on the heap and the stack. As global variables are never deallocated, we

associate the constant identifier GLOBAL KEY and the always-valid lock GLOBAL LOCK with any

pointer derived from a pointer to a global.

Allocations and Deallocations on the Heap When pointers point to memory allocated on the

heap (e.g., malloc() or mmap()), we insert additional code to: (1) associate a new unique key with

the allocation pointer by incrementing the global key counter next key, (2) obtain a new lock
1We have intentionally reversed the meaning of lock and key from original paper [103], because we find this termi-

nology more intuitive—there can be multiple copies of the key for each lock location.

38

free(p);

Temporal check

 p = malloc(size);

 p_key = next_key++;
 p_lock = allocate_lock();
 *(p_lock) = p_key;
 free_ptrs_map.insert(p_key, p);

 *(p_lock) = INVALID;
 deallocate(p_lock);

*p = ...;

 temporal_check(p_key, p_lock){
 if(p_key != *(p_lock))
 raise exception();
 }

Temporal metadata on
memory allocations

Temporal metadata on
memory deallocations

 if(free_ptr_map.lookup(p_key) != p){
 raise exception;
 }
 free_ptr_map.remove(p_key)

(a) (b) (c)

Figure 3.3: Metadata and checks for detecting temporal safety violations.

return ..;
}

void func(){

 func_key = next_key++;
 func_lock = func_lock + 8;
 *(func_lock) = func_key;

stack allocations stack deallocations

 *(func_lock) = INVALID;
 func_lock = func_lock - 8;
 func_key = *(func_lock);

int array[100];
int *p = &array[0];

 p_base = &array[0];
 p_bound = &array[100];
 p_key = func_key;
 p_lock = func_lock;

Figure 3.4: Temporal metadata management for the stack frame. On function entry, key and lock is
allocated and the lock is deallocated on a return.

location, (3) write the key into the lock location, and (4) record that the pointer returned is free-able

as shown in Figure 3.3(a).

For code that deallocates heap memory (e.g., free() or unmmap()), we insert code to: (1) check

for double-free and invalid-free by querying the free-able pointers map, removing the mapping if

the free is allowed, (2) setting the lock’s value to INVALID KEY, and (3) deallocating the lock

location as shown in Figure 3.3(b).

Stack Frame Allocation and Deallocation To detect temporal safety violation via dangling

pointers to the call stack, a key and corresponding lock address is also associated with each stack

frame. This key and lock address pair is given to any pointer derived from the stack pointer (and

thus points to an object on the stack). Performing a stack allocation is much like calling malloc(),

except that stack pointers are not free-able, so free ptrs map is unchanged. We manage the lock

locations for the stack frames as a stack of lock locations for two reasons:(1) to increase locality in

39

temp = (*fp)(10);

bool foo(int a){...}
void bar(){

metadata for function
pointers

function pointer
dereferences

bool (*fp)(int);
...

fp = &foo;

 fp_base = foo;
 fp_bound = foo;
 fp_key = GLOBAL_KEY;
 fp_lock = GLOBAL_LOCK;

 call_check(fp, fp_base, fp_bound) {
 if(fp != fp_base || fp != fp_bound)
 raise exception();
 }

(a) (b)

Figure 3.5: Metadata and checks for function pointers

the access of lock locations and (2) to simplify lock location allocation/deallocation. On function

entry, a new key is allocated, a lock location is allocated by incrementing the stack lock location

pointer. On a deallocation, the stack lock location pointer is decremented. On a function return, we

also set the key associated with the stack frame to the value of the previous stack frame as shown in

Figure 3.4.

3.4.2 Temporal Safety Checks

Once the lock and key metadata is maintained with pointers, our approach detects temporal safety

violations by inserting a check of that metadata before every memory access as shown in Figure 3.3.

The temporal check() function checks if the key associated with the pointer is equal to the

key at the lock location pointed by the lock associated with the pointer as shown in Figure 3.3. This

check works because: (1) the key is written into the lock location at allocation time, (2) the contents

of the lock location is changed upon deallocation, and (3) keys are unique and thus no subsequent

allocation will ever reset the lock location to value that would cause a spurious match (even if the

underlying memory or the lock locations are subsequently reused).

3.5 Control Flow Integrity Checks

The pointers in C programs can also point to functions. Such function pointers are later used to

perform indirect function calls. Function pointers can be used to jump to arbitrary locations in

memory. To ensure that the control flow integrity of the program is preserved, our approach assigns

40

int **p, *q;
...

q = *p;

Pointer load Pointer store

q = p + index;
// or &p[index]

Pointer arithmetic

 q_base = p_base;
 q_bound = q_bound;
 q_key = p_key;
 q_lock = p_lock;

 spatial_check(p, p_base, p_bound);
 temporal_check(p_key, p_lock);

 q_base = table_lookup(p)->base;
 q_bound = table_lookup(p)->bound;
 q_key = table_lookup(p)->key;
 q_lock = table_lookup(p)->lock;

int **p, *q;
...

*p = q;

 spatial_check(p, p_base, p_bound);
 temporal_check(p_key, p_lock);

 table_lookup(p)->base = q_base;
 table_lookup(p)->bound = q_bound;
 table_lookup(p)->key = q_key;
 table_lookup(p)->lock = q_lock;

(a) (b) (c)

Figure 3.6: Pointer metadata propagation with pointer arithmetic and pointer loads/stores

metadata when such function pointers are created and checks all indirect function calls. On creating

a function pointer using the address-of (&) operator on a function in the program, we set the base and

bound of such a function pointer to be equal to the address of the function as shown in Figure 3.5(a).

The key and lock metadata of function pointers is identical to that of global variables. This metadata

with function pointers is propagated as with other pointer operations. When a function is called

using a function pointer, the function pointer is checked to ensure that it is equal to its base and

bound as shown in Figure 3.5(b). Such an encoding is not used by data objects (it would correspond

to a zero-sized object), so our approach can check for this metadata when the program calls through

a function pointer. This metadata encoding prevents data pointers or non-pointer data from being

interpreted as a function pointer.

3.6 Propagation on Pointer Arithmetic and Assignment

To perform safety checks on a pointer dereference, we need to propagate metadata with pointer

operations. When an expression contains pointer arithmetic (e.g., ptr+index), array indexing

(e.g., &(ptr[index])), or pointer assignment (e.g., newptr = ptr;), the resulting pointer

inherits the metadata of the original pointer as shown in Figure 3.6. No checking is needed during

pointer arithmetic because pointers are checked when dereferenced. As is required by C semantics,

creating an out-of-bound pointer is allowed. We will detect the spatial violation whenever such a

pointer is dereferenced. Array indexing in C is equivalent to pointer arithmetic, so we apply this

41

free(p);

 struct { ...; int num; ...} *n;
 ...
 p = &(n->num);

 p_base = max(&(n->num), n_base);
 p_bound = min(p_base + sizeof(n->num), n_bound)

Shrinking bounds on structure field accesses

 struct { ...; int arr[5]; ...} *n;
 ...
 p = &(n->arr[2]);

scalar sub-field array sub-field

 p_base = max(&(n->arr), n_base);
 p_bound = min(p_base + sizeof(n->arr), n_bound)

Figure 3.7: Optional shrinking of bounds for structure field accesses

same transformation to array indexing. Similarly, accesses to the fields of a structure are covered by

the above transformations by conversion to separate pointer arithmetic and dereference operations.

3.7 Optional Narrowing of Pointer Bounds

The pointer-based approach adopted by this dissertation enables the ability to easily narrow the

bounds of pointers, which in turn allows us to prevent internal object overflows. Shrinking of

bounds can result in false violations for particularly pathological C idioms (discussed below), so we

propose to shrinks pointer bounds only when explicitly instructed by the programmer to do so (e.g.,

via a command-line flag when invoking the compiler).

When instructed to check for overflows within an object, we propose to shrink the bounds on a

pointer when creating a pointer to a field of a struct (e.g., when passing a pointer to an element of

a struct to a function). In such cases, we narrow the pointer’s bounds to include only the individual

field rather than the entire object. The code in Figure 3.7 calculates the maximum base and min-

imum bound to ensure that such an operation will never expand the bounds of a pointer. Pointers

to struct fields that are internal arrays (the size of which are always known statically) are handled

similarly as shown the array subfields of Figure 3.7.

Although such narrowing of bounds may results in false positives, we have not encountered

any false violations in any of our benchmarks. Yet, some legal C programs may rely on certain

idioms that cause false violations when narrowing bounds. For example, a program that attempts

to operate on three consecutive fields of the same type (e.g., x, y, and z coordinates of a point) as a

three-element array of coordinates by taking the address of x will cause a false violation. Another

example of an idiom that can cause false violations comes from the Linux kernel’s implementation

42

of generic containers such as linked lists. Linux uses the ANSI C offsetof() macro to create a

container of() macro, which is used when creating a pointer to an enclosing container struct based

only on a pointer to an internal struct [81]. Casts do not narrow bounds, so one idiom that will not

cause false violations is casting a pointer to a struct to a char* or void*.

Another case in which we do not narrow bounds is when when creating a pointer to an element

of an array. Although tightening the bounds is such cases may often match the programmer’s

intent, C programs occasionally use array element pointers to denote a sub-interval of an array. For

example, a program might use memset to zero only a portion of an array using memset(&arr[4], 0,

size) or use the sort function to sort a sub-array using sort(&arr[4], &arr[10]).

3.8 Disjoint Metadata

One of the key reasons that our pointer-based checking approach attains the aforementioned mem-

ory safety enforcement goals is due to the use of disjoint metadata. With disjoint metadata, our

pointer-based checking avoids the memory layout changes and the resulting source incompatibil-

ities and non-comprehensive detection that arises in the presence of arbitrary unsafe type casts as

described in Section 2.3.4 of Chapter 2. The key challenge with disjoint metadata is in organizing

it and providing the mapping functions to access it. In this section, we describe how the program

accesses the disjoint metadata space and subsequently illustrate why this approach enables us to

provide comprehensive detection of memory safety errors.

3.8.1 Mapping Pointers to their Metadata

Pointers are either resident in registers (when they are register allocated) or resident in memory.

When they are resident in registers, the metadata can also be maintained in registers/temporaries

and our approach maintains a mapping between the metadata and the pointers. However, when the

pointer is resident in memory, the metadata is also resident in memory. When the pointer is loaded

into a register/temporary by accessing memory, the metadata corresponding to the loaded pointer

also needs to be accessed from the disjoint metadata space. Our approach uses a table data structure

to map a pointer to its corresponding metadata.

Conceptually, we need to shadow the entire virtual address space to maintain metadata for

pointers as a pointer can be resident in any address of the virtual address space. A concrete instanti-

43

ation of the pointer-based checking approach with disjoint metadata can choose an appropriate table

lookup structure (e.g., hashtable, trie or even a linear array of bytes) depending on the performance

and implementation tradeoffs. Our compiler instantiation uses a trie data structure that will be de-

scribed in Chapter 4. Further, a hardware instantiation uses a linear array of bytes as the disjoint

metadata space as it is easier to create and maintain address spaces with hardware support that will

be described in Chapter 5.

Apart from the table lookup structure, a pointer based checking approach with disjoint meta-

data needs to figure out what it should use to index the table lookup data structure. To perform

such lookups in the disjoint metadata space, we use the address of the pointer being loaded/stored

to index into the table lookup structure to access the metadata space. Figure 3.6(b) illustrates the

table lookups inserted to load the metadata. Similarly, when a pointer is being stored to mem-

ory, the metadata associated with the pointer is stored to memory using table lookups as shown in

Figure 3.6(c).

In Figure 3.6(b), pointer q is loaded from memory by dereferencing pointer p. We perform

the table lookup using the address of pointer q, which is p in our example. Using the address of

the pointer is one of the important differences between our pointer-based approach with disjoint

metadata and prior location based approaches (described in Chapter 2) that use disjoint metadata.

Location-based approaches use the referent object (i.e., what the pointer points to, which is q) to

load the metadata in contrast to the address of the pointer (which is p).

As our approach leaves the memory layout of the program intact with disjoint metadata, it

avoids the problem of source incompatibilities and non-comprehensive detection. However, ac-

cessing the metadata when a pointer is loaded (stored) from (to) memory becomes expensive as it

requires a mapping and translation operation. These expensive operations are required only when a

pointer is loaded (stored) from (to) memory; loads and stores of non-pointer values are unaffected.

Hence, a program which performs pointer arithmetic operations (including array accesses) and sub-

sequently dereferences these pointers to load/store non-pointer values incur no disjoint metadata

related overheads. On the other hand, linked data structures which load/store pointers to memory

require accesses to the disjoint metadata space. Even though loads and stores of pointers are only a

fraction of all memory operations, fast table lookups and updates are key to reducing overall over-

heads. Different organizations of the disjoint metadata have different performance characteristics

44

and are discussed in detail in the concrete instantiations of this approach described in the subsequent

chapters.

3.8.2 Comprehensive and Compatible Detection with Disjoint Metadata

This section intuitively describes how disjoint metadata enables our approach to provide compre-

hensive detection of memory safety errors even in the presence of arbitrary type casts. A detailed

formal proof of the memory safety guarantees of our approach was carried out in a collaborative

setting for a rich subset of C and is described in our ISMM 2010 paper [93]. The invariants that

enable us to enforce memory safety are: (1) the metadata is manipulated/accessed only by extra

instrumentation added by our approach, (2) the metadata is never corrupted and the metadata accu-

rately depicts the region of memory that a pointer can legally access (according to the C standard),

and (3) all memory accesses are conceptually checked before a dereference.

The first invariant is satisfied from the way we have structured our instrumentation. The second

invariant is satisfied always as there is no way to corrupt the metadata. Unsafe type casts were the

primary cause of potential metadata corruption with fat pointer approaches. With disjoint meta-

data, any write using an arbitrarily type-casted pointer can overwrite only pointer values but not the

metadata. When pointers involved in arbitrary casts are subsequently dereferenced, the pointer is

checked with respect to its metadata. As the correctness checking uses the metadata to ascertain the

validity of the memory access and the metadata is never corrupted, our approach ensures compre-

hensive detection of memory safety errors. Further programs do not need to be rewritten to avoid

such casts. Hence, our approach works with legacy code without requiring modifications providing

source compatibility.

Figure 3.8 pictorially represents the operation of the disjoint metadata in the presence of ar-

bitrary type casts. Figure 3.8(a) shows a program which has two structure types A and B. The

function foo takes a pointer p as an argument that points to struct A, which is allocated and resident

in memory as shown. The subfield ptr1 of struct A is a pointer that points to some memory valid

memory location. Pointers p and ptr subfield of struct A are resident in memory and have the ap-

propriate metadata as shown in the disjoint metadata space. Figure 3.8(b) shows how the program

creates a pointer q from pointer p by arbitrarily type-casting it to be a pointer of type struct B. The

metadata of the pointer q is set to be equal to that pointer p in the disjoint metadata space assuming

45

q:0x0

50xd0

metadata in a disjoint space

p:0x50 0x50 0x68 5 0xd0

0xa0

key lockbase bound

struct A {
 size_t t1;
 void* ptr;
 size_t t2;
};

void foo(struct A * p) {

 struct B * q;

 q= (struct B *)p;
 ...
 q->f3 = ...;
 ...
}

 lock
locations

0x68

struct B {
 size_t f1;
 size_t f2;
 size_t f3;
 size_t f4;
};

0x08

0x50

Spatial Temporal

t1
ptr:0xb0

abcd0xb0

t2
0xb0 0xb8 9 0xe0

90xe0

q:0x50

50xd0

metadata in a disjoint space

p:0x50

0x50 0x68 5 0xd0

0x50 0x68 5 0xd0

0xa0

key lockbase bound

struct A {
 size_t t1;
 void* ptr;
 size_t t2;
};

void foo(struct A * p) {

 struct B * q;

 q= (struct B *)p;
 ...
 q->f3 = ...;
 ...
}

 lock
locations

0x68

struct B {
 size_t f1;
 size_t f2;
 size_t f3;
 size_t f4;
};

0x08

0x50

Spatial Temporal
abcd0xb0

t1
ptr:0xb0

t2

90xe0

0xb0 0xb8 9 0xe0

q:0x50

50xd0

metadata in a disjoint space

p:0x50

0x50 0x68 5 0xd0

0x50 0x68 5 0xd0

0xa0

key lockbase bound

struct A {
 size_t t1;
 void* ptr;
 size_t t2;
};

void foo(struct A * p) {

 struct B * q;

 q= (struct B *)p;
 ...
 q->f3 = ...;
 ...
}

 lock
locations

0x68

struct B {
 size_t f1;
 size_t f2;
 size_t f3;
 size_t f4;
};

0x08

0x50

Spatial Temporal
abcd0xb0

t1
ptr:0xXXX

t2

90xe0

0xb0 0xb8 9 0xe0

(a) Pointer p points to structure A in memory. The subfield of A points to another location in memory.

(b) Pointer q points to the structure pointed by p considering it to be of type struct B.

(c) Pointer q writes a junk value into the ptr field. However the metadata is untouched and
still consistent.

Figure 3.8: This figure illustrates how disjoint metadata protects the metadata. As a result, writes
to memory location involved in arbitrary type casts can only modify pointer values (ptr field in
the struct A) but not the metadata. When the pointer ptr is dereferenced, the dereference will not be
allowed and the memory safety violation would be caught.

46

pointer q is resident in memory. Figure 3.8(c) shows how the program writes integers to memory lo-

cations using pointer q. As a result, ptr subfield could be overwritten with any arbitrary non-pointer

value. However the metadata is not corrupted. When the program later tries to dereference ptr in

memory, the dereference would be checked with respect to its metadata and memory safety errors

would be detected.

Interfacing with the libraries was another problem with fat pointers as described in Chapter 2.

Disjoint metadata also makes interfacing with libraries easier. Libraries that do not manipulate or

change the pointers in the data structure work without the need for any marshaling as the program

memory layout is unchanged. Libraries that manipulate pointers and expose such pointers to the

program need either recompilation or wrappers to update the metadata. Although disjoint metadata

makes interfacing with libraries without recompilation easier, we recommend recompiling libraries

with our approach to attain comprehensive memory safety.

3.9 Modular Checking with Separate Compilation

Modern software is generally built with individual files compiled as separate modules and subse-

quently linked together. Supporting such separate compilation is essential to enable our approach to

be applied to real world code. Our approach’s instrumentation is purely local, operating on a func-

tion at a time. A function needs to interact with other functions only while passing and returning

pointers. A detailed explanation of how we propagate metadata for pointer arguments and return

values is described in Chapter 4. With local transformations, our approach enforces memory safety

even with separate compilation and handles external libraries seamlessly in contrast to prior propos-

als that exploit whole program analysis [46, 94, 120]. The only constraint with our approach is that

we need to compile all the modules/files with our approach. Otherwise, code compiled without our

approach needs to interface with code compiled using our approach using wrappers that suitably

updates the metadata to avoid false violations. In the absence of such wrappers, the program may

experience false memory safety violations as we err on the side of conservatism (i.e., safety first).

We describe the wrappers for the compiler instantiation of this approach in Chapter 4.

47

3.10 Checking Modes With Disjoint Metadata

We experiment with two checking modes with our pointer-based checking approach with disjoint

metadata to reduce the performance overheads. The default checking mode is the full checking

mode, where the pointer-based checking approach performs a spatial and a temporal check concep-

tually before every memory access. The full checking mode is comprehensive in its detection of

all memory safety errors but checking every memory operation can be expensive (experimentally

evaluated in Chapter 4).

To mitigate performance overheads, we use a store-only checking mode that checks just store

operations. Most security vulnerabilities exploiting a memory safety error use a store operation

to inject code. Our experiments with security vulnerabilities reinforce the intuition that checking

stores can prevent such security vulnerabilities in accordance with prior research [92, 133].

Although effective against memory safety errors and the concomitant security vulnerabilities

that involve stores, the store-only checking mode does not detect errors that read from out-of-bound

locations or invalid locations. As a result, store-only checking will not provide protection against

information leaks. Store-only checking mode is purely a performance overhead reduction scheme

in an effort to enable the deployment of pointer-based checking with real world code.

However, store-only checking mode does detect and prevent memory corruption involving

stores to invalid locations. Such memory corruption resulting from memory safety errors involving

stores to invalid locations is particularly insidious because they are harder to diagnose and the man-

ifestation of the bug is often widely separated from the root cause location at which the memory

corruption occurred. A important point to note is that the store-only mode reduces only the number

of check operations. The number of metadata accesses and writes is generally unchanged because

the same pointer metadata must be propagated to check subsequent store dereferences. However,

an optimization could remove some of the metadata propagation instructions that feed only load

dereference checks.

3.11 Usage Model

The pointer-based checking with disjoint metadata would likely first be deployed on an opt-in basis

similar to the deployment scenario with Microsoft’s page-based no-execute Data Execution Preven-

48

tion (DEP) feature. Initially, DEP was not enabled by default as it can break some programs that

use self-modifying code or JIT-based code generation. Similarly, our approach would not be en-

abled for programs that might violate our assumptions until after developers have explicitly tested

their code with it. Like DEP, which is now enabled by default for most new software, we anticipate

similar adoption for our approach.

3.12 Evaluation of Effectiveness in Detecting Errors

To validate our claim that pointer-based checking with disjoint metadata is effective in enforcing

memory safety, we show that the approach detects known spatial safety and temporal safety vio-

lations. We use the prototype compiler instantiation that will be described in detail in Chapter 4

to perform these experiments. To test the effectiveness, we ran the prototype with our regression

test suites, synthetic test suites [98], program extracts from real world attacks [129] and applica-

tions with known memory safety violations [87]. These test suites contained both versions of the

program with and without memory safety violations. In our experimentation with these test suites,

we not only detected known memory safety violations but also discovered new unknown memory

safety violations.

3.12.1 Spatial Safety

To evaluate the effectiveness in detecting violations of spatial safety, we applied the compiler proto-

type to a suite of security violations [129], to versions of programs with well-documented security

violations [87], to the SAFECode test suite from the experimental LLVM trunk, and to more than

2000 spatial safety violations from NIST Juliet Test Suite for C/C++ [98]. These suites include

overflows on the stack, heap, and global segments to overwrite various return addresses, data point-

ers, function pointers, and longjmp buffers. Our approach detected all the spatial violations and

prevented all the security vulnerabilities in these tests without any false positives.

To test the approach’s effectiveness in detecting real world attacks, we use a test bed of buffer

overflow attacks [129]. Table 3.1 lists the attacks based on the technique adopted, location of

the overflow, and the attack target that is used to change the control flow. We detected all these

errors without false violations. We also evaluated the approach’s ability to detect spatial bugs using

spatial errors from real programs obtained from the BugBench suite [87]: go, compress, gzip, and

49

Attack and Target Detection
Store-only Full

Buffer overflow on stack all
the way to the target

Return address yes yes
Old base pointer yes yes
Function ptr local variable yes yes
Function ptr parameter yes yes
Longjmp buffer local variable yes yes
Longjmp buffer function parameter yes yes

Buffer overflow on heap/BSS/data
all the way to the target

Function pointer yes yes
Longjmp buffer yes yes

Buffer overflow of a pointer on
stack and then pointing to target

Return address yes yes
Base pointer yes yes
Function pointer variable yes yes
Function pointer parameter yes yes
Longjmp buffer variable yes yes
Longjmp buffer function parameter yes yes

Buffer overflow of pointer on
heap/BSS and then pointing to target

Return address yes yes
Old base pointer yes yes
Function pointer yes yes
Longjmp buffer yes yes

Table 3.1: Various synthetic attacks proposed by Wilander et al. [129] and our approach’s ability to
detect them with full checking and store-only checking.

50

Violation Detected?
Dissertation Valgrind GCC’s J&K

Benchmark Store-only Full Memcheck Ptrcheck Mudflap
go no yes no no no yes
compress yes yes yes yes yes yes
polymorph yes yes no yes yes yes
gzip yes yes yes yes yes yes

Table 3.2: Programs with overflows and the detection efficacy of our approach (store-only and full
checking), Valgrind’s memcheck [116], Valgrind’s ptrcheck [95], GCC’s Mudflap [51], and Jones
and Kelly [75].

polymorph. These bugs are a mixture of one or more read or write overflows on the heap, stack,

and globals. Our prototype detected these errors.

As a point of comparison, Table 3.2 also reports the efficacy of memcheck [116] and ptrcheck [95]

from version 3.4.1 of Valgrind, Mudflap [51] from GCC 4.2.0, and the Jones and Kelly [75] mod-

ification to version 4.0.0 of GCC. Like this dissertation’s approach, the Jones and Kelly version of

GCC detected all violations. In contrast, both Valgrind and Mudflap detect some of the violations,

but they also fail to detect violations that our approach detects. For example, Valgrind’s memcheck

tool does not detect overflows on the stack, leading to its failure to detect some of the bugs.

3.12.2 Temporal Safety

To evaluate the effectiveness in preventing use-after-free security exploits, we ran the 291 test cases

for use-after-free vulnerabilities (CWE-416 and CWE-562) from the NIST Juliet Test Suite for

C/C++ [98], which are modeled after various use-after-free errors reported in the wild. The proto-

type successfully detected and thwarted the attack in all the 291 test cases, and it did so without any

false positives. We also evaluated our approach with tests from the SAFECode test suite from the

experimental LLVM trunk. These tests included dangling pointers on the stack, and the heap. Our

approach detected all these temporal safety violations without any false violations.

3.12.3 Previously Unknown Safety Errors

We discovered new previously unknown buffer overflow and use-after-free errors in the H.264 appli-

cation of SPEC 2006 benchmark suite. The reference implementation of H.264 was reading a word

beyond the bounds of an array (off by one error). We also discovered a previously unknown buffer

51

extern int array[50];

File: B.cFile: A.c

// global array of 100 ints
int array[100];

void foo() {
 int* p;
 ...
 p = array;

}

 p_base = array;
 p_bound = array+ sizeof(array);

void bar() {
 int* q;
 ...
 q = array;
 // sizeof(array) is 0

}

 q_base = array;
 q_bound = unbound();

// declared as a extern

Figure 3.9: Two files (A.c and B.c) use global array, which is defined in file A.c. In the absence of
link-time optimizations, the bounds of the linker constant (array in file B.c) is unbounded.

overflow in the SPEC 2000 applications: 197.parser and 300.twolf demonstrating our approach’s

ability to detect memory safety violations.

3.13 Evaluation of Source Compatibility

One of the goals of pointer-based checking approach with disjoint-metadata proposed in this dis-

sertation is to maintain source compatibility with existing C code. In this section, we describe our

experience using the approach suggested in this dissertation with real world applications, and the

issues that we had to address to handle real world C code.

Most real world applications use separate compilation where individual files are compiled sep-

arately into object files and later linked together. We observed that the build infrastructures are

generally complicated to enable single module compilation without significant effort. Further, the

libraries are also built using separate compilation and later linked with the applications. So support-

ing separate compilation is necessary to evaluate real world applications. Our approach supports

separate compilation as described in Section 3.9. We were able to experiment with the pointer-based

checking approach with disjoint-metadata for making both libraries and applications memory-safe.

There were two main issues that we had to address in our experimentation with real world

applications. First, the size of the global variables declared in different translation units are not

available until link time. Figure 3.9 illustrates this problem. The program has two files A.c and B.c.

These files are compiled separately and instrumented using our approach. A global array of 100

integers is defined in file A.c and is used in both A.c and B.c. When this global array is assigned to

52

a pointer in file B.c, our approach cannot use sizeof(array) to create the bounds as sizeof() returns

zero for the extern global variables. The size of the array is not known until link time. In the

absence of such information, the bounds assigned by our approach would be that of a zero sized

array, and the program would experience false violations when such arrays are dereferenced. There

are two alternatives to avoid such false violations: (1) to unbound such global arrays, and (2) to use

link-time optimizations and complete the bounds information at link time. We use both approaches.

In the common case where the link-time optimizations are not available, we use the first approach,

and the second approach otherwise.

The second issue concerned function name changes. In our earlier paper on SoftBound [92], we

changed the names of the functions that were transformed with our approach. However, changing

the function names caused a few of the libraries to work incorrectly with default library build scripts.

The utilities used to build libraries (ranlib, ar and others) required that the functions names be

unchanged. Thus, we leave the function names unchanged with our approach.

To enable evaluation with existing libraries, we have also provided wrappers that update the

metadata appropriately to interact with the instrumented code. We have run a wide range of ap-

plications, compiled libraries, and benchmark suites without source code modifications with our

approach. We have successfully experimented with OpenSSL, SQLite, tar, flex and many other

utilities. Apart from these utilities, our prototype also successfully transformed the benchmarks

from the SPEC suite used in the performance evaluation. In total, these benchmarks and utilities are

approximately one million total lines of code, all of which were successfully transformed, further

supporting our source code compatibility claim.

3.14 Summary

This chapter presented our approach for enforcing memory safety using a pointer-based checking

with disjoint metadata. The use of disjoint metadata is the primary reason that makes pointer-based

checking attractive again. With disjoint metadata, the memory layout of the program is unchanged.

A purely local transformation with disjoint metadata can enforce comprehensive memory safety

even in the presence of casts as metadata can never be corrupted. Local transformations combined

with disjoint metadata also enable separate compilation. Hence, memory safe libraries can be built

with our approach providing high source compatibility for existing programs. We highlighted the

53

basic approach without focusing on the performance overheads in this chapter. Subsequent chapters

describe the concrete instantiations of this approach within the compiler (Chapter 4), within hard-

ware (Chapter 5) and with hardware-assisted compiler instrumentation (Chapter 6) addressing the

performance overheads thereby making it attractive for practical deployment.

54

Chapter 4

Compiler Instrumentation for

Pointer-Based Memory Safety

This chapter describes the implementation of the pointer-based approach with disjoint metadata

within the compiler. The goal of this compiler-based instrumentation is to provide a low overhead

implementation leveraging the information available to the compiler. The compiler is a natural

choice for performing such an instrumentation as (1) it is already part of every tool chain, (2) it

maintains significant information about the program to perform semantics preserving optimizations,

and (3) a memory safety instrumentation can be performed on optimized code. As we use Low-

Level Virtual Machine (LLVM) [83] as our compiler, we initially provide background on the LLVM

compiler and its intermediate representation in Section 4.1. Subsequently we describe the details of

the memory safety instrumentation on the LLVM IR in Section 4.2. We describe the optimizations to

the compiler instrumentation in Section 4.3. We evaluate the performance overheads of a compiler-

based memory safety transformation in Section 4.4.

4.1 Background on LLVM

The Low-Level Virtual Machine (LLVM) is a platform-independent compiler that was originally

developed by Lattner et al. to study optimizations and modern compilation techniques [83]. The

LLVM project has now blossomed into a robust, industrial-strength and open-source compilation

platform that competes with GNU C Compiler (GCC) in terms of compilation speed and the perfor-

55

mance of the generated code. As a consequence, the LLVM has been widely used in both industry

and academia, and it has a growing and very active user community.

The LLVM compiler is structured as a translation from a high-level source language to the

LLVM Intermediate Representation (IR). The LLVM compilation framework provides a large (and

user-extensible) suite of IR to IR translations, which provide many advanced optimizations, program

transformations, and analyses. The resulting LLVM IR can then be lowered to a variety of target

architectures, including x86, PowerPC, Arm, etc., or JIT-compiled as desired. The standard LLVM

suite provides C and C++ front-ends, along with ports for many other source languages.

4.1.1 Structure of the LLVM IR

The LLVM IR is one of the core components of the LLVM compiler. The LLVM IR is a typed, static

single assignment (SSA) language that is a suitable representation for expressing many compiler

transformations and optimizations. This section describes the syntax of the LLVM IR and the core

features that are required to understand the compiler instrumentation for memory safety. Figure 4.1

shows the abstract syntax for the subset of the LLVM IR. The metavariable id ranges over LLVM

identifiers, written %X, %T, %a, %b, etc., which are used to name local types and temporary variables,

and @a, @b, @main, etc., which name global values and functions. Each source file is a module

mod that includes data layout information layout (which defines sizes and alignments for types;

see below), named types, and a list of prods that can be function declarations, function definitions,

and global variables.

Every LLVM expression has a type, which can easily be determined from type annotations, that

provides sufficient information to check an LLVM program for type compatibility. The LLVM IR is

not a type-safe language, however, because its type system allows arbitrary casts, calling functions

with incorrect signatures, accessing invalid memory, etc. The LLVM type system ensures only that

the size of a runtime value in a well-formed program is compatible with the type of the value.

Types typ include arbitrary bit-width integers i8, i16, i32, etc., or, more generally, isz where

sz is a natural number. Types also include float, void, pointers typ∗, arrays [sz × typ] that have

a statically-known size sz . Anonymous structure types { typj j } contain a list of types. Functions

typ typj
j have a return type, and a list of argument types. Here, typj

j denotes a list of typ com-

ponents; we use similar notation for other lists throughout the thesis. Finally, types can be named

56

Modules mod, P : : = layout namedt prod
Layouts layout : : = bigendian | littleendian | ptr sz align0 align1

| int sz align0 align1 | float sz align0 align1
| aggr sz align0 align1 | stack sz align0 align1

Products prod : : = id = global typ const align | define typ id(arg){b}
| declare typ id(arg)

Floats fp : : = float | double

Types typ : : = isz | fp | void | typ∗ | [sz × typ] | { typj j } | typ typjj | id
Values val : : = id | cnst
Binops bop : : = add | sub | mul | udiv | sdiv | urem | srem | shl | lshr

| ashr | and | or | xor
Float ops fbop : : = fadd | fsub | fmul | fdiv | frem
Extension eop : : = zext | sext | fpext
Cast op cop : : = fptoui | ptrtoint | inttoptr | bitcast
Trunc op trop : : = truncint | truncfp
Constants cnst : : = isz Int | fp Float | typ ∗ id | (typ∗)null | typ zeroinitializer

| typ[cnst j
j
] | { cnst j j } | typ undef | bop cnst1 cnst2

| fbop cnst1 cnst2 | trop cnst to typ | eop cnst to typ | cop cnst to typ

| getelementptr cnst cstj
j | select cnst0 cnst1 cnst2

| icmp cond cnst1 cnst2 | fcmp fcond cnst1 cnst2
| extractvalue cnst cnst j

j | insertvalue cnst cnst ′ cnst j
j

Blocks b : : = l φ c tmn

φ nodes φ : : = id = phi typ [valj , lj]
j

Tmns tmn : : = br val l1 l2 | br l | ret typ val | ret void | unreachable
Commands c : : = id = bop(int sz)val1 val2 | id = fbop fp val1 val2

| id = load (typ∗)val1 align | store typ val1 val2 align
| id = alloca typ val align | id = trop typ1 val to typ2
| id = eop typ1 val to typ2 | id = cop typ1 val to typ2
| id = icmp cond typ val1 val2 | id = select val0 typ val1 val2
| id = fcmp fcond fp val1 val2 | option id = call typ0 val0 param

| id = getelementptr (typ ∗) val valj
j

Figure 4.1: Syntax for the LLVM IR.

by identifiers id . The sizes and alignments for types, and endianness are defined in layout . For

example. int sz align0 align1 dictates that values with type isz are align0-byte aligned when they

are within an aggregate and when used as an argument, and align1-byte aligned when emitted as a

global.

57

The two key features of the LLVM IR that we leverage for the memory safety instrumentation

are (1) the presence of type information in the IR to identify pointers and (2) SSA representation

keeping the instrumentation simple by performing most of the work on temporaries.

4.1.2 Operations in the LLVM IR

Operations in the LLVM IR compute with values val, which are either identifiers id naming tempo-

raries, or constants cnst computed from statically-known data, using the compile-time analogs of

the commands described below. Constants include base values (i.e. integers or floats of a given bit

width), and zero-values of a given type, as well as structures and arrays built from other constants.

All code in the LLVM IR resides in top-level functions, whose bodies are composed of block bs.

As in classic compiler representations, a basic block consists of a labeled entry point l , a series of

φ nodes, a list of commands, and a terminator instruction. As is usual in SSA representations, the

φ nodes join together values from a list of predecessor blocks of the control-flow graph—each φ

node takes a list of (value, label) pairs that indicates the value chosen when control transfers from

a predecessor block with the associated label. Block terminators (br and ret) branch to another

block or return (possibly with a value) from the current function. Terminators also include the

unreachable marker, indicating that control should never reach that point in the program.

The core of the LLVM instruction set is its commands (c), which include the usual suite of

binary arithmetic operations (bop—e.g., add, lshr, etc.), memory accessors (load, store), stack

allocation (alloca), conversion operations among integers, floats and pointers (eop, trop, and cop),

comparison over integers (icmp and select), and calls (call). Note that a call site is allowed to

ignore the return value of a function call. The LLVM IR also provides aggregate data operations

(extractvalue and insertvalue) for projecting and updating the elements of structures and ar-

rays. Finally, getelementptr computes pointer offsets into structured datatypes based on their

types; it provides a platform- and layout-independent way of performing array indexing, struct field

access, and pointer arithmetic.

Figure 4.2 and Figure 4.3 shows the C code and the corresponding LLVM IR code for con-

structing a simple circular linked list and traversing it for a few iterations respectively. The example

illustrates the type information in the IR, SSA features in the IR, the use of getelementptr, phi nodes

in the IR. We will use this example to illustrate the memory safety instrumentation over the IR.

58

C program for Circular Linked List

struct node_t {
 size_t value;
 struct node_t* next;
};
typedef struct node_t node;

int main(int argc, char** argv)
{
 node* fptr = malloc(sizeof(node));
 node* ptr = fptr;
 size_t i;

 fptr->value = 0;
 fptr->next = NULL;

 // init
 for (i=0; i<SIZE; i++) {
 node* new_ptr = malloc(sizeof(node));
 new_ptr->value = i;
 new_ptr->next = ptr;
 ptr = new_ptr;
 }
 // make it a circular linked list
 fptr->next = ptr;
 return 0;

}

Figure 4.2: A circular linked list example in C.

4.2 Memory Safety Instrumentation on the LLVM IR

The primary goal of performing the memory safety instrumentation within the compiler is to reduce

the performance overhead by instrumenting optimized code. Beyond the performance overhead

objective, the other goal is to keep the instrumentation simple so that it can be used with separate

compilation for real world programs without requiring complicated whole program analyses as with

prior approaches [44, 94]. Further, the simplicity of our instrumentation has enabled the design

of a completely verified memory safety instrumentation within a proof assistant in a related but

different project [137]. We use the name SoftBoundCETS for the compiler-based memory safety

instrumentation described in this chapter as it builds on top of our prior work SoftBound (providing

spatial safety) [92] and CETS (providing temporal safety) [93].

59

LLVM IR code for Circular Linked List

define i32 @main(i32 %argc, i8** %argv) nounwind uwtable {
entry:
 %call = call noalias i8* @malloc(i64 16) nounwind
 %0 = bitcast i8* %call to %struct.node_t*
 %value = getelementptr inbounds %struct.node_t* %0, i32 0, i32 0
 store i64 0, i64* %value, align 8
 %next = getelementptr inbounds %struct.node_t* %0, i32 0, i32 1
 store %struct.node_t* null, %struct.node_t** %next, align 8
 br label %for.cond

for.cond:
 %ptr.0 = phi %struct.node_t* [%0, %entry], [%1, %for.inc]
 %i.0 = phi i64 [0, %entry], [%inc, %for.inc]
 %cmp = icmp ult i64 %i.0, 128
 br i1 %cmp, label %for.body, label %for.end

for.body:
 %call1 = call noalias i8* @malloc(i64 16) nounwind
 %1 = bitcast i8* %call1 to %struct.node_t*
 %value2 = getelementptr inbounds %struct.node_t* %1, i32 0, i32 0
 store i64 %i.0, i64* %value2, align 8
 %next3 = getelementptr inbounds %struct.node_t* %1, i32 0, i32 1
 store %struct.node_t* %ptr.0, %struct.node_t** %next3, align 8
 br label %for.inc

for.inc:
 %inc = add i64 %i.0, 1
 br label %for.cond

for.end:
 %next4 = getelementptr inbounds %struct.node_t* %0, i32 0, i32 1
 store %struct.node_t* %ptr.0, %struct.node_t** %next4, align 8
 ret i32 0
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Figure 4.3: A circular linked list example LLVM IR.

60

Beyond the details described in the basic approach in Chapter 3, the compiler-based instrumen-

tation needs to make design choices on three main dimensions: (1) how to propagate metadata for

pointer arguments and returns in function calls, (2) how to organize the metadata space, and (3) how

to add instrumentation code. We address these design issues in the following sections.

4.2.1 Metadata Propagation for Pointer Parameters and Returns

When pointers are passed as arguments or returned from functions, their metadata must also travel

with them. If all pointer arguments were passed and returned on the stack (i.e., via memory and

not registers), the table-lookup described in Chapter 3 for handling in-memory metadata would

suffice. However, the function calling conventions of most ISAs specify that function arguments

are generally passed in registers.

One of the design decisions we had to make while designing the compiler instrumentation was

to design a mechanism to propagate metadata for pointers when they are either passed as arguments

to a function or when they are returned by a function. This turned out to be an important and

tricky design decision to enable our compiler transformation to work with real world code. In our

PLDI 2009 paper on SoftBound [92] and ISMM 2010 paper on CETS [93], we adopted procedure

cloning [36] to transform every function declaration and function call site to include additional

arguments for base, bound, key and lock. For each pointer argument, this metadata was added to

the end of the list of function’s arguments. Functions that return a pointer were changed to return

a five-element structure by value that contained the pointer, its base, bound, key and lock. As part

of that transformation, the function name was appended with a instrumentation specific identifier,

specifying that the function has been transformed.

Although the above described approach where we changed function signatures worked as ex-

pected for most functions, we faced two problems. First, engineering it to work was extremely

cumbersome as we had to rewrite significant portion of the LLVM IR code especially in the pres-

ence of indirect function calls and use of function pointers. Apart from rewriting a large amount of

code, we had to introduce a large number of new types. For example, a structure type with a func-

tion pointer now required to be rewritten as a new type that had a new function pointer type whose

prototype included extra arguments to the pass the metadata. A combination of bugs in tedious IR

61

rewriting and aggressive optimizer which exploited type-unsafe casts resulted in the transformation

being less robust with real world code.

Second, padding extra arguments at the end of the functions fails to detect mismatches in the

number and position of pointer arguments at the call-site and the called function. Further, function

pointers involved in indirect function calls could be cast from function pointers of incompatible

types. As a result, calling a function with arbitrary values through a function pointer can manufac-

ture improper metadata. Further, handling variable argument function is not straightforward with

such an approach.

Metadata Propagation with Shadow Stack for Parameters and Return Values To address the

above issues while being independent of the target ISA and obeying system’s calling convention, we

propose the use of a shadow stack for propagating metadata for pointer arguments and returns. The

shadow stack is organized as a stack in a separate disjoint space in the program’s virtual address

space. It mirrors the call stack of the executing program. Unlike the call stack that holds the

activation record, the shadow stack holds the metadata for the pointer arguments and return values

for the frames in the call stack.

At the call site, the transformation adds extra instrumentation to push the number of arguments

and metadata for each argument onto the shadow stack. For non-pointer arguments, the transfor-

mation pushes invalid metadata. On a function entry, the transformation inserts code to read the

metadata for the pointer argument into a temporary and maintains the mapping between the pointer

and the metadata. Further on a function exit, the callee pushes either the appropriate metadata when

the function returns a pointer or invalid metadata in the case of non-pointer return values.

Figure 4.4 illustrates the load/store operations from/to the shadow both in the caller and the

callee. Figure 4.4(a) depicts the shadow stack setup by the instrumented code before calling the

function foo, which takes a pointer as an argument and returns a pointer. The shadow stack has

reserved metadata space for the return values irrespective of whether the function returns a pointer

or not. The caller initializes the return metadata to be invalid in the newly setup shadow stack frame.

Figure 4.4(b) illustrates the retrieval of the metadata on function entry by the callee. Figure 4.4(c)

shows the store operations performed by the callee to store the metadata of the returned pointer.

Figure 4.4(d) shows the load operations performed by the caller to retrieve the metadata for the

returned pointer. The shadow stack handlers that load the metadata take argument number as a

62

void main(){
 int *p;
 struct B * ptr;
 ...

 p = foo(ptr);

0xf50
0xf58
0xf60

invalid

1
metadata for previous
frames

Format of the shadow
stack in a disjoint space

number of args

invalid
 push_sstack_nargs(1);
 push_sstack_base(1, ptr_base);
 push_sstack_bound(1, ptr_bound);
 push_sstack_key(1, ptr_key);
 push_sstack_lock(1, ptr_lock);

0xf30
0xf38
0xf40

ptr_bound
ptr_base
invalid

ptr_key

0xf48

0xf28

invalid

ptr_lock0xf20

metadata for the
returned pointer

metadata for the first
pointer argument

int* foo(struct A * p) {

 struct B * q;
 ...
}

0xf50
0xf58
0xf60

invalid

1
metadata for
previous frames

number of args

invalid

0xf30
0xf38
0xf40

ptr_bound
ptr_base
invalid

ptr_key

0xf48

0xf28

invalid

ptr_lock0xf20

metadata for the
returned pointer

metadata for the first
pointer argument

 p_base = load_sstack_base(1);
 p_bound = load_sstack_bound(1);
 p_key = load_sstack_key(1);
 p_lock = load_sstack_lock(1);

(a) Shadow stack setup before executing the function call

(b) Reading pointer argument's metadata from shadow stack

int* foo(struct A * p) {
 ...

 return r;
}

 push_sstack_base(0, r_base);
 push_sstack_bound(0, r_bound);
 push_sstack_key(0, r_key);
 push_sstack_lock(0, r_lock);

(c) Storing the metadata for the returned pointer by the callee

void main(){

 p = foo(ptr);

 ...
}

 p_base = load_sstack_base(0);
 p_bound = load_sstack_bound(0);
 p_key = load_sstack_key (0);
 p_lock = load_sstack_lock(0);

(d) Loading the metadata for the return value in the caller

0xf50
0xf58
0xf60

r_bound

1
metadata for
previous frames

number of args

r_key

0xf30
0xf38
0xf40

ptr_bound
ptr_base

r_lock

ptr_key

0xf48

0xf28

r_base

ptr_lock0xf20

metadata for the
returned pointer

metadata for the first
pointer argument

0xf50
0xf58
0xf60

r_bound

1
metadata for
previous frames

number of args

r_key

0xf30
0xf38
0xf40

ptr_bound
ptr_base

r_lock

ptr_key

0xf48

0xf28

r_base

ptr_lock0xf20

metadata for the
returned pointer

metadata for the first
pointer argument

Figure 4.4: This figure illustrates the stores/loads to/from the shadow stack in the caller and the
callee.

63

parameter. Similarly shadow stack handlers that store the metadata use the argument number and

the metadata as the parameters as shown in the Figure 4.4.

In summary, the shadow stack provides a mechanism for dynamic typing between the arguments

pushed at the call site and the arguments retrieved by the callee. The shadow stack ensures that the

callee never coerces the program to treat an integer pushed by the caller in the call stack as a

pointer and subsequently dereference it. An exception is triggered only when such pointers are

dereferenced but not when they are created in accordance with the C specification. When the callee

attempts to retrieve the metadata for the particular argument, it receives the metadata pushed by the

caller (which would be either valid metadata when the caller pushes a pointer on the call stack or

invalid metadata otherwise). The shadow stack handlers also ensure that the callee does not attempt

to access arbitrary arguments on the call stack by checking the argument number of the parameter

for which metadata is being retrieved with the number of arguments pushed by the caller. Thus, the

shadow stack matches the callee view of the call stack with the caller’s view with respect to pointer

and non-pointer parameters and returns. The following section demonstrates how this mechanism

provides safety even with variable argument functions.

Handling Variable Argument Functions with Shadow Stack

Variable argument functions are common in C. The function prototype does not specify the number

of arguments for these functions. The arguments passed to such a function at a call-site are retrieved

using va list handlers such as va start, va arg, and va end. Variable argument functions are a

common source of errors because unbounded number of arguments can be potentially read from

the call stack. Such errors can be prevented using the shadow stack. The shadow stack provides

accurate information about the number of arguments pushed by the call-site. Further, shadow stack

also provides a mechanism to pass metadata for the arguments.

Figure 4.5(a) illustrates a simple variable argument function definition and such a function being

called by another function. Figure 4.5(b) shows how the shadow stack is setup at the call-site. Fig-

ure 4.6(a) shows the checks performed whenever an argument is retrieved using the va arg handler.

In Figure 4.6(a), a pointer is being retrieved using the va arg handler. Hence our transformation has

inserted code to retrieve the metadata from the shadow stack. Figure 4.6(b) shows how the checks

64

(b) Main function that calls the variable argument function sets up the shadow stack

void main(){
 int arr[10];
 ...

 func(10,arr);

 ...

}

void func(int num, ...){
 int *p;
 va_list args;
 va_start(args, num);

 p = va_arg(args, int *);

 ...
}

(a) Variable argument function with pointer as an argument

void main(){
 int arr[10];
 ...

 func(10,arr);
 ...

}

 0xf50
0xf58
0xf60

invalid

2
metadata for previous
frames

number of args

invalid

0xf30
0xf38
0xf40

arr_bound
arr_base
invalid

arr_key

0xf48

0xf28

invalid

arr_lock0xf20

metadata for the first
argument

metadata for the second
pointer argument

 push_sstack_nargs(2);
 push_sstack_base(1, invalid);
 push_sstack_bound(1, invalid);
 push_sstack_key(1, invalid);
 push_sstack_lock(1, invalid);
 push_sstack_base(2, arr_base);
 push_sstack_bound(2, arr_bound);
 push_sstack_key(2, arr_key);
 push_sstack_lock(2, arr_lock);

invalid
invalid
invalid

invalid

metadata for the
returned pointer0xf68

0xf70
0xf78
0xf80

Figure 4.5: This figure illustrates a simple function that takes a variable number of arguments in (a)
and illustrates how the caller sets up the shadow stack for the variable argument function in (b).

inserted by our transformation signal an exception when the function attempts to read arbitrary

number of values from the stack.

4.2.2 Metadata Organization

We described the metadata facility abstractly using table lookups in Chapter 3. This section de-

scribes the organization of the metadata facility for the compiler transformation. In our prior work

SoftBound [92] on providing spatial safety, we experimented with two different organizations of the

metadata space: a hashtable organization and a shadow space organized as a linear array of bytes.

However, memory overhead was an important issue that we had to address with the hashtable and

the shadow space organizations. A pointer can be resident be in any address in the virtual address

65

(b) An example where a variable argument function tries to load 3 arguments from the
stack when the callsite pushed just two arguments. This is prevented by the check
performed before loading each argument as indicated in the figure by X.

void func(int num, ...){
 int *p;
 va_list args;
 va_start(args, num);

 p = va_arg(args, int *);

 ...
}

 0xf50
0xf58
0xf60

invalid

2
metadata for previous
frames

number of args

invalid

0xf30
0xf38
0xf40

arr_bound
arr_base
invalid

arr_key

0xf48

0xf28

invalid

arr_lock0xf20

metadata for the first
argument

metadata for the second
pointer argument

invalid
invalid
invalid

invalid

metadata for the
returned pointer0xf68

0xf70
0xf78
0xf80

 0xf50
0xf58
0xf60

invalid

2
metadata for previous
frames

number of args

invalid

0xf30
0xf38
0xf40

arr_bound
arr_base
invalid

arr_key

0xf48

0xf28

invalid

arr_lock0xf20

metadata for the first
argument

metadata for the second
pointer argument

invalid
invalid
invalid

invalid

metadata for the
returned pointer0xf68

0xf70
0xf78
0xf80

 check_valid_arg(2);
 p_base = load_sstack_base(2) ;
 p_bound = load_sstack_bound(2);
 p_key = load_sstack_key(2);
 p_lock = load_sstack_lock(2);

(a) Callee, which is a variable argument function, retrieves the metadata from the shadow
stack for the pointer argument

void func(int num, ...){
 int *p;
 int d;
 va_list args;
 va_start(args, num);

 p = va_arg(args, int *);

 d = va_arg(args, int);

 ...
}

 check_valid_arg(3);

Figure 4.6: This figure illustrates how the callee retrieves the arguments in a variable argument
function and checks that occur using the shadow stack in (a) and how the mismatch in the number
of arguments pushed by the caller and callee is caught using the shadow stack in (b).

66

Trie root ptr
Primary trie Secondary trie

22 bits 23 bits

Pointer

Memory

ptr

(base, bound, key, lock)

Figure 4.7: Organization of the trie for pointer metadata

space. Hence, we had to shadow the entire virtual address space. Shadowing the metadata space

using a linear byte array based shadow space was not feasible as our metadata (32 bytes per word) is

larger than word size and the current operating systems do not allow us to mmap regions larger than

the size of the virtual memory plus the swap space. On the other hand, such shadowing with the

hashtable required that we sized the hash table reasonably large and resize it on frequent collisions.

We had to find an appropriate balance between the memory overhead incurred and the frequency of

the resizes to determine the resizing granularity. Frequent resizes would increase the performance

overhead. On the other hand, increasing the memory overhead significantly would prevent a pro-

gram from running. Hence, to avoid such problems and incur memory overhead on demand, we

organize the metadata space as a trie for our compiler transformation.

We implement the disjoint metadata facility using a two-level lookup trie data structure, which

provides the ability to shadow every word in memory efficiently [96]. A trie is a mapping structure

much like a page table in which each level of the trie is accessed using a set of bits from the index

being accessed (see Figure 4.7). The current compiler transformation prototype assumes a 48-bit

virtual address space and that pointers are word-aligned, for a total of 45 bits to index the trie. The

prototype uses 222 first level entries and 223 second level entries. Each second-level entry contains

the bounds metadata and the identifier metadata (256 bits total). Each metadata load and store

includes a trie lookup. We allocate the first-level trie entries when a metadata store accesses the

entry. The C code for the metadata load and store is shown in Figure 4.8. Each metadata load with

a trie lookup is approximately twelve x86 instructions. It involves two loads (a load to retrieve the

global base of the first level trie plus a load from the first level trie entry) and six bitmask and shift

67

C code for Metadata Load

/* struct metadata_entry_t {
 void* base;
 void* bound;
 size_t key;
 void* lock;
};
*/

struct metadata_entry_t
 sbcets_metadata_load(void* addr_of_ptr){

 struct metadata_entry_t* meta_entry;
 struct metadata_entry_t* secondary_table;
 size_t ptr = (size_t) (addr_of_ptr);
 size_t primary_index = ptr >> 25;
 size_t secondary_index = ((ptr >> 3) & 0x3fffff));

 // trie_root is the base of the first level trie in a global
 secondary_table = trie_root[primary_index];

 // calculate the address of the entry in the secondary trie
 meta_entry = &secondary_table[secondary_index];

 // load base
 ... = meta_entry->base;
 // load bound
 ... = meta_entry->bound;
 // load key
 ... = meta_entry->key;
 // load lock
 ... = meta_entry->lock;
}

C code for Metadata Store

 void sbcets_metadata_store (void* addr_of_ptr,
 void* base,
 void* bound,
 size_t key,
 void* lock) {

 struct metadata_entry_t* meta_entry;
 struct metadata_entry_t* secondary_table;
 size_t ptr = (size_t) (addr_of_ptr);
 size_t primary_index = ptr >> 25;
 size_t secondary_index = ((ptr >> 3) & 0x3fffff));

 // trie_root is the base of the first level trie in a global
 secondary_table = trie_root[primary_index];

 // allocate first level entry if NULL
 if(secondary_table == NULL){
 secondary_table = trie_allocate();
 trie_root[primary_index] = secondary_table;
 }

 // calculate the address of the entry in the secondary trie
 meta_entry = &secondary_table[secondary_index];

 // store base
 meta_entry->base = base;
 // store bound
 meta_entry->bound = bound;
 // store key
 meta_entry->key = key;
 // store lock
 meta_entry->lock = lock;
}

Figure 4.8: C source code for accessing the metadata from the disjoint metadata space with trie
lookups. There are 222 entries in the first level trie and there are 223 entries in the second level trie.
Metadata is maintained in the second level trie for every 8-byte word.

operations to perform the translation from the program address to the metadata address. Four loads

to load the metadata from the second level trie. The metadata store is slightly expensive as it also

initializes the first level trie entry if the entry is NULL as shown in Figure 4.8. In the common case,

the metadata store is fourteen x86 instructions with an extra compare and branch to check if the first

level trie entry is NULL. By preallocating the secondary level trie entries on memory allocation,

these compare and branches can be avoided during metadata store. The x86 code sequences for the

metadata load and store are provided in Figure 6.2 of Chapter 6.

Since the second level entries of the trie are allocated only on demand, the memory overhead is

significantly lower than either the hashtable and the shadow space. The trie implementation enabled

us to experiment with memory-intensive real world programs beyond the few programs described

68

in our SoftBound paper [92]. Metadata lookups to the disjoint metadata space are still expensive.

Hence our instrumentation leverages the type information in the intermediate representation to per-

form such lookups only when pointers are loaded or stored as described in Section 4.2.7.

4.2.3 Instrumentation Handlers for Compiler Instrumentation

To perform pointer-based checking within the compiler, SoftBoundCETS instrumentation needs to

add extra code into the IR to perform checks, metadata lookups, shadow stack lookups, and metadata

propagation. There are two alternatives in introducing such checks. First alternative is to create such

handlers in the IR and use instrumentation to inline these handlers at every place similar to inlined

reference monitors used for software fault isolation [132]. We take the second alternative where

we write the checks, metadata lookups, and shadow stack handlers as C code, which is separately

compiled to generate the IR. SoftBoundCETS instrumentation just adds calls to the handlers at the

appropriate places. Instrumented code is later linked with the compiled IR. We leverage the LLVM

compiler’s inlining mechanisms to inline the checks and other handlers. This approach has two

advantages. First, this approach keeps the instrumentation simple and easy to reason about, which

also enabled us to create a verified instrumentation extracted from the proof of correctness in a proof

assistant in a related but separate project [137]. Second, this approach separates the implementation

choices in metadata organization, memory mapping schemes for the various shadow spaces, and

shadow stack operations from the instrumentation over the IR. Our experience suggests such an

instrumentation with a division of labor between the actual instrumentation and C handlers could

be handy in building a wide range of debugging tools.

4.2.4 The SoftBoundCETS Instrumentation Algorithm

Having seen the design choices for the compiler instrumentation in the previous sections and the

pointer-based checking approach in Chapter 3, we describe the details of the SoftBoundCETS instru-

mentation in this section. SoftBoundCETS instrumentation algorithm for providing pointer-based

memory safety operates in three passes. In the first and the second pass, the SoftBoundCETS in-

strumentation gathers the metadata for each pointer value in the program. The third pass introduces

spatial safety and temporal safety checks using the metadata gathered in the first two passes. These

three passes just make linear passes over the program without the need for any fixpoint algorithms.

69

Entry block after the first pass of SoftBoundCETS instrumentation

define i32 @main(i32 %argc, i8** %argv) nounwind uwtable {
entry:

 %call = call noalias i8* @malloc(i64 16) nounwind

 %0 = bitcast i8* %call to %struct.node_t*

 %value = getelementptr inbounds %struct.node_t* %0, i32 0, i32 0

 store i64 0, i64* %value, align 8
 %next = getelementptr inbounds %struct.node_t* %0, i32 0, i32 1

 store %struct.node_t* null, %struct.node_t** %next, align 8
 br label %for.cond

1
2

3

4

5

6
7

8
9

 call void shadow_stack_store_base(i64 1, i8* NULL);
 call void shadow_stack_store_bound(i64 1, i8* NULL);
 call void shadow_stack_store_key(i64 1, i64 0);
 call void shadow_stack_store_lock(i64 1, i8* NULL);

 %call_base = call i8* shadow_stack_load_base(i64 0);
 %call_bound = call i8* shadow_stack_load_bound(i64 0);
 %call_key = call i64 shadow_stack_load_key(i64 0);
 %call_lock = call i8* shadow_stack_load_lock(i64 0);

%call: <%call_base, %call_bound, %call_key, %call_lock>

%call: <%call_base, %call_bound, %call_key, %call_lock>

%0 : <%call_base, %call_bound, %call_key, %call_lock>

%call: <%call_base, %call_bound, %call_key, %call_lock>

%0: <%call_base, %call_bound, %call_key, %call_lock>

%value: <%call_base, %call_bound, %call_key, %call_lock>

%0: <%call_base, %call_bound, %call_key, %call_lock>

 %value: <%call_base, %call_bound, %call_key, %call_lock>

%call: <%call_base, %call_bound, %call_key, %call_lock>

 %next: <%call_base, %call_bound, %call_key, %call_lock>

 call void store_metadata(i8** next, i8* NULL, i8* NULL, i64 0, i8* NULL);

Dictionary status

Figure 4.9: Illustration of the first pass of the SoftBoundCETS instrumentation for the entry block
of function in Figure 4.3.

SoftBoundCETS instrumentation maintains base, bound, key, and lock metadata with every

LLVM IR value that has a pointer type. These metadata values are created as temporaries for

every LLVM IR instruction that produces a pointer value. These metadata values can be created

in two ways: (1) instrumentation inserted calls to the handler functions for pointer loads and meta-

data retrievals from the shadow stack, and (2) instrumentation created temporaries for propagating

the metadata for IR instructions that perform stack allocations (e.g. alloca) and that manipulate

pointers (e.g. getelementptr and bitcast).

70

for.cond:
 %ptr.0 = phi %struct.node_t* [%0, %entry], [%1, %for.inc]

 %i.0 = phi i64 [0, %entry], [%inc, %for.inc]
 %cmp = icmp ult i64 %i.0, 128
 br i1 %cmp, label %for.body, label %for.end

10
11
12

13
14
15

 %0: <%call_base, %call_bound, %call_key, %call_lock>

 %value: <%call_base, %call_bound, %call_key, %call_lock>

 %call: <%call_base, %call_bound, %call_key, %call_lock>

 %next: <%call_base, %call_bound, %call_key, %call_lock>

 %ptr.0.base = phi i8* [__, %entry], [__, %for.inc]
 %ptr.0.bound = phi i8* [__, %entry], [__, %for.inc]
 %ptr.0.key = phi i64 [__, %entry], [__, %for.inc]
 %ptr.0.lock = phi i8* [__, %entry], [__, %for.inc]

%0: <%call_base, %call_bound, %call_key, %call_lock>

%value: <%call_base, %call_bound, %call_key, %call_lock>

%call: <%call_base, %call_bound, %call_key, %call_lock>

%next: <%call_base, %call_bound, %call_key, %call_lock>

%ptr.0: <%ptr.0.base, %ptr.0.bound, %ptr.0.key, %ptr.0.lock>

Dictionary
status

Figure 4.10: The second basic block (for.cond) of the function in Figure 4.3 after the first pass of
SoftBoundCETS instrumentation illustrating the handling of phi nodes.

The first pass of the instrumentation traverses each instruction in each basic block in each func-

tion in the program in the control flow graph order to introduce metadata temporaries. The in-

strumentation maintains a dictionary that maps a pointer temporary to its corresponding metadata.

In the entry block of a function, SoftBoundCETS instrumentation introduces shadow stack loads

to retrieve the metadata whenever the function has pointer arguments. Similarly when there is an

external call, it introduces shadow stack loads/stores to setup the metadata. For other pointer manip-

ulating instructions such as getelementptr and bitcast, it simply updates the dictionary entry

of the temporary being produced to be equal to the dictionary entry of the source operand of these

instructions. For pointer loads, the instrumentation introduces calls to the C handlers that load the

appropriate metadata in a temporary. For store instructions that store a pointer to memory, the

instrumentation introduces calls to the C handlers to the store the metadata. Figure 4.9 illustrates

the metadata temporaries and calls introduced by the SoftBoundCETS instrumentation for the entry

71

Entry block after complete SoftBoundCETS instrumentation

define i32 @main(i32 %argc, i8** %argv) nounwind uwtable {
entry:

 %call = call noalias i8* @malloc(i64 16) nounwind

 %0 = bitcast i8* %call to %struct.node_t*

 %value = getelementptr inbounds %struct.node_t* %0, i32 0, i32 0

 store i64 0, i64* %value, align 8
 %next = getelementptr inbounds %struct.node_t* %0, i32 0, i32 1

 store %struct.node_t* null, %struct.node_t** %next, align 8
 br label %for.cond

1
2

3

4

5

6
7

8
9

 call void shadow_stack_store_base(i64 1, i8* NULL);
 call void shadow_stack_store_bound(i64 1, i8* NULL);
 call void shadow_stack_store_key(i64 1, i64 0);
 call void shadow_stack_store_lock(i64 1, i8* NULL);

 %call_base = call i8* shadow_stack_load_base(i64 0);
 %call_bound = call i8* shadow_stack_load_bound(i64 0);
 %call_key = call i64 shadow_stack_load_key(i64 0);
 %call_lock = call i8* shadow_stack_load_lock(i64 0);

%call: <%call_base, %call_bound, %call_key, %call_lock>

%call: <%call_base, %call_bound, %call_key, %call_lock>

%0: <%call_base, %call_bound, %call_key, %call_lock>

%call: <%call_base, %call_bound, %call_key, %call_lock>

 %0: <%call_base, %call_bound, %call_key, %call_lock>
%value: <%call_base, %call_bound, %call_key, %call_lock>

 %0: <%call_base, %call_bound, %call_key, %call_lock>
%value: <%call_base, %call_bound, %call_key, %call_lock>

%call: <%call_base, %call_bound, %call_key, %call_lock>

%next: <%call_base, %call_bound, %call_key, %call_lock>

 call void store_metadata(i8** next, i8* NULL, i8* NULL, i64 0, i8* NULL);

Dictionary status

 call void spatial_check (i64* value, i8* %call_base, i8* %call_bound, i64 8);
 call void temporal_check(i64 %call_key, i8* %call_lock);

 call void spatial_check (%struct.node_t**next, i8* %call_base, i8* %call_bound, i64 8);
 call void temporal_check(i64 %call_key, i8* %call_lock);

Figure 4.11: The entry block of the function in Figure 4.3 after the three passes of the SoftBound-
CETS instrumentation.

72

for.cond:
 %ptr.0 = phi %struct.node_t* [%0, %entry], [%1, %for.inc]

 %i.0 = phi i64 [0, %entry], [%inc, %for.inc]
 %cmp = icmp ult i64 %i.0, 128
 br i1 %cmp, label %for.body, label %for.end

10
11
12

13
14
15

%0: <%call_base, %call_bound, %call_key, %call_lock>

%value: <%call_base, %call_bound, %call_key, %call_lock>

%call: <%call_base, %call_bound, %call_key, %call_lock>

%next: <%call_base, %call_bound, %call_key, %call_lock>

 %ptr.0.base = phi i8* [%call_base, %entry], [%call1_base, %for.inc]
 %ptr.0.bound = phi i8* [%call_bound, %entry], [%call1_bound, %for.inc]
 %ptr.0.key = phi i64 [%call_key, %entry], [%call1_key, %for.inc]
 %ptr.0.lock = phi i8* [%call_lock, %entry], [%call1_lock, %for.inc]

%0: <%call_base, %call_bound, %call_key, %call_lock>

%value: <%call_base, %call_bound, %call_key, %call_lock>

%call: <%call_base, %call_bound, %call_key, %call_lock>

%next: <%call_base, %call_bound, %call_key, %call_lock>

%ptr.0: <%ptr.0.base, %ptr.0.bound, %ptr.0.key, %ptr.0.lock>

%1: <%call1_base, %call1_bound, %call1_key, %call1_lock>

%1: <%call1_base, %call1_bound, %call1_key, %call1_lock>

Dictionary status

Figure 4.12: The second basic block (for.cond) of the function in Figure 4.3 after the three passes
of SoftBoundCETS instrumentation with fully populated phi nodes.

block of the function in Figure 4.3 after the first pass of metadata propagation. The state of the

dictionary is displayed in the figure after each dictionary update. The instrumentation does nothing

for the store instruction in line 6 in Figure 4.9 as it does not store any pointer values.

SoftBoundCETS instrumentation performs two passes to gather metadata to handle circular de-

pendences with phi nodes. The first pass creates metadata phi nodes for each original phi node

that has a pointer type in the IR. The inputs to the metadata phi nodes are not populated in the

first pass as the inputs to the pointer phi node may be defined later in the traversal order or in

the same basic block as the phi node. The first pass ends when all the basic blocks are traversed.

Figure 4.10 illustrates the metadata phi nodes introduced by the instrumentation for the second

basic block (for.cond) in the function from Figure 4.3. Figure 4.10 shows that the inputs to the

metadata phi nodes are empty after the first pass of the instrumentation. In the second pass, the

instrumentation traverses the basic blocks and populates the inputs to the phi nodes.

In the third pass, the instrumentation introduces a call to the C handlers that perform the spa-

tial and temporal checks using the metadata temporaries. We defer the check introduction to the

73

third pass over the program as it enables us to decouple the metadata propagation and the check

optimizations to eliminate redundant checks. Figure 4.11 and Figure 4.12 show the instrumented

IR code after all three passes of the SoftBoundCETS instrumentation for the entry block and the

for.cond block of the function in Figure 4.3.

4.2.5 Advantages of Compiler Instrumentation

We discuss the advantages of performing SoftBoundCETS instrumentation on the LLVM IR de-

scribed above in the previous sections. There are two primary advantages provided by structuring

our instrumentation over the LLVM IR. First, as all optimizations preserve the semantics of the

LLVM IR, SoftBoundCETS can instrument optimized code minimizing the amount of extra instru-

mentation code added. Second, explicit types in the SSA-based IR enables us to identify pointers.

Further, we can leverage the compiler’s built-in analyses to perform various optimizations. We

discuss these issues in the following sections.

4.2.6 Instrumenting Optimized Code

The first primary advantage of performing the SoftBoundCETS instrumentation within the compiler

is the ability to leverage other compiler optimizations and analyses. The compiler optimizations in

the LLVM compiler preserve the type information and the semantics of the original program. Hence,

the compiler-based memory safety instrumentation can be performed on optimized code. Further as

register promotion and other common optimizations have already reduced the number of memory

operations, the strategy of instrumenting optimized code reduces the amount of additional instru-

mentation introduced. This ability to instrument optimized code and still provide comprehensive

detection of memory safety errors subsumes the benefits of a source-code based instrumentation.

Further every compiler has a large suite of analyses which can be used to further optimize the mem-

ory safety transformation. We describe few of these optimizations to streamline SoftBoundCETS

instrumentation in Section 4.3.

4.2.7 Pointer Identification

One of the primary reasons that we were able to implement pointer-based checking within the com-

piler as described in the previous sections is attributed to the type information in the LLVM IR. The

74

0%

10%

20%

30%

40%

50%

60%

%
 o

f
p

o
in

te
r

lo
ad

s/
st

o
re

s

lbm go

equake

hmmer
milc

ijp
eg

sje
ng

bzip2
mesa

sphinx
ammp

comp
h264

gobmk art vpr
tw

olf

lib
quantum mcf

parse
r

Average

Figure 4.13: The percentage of memory operations that load or store a pointer from/to memory,
thus requiring a metadata access.

type information in the LLVM IR is used to identify pointers. Using the type information in the

LLVM intermediate representation (IR), we overlay a system with two types — pointer types and

non-pointer types — on top of the LLVM IR types. We perform the metadata creation and propaga-

tion operations only for the operations with pointer types. Among the instructions in the LLVM IR

instruction set presented in Figure 4.1, memory accessors (load, store), stack allocation (alloca),

pointer conversion operators (ptrtoint, inttoptr, bitcast), getelementptr, phinode, call,

and ret instructions produce or manipulate pointer values. Our instrumentation maintains metadata

only for instructions producing or manipulating pointer values.

As the LLVM IR is in SSA form, the majority of the instructions produce or manipulate pointer

values in temporaries without accessing memory. Hence, our memory safety instrumentation main-

tains the metadata for such IR instructions in temporaries. We leverage the LLVM’s machine de-

pendent register allocation to eventually map these temporaries to machine register or introduce

spill code. All memory accesses in LLVM IR occurs through explicit load and store operations. All

such memory accesses are conceptually checked for spatial and temporal safety violations. Only

when load (store) IR instructions load (store) a pointer value, the disjoint metadata discussed in

Section 3.8 of Chapter 3 is accessed by introducing calls to the C handlers as described above.

First, a compiler instrumentation that performs instrumentation only for IR instructions with

pointer types provides memory safety even in the presence of arbitrary type casts in the program

among pointer types and casts from pointer types to non-pointer types. Second, it reduces the

amount of instrumentation performed as extra instrumentation is added only for pointer operations.

75

In the absence of pointer information, every memory access would load/store the metadata, which

would have introduced significant overhead.

To measure the benefits of using the pointer information in the LLVM IR to identify pointers

loads/stores, we instrumented the LLVM IR to count the number of loads/stores and pointer loads/-

stores in the dynamic execution. Figure 4.13 reports the percentage of dynamic memory operations

that load or store a pointer value. The benchmarks in the Figure 4.13 are sorted in the increasing

order of pointer load/store percentages. The benchmarks on the right of the figure have a larger

percentage of pointer loads/stores requiring accesses to the disjoint metadata space. An important

point to note that these dynamic memory operations do not count the pointers that could be loaded/-

stored as part of spill code, which is absent when the SoftBoundCETS performs its instrumentation.

The majority of the SPEC benchmarks have metadata access ratios of less than 10%. On average,

only 7% of the memory accesses load/store a pointer, highlighting the benefits of leveraging the

type information in the IR.

Limitation of SoftBoundCETS A limitation of just propagating metadata with the pointers is that

we disallow the creation of pointers from non-pointers (e.g. creating a pointer from an integer). By

default, such manufactured pointers get null bounds with an invalid identifier as the metadata and

the program execution is stopped when such pointers are dereferenced. Although we have not seen

such code in our experimentation, the programmer is required to provide valid metadata if such

programs are required to execute without memory safety violations.

4.2.8 Other Instrumentation Considerations

Beyond the issues described in implementing pointer-based checking in Chapter 3 and prior sections

in this chapter, there are many issues that we address to handle real world applications. We describe

these issues below.

Handling Libraries through Wrappers SoftBoundCETS instrumentation can be used with ex-

isting library source code to generate memory-safe libraries. Such libraries can be later linked with

other code instrumented with SoftBoundCETS to create memory-safe binaries. In cases where the

library code is not available, libraries can interface with SoftBoundCETS instrumented code using

wrappers. Figure 4.14 illustrates the wrappers for two functions of the string library: strchr and

76

char * strchr(const char *s, int C);

Prototype for strchr

SoftBoundCETS wrappers for strchr

char * sbcets_strchr(const char *s, int C){
 char* ret_ptr = strchr(s, c);
 if(ret_ptr == NULL){
 __sbcets_store_invalid_return_metadata();
 }
 else{
 __sbcets_propagate_metadata_shadow_stack_from(1, 0);
 }
 return ret_ptr;
}

Prototype for strtol

long sbcets_strtol(const char *nptr, char** endptr, int base){
 long tmp = strtol(nptr, endptr, base);
 if(endptr != NULL){
 __sbcets_propagate_shadow_stack_to_address(endptr, 1);
 }
 return tmp;
}

long strtol(const char *nptr, char** endptr, int base);

SoftBoundCETS wrappers for strchr

Figure 4.14: Wrappers for SoftBoundCETS instrumentation.

strtol. The library function strchr searches for the occurrence of the second argument (i.e., c) in the

input string, which is the first argument. If the string contains the character then it returns the pointer

to the first occurrence of the character and NULL otherwise. To interface with SoftBoundCETS, the

library code should return metadata for the pointer being returned, otherwise the program will ex-

perience false violations. The wrappers provide such glue code to interface with un-instrumented

library code. The wrapper for function strchr updates the return metadata based on the actual value

being returned. If the return value is NULL, then it stores invalid metadata for the returned pointer

in the shadow stack. Otherwise, the wrapper just propagates the metadata of the first argument in

the shadow stack to the returned pointer. SoftBoundCETS instrumentation provides handlers (e.g.,

sbcets store invalid return metadata) as illustrated in Figure 4.14 to make such interfacing eas-

ier. Further, these wrappers also perform spatial and temporal safety checks according to the library

specification to detect memory safety errors triggered in the library code (such checks have been

omitted from the Figure 4.14 for simplicity).

77

Libraries can also return pointers to the instrumented code by storing the pointers in mem-

ory locations. Such memory locations can be subsequently accessed to retrieve the pointer. The

wrapper for the library function strtol is provided in Figure 4.14 to demonstrate one such exam-

ple of pointers being returned from libraries using memory locations. The library function strtol

converts the initial part of the string in the first argument nptr to a long integer value according

to the given base. When the input string has an invalid digit with respect to a particular base,

the library stores the pointer to the invalid digit in the memory location pointed by the second

argument (i.e., endptr) to strtol. The wrapper updates the disjoint metadata with the metadata

of the input argument as illustrated in the wrapper in the Figure 4.14 using the SoftBoundCETS

handler (sbcets propagate shadow stack to address). Although, writing such wrappers can be te-

dious, our instrumentation library provides various handlers and wrappers to make this job easier.

Further, disjoint metadata alleviates this problem of writing wrappers by eliminating the need for

deep copies of data structures.

Memcpy() Among various C standard library calls, memcpy requires special attention. First,

to reduce runtime overhead, the source and targets of the memcpy are checked for spatial safety

and temporal safety once at the start of the copy. Second, memcpy must also copy the metadata

corresponding to any pointer in the region being copied. By default, SoftBoundCETS takes the safe

but slow approach that inserts code to copy the metadata for all memcopies. However, most calls to

memcpy involve buffers of non-pointer values. To address this inefficiency, SoftBoundCETS infers

whether the source and destination of the memcpy do not contain pointers by looking at the type of

the argument at the call site. We have found this approach facilitated by the type information in the

LLVM IR sufficient to identify the few uses of memcpy involving pointers in our benchmarks.

Global Initialization For global allocations such as global arrays, the base, bound, key and lock

metadata are compile-time constants. Thus, SoftBoundCETS sets these bounds without requiring

writing the metadata to memory. However, for pointer values that are in the global space and

are initialized to non-zero values, SoftBoundCETS adds code to explicitly initialize the in-memory

memory metadata for these variables. This is implemented using the same hooks C++ uses to run

code for constructing global objects (i.e. by appending attribute ((constructor)) to the definition

of the function that initializes the metadata).

78

0%

20%

40%

60%

80%

%
 o

f
sp

at
ia

l
ch

ec
k
s

el
im

in
at

ed

lbm go

equake

hmmer
milc

ijp
eg

sje
ng

bzip2
mesa

sphinx
ammp

comp
h264

gobmk art vpr
tw

olf

lib
quantum mcf

parse
r

Average

Figure 4.15: Percentage of redundant spatial checks removed.

0%

20%

40%

60%

80%

100%

%
 o

f
te

m
p
o
ra

l
ch

ec
k
s

el
im

in
at

ed

lbm go

equake

hmmer
milc

ijp
eg

sje
ng

bzip2
mesa

sphinx
ammp

comp
h264

gobmk art vpr
tw

olf

lib
quantum mcf

parse
r

Average

Figure 4.16: Percentage of redundant temporal checks removed.

4.3 Optimizations to SoftBoundCETS

The SoftBoundCETS instrumentation described above in this chapter can be further optimized to

reduce the performance overheads by (1) eliminating redundant spatial and temporal checks and (2)

eliminating unnecessary checks when the program is type-safe.

4.3.1 Implementing Custom Check Elimination

Bounds check elimination is a well-established and long-studied problem [23, 62, 130]. SoftBound-

CETS instrumentation can leverage the existing analyses such as dominator tree construction, alias

analysis, and loop invariant code motion in the compiler to perform these optimizations. Our check

79

elimination optimizations broadly falls under two categories: removal of unnecessary checks and

removal of redundant checks.

Unnecessary Check Elimination SoftBoundCETS instrumentation occurs on an intermediate

representation (IR) with infinite registers, spills and restores are not visible at the IR level, so spatial

and temporal checks are simply not inserted. Similarly spatial and temporal checks are not neces-

sary for accesses to global scalar values and constants. Further, no temporal checks are required

for any pointer that is directly derived from the stack pointer within the corresponding function

call, because the stack frame is guaranteed to live until the function exits. In the same vein, check-

ing stack spills and restores is unnecessary. In addition, performing temporal checks to pointers

known to point to global objects is unnecessary, because global objects are never deallocated. Our

instrumentation uses a simple dataflow analysis to identify these pointers and elides their checks.

Redundant Check Elimination A spatial check is redundant if there is an earlier check to the

same pointer that dominates the current memory access. We use the existing dominator tree pro-

vided by the compiler infrastructure to identify such spatial checks and elide them. A temporal

check is redundant if: (1) there is an earlier check to pointers that share the same values for key and

lock address (i.e., points to the same object) and (2) the check is not killed by a call to free. Our

algorithm for finding redundant temporal checks constructs a dominator tree and uses a standard

dataflow analysis to identify the root object accessed by each reference. Any check dominated by

an earlier check that is not killed along the path is removed. In our current implementation a tempo-

ral check is killed when there is any function call along the path—that is, we conservatively assume

that any function could potentially free any pointer.

Check Removal Effectiveness The graphs in Figure 4.15 and Figure 4.16 show the percentage

of runtime spatial and temporal checks eliminated as a percentage of runtime checks performed by

SoftBoundCETS without such redundant-check optimizations—taller bars are better. On average,

14% of the spatial checks have been eliminated by redundant check optimizations. On average,

72% of the temporal checks have been eliminated by redundant check optimizations.

Figure 4.16 demonstrates that our check optimizations are more effective in removing the tem-

poral checks than the spatial checks. We illustrate the reason for this effectiveness in temporal check

80

... = *(ptr1 + offset1);

...

...
*(ptr2) = ...; // potentially aliasing store
...

... = *(ptr1 + offset2);

 if (ptr1_key != *(ptr1_lock)) { abort(); }

 if (ptr1_key != *(ptr1_lock)) { abort(); }

Figure 4.17: Optimizing redundant temporal checks.

elimination with an example. Consider the code snippet in Figure 4.17. Naive temporal check in-

sertion would insert two temporal checks (shaded). Our temporal-check elimination optimization

removes the second check as redundant, because it knows that (1) the checks are to the same object

and (2) the intervening code does not kill the validity of temporal check (a store can not deallocate

memory and thus cannot cause ptr1 to dangle). The store to ptr2 however blocks standard com-

piler optimizations from removing the redundant loads of *ptr1 lock. However, if the store was not

present (or with better alias analysis) standard compiler optimizations alone would easily eliminate

the second temporal check.

This example also illustrates two key differences between spatial and temporal check elimina-

tion. First, even though the two loads are to different addresses, the temporal check is redundant

whereas a bounds check would generally not be redundant. Second, a function call between the two

loads would block a temporal check removal, whereas the redundancy of spatial check to the same

address is independent of the intervening code.

4.3.2 Optimizing Type-Safe Programs

SoftBoundCETS instrumentation conceptually checks every memory access to provide spatial safety

and temporal safety. Such checking is required to provide memory safety in the presence of arbitrary

type casts as described in Chapter 3. In this section, we explore opportunities for optimizing the

instrumentation when the programs are type-safe with respect to pointer operations. The program

can still use type-casts with non-pointer values. These optimizations have been influenced by prior

research on using type information to improve compilation [90] and provide memory safety [46, 94].

81

When a program is type-safe, we optimize the instrumentation to eliminate spatial safety checks

on accesses to sub-fields in a structure. An important thing to note is that these optimizations for

type-safe programs only reduce the overhead of enforcing spatial safety but not temporal safety. The

C language allows arbitrary type-casts. So we perform the optimizations described in this chapter

only when our analysis can determine that there are no casts involving pointers in the program.

Figure 4.18 briefly presents the algorithm for performing spatial check optimizations for type

safe programs. To identify that the program is type-safe, the algorithm iterates over all the instruc-

tions in the module looking for bitcast instructions. All type casts occur in the LLVM IR using

bitcast instructions. Algorithm inspects the source and destination types of the bitcast instruction to

check whether they are pointers. If there exists a pointer cast, then the program is type unsafe with

respect to pointer operations and no optimizations are performed.

If the program does not have any bitcast operations in the LLVM IR involving pointer types,

then it optimizes the spatial checks for the structure sub-fields. The algorithm iterates over every

load instruction and store instruction in the module. For each such load and store instruction, it does

a backward analysis to check if the operand is a GetElementPtrInst with constant indices and with

input operand having a struct type. In such cases, it elides the spatial checks for the load and store

instructions. The rationale in requiring the GetElementPtr indices to be constant is to ensure that

array access with a non-constant index are checked.

These optimizations for type-safe programs are optional and are turned off by default. Program-

mer can invoke these optimizations by explicitly providing a command line flag. When the program

is type-unsafe, the compilation will perform the default SoftBoundCETS instrumentation.

4.4 Performance Evaluation

In this section, we describe and experimentally evaluate our prototype implementation of SoftBound-

CETS. The goal of this evaluation is to measure its runtime overhead, sources of inefficiencies, and

identify the inefficiencies that can be isolated to be accelerated with hardware support.

4.4.1 Prototype

LLVM is a moving target. We have made the SoftBoundCETS instrumentation available for LLVM

versions from version 2.4 to version 3.0. We use LLVM version 3.0 for all the results described

82

Check Program Pointer Type Safe
Step #1. Identify the bitcast operations in the LLVM IR and check if there any casts involving pointer
types to structures.

foreach Function F in Module M:
foreach BasicBlock B in Function F:

foreach Instruction I in BasicBlock B:
if I is a bitcast instruction

if source and destination types are pointers to struct types
return TypeUnsafe

Step #2. For every load and store operation, identify if it is derived from a pointer to a structure type and
elide checks:

foreach LoadInst Ld and StoreInst St in Module M:
if pointer_operand(Ld or St) is a GetElementPtrInst

if GetElementPtr’s pointer operand is a struct type
if GetElementPtr indices are all constants

Eliminate spatial safety checks for Ld and St

Figure 4.18: Optimizations for Type Safe Programs. These optimizations occur by searching
the module for bitcast operations between pointer operations. Then when the program is type
safe, it optimizes the spatial checks to structure field accesses.

in this dissertation. The SoftBoundCETS pass operates on LLVM’s ISA-independent intermediate

form, so the SoftBoundCETS pass is independent of any specific ISA. We selected 64-bit x86 as the

ISA for evaluation due to its ubiquity. The SoftBoundCETS pass is approximately 6K lines of C++

code. The SoftBoundCETS instrumentation source code is publicly available [6]. The SoftBound-

CETS instrumentation is also integrated with the Clang compiler driver in LLVM’s experimental

subversion trunk maintained by the SAFECode project.

4.4.2 Benchmarks

We used C benchmarks selected from the SPECINT and SPECFP benchmark suites (from 1995,

2000 and 2006 versions) to evaluate SoftBoundCETS’s performance. We use an an enhanced version

of the equake benchmark that uses a proper multidimensional array and thus improves its baseline

performance by 60%. We ran all the SPEC benchmarks with the reference inputs provided by the

suite. All runs are performed on a 3.4 Ghz Intel Core i7 (SandyBridge) processor. We used Intel’s

Pin tool to count the dynamic instructions and instruction mix. We ran each benchmark multiple

times to eliminate experimental noise.

83

0

100

200

300

 %
 o

v
er

h
ea

d

lbm go

equake

hmmer
milc

ijp
eg

sje
ng

bzip2
mesa

sphinx
ammp

comp
h264

gobmk art vpr
tw

olf

lib
quantum mcf

parse
r

Geo. m
ean

Figure 4.19: Execution time performance overhead of SoftBoundCETS with full checking over a
fully optimized uninstrumented baseline.

4.4.3 Runtime Overheads of Enforcing Spatial and Temporal Safety

Figure 4.19 presents the percentage runtime overhead of SoftBoundCETS instrumentation over an

uninstrumented baseline (smaller bars are better as they represent lower runtime overheads). The

total height of each bar corresponds to the overhead of full checking i.e., enforcing both spatial and

temporal safety with all the optimizations except the type-safe program optimizations. The average

runtime overhead is 108%. The performance overheads are highly correlated with the percentage

of dynamic pointer loads and stores in the program shown in 4.13. The benchmarks on the left in

Figure 4.19 that have lower frequency of metadata accesses generally have lower runtime overheads.

On those benchmarks the overhead is largely due to bounds and lock-key checking. In contrast, the

benchmarks on the right have a larger frequency of pointer loads/stores that access the metadata

space. Hence, the benchmarks on the right incur overheads to perform metadata accesses along

with checking overhead.

Store-only Checking and Propagation-only Overheads Figure 4.20 presents the execution time

overhead of performing SoftBoundCETS with (1) full-checking (leftmost bar), (2) store-only check-

ing (middle bar) and (3) metadata propagation both in registers and memory but without any check-

ing (rightmost bar). Checking only stores can prevent security vulnerabilities as described in Chap-

ter 3. The height of the middle bar in Figure 4.20 presents the overheads for checking the bounds and

identifiers only for store operations and propagating the metadata on all other operations. Checking

only stores reduces the number of check operations. However, the number of metadata writes is

84

0

100

200

300

 %
 o

v
er

h
ea

d

Full checking

Store only

Propagation only

lbm go

equake

hmmer
milc

ijp
eg

sje
ng

bzip2
mesa

sphinx
ammp

comp
h264

gobmk art vpr
tw

olf

lib
quantum mcf

parse
r

Geo. m
ean

Figure 4.20: Execution time performance overhead of SoftBoundCETS with full checking, store-
only checking, and propagation-only over a fully optimized uninstrumented baseline.

unchanged, because all the same pointer metadata must be propagated through memory to check

subsequent store dereferences. When using aggressive LLVM’s dead code elimination, many of

the metadata reads are also removed (those that feed only load dereference checks). The runtime

overhead of store-only checking is 41% on average for our benchmarks.

The benchmarks on the left that have very few pointer loads/stores attain significant perfor-

mance benefit with store-only checking. For benchmarks on the left of Figure 4.20 eliminating load

dereference checks (both spatial and temporal) reduces the primary source of overhead, i.e. checks.

For the benchmarks on the right, that have frequent metadata accesses, store-only checking does

provide reasonable benefit by eliminating the load dereference checks and relying on the LLVM

optimizer to remove the metadata loads that just feed the load dereference checks.

The height of the rightmost bar of each benchmark in Figure 4.20 presents the overhead of

performing metadata propagation without any checking. LLVM’s aggressive optimizer removes

metadata loads that just feed the checks through dead-code elimination. However, metadata loads

that feed other metadata stores or shadow stack operations are not optimized. The height of the bar

also includes the cost of metadata propagation using the shadow stack. On average, propagating

the metadata and other auxiliary operations introduced by the SoftBoundCETS without any checks

incurs a performance overhead of 21%. The benchmarks on the right of the Figure 4.20 that perform

frequent metadata accesses report higher overheads even with just metadata propagation. Although

benchmark mesa has reasonably lower number of metadata loads/stores (on the left in Figure 4.20),

85

0

200

400

600

 %
 o

v
er

h
ea

d

Full checking

Full checking after Mem2reg

Full checking after no Opt

lbm go

equake

hmmer
milc

ijp
eg

sje
ng

bzip2
mesa

sphinx
ammp

comp
h264

gobmk art vpr
mcf

parse
r

Geo. m
ean

7
7
4

Figure 4.21: Execution time performance overheads of SoftBoundCETS instrumentation when the
instrumentation is performed without any compiler optimizations (Full checking after no opt) and
with Mem2reg optimization (Full checking after Mem2reg). The configurations are fully optimized
again after the SoftBoundCETS instrumentation.

it suffers high overhead even with metadata propagation only configuration as a result of frequent

shadow stack operations.

4.4.4 Benefits of Compiler Instrumentation

Figure 4.21 presents the benefits of performing SoftBoundCETS instrumentation on optimized code

leveraging the existing optimizations within the compiler. There are the three bars for each bench-

mark. The height of the leftmost bar is the SoftBoundCETS instrumentation performed on optimized

code, which is same as the bar in Figure 4.19. The height of the right-most bar represents the over-

head of SoftBoundCETS when the instrumentation is carried out on unoptimized code. The resultant

code after the SoftBoundCETS instrumentation is optimized again. This configuration approximates

the overheads of memory safety transformation performed on C source code instead on the LLVM

IR. The average overhead of SoftBoundCETS on unoptimized IR code is 220% on an average, which

is more than double the average overhead of SoftBoundCETS on optimized code (108%).

The overheads of SoftBoundCETS on unoptimized code is a lot higher because LLVM takes un-

orthodox approach to producing IR code. LLVM generates IR code that is trivially in SSA form by

placing all local variables and temporaries in stack locations. As a result, there is a large increase

in the number of memory operations. All these memory operations are conceptually checked by

SoftBoundCETS instrumentation. LLVM provides the Mem2reg optimization pass that is responsi-

86

0

100

200

300

 %
 o

v
er

h
ea

d

Full checking

Spatial only

Temporal only

lbm go

equake

hmmer
milc

ijp
eg

sje
ng

bzip2
mesa

sphinx
ammp

comp
h264

gobmk art
tw

olf

lib
quantum mcf

parse
r

Geo. m
ean

Figure 4.22: Execution time performance overhead for providing spatial safety and temporal safety
separately in contrast to full memory safety.

ble for promoting un-aliased local variables and stack-based temporary values into registers. The

Mem2reg optimization uses the standard SSA construction algorithm by Cytron et al. [41].

To evaluate the reduction in performance overhead due to the Mem2reg optimization (SSA con-

struction), the height of the middle bar in each benchmark in Figure 4.21 reports the overhead of

SoftBoundCETS instrumentation performed on code optimized with the Mem2reg optimization. The

overhead of SoftBoundCETS instrumentation on code optimized with the Mem2reg optimization is

considerably lower compared to SoftBoundCETS instrumentation on unoptimized code. On aver-

age, the overhead of SoftBoundCETS instrumentation is reduced from 220% (with instrumentation

on unoptimized code) to 120%. The difference between the height of the leftmost and the middle

bars in Figure 4.21 presents the benefit of performing SoftBoundCETS instrumentation on fully op-

timized code. Benchmarks such as art, h264 and vpr benefit significantly by running LICM (loop

invariant code motion) and inlining optimizations before the SoftBoundCETS instrumentation.

4.4.5 Enforcing Spatial-only Safety and Temporal-only Safety

Figure 4.22 reports the execution runtime overhead of providing spatial safety alone and temporal

safety alone in contrast to full memory safety. There are three bars for each benchmark. The

height of the middle bar for each benchmark represents the overhead of providing just spatial safety.

There are only 16 bytes of metadata associated with each pointer in the disjoint metadata space for

this configuration. The average runtime overhead of enforcing just spatial safety is 74% for our

87

Benchmark Valgrind SAFECode SoftBoundCETS

lbm 26.52× 4.67× 1.09×
go 21.12× 28.41× 1.49×
equake 30.15× 22.93× 1.66×
hmmer 26.72× 71.55× 2.36×
milc 18.93× 21.52× 1.78×
ijpeg 27.84× 48.23× 2.33×
sjeng 35.08× 25.30× 1.67×
bzip2 30.53× 32.72× 1.73×
mesa 47.34× 70.44× 3.37×
sphinx 37.00× 34.04× 2.55×
ammp 26.61× 23.89× 1.57×
h264 38.36× 59.45× 3.44×
art 27.31× 39.24× 1.78×
vpr 43.94× 31.45× 2.11×
twolf 26.38× 34.04× 2.11×
libquantum 15.71× 24.88× 2.80×
mcf 6.77× 12.63× 2.86×
parser 36.54× 24.10× 3.04×
Avg 26.53× 20.83× 2.08×

Table 4.1: Execution time overheads other publicly available tools such as Valgrind’s Mem-
check [116] and SAFECode [46] in contrast to SoftBoundCETS. We have omitted benchmarks that
we were not able to run with all the three tools.

benchmarks. Similarly the height of the rightmost bar of each benchmark in Figure 4.22 represents

the overhead of just providing temporal safety. The average runtime overhead of enforcing just

temporal safety is 40% on average for these benchmarks. These overheads are lower than the

overhead reported in prior work on CETS [93]. The differences in overheads are attributed to

the new optimizations (described in Section 4.3), streamlined design and a more robust prototype

compared to the earlier versions of the prototype.

4.4.6 Comparison With Other Approaches

Table 4.1 presents the execution time performance overhead of running other publicly available

tools with our benchmarks. We use two publicly available tools to perform this comparison: (1)

Valgrind-3.7’s Memcheck tool that implements a tripwire approach described in Chapter 2 to detect

memory errors on the heap, and (2) SAFECode project for LLVM-3.0 from the experimental LLVM

88

0

100

200

300

 %
 o

v
er

h
ea

d

No Check Opt

Full checking

lbm go

equake

hmmer
milc

ijp
eg

sje
ng

bzip2
mesa

sphinx
ammp

comp
h264

gobmk art vpr
tw

olf

lib
quantum mcf

parse
r

Geo. m
ean

Figure 4.23: Execution time performance overheads of SoftBoundCETS instrumentation when the
the checks are optimized with the custom check elimination described in Section 4.3.1.

trunk that performs object-based checking described in Chapter 2. Among the two tools, SAFE-

Code tool performs more precise spatial checking similar to SoftBoundCETS when compared to the

Valgrind’s Memcheck tool. Similar to SoftBoundCETS, SAFECode operates on the LLVM IR. We

observe that both Valgrind’s Memcheck tool and SAFECode slow down the program by an order of

magnitude more than SoftBoundCETS. Memcheck tool’s average slowdown is 26.53× and SAFE-

Code’s average slowdown is 20.83× when compared to the baseline1. In contrast, SoftBoundCETS

incurs an average slowdown of just 2.08× (108% performance overhead).

4.4.7 Impact of Custom Check Elimination

Figure 4.23 presents the execution time overhead of SoftBoundCETS without and with custom check

elimination described in Section 4.3.1. The height of the left bar represents the performance over-

head of SoftBoundCETS without custom check elimination. The height of the right bar is the per-

formance overhead of SoftBoundCETS with custom check elimination. On average, custom check

elimination reduces the the average from 120% to 108%. The reduction in performance overhead

with custom check elimination is moderate in spite of removing a significant fraction of the checks

as described in Section 4.3.1. This behavior is a result of using an aggressive LLVM optimizer to

optimize the resultant code after SoftBoundCETS instrumentation, which probably removes many

of the checks removed by the custom check elimination.
1Publications from the SAFECode project used Automatic Pool Allocation and report substantially lower overheads

than the 20.83x overhead. However, automatic pool allocation is currently not integrated with SAFECode in the release
for LLVM-3.0.

89

0

100

200

300

 %
 o

v
er

h
ea

d

Full checking

 Type-safe Opt

lbm go

hmmer
milc

ijp
eg

sje
ng

bzip2
mesa

sphinx
ammp

comp
h264

gobmk art vpr
tw

olf

lib
quantum mcf

parse
r

Geo. m
ean

Figure 4.24: Execution time performance overheads of SoftBoundCETS instrumentation when the
spatial checks are eliminated for type-safe programs as described in Section 4.3.2.

0

200

400

600

 %
 o

v
er

h
ea

d

lbm go

equake

hmmer
milc

ijp
eg

sje
ng

bzip2
mesa

sphinx
ammp

comp
h264

gobmk art vpr
tw

olf

lib
quantum mcf

parse
r

Geo. m
ean

Figure 4.25: Instruction overheads with SoftBoundCETS.

4.4.8 Impact of Custom Check Elimination with Type-Safe Programs

Figure 4.24 presents the execution time overhead of SoftBoundCETS without and with spatial check

elimination for type-safe programs described in Section 4.3.2. The height of the left and the right

bar represent the performance overhead of SoftBoundCETS without (default mode) and with spatial

check elimination for type-safe programs respectively. Eliminating spatial checks for type-safe pro-

grams can reduce the overhead significantly for some benchmarks (e.g., libquantum). On average,

eliminating spatial checks for type-safe programs reduces the performance overhead from 108% to

81%.

90

0

200

400

600

 %
 o

v
er

h
ea

d

lbm go

equake
milc

ijp
eg

sje
ng

bzip2
sphinx

ammp
comp

h264

gobmk art vpr
tw

olf

lib
quantum

parse
r

Geo. m
ean

Figure 4.26: Memory overheads with SoftBoundCETS.

4.4.9 Instruction Overheads with SoftBoundCETS

Figure 4.25 reports the dynamic instruction count overheads with SoftBoundCETS instrumenta-

tion. On average, SoftBoundCETS instrumentation increases the dynamic instrumentation count

by 226%. In most cases, this large number of instructions is the primary source of performance

overhead. The dynamic instruction count overheads are highly correlated with the execution time

performance overheads reported in Figure 4.19. The dynamic instruction count overhead is gener-

ally much larger than the corresponding execution time performance overheads. The Intel Core i7

processor we used for these experiments is a dynamically scheduled processor with a large instruc-

tion window and sophisticated branch predictor that can execute up to six micro-operations per

cycle. As few programs have enough ILP to sustain six-wide execution, some of the instructions

added by SoftBoundCETs are executed “for free” by the unused execution capacity. For example,

benchmark lbm has 75% dynamic instruction count overhead but suffers just 9% execution time

runtime overhead with SoftBoundCETS.

4.4.10 Memory Overheads with SoftBoundCETS

One cost of SoftBoundCETS instrumentation is that its disjoint metadata, shadow stack, and lock

locations can increase the program’s memory footprint. Figure 4.26 shows the normalized mem-

ory overheads based on the total number of 4KB pages touched during the entire execution with

SoftBoundCETS instrumentation. We report the memory overheads for the benchmarks that we

were able to measure with our infrastructure. For programs with many linked data structures (and

thus many in-memory pointers), the worst-case memory footprint overhead can be high as shown

91

in Figure 4.26. However, the memory overhead for many benchmarks is much lower. The average

memory overheads are 94% on an average for our benchmarks.

4.5 Summary

This chapter presented SoftBoundCETS instrumentation on the LLVM IR. The presence of type

information in the LLVM IR enabled SoftBoundCETS instrumentation to identify pointers for free

and implement a pointer-based checking approach with disjoint metadata within the compiler. The

presence of pointer information in the IR, the ability to instrument optimized code and the use of

existing analyses enabled SoftBoundCETS instrumentation to attain low overheads without perform-

ing many custom analyses and optimizations. Further, simplicity of the instrumentation enabled us

to provide memory safety even with separate compilation.

We organized the metadata as a trie data structure that enabled us to maintain pointer metadata

in a disjoint metadata space without any operating system changes. Further, the use of shadow stack

enabled SoftBoundCETS instrumentation to detect memory safety errors even when the callsite and

the callee disagree on the function signatures. Beyond the advantages of SoftBoundCETS instru-

mentation, one primary limitation of SoftBoundCETS is that it disallows the creation of pointers

from integers.

92

Chapter 5

Hardware Enforced Memory Safety

This chapter describes the implementation of the pointer-based approach with disjoint metadata

purely within hardware. Unlike the implementations of the pointer-based approach described in

Chapter 4 using the compiler, and that will be described in Chapter 6 using new hardware in-

structions with compiler support, this chapter describes an implementation purely in hardware that

operates with mostly unmodified binaries with minimal changes to the tool chain. An alternative

approach for retrofitting memory safety on unmodified binaries would have used either dynamic

binary translation or dynamic binary instrumentation. As any extra instruction added during binary

translation and binary instrumentation results in significant overheads, we propose pointer-based

checking in hardware using micro-operation injection. We use the name Watchdog for our hard-

ware instrumentation as it is the generalized version of our work on enforcing temporal safety in

hardware [91]. Such an approach is attractive for hardware manufacturers as legacy programs can

be retroffited with memory safety without requiring recompilation.

We initially describe the basic approach for adding instrumentation in the hardware to provide

memory safety in Section 5.1. We discuss mechanisms for identifying pointer loads and stores

to minimize metadata accesses in Section 5.2. We discuss optimizations to the pointer metadata

propagation for register operations in Section 5.3. The summary of hardware changes is provided

in Section 5.4. We evaluate the performance overheads to provide spatial and temporal safety in

Section 5.5.

93

ld R1 <- memory[R2]

Load

 check R2.meta
 R1.meta <- shadow[R2.val].meta
 R1.val <-memory[R2.val].val

st memory[R2]<- R1

Store

 check R2.meta
 shadow[R2.val].meta <- R1.meta
 memory[R2.val].val <- R1.val

add R1 <- R2, R3

 if (R2. id != INVALID)
 R1.meta <- R2.meta
 else
 R1.meta <- R3.meta
 R1.val <- R2.val + R3.val

add R1 <- R2,imm

Add immediate

 R1. meta <- R2.meta
 R1.val <- R2.val + imm

Add

Figure 5.1: Metadata checking and propagation through load, store, add-immediate and add.

5.1 The Watchdog Approach

The goal of Watchdog is to implement pointer-based checking with disjoint metadata described in

Chapter 3 using hardware instrumentation to provide comprehensive detection—detect all spatial

and temporal errors—while keeping the overheads of checking every memory access low enough to

be widely deployed in live systems for mostly unmodified binaries. Watchdog implements pointer-

based checking by performing all the checking and propagation almost entirely in hardware, relying

on the software runtime only to provide information about memory allocations and deallocations.

To localize the hardware changes, this checking is implemented by augmenting instruction execu-

tion by injecting extra micro-operations (uops) [37]. Injecting uops keeps the hardware changes

localized to the processor’s front-end with rest of the processor pipeline being unmodified. Further-

more, Watchdog aims to attain the goals of source compatibility (i.e., few source code changes) and

binary compatibility (i.e., library interfaces unchanged) by leaving the data layout unchanged using

a disjoint shadow space for the metadata as described in Chapter 3.

5.1.1 Operation Overview

The Watchdog hardware is responsible for both metadata propagation and checking, and relies on

the runtime to provide information about memory allocations and deallocations. Once the memory

allocations are identified with the help of a modified malloc() and free() runtime library, a unique

identifier (a lock and a key) is provided to every memory allocation and associated with the pointer

pointing to the allocated memory along with the bounds information. As pointers can be resident

in any register, conceptually Watchdog extends every register with a sidecar metadata register.

Pointers can also reside in memory, so Watchdog provides a shadow memory that shadows every

word of memory with identifier and bounds metadata for pointers. To propagate and check the

metadata, Watchdog injects uops in hardware. On memory deallocations, the identifier associated

94

p = malloc(size)

(a) Heap allocation
(software runtime)

 key = unique_identifier++;
 lock = allocate_new_lock();
 *(lock) = key;
 id = (key, lock);
 bounds = (p, p+size);
 meta = (id, bounds);
 q = setmetadata(p, meta);

 id = getmetadata(p);
 *(id.lock) = INVALID;
 add_to_free_list(id.lock)

(b) Heap deallocation
(software runtime)

free(p)

Figure 5.2: Metadata allocation and deallocation by the runtime with malloc/free and interfacing
with the hardware using setmetadata and getmetadata instructions.

with the pointer pointing to the memory being deallocated is marked as invalid. On every memory

access, Watchdog performs two checks: (1) a spatial check to ascertain that the pointer is in bounds

and (2) a temporal check to ascertain if the identifier associated with the pointer being dereferenced

is still valid by performing lock and key checking described in Chapter 3. Accessing a memory

location either through a out-of-bounds pointer or using a pointer with an invalid identifier results in

an exception. The following subsections explain each of these operations performed by Watchdog.

5.1.2 Metadata Assignment on Memory Allocation/Deallocation

To enforce bounds precisely, the hardware relies on byte-granularity bounds information provided

by the compiler and/or runtime whenever a pointer is created [43]. For heap allocated objects, the

malloc() runtime library can convey such bounds information. For pointers to a stack-allocated

or global object, precise checking requires the compiler to insert instructions to convey bounds

information at pointer creation points as described in Chapter 4. In the absence of such exact

information, the hardware can still perform bounds checking — just less precisely — by restricting

the bounds of pointers pointing to stack variables and globals to the range of the current stack frame

and the global segment, respectively.

To provide temporal safety, identifier metadata must be allocated on memory allocations and

invalidated on memory deallocations. Memory allocation/deallocation occurs when (1) the runtime

performs such operations on the heap and (2) new stack frames are created/deleted on function entry

and exits. Correspondingly, Watchdog allocates/deallocates identifier metadata on these operations.

Heap allocation is fairly uncommon compared to function calls, so Watchdog relies on the run-

95

time software to perform identifier management for the heap. In contrast, the Watchdog hardware

performs the identifier management for function calls/returns.

On each heap memory allocation, the software runtime allocates both a unique 64-bit key and

a new lock location from a list of free locations, and the runtime writes the key value into the

lock location. The runtime conveys the identifier to the hardware using the setmetadata instruction

that takes two register inputs: (1) a pointer to the start of the memory being allocated and (2) the

256 bit metadata (128-bit base/bound and 128-bit unique lock and key identifier) being assigned

as shown in Figure 5.2(a). On memory deallocations, the runtime obtains the identifier associated

with the pointer being freed using the getmetadata instruction that takes the pointer being freed as

the register input as shown in Figure 5.2(b). The runtime then uses the identifier metadata to write

an INVALID value to the lock location. The runtime then returns the lock location to the free list.

To prevent double-frees and calling free() on memory not allocated with malloc(), the runtime also

checks that the pointer’s identifier is valid as part of the free() operation.

To perform identifier management for stack frames on calls and returns, the hardware injects

uops to maintain an in-memory stack of lock locations whose top of stack is stored in a new

stack lock control register. The next key to be allocated is maintained with a separate stack key

control register. The base and bound for the stack pointer is set to be equal to the frame pointer

and the frame pointer plus the maximum frame size respectively. On a function call, the hardware

injects five uops to: allocate a new key, push that key onto the in-memory lock location stack, asso-

ciate the new key and lock location with the stack pointer, and associate the bounds with the stack

pointer (see Figure 5.3(a)). On function return, the identifier associated with the stack pointer is

restored to the identifier of the current stack frame. This operation is accomplished by reading the

value of the key from the memory location pointed by the stack lock register after the stack manipu-

lation. Similarly the bounds of the stack pointer is set to be equal to the bounds of the current stack

frame (for a total of five uops, as shown in Figure 5.3(b)).

5.1.3 Checks on Memory Accesses

The hardware performs spatial and temporal checks using the metadata in the sidecar register con-

ceptually before every memory access. The check uop uses the sidecar metadata associated with

the pointer register being dereferenced and performs (1) the lock and key checking and (2) bounds

96

call

 stack_key = stack_key + 1
 stack_lock = stack_lock + 8
 memory[stack_lock] = stack_key
 %rsp.id = (stack_key, stack_lock)
 %rsp.bounds = (%rbp, %rbp + MAX_FRAME_SIZE)

(c) Stack allocation
(hardware)

return

 memory[stack_lock] = INVALID
 stack_lock = stack_lock - 8
 current_key = memory[stack_lock]
 %rsp.id = (current_key, stack_lock)
 %rsp.bounds = (%rbp, %rbp + MAX_FRAME_SIZE)

(d) Stack deallocation
(hardware)

Figure 5.3: Metadata allocation and deallocation with call/return

L2 Cache

L3 Cache/Memory

Data
Cache

Lock
location
cache

Core

TLB Instruc
tion

Cache

TLB TLB

Figure 5.4: Placement of the lock location cache (shaded).

checking described in Chapter 3. The bounds check compares the pointer with the sidecar bounds

metadata. The temporal check compares the key in the sidecar identifier metadata with the key at

the memory location pointed by the lock part of the sidecar identifier metadata. A check failure

triggers an exception, which can be handled by the operating system by aborting the program or by

invoking some user-level exception handling mechanism.

There are two alternatives for performing checks, and we explore both the alternatives. In the

first alternative, the hardware performs both the checks based on the metadata by injecting two

uops— a bounds check uop and a temporal check uop— for each memory operation. In the sec-

ond alternative implementation, the hardware injects a single check uop to perform both checks in

parallel. As the bounds check consists of just two inequality comparisons (and requires no addi-

tional memory accesses), either implementation is likely feasible. We evaluate both alternatives in

Section 5.5.

97

In contrast to bounds check where all inputs are registers, the temporal check performs a mem-

ory access and a equality comparison, which increases the demand placed on the cache ports. To

mitigate this impact, Watchdog optionally adds a lock location cache to the core, which is accessed

by the check uop and is dedicated exclusively for lock locations. Just as splitting the instruction

and data caches increases the effective cache bandwidth (by separating instruction fetches from

loads/stores), this additional cache is used to provide more bandwidth for accessing lock locations.

This cache becomes a peer with the instruction and data caches (as shown in Figure 5.4), has its own

(small) TLB, and uses the same tagging, block size, and state bits used to maintain coherence among

the caches. Memory allocations and deallocations update lock location values, so these operations

also access the lock location cache. Even a small lock location cache (e.g., 4KB) can be effective

because (1) lock locations (8 bytes per object currently allocated) are small relative to the average

object size and (2) the lock locations region has little fragmentation and exhibits reasonable spatial

locality because lock locations are reallocated using a LIFO free list. Cache misses are handled just

like misses in the data cache.

5.1.4 In-Memory Pointer Metadata

As pointers can be resident in memory, the metadata also needs to be maintained with pointers in

memory. To maintain memory layout compatibility, the hardware maintains the per-pointer meta-

data in the shadow memory. Conceptually, every word in memory has bounds and identifier meta-

data in the shadow memory. When a pointer is read from memory, the metadata associated with

the pointer being read is also read from the shadow memory. To implement this behavior (see Fig-

ure 5.1(a)), for every load instruction the Watchdog hardware injects (1) a check uop to perform

the check, (2) a uop to perform the load of the actual value into the register and (3) a shadow load

uop to load the metadata (meta) from the shadow memory space. Stores are handled analogously

(also shown in Figure 5.1(b)). We assume pointers are word aligned (as is required by some ISAs

and is generally true with modern compilers even for x86), which allows the the shadow load/store

uops to accesses the shadow space via an aligned load/store in a single cache access.

The shadow space is placed in a dedicated region of the virtual address space that mirrors

the normal data space. Placing the shadow space into the program’s virtual address space allows

shadow accesses to be handled as normal memory accesses using the usual address translation and

98

page allocation mechanisms of the operating system. Current 64-bit x86 systems support 48-bit

virtual addresses, so the the hardware uses a few high-order bits from the available virtual address

space to position the shadow space. This organization allows the shadow load/shadow store uop to

convert an address to a shadowspace address via simple bit selection and concatenation.

Accessing the shadow space on every memory operation would result in significant performance

penalties, so Section 5.2 describes the mechanisms we use to reduce the number of metadata ac-

cesses by inserting metadata load/store uops only for those memory operations that might actually

load or store pointer values.

5.1.5 In-Register Metadata

To ensure that the checks inserted before a memory access have the correct metadata, the bounds

and identifier metadata must be propagated with all pointer operations acting on values in regis-

ters (pointer copies and pointer arithmetic). For example, when an offset is added or subtracted

from a pointer, the destination register inherits the metadata of the original pointer. Figure 5.1

shows the bounds and identifier metadata propagation with addition operations as a result of pointer

arithmetic. Unlike the compiler instrumentation described in Chapter 4 that performed metadata

propagation for pointers in temporaries by either creating temporaries or copy-propagation in the

intermediate representation, Watchdog performs it by injecting extra propagation uops as shown in

Figure 5.1. Such register manipulation instructions are extremely common, so copying the meta-

data on each operation (say, via an inserted uop) would be extremely costly. Instead, Section 5.3

describes Watchdog’s use of copy elimination via register renaming to reduce the number of propa-

gation uops inserted.

This section has described the basic approach for implementing pointer-based checking with

disjoint metadata in hardware for almost unmodified binaries and has outlined two implementation

optimizations to make it efficient: identifying pointer accesses and register renaming techniques to

avoid unnecessary uops. The next two sections describe these design optimizations, respectively.

5.2 Identifying Pointer Load/Store Operations

Watchdog maintains bounds and identifier metadata with every pointer in a register or in memory.

However, binaries for standard ISAs do not provide explicit information about which operations

99

0%

20%

40%

60%

80%

100%

 %
 o

f
m

em
o
ry

 a
cc

es
se

s
Conservative pointer identification

ISA-assisted pointer identification

lb
m

co
m

p
gz

ip
m

ilc

bz
ip

2

am
m

p go

sj
en

g

eq
ua

ke
h2

64
ijp

eg

go
bm

k ar
t

tw
ol

f

hm
m

er vp
r

m
cf

m
es

a
gc

c
pe

rl
av

g

Figure 5.5: Percentage of memory accesses metadata for conservative and ISA-assisted identifica-
tion.

manipulate pointers. In the absence of such information, propagating metadata with every register

and memory operation would require many extra memory operations, resulting in substantial per-

formance degradation. This section describes two techniques for identifying pointer operations, the

results of which can be used to reduce the number of accesses to the metadata space.

5.2.1 Conservative Pointer Identification

To enable Watchdog to work with reasonable overhead without significant changes to program bi-

naries, we observe that, for current ISAs and compilers, pointers are generally word-sized, aligned,

and resident in integer registers. Based on this observation, Watchdog conservatively assumes that

only a 64-bit load/store to an integer register may be a pointer operation, whereas floating-point

load/stores and sub-word memory accesses are non-pointer operations. Watchdog does not insert

additional metadata manipulation uops for such non-pointer operations.1 As evidence of the ef-

fectiveness of this heuristic, the left bars in Figure 5.5 show that this approach classifies 31% of

memory operations as potentially loading/storing a pointer.

5.2.2 ISA-Assisted Pointer Identification

Although the above conservative heuristic is effective and requires no ISA modifications, we can be

more precise if the ISA is modified to allow the compiler to inform the hardware of exactly which

instructions are manipulating pointers. There are two primary ways Watchdog could get information

about memory accesses that load/store a pointer.
1One potentially problematic case is the manipulation of pointers using byte-by-byte copies (e.g. memcpy()). We

found that compilers for x86 typically use word-granularity operations. In other cases, we have modified the standard
library as needed.

100

First, the registers in the ISA could be separated into pointer registers and normal data registers.

With such an ISA, Watchdog would need to perform work only on operations concerned with pointer

registers. Accesses to the metadata space need to be introduced only when pointer operations are

loaded or stored. However, this would requires significant changes to the ISA, making it perhaps

more suitable only when designing a new ISA.

Second, the ISA could be extended to include variants of loads and stores that indicate a pointer

is being operated on. The compiler, which generally knows which operations are manipulating

pointers, would then select the proper load/store variant. For any statically ambiguous case, the

compiler would conservatively select the memory operation variant that performs the metadata op-

erations.

To study the benefits of either approach — but without designing a new ISA or performing

significant modifications to a compiler backend and ISA encoding — we explore the potential for

such ISA extension by profiling the set of static instructions that ever loaded/stored valid pointer

metadata. To generate such profiles, we configured Watchdog to access the metadata space on every

memory operation and identified PCs which ever loaded valid metadata. For subsequent runs, we

consider these static memory operations as having been marked by the compiler as load/stores of

pointers.2

The rightmost bar of each benchmark in Figure 5.5 shows the percentage of memory access

that are classified as pointer operations using this approach. This reduces the number of memory

accesses classified as pointer operations from 31% with conservative pointer identification to 18%.

For benchmarks like compress and lbm, the improvement is significant as almost every memory

access is classified as non-pointer memory access.

The number of pointer loads and stores reported in Figure 5.5 for ISA-assisted pointer identifi-

cation is slightly higher than number of pointer loads/stores identified using the type information in

the LLVM IR in Chapter 4. This artifact is attributed to Watchdog’s pointer load/store identification

scheme. A memory access instruction at a particular PC that loads/stores pointers on some accesses

and non-pointer values on others are classified as requiring a metadata access all the time. Hence,

the estimates of metadata access elimination is conservative compared to what one would obtain

with a explicit pointer register or a mode where compiler indicates that pointer is being loaded/s-
2Although we see this approximation as primarily an experimental aide, such an approach might actually be useful

for instrumenting libraries or other code that cannot be recompiled.

101

tored. One concrete instance of such a PC that loads/stores pointers sometimes and non-pointers

otherwise, occurs when the compiler spills and restores values on the stack. When pointers are

spilled, metadata accesses need to be performed which are not necessary otherwise. A compiler

that has precise information about the pointer spills can provide information and eliminate the un-

necessary metadata accesses.

5.3 Decoupled Register Metadata

As described thus far, Watchdog explicitly copies metadata along with each arithmetic operation

in registers. This section briefly discusses and discards the straightforward approach of widening

each register with additional metadata. Although such a design might be appropriate for an in-order

processor core, our Watchdog implementation targets out-of-order dynamically scheduled cores.

Thus, this section: (1) describes a decoupled metadata implementation of Watchdog in which the

data and metadata are mapped to different physical registers within the core, (2) discusses what

uops would be inserted to maintain the decoupled register metadata, and (3) shows how metadata

propagation overheads can be reduced via previously-proposed copy elimination modifications to

the register renaming logic.

5.3.1 Strawman: Monolithic Register Data/Metadata

As presented in Section 5.1, Watchdog views each register as being widened with a sidecar to

contain identifier metadata. Although that design is conceptually straightforward—especially for

an in-order core—it suffers from inefficiencies. First, every register write (and most register reads)

must access the sidecar metadata, increasing the number of bits read and written to the register

file; although not necessarily a performance problem, this could be a energy concern. Second, a

more subtle issue is that treating register data/metadata as monolithic causes operations that write

just the data or metadata to become partial register writes. These partial register accesses introduce

unnecessary dependencies between uops, for example, the load uop and the metadata load uop.

These serializations can have several detrimental effects, including (1) increasing the load-to-use

penalty of pointer loads, (2) stalling subsequent instructions if either of the loads miss in the cache,

and (3) limiting the memory-level parallelism by serializing the load and the metadata load. In our

102

initial experiments with various implementations of monolithic registers, we found the performance

impact of such serializations to be significant.

5.3.2 Decoupled Register Data/Metadata

To address these performance issues, Watchdog decouples the register metadata by maintaining the

data and metadata in separate physical registers. Each architectural register is mapped to two phys-

ical registers: one for data and one for the metadata. With this change, individual uops generally

operate on either the data or the metadata, removing the serialization caused by partial register

writes of monolithic registers. Once decoupled, the metadata propagation and checking is almost

entirely removed from the critical path of the program’s dataflow graph.

With decoupled metadata, there are multiple cases for which register metadata must be propa-

gated or updated. First, instructions such as adding an immediate value to a register simply copy

the metadata from the input register to the output register. Second, some instructions never gener-

ate valid pointers (e.g., the output of a sub-word operation or a divide is not a valid pointer), thus

such instructions always set the metadata of the output register to be invalid. Third, either of the

registers might be a pointer, so for such instructions Watchdog inserts a select uop, which selects

the metadata from whichever register has valid metadata.3

Watchdog performs metadata propagation by changing the register renaming to reduce the num-

ber of extra uops inserted. In only one of these three cases described above does Watchdog actu-

ally insert uops; in the other cases (copying the metadata or setting it to invalid), Watchdog uses

previously proposed modifications to register renaming logic [76, 106] to handle these operations

completely in the register rename stage. Watchdog extends the maptable to maintain two mappings

for each logical register: the regular mapping and a metadata mapping. Instructions that unambigu-

ously copy the metadata (such as “add immediate”, which has a single register input) update the

metadata mapping of the destination register in the maptable with the metadata mapping entry of

the input register. This implementation eliminates the register copies by physical register sharing,

as there is a single copy of the metadata in a physical register [106]. To ensure that this physical

register is not freed until all the mappings in the maptable are overwritten, these physical registers
3If the ISA was further extended to allow the compiler to annotate such instructions, these select uops could also be

eliminated.

103

A:
B:
C: ld r1 <- memory[r2]
D: add r3<- r1, 4
E:
F:
G: st memory[r2] <- r3

Program with
Watchdog uops

Map-Table

 ld p4 <- memory[p2]
 add p5<- p4, 4

 st memory[p2] <- p5

r1:(p1, -),r2:(p2,p6),r3:(p3, -)
r1:(p1,p7),r2:(p2,p6),r3:(p3, -)
r1:(p4,p7),r2:(p2,p6),r3:(p3, -)
r1:(p4,p7),r2:(p2,p6),r3:(p5,p7)
r1:(p4,p7),r2:(p2,p6),r3:(p5,p7)
r1:(p4,p7),r2:(p2,p6),r3:(p5,p7)
r1:(p4,p7),r2:(p2,p6),r3:(p5,p7)

Renamed
Instructions

 check r2.meta
 ld r1.meta <- shadow[r2.val]

 check r2.meta
 st shadow[r2.val] <- r3.meta

 check p6
 ld p7 <- shadow[p2]

 check p6
 st shadow[p2] <- p7

Figure 5.6: Example illustrating register renaming with Watchdog uops and extensions to the map
table. Watchdog inserted uops are shaded. The map table is represented by a tuple for each regis-
ter. r:(a,b) means logical register r maps to physical register a according to the regular map table
mapping and the logical register r maps to a 256-bit physical register b according to the Watchdog
mapping. Watchdog introduced load and store uops access the shadow memory (shadow) for
accessing the metadata. The watchdog mapping of − indicates the invalid mapping (the register
currently contains a non-pointer value).

need to be reference counted. We adopt previously proposed techniques to efficiently implement

reference counted physical registers [112].

5.3.3 Decoupled Metadata Example

Figure 5.6 illustrates the decoupled register metadata and operation of Watchdog with extensions to

the map table. The map table for each architectural register is a tuple containing a regular mapping

and a Watchdog mapping to physical registers. The Watchdog inserted uops are shaded and the state

of the map table after renaming each uop is shown in the figure. Initially registers r1 and r3 have

invalid mappings for their Watchdog mapping.

The check uop instruction (A) introduced before the load from register r2 uses the physical

register p6, the watchdog mapping for register r2. Instruction (B), the Watchdog inserted uop to

load the metadata from the metadata space uses the value of the register r2 as input and hence uses

the regular mapping for the input register i.e. p2 and allocates a new physical register p7 and updates

the Watchdog mapping for architectural register r1. Instruction (C), the load operation performs the

normal operation by just updating the regular mappings of the map table.

The add instruction adds a constant to the pointer in architectural register r1 and writes it to

architectural register r3. As this instruction writes a register, a new physical register is allocated

and assigned to the regular mapping of architectural register r3. However, this instruction also

104

Fetch
logic/ I-$ Decoder

Rename/
map table

Functional
units

Issue
queue Retirement

logic

Data cache

Load Store Queue

Lock
location
cache

Register file

Reorder buffer

Figure 5.7: Illustration of changes to the processor core with Watchdog in comparison to a tradi-
tional out-of-order core. Watchdog specific modifications are shaded.

propagates pointer metadata, thus the Watchdog mapping of the architectural register r3 is updated

to be the Watchdog mapping of the architectural register of input pointer register ie. r1. Thus,

the Watchdog mapping of architectural register r3 is updated to be physical register p7 eliminating

register copies.

To summarize, Figure 5.6 illustrates that decoupled metadata does not introduce unnecessary de-

pendencies between uops. Hence, the decoupled register metadata with the map table modifications

prevents the serialization that occurs with the straightforward monolithic register implementation,

and it also avoids additional uops for metadata copies in most cases.

5.4 Summary of Hardware Changes

Figure 5.7 illustrates the changes to the traditional out-of-order processor core to perform pointer-

based checking with disjoint metadata. Watchdog requires changes to the decoder and the instruc-

tion cracker to inject uops to perform metadata propagation and checking. We add two new in-

structions setmetadata and getmetadata to enable the runtime to communicate with Watchdog. The

x86 ISA already supports decoding more than one thousand instructions. Adding additional two

instructions does not add significant complexity. Further, uop injection can be performed at the end

105

of regular instruction decode as a post processing step. As, these changes are localized, it will not

add significant chip verification burden.

The second main modification with Watchdog concerns the register renaming logic in the out-

of-order core as described in Section 5.3. There are two changes: (1) the map table is extended

with another field for Watchdog mappings, and (2) the register renaming logic is changed to update

Watchdog specific metadata mappings. We estimate the cost of adding such modifications to an

x86-like out-of-order core. First, Watchdog mapping extension to the map table adds 9-bits per

entry of the map table (assuming that the machine has a maximum of 512 physical registers). There

is a maptable entry for each logical register. There are a total of 36 entries in the map table (sixteen

regular registers + sixteen SIMD registers + four temporary registers). The additional bits added to

the renaming logic is 324-bits (9*36) which is approximately 41 bytes. Thus, the additional logic

required to implement these modifications are small. Further, we also need to add reference counts

to support physical register sharing that adds a few additional bits to each physical register.

The other modifications to the core include the addition of a lock location cache, and additional

logic with the functional units as shown in Figure 5.7. The lock location cache added to mitigate

the contention on the ports adds 4KB to the area overhead. These hardware extensions proposed to

perform pointer-based checking are either comparable or less invasive compared to prior hardware

approaches that provide partial safety [29, 32, 43]. We further reduce these hardware overheads

with the help of the compiler in our HCH instrumentation that will be described in Chapter 6.

5.5 Performance Evaluation

This section provides an experimental evaluation of Watchdog while: (1) highlighting its low per-

formance overheads, and (2) providing an understanding of the contribution of various techniques

proposed in this chapter in reducing the performance overheads.

5.5.1 Methodology

This subsection describes the methodology adopted to measure the performance overheads. We

describe the simulator, benchmarks and the sampling techniques used.

106

Simulator To evaluate the benefits of hardware extensions, we used an x86-64 simulator which

executes the user-level portions of statically linked 64-bit x86 programs. The simulator was orig-

inally developed by Andrew Hilton as part of his dissertation research on latency tolerant proces-

sors [68, 69, 70]. We have further extended the simulator extensively and added features to simulate

a wide range of x86 binaries. The simulator decodes x86 macro instructions and cracks them into

a RISC-style uop ISA. The uop cracking used in Core i7 “Sandy Bridge” processor is proprietary

and not publicly available, so there is no way to tell how similar the simulator’s uop ISA is to what

is actually used by Intel. Table 5.1 describes the configurations used for each component of the

micro-architecture. The out-of-order processor configurations described are designed to be similar

to Intel’s Core i7 “Sandy Bridge” processor. We model the details of Core i7 using the publicly

available information such as the memory hierarchy (large L3 cache split into banks on a ring inter-

connect with private L2/L1), and structure sizes (ROB, LQ, SQ, IQ, etc). We simulate a three level

cache hierarchy with private L1 and L2 caches of size 32KB and 256KB respectively and a shared

L3 cache of size 16MB divided into 4 banks organized as a ring. We modified the standard DL-

malloc memory allocator to use the new instruction to inform the hardware of memory allocations

and deallocations.

Benchmarks We used twenty C SPEC benchmarks from the SPEC2006, SPEC2000, and SPEC95

benchmark suites. We compiled the benchmarks using the GNU C compiler version 4.4 using stan-

dard optimization flags. We generally used the reference inputs, but used train/test inputs in some

cases to ensure reasonable simulation times. We used 2% periodic sampling with each sample of 10

million instructions proceeded by a fast forward and a warmup of 480 and 10 million instructions

per period, respectively. We use execution time, which is calculated using the macro instruction

IPC (Instructions per cycle) and the number of instructions executed, to measure the performance

overhead.

5.5.2 Runtime Overheads of Watchdog

Figure 5.8 presents the percentage execution time overhead of Watchdog over a baseline without any

Watchdog instrumentation (smaller bars are better as they represent lower runtime overheads). The

graphs contains a pair of bars for each benchmark. The height of the left and right bars represent the

overhead of Watchdog with conservative pointer identification (38% on average) and ISA-assisted

107

Clock 3.4 GHz
Fr

on
t-

en
d Bpred 3-table PPM: 256x2, 128x4, 128x4, 8-bit tags,2-bit counters

Fetch 16 bytes/cycle. 3 cycle latency
Rename Max 6uops per cycle. 2 cycle latency
Dispatch Max 6uops per cycle. 1 cycle latency

W
in

do
w

/E
xe

c

Registers (160 int + 144 floating point), 2 cycle
ROB/IQ 168-entry ROB, 54-entry IQ
Issue 6-wide. Speculative wakeup.
Int FUs 6 ALU. 1 branch. 2 ld. 1 st. 2 mul/div
FP FUs 2 ALU/convert. 1 mul. 1 mul/div/sqrt.
LQ size 64-entry LQ
SQ size 36-entry SQ

M
em

or
y

H
ie

ra
rc

hy

L1 I$ 32KB. 4-way, 64B blocks. 3 cycles
Prefetcher 2-streams, 4 blocks each
L1 D$ 32KB, 8-way, 64B blocks, 3 cycles
Prefetcher 4-streams, 4 blocks each
L1↔ L2 bus 32-bytes/cycle. 1 cycle.
Private L2$ 256KB, 8-way, 64B blocks, 10 cycles.
Prefetcher 8 streams. 16 blocks.
L2↔ L3 bus 8-stop bi-directional ring. 8-bytes/cycle/hop. 2.0GHz clock
Shared L3$ 16MB. 16-way, 64B blocks, 25 cycles
Mem. Bus 800MHz. DDR. 8-bytes wide. Dual channel. 16ns latency
Lock Location $ 4KB, 8-way, 64B blocks

Table 5.1: Simulated processor configurations

0%

20%

40%

60%

80%

p
er

ce
n

ta
g

e
sl

o
w

d
o

w
n

 Conservative pointer identification

ISA-assisted pointer identification

lb
m

co
m

p
gz

ip
m

ilc

bz
ip

2

am
m

p go

sj
en

g

eq
ua

ke
h2

64
ijp

eg

go
bm

k ar
t

tw
ol

f

hm
m

er vp
r

m
cf

m
es

a
gc

c
pe

rl

G
eo

. m
ea

n

Figure 5.8: Execution time performance overhead of Watchdog with conservative and ISA-assisted
pointer identification.

108

0%

20%

40%

60%

80%

p
er

ce
n
ta

g
e

sl
o
w

d
o

w
n
 Watchdog-2uop

Watchdog-1uop

lb
m

co
m

p
gz

ip
m

ilc

bz
ip

2

am
m

p go

sj
en

g

eq
ua

ke
h2

64
ijp

eg

go
bm

k ar
t

tw
ol

f

hm
m

er vp
r

m
cf

m
es

a
gc

c
pe

rl

G
eo

. m
ea

n

Figure 5.9: Watchdog’s overhead with a single check uop and two check uops with ISA-assisted
pointer identification.

pointer identification (24% on average), respectively. These runtime are substantially lower than the

overhead reported by related compiler instrumentation described in Chapter 4. ISA-assisted pointer

identification reduces the performance overhead for enforcing full memory safety significantly for a

large number of benchmarks. For example, for benchmark lbm, ISA-assisted pointer identification

reduces the performance overhead from 72% with conservative identification to just 2%, which

correlates with the reduction in the number of pointer loads and stores in Figure 5.5 on page 100.

Impact of Separate Check uops on Performance Watchdog has two alternatives to perform both

spatial and temporal checks: (1) inject a pair of uops (one uop each for spatial check and a temporal

check) or (2) inject a single check uop that performs both spatial and temporal checks. When

implemented as a single uop, the overall number of uops is reduced by the number of loads and

stores. Figure 5.9 reports the performance overhead of Watchdog with two check uops and a single

check uop. Using a single check uop results in a 7% decrease in execution time overhead (from 24%

to 17% on average). Benchmarks like hmmer, h264 and milc that have high IPC (instructions per

cycle) and saturate the execution resources benefit from a reduction in the number of check uops.

uop Overheads Watchdog performs its functionality by inserting uops, so the total number of

uops inserted is instructive in understanding the sources of execution time overheads. Figure 5.10

presents the uop overhead when employing ISA-assisted pointer identification. The total height of

the each bar represents the total uop overhead for the benchmark and each bar is divided into four

segments: (1) checks, (2) pointer loads, (3) pointer stores, and (4) the uops to perform memory

109

0%

20%

40%

60%

80%

100%

120%

p
er

ce
n
ta

g
e

u
o
p
 o

v
er

h
ea

d

Other

Pointer Stores

Pointer loads

Checks

lb
m

co
m

p
gz

ip
m

ilc

bz
ip

2

am
m

p go

sj
en

g

eq
ua

ke
h2

64
ijp

eg

go
bm

k ar
t

tw
ol

f

hm
m

er vp
r

m
cf

m
es

a
gc

c
pe

rl
av

g

Figure 5.10: Watchdog’s uop overhead.

0%

20%

40%

60%

80%

p
er

ce
n

ta
g

e
sl

o
w

d
o
w

n

121
With lock location cache

Without lock location cache

lb
m

co
m

p
gz

ip
m

ilc

bz
ip

2

am
m

p go

sj
en

g

eq
ua

ke
h2

64
ijp

eg

go
bm

k ar
t

tw
ol

f

hm
m

er vp
r

m
cf

m
es

a
gc

c
pe

rl

G
eo

. m
ea

n

Figure 5.11: Watchdog’s overhead with and without a lock location cache for ISA-assisted pointer
identification.

allocation/deallocation and metadata propagation in registers. On average, Watchdog executes 73%

more uops than the baseline. The execution time overhead is lower than the uop overhead because

these uops are off the critical path and thus execute in parallel as part of superscalar execution.

The check uops account for bulk of the uop overhead (58% on average: 29% each for spatial and

temporal checks). Pointer metadata load and store uops account for 4% and 2% of the extra uops on

an average but can be as high as 14% and 8%, respectively. The uop overhead due to propagation

uops and memory allocation/deallocation operations (on the heap and the stack) account for the

remaining uops (9% on average). Watchdog with a single check uop reduces the uop overhead from

73% to 44% on average.

Impact of Lock Location Cache on Performance To decrease contention on limited cache ports,

the results presented thus far include a 4KB lock location cache (Figure 5.4 on page 97). Figure 5.11

reports the execution time overhead without this cache, in which all check operations use the lim-

110

1

10

100

M
K

P
I

lb
m

co
m

p
gz

ip
m

ilc

bz
ip

2

am
m

p go

sj
en

g

eq
ua

ke
h2

64
ijp

eg

go
bm

k ar
t

tw
ol

f

hm
m

er vp
r

m
cf

m
es

a
gc

c
pe

rl

Figure 5.12: Misses per thousand instructions with a lock location cache of 4KB.

0%

20%

40%

60%

80%

p
er

ce
n
ta

g
e

sl
o
w

d
o
w

n

Without free metadata

With free metadata

lb
m

co
m

p
gz

ip
m

ilc

bz
ip

2

am
m

p go

sj
en

g

eq
ua

ke
h2

64
ijp

eg

go
bm

k ar
t

tw
ol

f

hm
m

er vp
r

m
cf

m
es

a
gc

c
pe

rl

G
eo

. m
ea

n

Figure 5.13: Watchdog’s overhead when there are no metadata misses in the cache.

ited data load ports. Without the lock location cache, the overhead of Watchdog increases to 29%

on average (up from 24%). The improvements are especially significant for benchmarks such as

hmmer and h264, as these benchmarks already have high IPC and frequent memory accesses,

both of which lead to significant contention for the data cache load ports in the absence of a lock

location cache. These results are not particularly sensitive to the exact size of the lock location

cache; for a 4KB cache, the miss rate is less than 1 miss per 1000 instructions for seventeen of the

twenty benchmarks as shown in Figure 5.12.

Impact of Metadata on Cache Misses One potential source of performance overhead is the ad-

ditional cache pressure due to the per-pointer shadowspace metadata. To isolate this effect, we per-

formed a set of simulations configured to idealize the shadow memory accesses (metadata accesses

occupy cache ports but never cache miss and do not actually consume space in the data cache).

Making the metadata free of cache effects in this way changed the runtime overhead by only 7%

111

0%

20%

40%

60%

80%

p
er

ce
n
ta

g
e

sl
o
w

d
o

w
n
 With Register Renaming

Without Register Renaming

lb
m

co
m

p
gz

ip
m

ilc

bz
ip

2

am
m

p go

sj
en

g

eq
ua

ke
h2

64
ijp

eg

go
bm

k ar
t

tw
ol

f

hm
m

er vp
r

m
cf

m
es

a
gc

c
pe

rl

G
eo

. m
ea

n

Figure 5.14: Watchdog’s overhead when there are additional select uops without physical register
sharing.

0%

100%

200%

300%

400%

p
er

ce
n
ta

g
e

m
em

o
ry

 o
v
er

h
ea

d

Words Pages

lb
m

co
m

pr
es

s
gz

ip
m

ilc

bz
ip

2

am
m

p go

sj
en

g

eq
ua

ke
h2

64
ijp

eg

go
bm

k ar
t

tw
ol

f

hm
m

er vp
r

m
cf

m
es

a
gc

c
pe

rl

G
eo

.m
ea

n

Figure 5.15: Watchdog’s memory overhead with words and pages.

on average (decrease from 24% to 17%), indicating that cache pressure effects are generally not

dominant in these benchmarks as shown in Figure 5.13.

Impact of Physical Register Sharing on Performance. In the absence of precise information

about operations producing pointer values, Watchdog introduces select uops to allocate a separate

physical register to choose the metadata of the output register from the input registers as described

in Section 5.3. Figure 5.14 reports the performance overhead when select uops are introduced

for all integer instructions that produce a value instead of physical register sharing described in

Section 5.3. On average, introduction of additional select uops increases the overhead from 24% to

27% on average. The performance overhead benefits from physical register sharing are low likely

due to two reasons: (1) the wide execution configuration of our simulated machine, and (2) a single

select uop inserted for propagating 256-bits of metadata.

112

Memory Overheads with Watchdog. Figure 5.15 presents the memory overheads with ISA-

assisted pointer identification for providing both spatial and temporal safety over a baseline without

any instrumentation. The memory overhead is negligible for the majority of the benchmarks. How-

ever, several of the benchmarks approach worst-case overheads of four shadow pages for each non-

shadow page. The memory overhead is calculated in two ways: total words of memory accessed

(left bar) and total 4KB pages of memory accessed (right bar), which reflects on-demand alloca-

tion of shadow space pages by the operating system. On average, the memory overhead calculated

these two ways is 36% and 84%, respectively. The difference in these metrics reflect the impact

of fragmentation caused by page-granularity allocation of the shadow space. These memory over-

heads compare favorably to the overheads reported for garbage collection [66] or prior best-effort

approaches for mitigating use-after-free errors such as heap randomization [88] and object-per-page

approaches [45]. Although the memory overhead adds to the system cost, the performance impacts

of the additional cache pressure were already included in the performance results.

5.6 Summary

This chapter presented Watchdog, a hardware implementation of the pointer-based checking ap-

proach with disjoint metadata described in Chapter 3 on mostly unmodified binaries. The key

challenge in implementing pointer-based checking on binaries is the absence of pointer informa-

tion. Extending the tool chain to provide pointer information or identifying good heuristics to

identify pointers can enable hardware to provide memory safety at reasonable overheads without

sophisticated compiler instrumentation and analyses as demonstrated by our ISA-assisted pointer

identification. We observed that preventing unnecessary dependences between the injected uops

and original uops is crucial for performance. Further, avoiding structural hazards using the lock

location cache and redundant copies using physical register sharing with Watchdog demonstrates

that it is feasible to implement hardware-based pointer-based checking with disjoint metadata on

mostly unmodified binaries.

113

Chapter 6

Hardware-Accelerated Compiler

Instrumentation for Memory Safety

Over the last few decades, chip designers have introduced numerous ISA extensions for performing

specific computations. The most notable example is the multiple generations of Streaming SIMD

Extensions (SSE) with instructions specifically tailored for accelerating digital signal processing,

video encoding, cyclic redundancy check (CRC) calculation, string parsing, and encryption. This

chapter makes a case for memory safety checking as the next family of computations ripe for accel-

eration by adding new instructions.

Unlike the pointer-based checking approach purely either in the compiler (Chapter 4) or in hard-

ware (Chapter 5), this chapter describes the new ISA extensions to provide hardware acceleration

for the compiler instrumentation described in Chapter 4 for enforcing memory safety. We use the

name HCH—Hardware Compiler Hybrid—for our hybrid approach with the new ISA extensions.

In this hybrid approach, the compiler instrumentation performs metadata propagation and inserts

the custom instructions provided by the hardware for metadata loads/stores, spatial checks, and

temporal checks. The key goal of this hybrid approach is to accelerate the compiler instrumenta-

tion described in Chapter 4 while minimizing the hardware changes. We first revisit the sources

of instruction overhead in compiler-based instrumentation described in Chapter 4 and explore the

opportunities for hardware acceleration (Section 6.1). We describe the new hardware instructions

to minimize few of the sources of overhead (Section 6.2). We describe extensions to the compiler

instrumentation to use new vector extensions on modern processors and propose new vector in-

114

Temporal Check Control Flow Check

cmp rax, rdx
jb <abort_address>
lea rbx, [rax+rcx]
cmp rbx, r15
ja <abort_address>

Spatial Check

(a) (b) (c)

// rax -- pointer
// rcx -- sizeoftype
// rdx -- base
// r15 -- bound

// rcx -- key
// rdx -- lock

mov rbx, [rdx]
cmp rbx, rcx
jne <abort_address>

// rax -- pointer
// rdx -- base
// r15 -- bound

cmp rax, rdx
jne <abort_address>
cmp rax, r15
jne <abort_address>

Figure 6.1: The x86 instructions inserted by the compiler instrumentation for various checks.

structions to mitigate some of the overheads (Section 6.4). We provide a qualitative comparison of

HCH and Watchdog (Section 6.6). We evaluate the overheads of the compiler instrumentation in

the presence of new hardware instructions (Section 6.8).

6.1 Sources of Instruction Overhead with Compiler Instrumentation

The extra instrumentation code added by the compiler instrumentation described in Chapter 4 results

in instruction overhead. These instruction overheads likely introduce performance overheads when

the program is executed. The main sources of overhead with the compiler instrumentation are

attributed to the following: (1) checks, (2) metadata loads/stores, (3) shadow stack operations, and

(4) second-order effects such as extra spills and restores.

There are three main types of checks introduced by SoftBoundCETS. First, spatial checks are

inserted conceptually before every memory access. Spatial checks introduce both extra control flow

and instructions. In our compiler prototype a spatial check is five extra x86 instructions as shown in

Figure 6.1(a). The temporal check conceptually before every memory access also introduces extra

instructions. Further, a temporal check performs a memory access to load the key at the lock location

as described in Chapter 3 introducing pressure on the cache ports in the machine. In our compiler

prototype, a temporal check is three x86 instructions as shown in Figure 6.1(b), which will likely be

fused with macro-operation fusion on modern Intel processors. The control flow check introduced

to check indirect function calls is another source of check overhead, which is approximately four

x86 instructions in our prototype as shown in Figure 6.1(c).

115

Metadata Store
Inputs: %rdi - address_of_ptr %r12 - base
 %r13 - bound %r14 - key
 %r15 - lock

(a)

 movq %rbx, %rdi
 movq %rcx, %rbx
 shrq %rcx, $22
 movabsq %rax, $4398046511096
 andq %rax, %rcx
 movq %rcx, _trieroot(%rip)
 movq %rax, (%rcx,%rax)
 testq %rax, %rax
 jne .LBB20_2
BB#1:
 movq %rbx, %rbp
 shrq $25, %rbp
 callq _trie_allocate
 movq _trieroot(%rip), %rcx
 movq %rax, (%rcx,%rbp,8)
 testq %rax, %rax
 je abort
.LBB20_2:
 andq $33554424, %rbx
 movq (%rax,%rbx,4), %r12
 movq 8(%rax,%rbx,4), %r13
 movq 16(%rax,%rbx,4), %r14
 movq 24(%rax,%rbx,4), %r15

movq %rax, %rdi // %rax = %rdi
shrq %rax, $22
movabsq %rcx, $4398046511096
andq %rcx, %rax
leaq %rax, (,%rdi,4)
andq $134217696, %rax
movq %rdx, _trieroot(%rip)
addq %rax, (%rdx, %rcx)

movq %r12, (%rax) // load base
movq %r13, 8(%rax) // load bound
movq %r14, 16(%rax) // load key
movq %r15, 24(%rax) // load lock

Metadata Load
Inputs: %rdi - address_of_ptr
Outputs: %r12 - base %r13 - bound
 %r14 - key %r15 - lock

Figure 6.2: The x86 instructions inserted by the compiler instrumentation for metadata loads and
stores. Metadata store initializes the trie entry if it is NULL.

The metadata accesses inserted before pointer loads/stores introduce instruction overhead and

extra control flow. First, there are extra instructions to perform translation from an address of

the pointer to its disjoint metadata space address. This involves some arithmetic shift operations,

loading the entry in the first level trie, and few more bit-mask and shift operations to obtain the

metadata space address as described in Chapter 4. Occasionally it may also involve setting up the

first level trie entries if they are absent. Second, there are four loads/stores to access the base,

bound, key and lock metadata from the metadata space after the translation. Figure 6.2 illustrates

the x86 instructions in our compiler prototype to perform the metadata accesses. Metadata stores

have additional overhead to set up the first level trie with a call to trie allocate function as shown

in Figure 6.2. Four extra loads/stores with each pointer load/store can exert significant pressure on

the cache ports.

Accessing the shadow stack as part of pointer metadata propagation is another source of over-

head. Shadow stack accesses are introduced both at the call-site and the callee to store and load

116

the metadata for the pointer arguments respectively. These accesses are optimized away when the

function is inlined. However, functions that are not inlined and recursive functions require accesses

to the shadow stack.

Beyond the obvious extra instructions inserted by the compiler instrumentation, there are many

second-order instruction overheads that result as a side-effect. The extra metadata for the pointers

in registers introduces more register pressure because there are more live variables in contrast to

the original program. On an x86-64 machine with just 16 general purpose registers, an increase in

register pressure can introduce extra spills and restores adding to the instruction overhead. Further,

such spills put pressure on the cache ports increasing the performance overheads. Another second

order effect is the cache pollution due to extra metadata, which shares the cache with the program’s

data potentially increasing the number of cache misses.

Among these sources of overheads, our analysis shows that the checks and the metadata loads/-

stores are common in contrast to the shadow stack accesses and the second-order effects. The next

section describes the acceleration for the checks and the metadata loads/stores. Watchdog described

in Chapter 5 explored an alternative design point that avoided the shadow stack and some of the sec-

ond order effects of spilling and restoring by performing instruction injection within the hardware

on mostly unmodified binaries.

6.2 New Instructions for Accelerating Checking and Metadata

Lookups

This section explores the ISA extensions that are sufficient to reduce the overhead of a state-of-

the-art compiler instrumentation described in Chapter 4 to be fast enough to be used in production.

We focus on mitigating two sources of overhead: (1) the spatial and temporal checks performed on

memory accesses and (2) the metadata lookups that involve a translation from the monitored pro-

gram memory address to a shadow memory address that maintains information about the monitored

program along with loads/stores. To address these overheads, we propose the following new in-

structions: (1) a spatial check instruction that accelerates the bounds check performed conceptually

before every memory access, (2) a temporal safety check instruction that accelerates the load and

compare operations performed for enforcing temporal safety, (3) a metadata load instruction to load

117

64-bits of metadata from the disjoint metadata space, and (4) a metadata store instruction to store

64-bits of metadata to the disjoint metadata space.

The new instructions replace several x86 instructions with a single instruction, thereby enabling

the compiler to generate streamline code. Moreover, without the custom check instructions, the

extra instructions from the checks increase the number of live variables increasing the register pres-

sure. The metadata load and store instructions provide two benefits: (1) they eliminate the bitmask

and shift operations used in the translation from the program address to the metadata address, and

(2) they enable us to move from trie data structure to a linear array of bytes (eliminates the first

level trie load and the trie root load) as the disjoint metadata space similar to the hardware imple-

mentation in Chapter 5. An alternative to these metadata access instructions would be either (1)

the instructions that are used to access the shadow space organized as a linear array of bytes but do

not perform the translation or (2) the instructions that accelerate the translation overhead with the

metadata accesses while still using a two level trie data structure. We do not explore these alter-

natives. The proposed new metadata load and store instructions transfer the burden of maintaining

the metadata space from the compiler/runtime to the hardware. As a result, the hardware can place

the metadata space using the unused upper order bits of the virtual address space. Using these

metadata access instructions, translation overhead is reduced. Even with these new metadata access

instructions, there are still four individual metadata loads/stores to access the metadata which can

exert pressure on the cache ports. We investigate the use of vector extensions available in current

processors to eliminate multiple loads/stores using wide loads/stores using XMM registers in Sec-

tion 6.4. Next, we describe the interface and implementation details of the new instructions added

to accelerate the SoftBoundCETS instrumentation described in Chapter 4.

6.2.1 SChk Instruction

To accelerate bounds checks, we add a new instruction, SChk, to the x86-64 ISA. This instruction

replaces five x86 instructions used earlier (cmp, br, lea, cmp, br) in the bounds check with a single

instruction. We describe the ISA interface to the compiler and the implementation details below.

The bounds check performed for spatial safety has four inputs: the pointer being checked, the

base, the bound, and the size of the access. The x86 ISA allows us to encode only two register

inputs along with an immediate field. Hence, our new SChk uses two input registers, immediate

118

and an implicit register (%rax) to specify the inputs. Using an implicit register can cause the code

generator to emit register-register moves. Unlike the normal instructions, Intel’s latest SIMD exten-

sions namely the Advanced Vector Extensions (AVX) allow three input registers. Here, we want to

restrict ourselves to the integer pipeline without using the SIMD extensions. We explore the use of

SIMD extensions in Section 6.4.

To summarize, the SChk instruction takes the pointer in the %rax register, the base and the

bound in any 64-bit register and the size of the memory access provided as an immediate. The

instruction does not produce any output. When the check fails, the instruction causes an exception.

In an alternative implementation, the instruction can set the condition code or act as a taken branch

on bounds violations.

Implementation SChk does not produce any value that is used by the program and is not on the

critical path. However, to avoid clogging up the processor bandwidth and resources, SChk cracks

to a single micro-operation (uop) and performs three register reads internally to read the inputs.

The extra logic added compares the base with the pointer and the bound with the pointer with the

added offset in parallel. As the size of the access can only be 1/2/4/8/16, a simple increment adder

is sufficient. As this instruction does not produce a value, the latency of the instruction can be

slightly higher, and is not crucial in obtaining low overheads. Figure 6.3 summarizes the instruction

interface and provides the details of the implementation.

Comparison to the x86 Bounds Instruction SChk is similar in spirit as the bound instruction

available on x86 processors since the 80286, but SChk is different in two key ways. First, SChk

uses registers to hold all inputs. In contrast, early x86 processors had just 8 registers and no 64-bit

datapaths, so the bound instruction required both the base and bound to be fetched from memory for

each check. As a result, when the base and bound were already in registers, bound instruction was

typically more expensive than a bounds check using other x86 instructions. The presence of wider

datapaths in modern processors allows SChk to avoid memory access. Second, SChk efficiently

supports the byte-granularity checking used by bounds checks. Byte-granularity checking provides

the ability to flag a four-byte memory access to a three-byte allocation as an error, but not flag a two-

byte access to the same address. SChk facilitates this by including the size of the memory access as

an immediate. In contrast, the x86 bound instruction was designed for checking at the granularity of

119

ptr

64

+

64

<

>=

base bound

size

64

Exception?

64
64

64
==

Exception?

SChk

keylock

TChk
Inputs: %rax -- pointer, %rbx -- base
 %rdx -- bound, imm - size of type

SChk rbx, rdx, 8 // %rax is implicit

Inputs: %rdi -- pointer key
 %rbx -- pointer lock

TChk rbx, rdx

Figure 6.3: Operation of the SChk and TChk

an array index. Thus, using bound in bounds check would require additional instructions to adjust

the upper bound based on the size of the memory access.

6.2.2 TChk Instruction

To accelerate the temporal pointer checks using the lock and key approach described in Chapter 3,

we introduce a new instruction TChk. The TChk instruction enables us to replace three x86 in-

structions (load, compare, branch) in Figure 6.1 with a single instruction, reducing the instruction

overhead.

The TChk takes two register inputs, which contains the key and the lock in any 64-bit register.

The instruction does not produce any output. The instruction performs a load using the lock part

of the input and checks that the loaded value is equal to the key. When the check fails, it raises an

exception.

Implementation The TChk instruction does not produce any output that influences the data-flow

of the program and is not latency critical. This instruction cracks into a single uop that performs a

load using the normal load datapath and uses an extra ALU to compare the the loaded value with

the register input. This instruction can be cracked into two uops, with the first uop performing the

120

load and then the second doing the comparison. Intel’s more recent x86 cores would likely fuse

them. Hence, fusing these uops will not affect capacity and the bandwidth. Figure 6.3 summarizes

the instruction interface and provides the details of the implementation.

6.2.3 Revisiting Metadata Organization for New Metadata Instructions

Beyond the checks, another significant source of instruction overhead is attributed to metadata loads

and stores. The instruction sequence generated by the compiler to perform metadata loads/stores

is shown in Figure 6.2. There are twelve x86 instructions to perform the metadata load. There are

fourteen x86 instructions to perform the metadata store in the common case (when the first level

entry is allocated). Many of these instructions perform memory accesses along with the computa-

tion. Hence each such instruction internally cracks into multiple micro-operations exerting further

pressure on the hardware resources.

There are two major sources of this overhead: mapping the program address to the metadata

address and four loads/stores subsequently to load/store the metadata. Mapping also involves many

bitmasks and shifts operations to calculate the offset. The mapping also involves two loads: a load

to fetch the root of the trie and a load to fetch the second level trie entry. Further, these are dependent

chain of loads serializing the processor pipeline.

We make the following observation that directs the design of the new metadata access acceler-

ation instructions. We resorted to a trie lookup structure in our compiler instrumentation described

in Chapter 4 because shadowing the entire virtual memory as a linear array of bytes was difficult

with current operating system memory management support. If the hardware manages the disjoint

metadata space, then we can use linear shadowing for the metadata space. Based on the above

observation, we transfer the responsibility of maintaining the disjoint metadata space from the com-

piler to the hardware. The hardware can use the few upper order bits of the virtual address space to

shadow the entire virtual address space. Further, hardware can organize the disjoint metadata space

as a linear array of bytes. The operating system (OS) changes are required to make the OS aware of

such a disjoint metadata space. The OS changes would allow these shadow accesses to be handled

as normal memory accesses using the usual address space translation and page allocation mecha-

nisms. With a shadow space organized as as linear array of bytes, the mapping operation reduces to

a few bitmask operations on the pointer address and a subsequent addition of the resulting offset to

121

Inputs: %rax -- pointer
Outputs: %rbx -- base, %rdx -- bound,
 %rcx -- key, %rdi -- lock

MetaLoad MetaStore
Inputs: %rax -- address_of_pointer
 imm -- metadata specifier
Outputs: %rdi -- loaded metadata

Inputs: %rax -- address_of_pointer
 %rdi -- stored metadata
 imm -- metadata specifier

MetaLoad %rdi, %rax

64 64

root%rax

+<< 64

64 64

root%rax

+<<

%rdi

MetaStore %rdi, %rax

Metadata load of IronClad Metadata load of IronClad
Inputs: %rax -- pointer
 %rbx -- base, %rdx -- bound,
 %rcx -- key, %rdi -- lock

MetaLoad %rbx, %rax, 0 // load base
MetaLoad %rdx, %rax, 1 // load bound
MetaLoad %rcx, %rax, 2 // load key
MetaLoad %rdi, %rax, 3 // load lock

MetaStore %rbx, %rax, 0 // store base
MetaStore %rdx, %rax, 1 // store bound
MetaStore %rcx, %rax, 2 // store key
MetaStore %rdi, %rax, 3 // store lock

Disjoint
metadata

space
imm imm

64

+

64

+

Figure 6.4: Operation of the MetaLoad and MetaStore instructions. Resultant metadata loads/stores
with the instructions is shown.

the root of the metadata space. We add a dedicated register to hold the root of the metadata space.

We describe the implementation of the metadata acceleration instructions in the subsections below.

6.2.4 MetaLoad Instruction

To accelerate the metadata loads performed by the SoftBoundCETS instrumentation, we propose

a MetaLoad instruction that replaces the twelve x86 instructions with four MetaLoad instructions

as shown in Figure 6.4. We describe the interface to the compiler and the implementation details.

The MetaLoad instruction takes three inputs: two register inputs—a 64-bit register holding the

address of the pointer and a implicit disjoint metadata space root register (root)—and an immediate

specifying the component of metadata to be loaded. The MetaLoad instruction loads the metadata

component in the specified 64-bit register.

122

Implementation This instruction internally cracks into a single uop that performs address calcula-

tion and a load of the metadata component specified by the immediate field. The hardware calculates

the metadata address by multiplying the pointer input address by the size of the metadata to gener-

ate an offset that is added to the root register. Finally the address is shifted by a mask depending

on the immediate to obtain the resultant metadata component address. Subsequently the hardware

issues a request to load the metadata component at the specified address. The bitmask, shift and

resultant address generation can be performed in the address generation stage similar to the address

generation tasks performed with the normal load instructions in displacement and scaled addressing

modes. The MetaLoad instruction incurs a latency of four cycles when the load instruction hits in

the cache (one cycle for the address generation + three cycles for the load). Figure 6.4 summarizes

the instruction interface and provides the details of the implementation. Figure 6.4 also illustrates

how the old metadata load in the SoftBoundCETS instrumentation becomes four MetaLoad instruc-

tions instead of twelve x86 instructions in the compiler instrumentation. Although with the new

instructions, we still have four instructions for the metadata load, the benefits are substantial be-

cause we have eliminated two loads (one for the trie root and the other for the first level trie entry)

and six other mask and shift operations as illustrated in Figure 6.2. Eliminating the dependent load

(metadata load depends on the first level trie entry) likely translates into performance benefits.

6.2.5 MetaStore Instruction

To accelerate the metadata stores performed by the SoftBoundCETS instrumentation, we propose a

MetaStore instruction that replaces the fourteen x86 (in the common case) instructions with four

MetaStore instructions as shown in Figure 6.4. We describe the interface to the compiler and

the implementation details of MetaStore instruction. The MetaStore instruction takes four register

inputs—a 64-bit register holding the address of the pointer, a implicit disjoint metadata space root

register (root), a 64-bit register holding a component of the metadata and an immediate specifying

the metadata component—and produces no output.

Implementation This instruction internally cracks into a single uop that performs address calcu-

lation and a 64-bit store. The address is calculated by multiplying the pointer input address by the

size of the metadata to generate an offset that is added to the root register to obtain the metadata

address. The immediate specifies which component of the metadata to be stored. Subsequently the

123

hardware issues a request to store the metadata at the specified address. Figure 6.4 summarizes the

instruction interface and provides the details of the implementation. Figure 6.4 also illustrates how

the old metadata store in the SoftBoundCETS instrumentation can be replaced by four MetaStore

instructions.

In this section on hardware acceleration for the compiler instrumentation, the compiler instru-

mentation maintained the components of the metadata in individual registers. As a result, to load

all pieces of metadata there were four MetaLoad instructions. Similarly, there were four MetaStore

instructions to store the metadata. Next, we explore the opportunities for reducing such extra meta-

data loads and stores by using the SIMD 128-bit XMM registers and the related new instructions to

accelerate memory safety checking.

6.3 Packed Metadata to Reduce Register Pressure and Multiple

Loads/Stores

SoftBoundCETS transformation associates word-sized base, bound, key and lock metadata with each

pointer. These extra pieces of metadata cause an increase in the number of live variables, which

could potentially result in spills and restores during code generation. To reduce register pressure,

this metadata can be be maintained and propagated in packed format throughout the program both

in registers and in memory. These packed values are created on pointer creation and unpacked only

when the individual values are required during the dereference checks.

SIMD Extensions and XMM Registers on Modern Processors Most processor vendors have

added SIMD (single instruction, multiple data) extensions to improve the throughput of floating-

point operations in domains such as digital signal processing and graphics. SIMD instructions

can greatly increase performance when the exact same operation is performed on multiple data

objects. Intel added Streaming SIMD Extensions (SSE) to its x86 ISA starting with Pentium III

series of processors to accelerate floating-point operations. Subsequently, SSE was expanded in

its revisions (SSE2, SSE3, and SSE4) with more instructions and registers. SSE extensions in

the 64-bit operating mode provides sixteen additional 128-bit registers known as XMM0-XMM15.

These new registers with the SSE extensions increase the number of logical registers available in

the x86-ISA from sixteen to thirty two (16 XMM registers + 16 64-bit registers: RAX, RBX, RCX,

124

0%

100%

200%

300%

400%

500%

%
 i

n
st

ru
ct

io
n
 o

v
er

h
ea

d compiler

compiler-xmm

lbm go

equake

hmmer
milc

sje
ng

bzip2
ammp

comp
h264 art vpr

lib
quantum mcf

parse
r

Avg

6
3
6

Figure 6.5: Instruction overhead with SoftBoundCETS instrumentation (compiler) and SoftBound-
CETS instrumentation with packed metadata(compiler-xmm).

RDX, RBP, RSP, RDI, RSI, R08-R15). These 128-bit registers are saved and restored across context

switches by the operating system like normal registers. We propose the use of metadata in these

XMM registers in a packed format in this section to accelerate pointer-based checking. The latest

AVX extension by Intel adds sixteen 256-bit YMM registers. Although, we don’t use the YMM

registers in this section (primarily because the extensions are new and our modified tool chain —

binutils — does not support it), the use of YMM registers can further minimize the register pressure

and reduce the number of metadata loads and stores compared to the use of XMM registers.

Extending SoftBoundCETS to use XMM Registers We modify the compiler instrumentation

described in Chapter 4 to use a packed value for the metadata associated with the pointers. In the

compiler instrumentation, we create temporaries that have an aggregate type with 128-bits. As we

use x86 in our experiments, we keep the packed values resident in the 128-bit wide XMM registers

in Intel’s x86-64 architecture when the pointer is in a register and use a wide XMM load/store

for metadata operations. Using packed values for the metadata reduces the number of load and

store operations for the metadata by half when pointers are loaded/stored from/to memory. Apart

from the advantages described above, there is an initial penalty for packing the metadata into an

aggregate type and later extracting them on pointer dereferences. Each such operation results in

movd and punpckhqdq with movd instructions to extract the lower and higher 64-bits respectively

on an Intel’s x86-64 machine.

125

Figure 6.5 presents the instruction overhead for the compiler instrumentation that uses normal

registers and the 128-bit XMM registers for the metadata. There are two bars for each benchmark.

The left bar and the right bar present the instruction overhead of the compiler instrumentation with

metadata in normal registers and XMM registers respectively. On average, the compiler instru-

mentation’s instruction overhead is 208% on average. The average instruction overhead of XMM

mode compiler instrumentation is 249%, which is slightly higher than the instrumentation with nor-

mal registers. Primary source of this instruction overhead is the unpacking operations performed

on spatial and temporal checks. Next, we propose custom instructions to perform such checking

without unpacking to reduce instruction overhead both due to checks and pack/unpack operations.

6.4 New Instructions for Packed Metadata Checking and Metadata

Loads/Stores

This section describes the new instructions for accelerating checks and metadata loads/stores when

the compiler instrumentation uses packed metadata. We reorganize the metadata space as linear

array of bytes managed by the hardware as described earlier in Section 6.2.3. In the following

subsections, we describe the instructions to accelerate spatial checks, temporal checks, metadata

loads and stores analogous to the ones described in Section 6.2.

6.4.1 SChkXMM

To accelerate bounds checks with packed metadata, we add a new instruction, SChkXMM, to the

x86-64 ISA. The SChkXMM instruction takes the pointer in any 64-bit register, the base and bound

in a packed format in any 128-bit XMM register and the size of the memory access is provided as an

immediate. Similar to the SChk instruction, this instruction does not produce any output and raises

an exception on bounds violation. The usage of packed XMM registers avoids the need for implicit

registers in the SChk proposed earlier, which can eliminate the register-register moves generated

before the check due to implicit registers.

The SChkXMM cracks to a single uop like the SChk instruction described earlier. This instruc-

tion performs two register reads: 1) a normal register read and 2) an XMM register read. The extra

logic added compares the lower half of the XMM register and the pointer and in parallel compares

126

ptr

64

+

64

<

>=

base bound

size

64

Exception?

64
64

64
==

SChkXMM

keylock

TChkXMM

Inputs: %rax -- pointer, %xmm0 -- base/bound
 imm - size of type

SChkXMM %rax, %xmm0, 8

Inputs: %xmm0 -- key/lock

TChkXMM %xmm0

Exception?

Figure 6.6: Operation of the SChkXMM and TChkXMM instructions.

the upper half of the XMM register and the pointer with the added offset. If the normal physical

register and XMM physical registers are in two register files, the latency of the instruction may

be slightly higher. This instruction avoids the unpacking instruction overheads with spatial check

when the compiler instrumentation uses packed registers. Figure 6.6 provides the interface and

implementation of the SChkXMM.

6.4.2 TChkXMM Instruction

Similar to the TChk described earlier, the TChkXMM instruction accelerates the lock and key check-

ing. The TChk takes a single input which contains the key and the lock in a packed format in any

XMM register. The instruction does not produce any output. Its implementation is similar to the

implementation of TChk with a single uop the performs the loads and compares the key. Figure 6.6

shows the interface and implementation of the TChkXMM instruction.

6.4.3 MetaLoadXMM and MetaStoreXMM Instructions

We propose two new instructions MetaLoadXMM and MetaStoreXMM to accelerate the metadata

loads and stores similar to the MetaLoad instruction and MetaStore instruction described earlier.

The MetaLoadXMM instruction takes three inputs: the address of the pointer in any 64-bit regis-

127

Inputs: %rax -- pointer
Outputs: %xmm0 -- base/bound
 %xmm1 -- key/lock

MetaLoad XMM MetaStoreXMM
Inputs: %rax -- address_of_pointer
Outputs: %xmm0 - metadata

Inputs: %rax -- address_of_pointer
 %xmm0 -- metadata

MetaLoad %xmm0, %rax, imm

64 64

root%rax

+<< 128

64 64

root%rax

+<<

%xmm0

128

MetaStore %xmm0, %rax, imm

Metadata load of IronClad Metadata load of IronClad
Inputs: %rax -- pointer
 %xmm0 -- base/bound
 %xmm1 -- key/lock

MetaLoadXMM %xmm0, %rax, 0
MetaLoadXMM %xmm1, %rax, 1

MetaStoreXMM %xmm0, %rax, 0
MetaStoreXMM %xmm1, %rax, 1

64

imm

64

+

imm

64

+

Figure 6.7: Operation of the MetaLoadXMM and MetaStoreXMM instructions. Resultant metadata
loads/stores with the instructions is shown.

ter, a implicit root register holding the beginning address of the metadata space, and a immediate

specifying whether the base/bound is being loaded or the key/lock is being loaded. The instruction

outputs the loaded metadata in any XMM register. The instruction performs the translation to the

disjoint metadata space as described earlier. The MetaLoadXMM instruction replaces twelve x86

instructions with the compiler instrumentation with just two instructions. Each MetaLoadXMM in-

struction internally cracks into two micro-operations that perform the individual 64-bit loads. In a

streamlined implementation, it can be implemented as a single micro-operation with a wide load.

Similarly, MetaStoreXMM instructions performs a wide metadata store to the disjoint metadata

space. The instruction takes four inputs: address of the pointer in any 64-bit register, implicit

root register to the beginning of the metadata space, wide metadata in any XMM register, and

immediate specifying whether the base/bound or key/lock metadata is being stored. This instruction

is internally implemented as two micro-operations that performs the translation and the 64-bit stores.

Figure 6.7 shows the operation of these instructions. This MetaStoreXMM instruction replaces

fourteen XMM instructions for the compiler instrumentation to just two instructions.

128

6.5 Summary of Hardware Changes

One of the goals with HCH is to minimize the hardware changes. The new instructions described in

this chapter require a few changes to the processor core when compared to the traditional pipeline.

HCH only requires changes to the instruction decoder to decode the newly added instructions. As

hardware vendors regularly add new instructions and there are already more than one thousand in-

structions in the ISA, the additional complexity to add the proposed instructions is small. Beyond

the changes to the decoder, additional control logic is needed to implement the functionality for

the added instructions. In summary, HCH minimizes the hardware changes by (1) leveraging the

compiler instrumentation to perform majority of the work (such as identifying pointers, propagating

metadata and metadata creation), (2) keeping the hardware changes localized to the instruction de-

coder, and (3) proposing nominal additional logic to implement the functionality. Next, we provide

a qualitative comparison of the HCH instrumentation proposed in this chapter and the Watchdog

instrumentation for instrumenting unmodified binaries described in Chapter 5.

6.6 Qualitative Comparison of HCH and Watchdog

We looked at two points in the design space for enforcing memory safety using a pointer-based

checking approach with Watchdog in Chapter 5 and with HCH in this chapter. We highlight the

key differences between the two design points and summarize the advantages and disadvantages of

these two design points in this section.

6.6.1 Differences between HCH and Watchdog

The two design points for hardware support—Watchdog and HCH—differ from each other in four

main design choices. First, these design points differ in the approach adopted to add instrumen-

tation for pointer-based checking. HCH uses new instructions that are inserted by the compiler’s

backend to instrument the code. On the other hand, Watchdog uses micro-operation (uop) injection

to perform pointer-based checking transparently on binaries. Second, they differ in the mechanisms

used to identify pointers to perform pointer-based checking. HCH relies on the pointer information

available to the compiler in the intermediate representation as described in Chapter 4. There are two

alternatives with Watchdog: (1) it can use heuristics to identify pointers using conservative pointer

129

identification or (2) it can use ISA-assisted pointer identification that require tool chain changes.

Third, HCH and Watchdog differ on who manages the pointer metadata propagation for register

operations. With HCH, the compiler propagates metadata for register operations, eliminates re-

dundant copies by performing copy elimination for free. In contrast, Watchdog performs metadata

propagation for pointer operations in registers using select uops and physical register sharing ex-

tensions to the maptable in the processor. Fourth, HCH and Watchdog differ in how the metadata

gets propagated for pointer arguments and returns on function calls. HCH relies on the shadow

stack mechanisms provided by the compiler instrumentation to propagate metadata likely introduc-

ing more loads and stores. On the other hand, Watchdog just relies on pointer metadata propagation

for register operations to propagate metadata.

Having described the key differences between the design points for hardware support, we re-

count the advantages and disadvantages of the two design points in the next two subsections.

6.6.2 Advantages and Disadvantages of HCH

The advantages of HCH-like hardware support are described below. First, a key advantage of

HCH is that it can leverage precise pointer information from the compiler to perform pointer-based

checking. Second, HCH-like hardware support can leverage compiler optimizations to perform

check elimination and metadata propagation optimizations. Third, HCH can leverage any guidance

provided by the programmer to classify safe accesses to avoid checks and propagation. Fourth, the

hardware support for HCH is extremely small with a couple of additions to the decode stage of the

pipeline to add new instructions. Fifth, the performance overheads are reasonably competitive.

However, all the above described advantages of HCH come with a price of significant changes to

the tool chain. The programs need to be recompiled with a memory safety compiler as described in

Chapter 4. Beyond tool chain changes, the HCH hardware support inherits the inefficiencies of the

compiler instrumentation such as the metadata propagation for pointer parameters using a shadow

stack and the extra spilling, which is a result of few architecturally visible registers. Further, passing

pointer arguments and returning pointers with function calls becomes reasonably expensive with the

use of the shadow stack for metadata propagation.

130

6.6.3 Advantages and Disadvantages of Watchdog

The advantages of Watchdog are described below. First, Watchdog can operate on mostly unmod-

ified binaries avoiding the tool chain changes. This is especially attractive for legacy code where

programmers do not want to either change the code or distribute the source code. Second, although

pointer identification with binaries is hard, simple heuristics are reasonably effective. Pointer meta-

data propagation for register operations ensure that calls and returns are not expensive. Fourth,

Watchdog’s uop injection has a large number of physical registers at its disposal and avoids the

spilling that would have been generated by a compiler instrumentation. Fifth, Watchdog’s over-

heads are reasonably low with small changes to the hardware even while performing pointer-based

checking almost purely in hardware.

Watchdog’s primary disadvantage is the inability to leverage either the information available to

the compiler or provided by the programmer to identify pointers, eliminate checks at compile time,

and classify programs as safe. This disadvantage results in the Watchdog hardware performing

metadata propagation and checking on every memory access including spills and restores inserted

by the compiler.

6.7 Support for Multithreading

Any approach for providing memory safety would ideally detect all errors even when the program is

multithreaded. If operations on pointers, its metadata, and checks occur non-atomically, interleaved

execution and race conditions (either unintentional races or intentional races used in lock-free con-

current data structures) can result in both missing errors and false violations. To enable our approach

to work seamlessly with multithreaded workloads, the implementation should ensure the following

requirements:

• Requirement#1: A pointer load/store’s data and metadata accesses execute atomically.

• Requirement#2: The spatial and the temporal check should execute atomically with the

load/store operation.

• Requirement#3: The runtime needs to allocate metadata in a thread-safe way

131

• Requirement#4: Each thread needs to use thread-local shadow stack for propagating meta-

data with pointer arguments and return values on function calls.

Enforcement of these requirements may need additional mechanisms described below depend-

ing on whether the program is well-synchronized and is free of data races. There are three such

cases: (1) when the multithreaded program is well-synchronized and has no races either with data

variables or synchronization variables, (2) when the program is well-synchronized, and has no data

races but uses atomic operations such as compare-and-swap (CAS), and (3) when the program is

not well-synchronized and has data races.

6.7.1 Handling Well-Synchronized Programs without Data Races

When the program is well-synchronized, free of data races and does not use atomic operations such

as compare-and-swap (CAS) explicitly in the program, the additional mechanisms required to en-

force memory safety are simple. As the program is well-synchronized, every pointer dereference

is within a critical section. As long as our instrumentation introduces extra operations within the

critical section, the atomicity of the pointer load/store with the metadata is ensured satisfying re-

quirement#1 described above. Similarly, the atomicity of the temporal check and the spatial check

is also ensured by the adding extra instrumentation within the critical section satisfying require-

ment#2.

To satisfy requirement#3, our runtime needs to allocate identifiers in a thread-safe way. The

runtime partitions the space of identifiers with each thread using identifiers from a thread-local pool

to allocate identifiers in a thread-safe manner. Further, the updates to the first level trie entries with

the compiler instrumentation, which are allocated on demand, need to be performed in a thread-safe

manner. To ensure that first level trie entries are allocated in a thread-safe manner, we create a

mapping with mmap for the second level entry and use a compare-and-swap operation to set the

first level trie entry. In the common case, when two threads do not conflict on the same first level

trie entry, the compare-and-swap operation succeeds. In the case where two threads are attempting

to update the same first level trie entry, one thread fails to successfully complete compare-and-

swap operation. The failing thread releases the mapping that was allocated by it before the failing

compare-and-swap operation and loads the mapping for the second level entry from the first level

trie.

132

To satisfy requirement#4, each thread has a thread-local shadow stack to propagate metadata for

pointer arguments and return values with function calls. Since the additional mechanisms to enforce

safety are simple, there is likely no additional performance overhead for this class of programs.

6.7.2 Handling Well-Synchronized Programs with Synchronization Races

For the second class of programs that are well-synchronized without any data races but explicitly

use atomic operations such as the compare-and-swap, we need additional mechanisms to ensure

the atomicity of the metadata load/store and the pointer dereference involved in a compare-swap-

operation. All pointers accessed without the atomic primitives (e.g. compare-and-swap) are data

race free as the program is well-synchronized. For such pointer operations, the implementation can

insert additional instrumentation within the critical section as described above. The instrumentation

allocates metadata in a thread-safe way and use a thread-local shadow stack as described above.

To maintain atomicity of the pointer access in a compare-and-swap operation with the metadata

accesses and the checks, the instrumentation can perform the following code transformations: (1)

introduce a new critical section, (2) replace the compare-swap-operation with regular loads/stores

and a compare operation introduced within the newly inserted critical section, and (3) introduce the

metadata space accesses and the spatial and temporal checks within the introduced critical section

thereby satisfying the requirement#1 and requirement#2 described above.

To ensure that such transformations do not slow down the program (which could occur if we

use a single lock to implement the critical section for this transformation), the implementation can

maintain a table of locks and the transformation selects a lock based on the address of the pointer

involved in the atomic operation. As all threads acquire the locks introduced by instrumentation

in the same order for the compare-and-swap-transformation, they do not introduce any new cyclic

dependences and deadlocks. In the presence of hardware support, this transformation can be imple-

mented using a bounded-transaction where the disjoint metadata accesses and the temporal check

are performed in a transaction along with the original compare-and-swap instruction. Intel has

recently announced best-effort transactional memory support in the next generation of processors

code-named Haswell (being released in 2013), so such atomic-updates are implementable.

133

6.7.3 Handling Programs with Data Races

For the third class of programs that are not well-synchronized and have data races, the C memory

model does not provide any semantics and the behavior of such programs is undefined according to

the standard. To ensure that the program is free of memory safety errors, an implementation must

satisfy the four requirements described above. The implementation can easily satisfy requirement#3

and requirement#4 by allocating metadata in a thread safe manner.

The key challenges are in ensuring the atomicity of the checks with the pointer accesses and

the metadata accesses with the pointer accesses. In the absence of such atomicity with the metadata

access and the pointer access, racy accesses can manufacture metadata by splicing metadata from

the pointer operations involved in a race. For example, if two threads are loading pointer p and

storing pointer q to the same location addr simultaneously, the resultant metadata loaded by a

thread could have the old base metadata stored at the disjoint metadata associated at address addr

and the new bound metadata from the pointer q (and similarly all other combinations of metadata

splicing) potentially missing memory safety violations.

Among the two checks, the spatial check has its inputs (the base, the bound, and the pointer)

in registers and does not perform any memory access. Hence, the spatial check does not need any

special mechanism. However, the temporal check can fail to detect some temporal-safety violations

as a result of the vulnerable time window between the time of a temporal check and the actual

pointer dereference. Other racy accesses can deallocate the memory between the vulnerable time-

window.

The atomicity of the metadata accesses and the temporal checks with the pointer dereferences

can be ensured in one of the following two ways. First, the instrumentation can transform the

program to introduce a new critical section, perform the memory access, metadata accesses and

the temporal check within the critical section as described above for handling compare-and-swap

operations. However this transformation is likely to introduce a large performance overhead. To

reduce the overhead, the instrumentation can be coupled with a static data race detector with new

critical sections introduced only for racy accesses. Second when the hardware support is available,

a bounded-transaction mechanism (like in Haswell) can provide the required atomicity.

Even in the absence of such bounded-transaction support, the pointer-based checking with

disjoint-metadata will not miss any violations if the instrumentation ensures that metadata is load-

134

ed/stored as an atomic single 256-bit wide load/store and the temporal check is performed after the

pointer access. An atomic load/store to access the metadata ensures that the subsequent optimiza-

tions (performed either by the hardware or the compiler) will not reorder the metadata load/store. A

single wide load/store ensures that the metadata does not get spliced from the racy accesses. Hence,

the racy program will not be able to manufacture arbitrary metadata for the pointers. As program

contains data races, racy accesses can still cause pointer and metadata mismatches, resulting in only

false violations; not a compromise in system security. Further, the program needs to tolerate a single

dangling access as the temporal check is performed after the pointer dereference.

6.8 Experimental Evaluation

This section provides an experimental evaluation of HCH highlighting (1) its effectiveness in reduc-

ing the instruction overheads and (2) the resultant performance overheads. The next few subsections

describe our experimental setup, the benchmarks, changes made to the entire tool chain — compiler,

assembler, and the simulator — and the experimental methodology.

6.8.1 Experimental Methodology

We use the SoftBoundCETS prototype described in Chapter 4 to insert the new instructions. We

also extended the instrumentation to store the metadata in a packed format. We leverage all the

optimizations described in Chapter 4 to accelerate the checking. We use the simulator described in

Section 5.5 of Chapter 5. The out-of-order core parameters are available in Table 5.1 of Chapter 5.

We changed the cracker to decode the new instructions and changed the scheduler to perform the

port reservations and to account for the addition of an extra ALU after the load datapath for the

added instructions.

Benchmarks We chose the CPU-intensive benchmarks written in C from SPEC benchmarks suite

as described in Section 4.4 of Chapter 4 for testing the performance overheads. To evaluate HCH,

we made significant changes to the tool chain—compiler, binutils, and simulator—, and our infras-

tructure is not yet robust enough to handle all the benchmarks. Hence, we report the results for the

benchmarks currently working in our prototype. We used the same inputs for all the benchmarks as

with our Watchdog performance evaluation.

135

0%

100%

200%

300%

400%

%
 r

u
n
ti

m
e

o
v
er

h
ea

d

compiler

compiler-xmm

lbm go

equake

hmmer
milc

sje
ng

bzip2
ammp

comp
h264 art vpr

lib
quantum mcf

parse
r

Avg

Figure 6.8: Execution time overhead of the compiler instrumentation (compiler) without and with
packed metadata in a XMM register (compiler-xmm).

Sampling We adopt a different sampling methodology compared to Watchdog evaluation as the

binary being simulated would vary with and without addition of new instructions to propagate and

check pointer metadata. We ran the benchmarks with randomized 2% sampling with each sample

of 10 million instructions preceeded by a fast-forward and a warmup of 480 and 10 million instruc-

tions respectively. As we are inserting extra code to perform the checks, the binaries created are

different. To enable a fair comparison, we ran each benchmark multiple times, with each run having

a significant number of randomized samples. The mean of the execution time (calculated from the

macro-operation IPC and the total number of instructions executed) from multiple runs are used in

the data reported in this paper. Our experiments show that the standard deviation in the execution

time across the multiple randomized runs (10 runs) is small and is on average less than 1%.

6.8.2 Runtime Performance Overhead with Packed Metadata

Figure 6.8 reports the execution time overhead of the compiler instrumentation (SoftBoundCETS

described in Chapter 4) both without and with packed metadata using the x86 simulator and the

methodology reported in Section 6.8.1. The overheads reported in Figure 6.8 are slightly different

from the compiler instrumentation overheads in Chapter 4 because of the following two reasons.

First, the experiments use different inputs resulting in slightly different overheads. The experiments

reported in this chapter use the train inputs to perform simulations to keep the simulation time

reasonable. Second, the complete details of the SandyBridge Core i7 chip are not publicly available.

136

We model it based on the publicly available information. Small deviations in our simulator model

and the actual chip can account for the difference in behavior.

The average performance overhead for the compiler instrumentation using the simulator is 89%.

The average performance overhead for the compiler instrumentation with packed metadata is higher

at 122% as a consequence of packing and unpacking operations performed during the spatial and

temporal checks. As the compiler instrumentation in scalar mode has lower performance over-

head, we use it as a reference to compare the performance improvements with the addition of new

instructions in the rest of the evaluation unless explicitly stated otherwise.

6.8.3 Overheads with New Instructions

Figure 6.9 reports the execution time overhead of the compiler instrumentation with new instruc-

tions. There are three bars for each benchmark. The height of the leftmost bar is the execution time

performance overhead of the compiler instrumentation. The height of the middle and rightmost

bars present the execution time overhead of the compiler instrumentation with all the new instruc-

tions in scalar mode and in packed mode with XMM registers respectively. The new instructions in

scalar mode reduce the performance overhead to 45% on average (from 89% without instructions).

The packed mode new instructions using XMM registers reduce the performance overhead to 39%

on average. The use of custom new instructions in packed mode gets substantial benefit by not

only accelerating the checks but also removing the unpacking operations and reducing the regis-

ter pressure. Further, packed mode instructions also eliminate the register-register moves resulting

due to the use of implicit register with schk instruction. Benchmarks milc and libquantum attain

significant speedups with the new instructions. On the other hand, mcf and parser do not experi-

ence large speedups with new instructions as they have a large number of function calls resulting

in shadow stack accesses. Further, metadata with pointers exerts pressure on the cache resulting in

extra overhead.

The performance improvements with the new instructions are correlated with the reduction in

the number of instructions executed. Figure 6.10 presents the instruction overhead for the compiler

instrumentation with and without the new instructions. There are three bars for each benchmark.

The height of the leftmost, middle and rightmost bar reports the instruction overhead in scalar

mode, with all the new instructions in scalar mode and with all the new instructions in packed mode

137

0%

50%

100%

150%

200%

250%

%
 r

u
n
ti

m
e

o
v
er

h
ea

d

compiler

scalar-all-insn

xmm-all-insn

lbm go

equake

hmmer
milc

sje
ng

bzip2
ammp

comp
h264 art vpr

lib
quantum mcf

parse
r

Avg

Figure 6.9: Execution time performance overhead of the compiler instrumentation (compiler) with
all the instructions in scalar mode (scalar-all-insn) and with all the instructions in packed mode
(xmm-all-insn).

0%

100%

200%

300%

400%

%
 i

n
st

ru
ct

io
n
 o

v
er

h
ea

d

compiler

scalar-all-insn

xmm-all-insn

lbm go

equake

hmmer
milc

sje
ng

bzip2
ammp

comp
h264 art vpr

lib
quantum mcf

parse
r

Avg

4
5
5

Figure 6.10: Instruction overheads of the compiler instrumentation in scalar mode (compiler),
with all the new instructions in scalar mode (scalar-all-insn) and new instructions in packed mode
(xmm-all-insn).

respectively. The average instruction overhead with all the new instructions in scalar mode reduces

to 124% on average (from 208% instruction overhead with compiler instrumentation). The average

instruction overhead with all the new instructions in packed mode reduces to 89% on average.

The reduction in the number of instructions and the number of live variables (hence the spills and

restores) enables packed mode with all the new instructions to attain better performance overheads

compared to the new instructions in scalar mode.

138

0%

50%

100%

150%

200%

250%

%
 r

u
n
ti

m
e

o
v
er

h
ea

d

compiler

schk + tchk

scalar-all-insn

lbm go

equake

hmmer
milc

sje
ng

bzip2
ammp

comp
h264 art vpr

lib
quantum mcf

parse
r

Avg

Figure 6.11: Execution time performance overhead of the compiler instrumentation (1) without
new instructions (compiler), (2) with just the check instructions (schk + tchk), and (3) with all the
instructions in scalar mode (scalar-all-insn).

0%

100%

200%

300%

400%

%
 i

n
st

ru
ct

io
n
 o

v
er

h
ea

d

compiler

schk + tchk

scalar-all-insn

lbm go

equake

hmmer
milc

sje
ng

bzip2
ammp

comp
h264 art vpr

lib
quantum mcf

parse
r

Avg

4
5
5

Figure 6.12: Instruction overheads of the compiler instrumentation in scalar mode (1) without new
instructions (compiler), (2) with the new check instructions (schk + tchk), and (3) all the instruc-
tions (scalar-all-insn).

6.8.4 Impact of Various Instructions

This subsection presents the impact of individual check and metadata access acceleration instruc-

tions on the performance overhead and the instruction overhead.

Checks vs Metadata Accesses in Scalar Mode Figure 6.11 reports the execution time overhead

of the check instructions and the metadata access instructions in scalar mode. There are three

bars for each benchmark with the height of the left-most bar, the middle bar and the right-most

bar representing the performance overhead of the scalar compiler instrumentation without any new

instructions, with just check instructions(schk + tchk) and all the instructions (checks + metadata

139

access) respectively. The average performance overhead with just the check instructions reduces

to 56% (from 89% with no instructions). For the benchmarks on the left of the Figure 6.11 that

execute few pointer loads and stores, the check instructions provide significant benefit. The differ-

ence in the height of the middle and right-most bars provides the benefits of adding the metadata

access instructions. On average, addition of the metadata access instructions reduced the overhead

from 56% (with just check instructions) to 45%. The benchmarks on the right of the Figure 6.11

that perform slightly higher number of metadata accesses obtain benefits from the metadata access

acceleration instructions.

Figure 6.12 reports the instruction overhead for the compiler instrumentation without instruc-

tions (leftmost bar), with check instructions (middle bar) and all the check and metadata access

instructions (rightmost bar). Addition of new check instructions reduce the average instruction

overhead to 148% (from 208% with no instructions). Adding the metadata access instructions

along with the check instructions reduces the instruction overhead to 123% on average. Bench-

marks that have large reductions in instruction overhead report large performance improvements in

Figure 6.11.

Spatial Check vs Temporal Check in Scalar Mode Figure 6.13 reports the execution time per-

formance improvements due to the addition of individual check instructions. There are four bars

for each benchmark. The height of the leftmost and right-most bars represent the performance

overhead of the compiler instrumentation in scalar mode without any instructions and with both

the check instructions respectively. The height of the left middle bar and the right middle bar

represent the execution time performance overhead of just the spatial check instruction and the tem-

poral check instruction respectively. We find that among the two check instructions, spatial check

instruction (schk) reduces the performance overheads significantly. On average, the spatial check

instruction reduces the performance overhead from 89% to 60%. On the other hand, temporal check

alone reduces the performance overhead from 89% to 87%.

Figure 6.14 reports the instruction overheads for the individual check instructions in scalar

mode. On average, spatial check instruction reduces the instruction overhead from 208% to 158%.

On average, the temporal check instruction reduces the overhead from 208% to 201%.

140

0%

50%

100%

150%

200%

250%

%
 r

u
n
ti

m
e

o
v
er

h
ea

d

compiler

schk only

tchk only

schk + tchk

lbm go

equake

hmmer
milc

sje
ng

bzip2
ammp

comp
h264 art vpr

lib
quantum mcf

parse
r

Avg

Figure 6.13: Execution time performance overhead of the compiler instrumentation (1) without new
instructions (compiler), (2) with just the spatial check instruction (schk only), (3) with just temporal
check instruction (tchk only), and (4) with both the check instructions in scalar mode (schk + tchk).

0%

100%

200%

300%

400%

500%

%
 i

n
st

ru
ct

io
n
 o

v
er

h
ea

d

compiler

schk only

tchk only

schk + tchk

lbm go

equake

hmmer
milc

sje
ng

bzip2
ammp

comp
h264 art vpr

lib
quantum mcf

parse
r

Avg

Figure 6.14: Instruction overheads of the compiler instrumentation in scalar mode (1) without new
instructions (compiler), (2) with only the spatial check instruction (schk only), (3) with only the
temporal check instruction (tchk only), and (4) both the check instructions (schk + tchk).

Checks vs Metadata Accesses in Packed Mode Figure 6.15 reports the performance overhead

of the compiler instruction (1) without new instructions in packed mode (leftmost bar - compiler-

xmm), (2) with just check instructions in packed mode (middle bar - schx + tchx), and (3) with

all the new instructions in packed mode (rightmost bar- all-insn). Addition of check instructions

in packed mode reduces the overhead to 62% on average (from 122% with packed mode compiler

instrumentation). Elimination of numerous instructions necessary to unpack the metadata along

with the acceleration for the checks is the contribution for this reduction. Addition of metadata

instructions along with the check instructions reduced the overhead to 39% on average. The new

metadata access instructions in packed mode reduce the performance overhead better than the new

141

0%

50%

100%

150%

200%

250%

%
 r

u
n
ti

m
e

o
v
er

h
ea

d

compiler-xmm

schkx + tchkx

xmm-all-insn

lbm go

equake

hmmer
milc

sje
ng

bzip2
ammp

comp
h264 art vpr

lib
quantum mcf

parse
r

Avg

2
7
6

3
7
8

2
6
2

3
0
0

Figure 6.15: Execution time performance overhead of the compiler instrumentation in packed mode
(1) without instructions (compiler-xmm) with just the check instructions (schx + tchkx) and with
all the instructions in packed mode (xmm-all-insn).

0%

100%

200%

300%

400%

500%

600%

%
 i

n
st

ru
ct

io
n
 o

v
er

h
ea

d

compiler-xmm

schkx + tchkx

xmm-all-insn

lbm go

equake

hmmer
milc

sje
ng

bzip2
ammp

comp
h264 art vpr

lib
quantum mcf

parse
r

Avg

6
3
6

Figure 6.16: Instruction overheads of the compiler instrumentation in packed mode (1) without
new instructions (compiler-xmm), (2) with the new check instructions (schkx + tchkx) and all the
new instructions (xmm-all-insn).

metadata access instructions in the scalar mode. This is primarily attributed to the reduction in the

register pressure and the resultant spills. Although internally each metadata access instruction in

packed mode cracks into two micro-operations, reducing the number of live variables reduces the

register pressure and the second order effects.

Figure 6.16 presents the instruction overhead for the compiler instrumentation in packed mode

(1) without instructions (leftmost bar - comp-xmm), (2) with check instructions (middle bar -

schx + tchkx), and (3) with all the new instructions (rightmost bar). On average, the check in-

structions reduce the instruction overhead from 250% (with no instructions) to 129%. Addition

142

0%

100%

200%

300%

400%

%
 r

u
n
ti

m
e

o
v
er

h
ea

d

compiler-xmm

schkx only

tchkx only

schkx + tchkx

lbm go

equake

hmmer
milc

sje
ng

bzip2
ammp

comp
h264 art vpr

lib
quantum mcf

parse
r

Avg

Figure 6.17: Execution time performance overhead of the compiler instrumentation (1) without new
instructions (compiler-xmm), (2) with just the spatial check instruction (schkx only), (3) with just
temporal check instruction (tchkx only), and (4) with both the check instructions in packed mode
(schkx + tchkx).

0%

100%

200%

300%

400%

500%

%
 i

n
st

ru
ct

io
n
 o

v
er

h
ea

d

compiler-xmm

schkx only

tchkx only

schkx + tchkx

lbm go

equake

hmmer
milc

sje
ng

bzip2
ammp

comp
h264 art vpr

lib
quantum mcf

parse
r

Avg

6
3
6

5
1
7

Figure 6.18: Instruction overheads of the compiler instrumentation in packed mode (1) without new
instructions (compiler-xmm), (2) with only the spatial check instruction (schkx only), (3) with only
the temporal check instruction (tchkx only), and (4) both the check instructions (schkx + tchkx).

of metadata access instructions along with the check instructions reduces the instruction overhead

further from 129% (with check instructions) to 89%.

Spatial Check vs Temporal Check in Packed Mode Figure 6.17 reports the execution time

performance improvements due to the addition of individual check instructions in packed mode.

There are four bars for each benchmark. The height of the leftmost and right-most bars represent the

performance overhead of the compiler instrumentation in packed mode without any instructions and

with both the check instructions respectively. The height of the left middle bar and the right middle

143

0%

50%

100%

150%

200%

250%

%
 i

n
st

ru
ct

io
n
 o

v
er

h
ea

d metastoremetaloadtchkschkother

lbm go

equake

hmmer
milc

sje
ng

bzip2
ammp

comp
h264 art vpr

lib
quantum mcf

parse
r

Avg

Figure 6.19: Breakdown of the remaining source of instruction overhead in scalar mode.

bar represent the execution time performance overhead of just the spatial check instruction and the

temporal check instruction respectively. Similar to our findings with the check instructions in scalar

mode, we find that spatial check instruction (schkx) provides more performance benefit than the

temporal check instruction (tchkx). On average, the spatial check alone reduces the performance

overhead from 122% to 84%. On the other hand, temporal check alone reduces the performance

overhead from 122% to 100%. In packed mode, temporal check provides more performance benefits

than scalar mode as it avoids the unpacking operations before the check.

Figure 6.18 reports the instruction overheads for the individual check instructions in packed

mode. On average, spatial check reduces the instruction overhead from 250% to 176%. On average,

the temporal check instruction reduces the overhead from 250% to 209%. Elimination of unpacking

operations in packed mode compiler instrumentation with the new check instructions provides more

instruction overhead benefits compared to the scalar mode.

Remaining Source of Instruction Overhead in Scalar Mode Figure 6.19 reports the remaining

sources of instruction overhead with the new instructions in the scalar mode. The height of each bar

represents the total instruction overhead with all the new instructions in scalar mode. Each bar has

five segments. The length of bottommost segment represents the instruction overhead resulting as a

consequence of pointer-based checking with disjoint metadata apart from the instruction overhead

due to the checks and the metadata loads/stores. The contribution from the other extra instructions

is the major source of remaining instruction overhead for most benchmarks. There are two main

reasons for this high other extra instruction overhead. First, the HCH instrumentation relies on the

144

0%

50%

100%

150%

200%

%
 i

n
st

ru
ct

io
n
 o

v
er

h
ea

d metastorexmetaloadxtchkxschkxother

lbm go

equake

hmmer
milc

sje
ng

bzip2
ammp

comp
h264 art vpr

lib
quantum mcf

parse
r

Avg

Figure 6.20: Breakdown of the remaining source of instruction overhead in packed mode.

compiler to propagate the metadata for pointer arguments and return values using the shadow stack,

which introduces instruction overhead. Second, the increased register pressure with the increase in

the number of live variables with metadata temporaries result in stack spills and restores contributing

to the instruction overhead. On average, the instruction overhead from other extra instructions alone

is 80%.

The second and the third segment from the bottom represent the contribution of the new spatial

check (schk) and the temporal check (tchk) instruction to the instruction overhead in the scalar

mode. The top two segments in each bar represent the contribution to the instruction overhead from

the new metadata load and store instructions in the scalar mode. Among the instructions added

to accelerate pointer-based checking, spatial check instruction is the primary contributor to the

remaining instruction overhead. The benchmarks on the right that have a large number of metadata

loads/stores incur a significant fraction of the instruction overhead from the metadata load/store

instructions. On average, schk, tchk, metaload, and metastore instructions contribute 24%, 11%,

8% and 1% to an aggregate instruction overhead of 124% in scalar mode.

Remaining Source of Instruction Overhead in Packed Mode Figure 6.20 reports the remaining

sources of instruction overhead with new instructions in the packed mode. The height of each bar

represents the total instruction overhead with all the new instruction in packed mode. Each bar has

five segments. The length of bottommost segment represents the instruction overhead apart from the

checks and metadata loads/stores. Like in the scalar mode in Figure 6.19, the other extra instructions

due to the shadow stack accesses and the spills are significant. However, packing the metadata in

145

XMM registers has reduced the amount of instructions. On average, the other extra instructions

result in 51% instruction overhead. Packing the metadata in 256-bit wide registers (YMM registers)

will further reduce the instruction overhead from the extra instructions.

The second and the third segment from the bottom represent the contribution to the instruction

overhead from the new spatial check (schkx) and the temporal check (tchkx) instruction in the packed

mode. Like in scalar mode in Figure 6.19, the schkx and tchkx contribute 24% and 11% respectively

on average to the instruction overhead.

The top two segments in each bar represent the contribution to the instruction overhead from

the new metadata load and store instructions in the packed mode. The benchmarks on the right that

have a large number of metadata loads/stores see a significant reduction in their contribution to the

instruction overhead as the number of metadata loads/stores are halved with packed loads/stores. On

average, metaloadx and metastorex contribute 4% and 0.5% to an aggregate instruction overhead of

89% in packed mode. Further the instruction overhead due to these metadata load/store instructions

can be halved by packing the metadata in 256-bit wide registers.

6.9 Summary

This chapter presented hardware acceleration in the form of new ISA extensions for the compiler

instrumentation proposed in Chapter 4 for performing pointer-based checking with disjoint meta-

data. We observed that a large number of instructions are executed to perform checks and metadata

accesses. To alleviate the resulting instruction overheads, we proposed new instructions to perform

spatial checks, temporal checks and the metadata accesses. We also transferred the burden of man-

aging the metadata space from the compiler to the hardware that enabled the use of flat linear array

as the disjoint metadata space. Using the new instructions, we reduced the instruction overheads and

resulting performance overheads of pointer-based checking approach significantly. We also found

that using the SIMD extensions on modern machines by packing the metadata in SIMD registers is

attractive when complemented with new check and metadata access instructions.

146

Chapter 7

Related Work

The problem of memory safety with C is an old and a well researched topic. We described the

closely related approaches for enforcing memory safety in Chapter 2. In this section, we describe

other efforts in either retrofitting memory safety or in defending against the security vulnerabilities

that result as a consequence of memory safety errors. In this chapter, we describe the language

extensions and static analysis based solutions (Section 7.1), probabilistic approaches using random-

ization (Section 7.2), dynamic checking solutions (Section 7.3), hardware-based solutions (Sec-

tion 7.4), and general acceleration to mitigate bottlenecks (Section 7.5) to provide varying degrees

of memory safety enforcement either in a direct or an indirect manner.

7.1 Language Extensions and Static Analysis Based Solutions

There have been numerous efforts to design dialects of C, which can be easily checked statically or

with dynamic checking to enforce either partial or complete memory safety [35, 53, 63, 73, 94, 122].

Polymorphic C [122] presents a provably type-safe dialect of C that includes most features of C

except casts and structures. However, a well-typed Polymorphic C program can still fail to terminate

and can have memory safety errors due to dangling pointer errors.

Cyclone [73] is a new dialect that attempts to be closely compatible to C. Cyclone introduces

annotations with pointer type declarations, replaces C-style unions with ML-style sum types, and

performs pointer-based checking to provide safety. Cyclone uses garbage collection to avoid tem-

147

poral safety errors. Subsequent research from the Cyclone team has attempted to alleviate the

problems with garbage collection using region-based memory management [61].

CCured [94] discussed in detail in Chapter 2 is a backwards-compatible extension to C that use

whole type inference to infer pointer kinds and performs dynamic checking to retrofit spatial safety.

CCured relies on the use of a garbage collector to prevent temporal safety errors. Deputy [35],

a follow-up work from the CCured team, is a dependently typed system that uses programmer

annotations to bound pointers and tag unions, while avoiding whole program type inference and

reducing the runtime overhead of enforcing spatial safety. Like CCured, Deputy does nothing for

providing temporal safety and hence, needs to be coupled with a garbage collector.

Evans [53] describes a set of programmer annotations to make program assumptions explicit

at interface points such as function calls. Using these annotations, the program can be checked

locally to detect violations of programmer assumptions such as null pointer dereferences and some

dangling pointer dereferences.

To enable modular checking for C, SAL [63], an annotation language widely used at Microsoft

allows programmers to specify requirements for safely using each buffer in the program using

lightweight annotations. Further, a significant fraction of these annotations have been inferred using

various program analysis tools. The key emphasis with this project has been on incremental deploy-

ment of annotation-based checking to detect future violations of memory safety in production code

at development.

In contrast to programmer provided annotations, Dhurjati et al. [47], have created a subset of

C language that provides partial memory safety without runtime checks or garbage collection. To

provide spatial safety, they rely on type safety, disallow casts and restrict the array indices to be

simple affine expressions. To provide temporal safety, they rely on automatic pool allocation [84]

that assigns all heap-allocated objects to type homogeneous pools, where each member has the

same type and alignment. On reallocation of freed memory, new object will have the same type and

alignment as the old object. The key idea in this line of work is to prevent violations of type-safety

through dangling pointer errors rather than detecting dangling pointer errors. To prevent temporal

errors on the stack, they use data structure analysis [82] that performs a flow-insensitive and context

sensitive analysis to identify all pointers to the stack frame that escape into heap or global locations.

To avoid annotations, many static analyses that detect buffer overflows without programmer

annotations have been proposed. These include tools using abstract interpretation [22, 48] and

148

integer programming [56] techniques tailored to a specific domain. Static analysis has also been

coupled with lightweight programmer or inferred annotations as described above [35, 63]. Static

checking tools generally either have false positives [129] or false negatives (they are incomplete),

but are certainly useful complementary techniques to dynamically enforced spatial memory safety.

Further, many of the language extensions can be used with the pointer-based checking proposed in

this dissertation to further reduce overheads.

7.2 Probabilistic Approaches with Randomization

Probabilistic approaches randomize the allocation of objects making memory safety errors hard to

exploit. They either use an infinite heap or approximate it with various kinds of randomization.

However, masking the errors rather than detecting them can make debugging difficult.

The three common types of randomization are address-space randomization, instruction-set ran-

domization, and data-space randomization. Address-space-layout randomization (ASLR) random-

izes the location of the objects on the stack, heap and the libraries in the address space of the

program. The key advantage of ASLR is that it is simple to use and cheap. Though reasonably

effective, attackers have succeeded in exploiting the memory safety errors by spraying the objects

on the heap. Instruction-set randomization (ISR) [19, 77] randomizes the presentation of code.

ISR creates process-specific randomized instruction set of the system executing potentially vul-

nerable software. Randomizing an arbitrary instruction set (the x86 machine code) involves three

components: the randomizing element, the execution environment (e.g., an appropriately modified

processor), and the loader. An attacker who does not know the key to the randomization algorithm

will inject code that is invalid for that randomized processor, causing a runtime exception.

In contrast to ASLR and ISR, data-space randomization (DSR) [21, 25] randomizes the rep-

resentation of different objects stored in memory. These schemes modify the data representation

xoring each data object in memory with a unique random mask (encryption), and to unmask it be-

fore its use (decryption). DSR can be implemented using a program transformation that modifies

each assignment x = v in the program into x = mx ⊕ v, where mx is a mask associated with the

variable x. DSR defeats buffer overflow attacks by preventing the write of the value intended by

the attacker. For example in a buffer overflow attack that overwrites an adjacent variable b with a

value v, the value written to that location will be v⊕ma with DSR. On a subsequent read, the value

149

read will be (v⊕ma)⊕mb, which would be a random value rather than the attacker intended value.

DSR provides more entropy than ASLR and ISR, and is able to thwart more attacks.

Other Probabilistic approaches [20, 79, 99, 101] use the idea of an infinite heap to detect mem-

ory safety errors. By allocating two objects infinitely apart and not reusing memory, memory safety

violations cannot corrupt allocated objects. Practical implementations approximate the infinite heap

abstraction either by allocating objects randomly or by randomizing the reuse of memory. These

approaches are attractive as they can be applied to existing systems easily without significant tool

chain changes. However, as these schemes mask errors rather than exposing them, debugging mem-

ory safety errors can become difficult.

The open-source tools Electric Fence [1], PageHeap [5], and DUMA [17] allocate each object on

a different physical and virtual page. Upon deallocation, the access permission on individual virtual

pages are disabled, increasing memory usage and causing high runtime overheads for allocation-

intensive programs [45]. A spatial safety violation or a temporal safety violation will cause a page

fault that is appropriately handled. To detect errors in the presence of reallocations, virtual pages

cannot be reused. Further, as these schemes allocate one object per virtual and physical page, large

memory overheads can result for programs with many small objects. More recently, proposals have

addressed the physical memory overhead issue by placing multiple objects per physical page, but

mapping a different virtual page for each object to the shared page [45, 88].

DieHard [20] provides probabilistic memory safety by approximating an infinite-sized heap

using the runtime. It uses a randomized memory manager which places objects randomly across the

heap. Randomized allocation makes it unlikely that a newly freed object will soon be overwritten by

a subsequent allocation thus avoiding dangling pointer errors. Exterminator [101] builds on top of

DieHard, and it carries out error detection and correction based on data accumulated from multiple

executions without programmer intervention. Archipelago [88] reduces the memory overhead of

DieHard by trading address space for security.

7.3 Dynamic Checking Solutions

A large number of proposals attempt to provide partial or full memory safety by performing varying

degrees of checking at runtime. We described the closely related dynamic checking tools in Chap-

ter 2. In this section, we describe some of the other related proposals that have enforced memory

150

safety indirectly by enforcing other program properties [11, 13, 80], and dynamic checking tailored

for checking specific kinds of errors.

7.3.1 Pointer Checking Tools

Beyond the common and related pointer-based checking approaches described in Chapter 2, this

section describes some of the other efforts (both early and recent) in using pointer-based checking

to retrofit safety. The early solutions that performed dynamic checking to provide some safety were

primarily debugging tools and had significant overhead. Most of these tools were source-to-source

translation schemes and primarily focused on detecting spatial safety violations.

BCC [78] is a source- to-source translator that added calls to a runtime library to perform checks.

It changed each pointer to include upper and lower bounds. The BCC reported slowdowns in the

range of 30×. Rtcc [123] is similar to BCC but focuses only on adding run-time checking for array

subscripts in the Portable C Compiler (PCC). Unlike BCC and Rtcc, SafeC [16] and MSCC [131]

described in Chapter 2 could detect both spatial and temporal errors. Samurai [104] attempts to

retrofit memory safety for only certain sections of the program by using programmer provided

annotations. The programmers annotate certain memory regions as critical for program execution.

The runtime ensures that non-critical memory regions do not influence the critical regions using

replication and error correction.

Fail-Safe C [102] is a spatial safety compiler for the C language that is fully compatible with

the ANSI C specification. The key contribution is the maintenance of metadata with integers. It

uses fat pointers, as well as fat integers to allow casts between pointers and integers.

A recent proposal MemSafe [120], uses disjoint metadata with pointers inspired by our spatial

safety work on SoftBound [92]. Unlike our approach that maintains different metadata to detect

both spatial and temporal errors (Chapter 3), Memsafe uses spatial metadata to detect temporal

safety violations. Memsafe sets the bounds metadata to be invalid when the memory is deallocated.

To handle aliases, it designs a SSA representation that can be used to invalidate the bounds metadata

of all aliasing pointers.

151

7.3.2 Object-Based Checking Tools

The object-based checking approaches were described in detail in Chapter 2. There has been a

steady reduction in the slowdowns reported by these approaches since the original solution by Jones

and Kelly [75]. The approach by Jones and Kelly [75] provided backwards compatibility using a

splay tree to map memory to its metadata. The checking overheads were high in the range of 10×

to 30×. CRED [113] extended Jones and Kelly’s approach to handle out-of-bound addresses to

compute in-bounds addresses. It achieves this using an auxiliary data structure to store information

about out-of-bounds pointers. It also improves on performance at the cost of protection by limiting

checking to string operations, thereby reducing the overheads to 20%-130% range. Dhurjati et

al. [44] partition objects into pools at compile time and uses a splay tree for each pool. These splay

trees can be looked up more efficiently than the single splay tree used by previous approaches, and

each pool has a cache for even faster lookups reducing the overhead of Jones and Kelly significantly.

SAFECode [46] designs an analysis that builds on the automatic pool allocation [84] to maintain the

soundness of the compile-time points-to graph, the call graph, and the available type information

at runtime even in the presence of memory safety errors. The sound analysis information when

coupled with their object-based approach, can reduce the overhead of enforcing memory safety.

Baggy bounds checking [14] uses an object-based approach but enforces allocation bounds

instead of object bounds. The key idea in baggy bounds checking is to reduce the overhead of

checks with object-based approach by (1) padding and aligning objects to powers of two, and (2)

enforcing allocation bounds instead of object bounds with a check that involves a single memory

access, a shift and a xor operation. By eliminating splay tree lookups, baggy bounds checking

reduces the overhead of object-based approaches significantly. PAriCheck [134] is similar to baggy

bounds checking in enforcing allocation bounds instead of object bounds but handles the out-of-

bound pointers more efficiently. However, as structure accesses are not checked and only pointer

arithmetic is checked (as in object-based schemes), these schemes fails to detect all spatial safety

violations.

7.3.3 Enforcing Memory Safety on Binaries

Several tools and approaches have adopted checking on binaries to avoid tool chain changes and

recompilation. Purify [65] and Valgrind [97] are two popular tools that are widely used to per-

152

form checking on binaries to detect some subset of the memory safety errors. As dynamic binary

instrumentation itself adds overheads, these schemes have overheads higher than 10×. Further

partial checking can be adopted to check vulnerable library functions (strcpy) in preloaded shared

libraries. The libsafe [18] tool uses the frame pointer to limit copy operations within the stack frame

so as to avoid overwrites of the return address. BodyArmor [121], a recent proposal on detecting

buffer overflows in binaries without recompilation reduces the overhead for array access protection

to around 2×. BodyArmor uses binary reverse engineering tools to identify arrays in the binary,

rewrites the binary to assign colors to the arrays and checks the color of the accesses before every

memory access. Tools that perform checking on binaries are attractive as they can be easily used

out of the box. However, limited protection, and the presence of false positives and false negatives

along with high runtime overhead restricts their use.

7.3.4 Indirect Approaches for Memory Safety

Many approaches indirectly provide partial memory safety by enforcing some other program prop-

erty. Control-Flow Integrity (CFI) [11] is based on the idea that software execution must follow

a path of a control-flow graph (CFG) determined ahead of time. The control-flow graph can be

obtained by source analysis, binary analysis or execution profiling. CFI is efficiently implemented

using binary rewriting. Although useful in thwarting many attacks, many attacks have exploited

memory safety errors without violating control flow integrity [31]. Data-Flow Integrity [27] is sim-

ilar to CFI but instead of computing a CFG ahead of time, it computes a data-flow graph at compile

time and instruments the program to ensure that flow of data at runtime follows the data-flow graph.

To perform such checking, it combines static points-to-analysis with runtime instrumentation. DFI

maintains a table that maps each instruction to its last writer to the location. The table is updated be-

fore every write and checked before every read to ensure that last writer is in conformance with the

static data flow graph. DFI can detect many both spatial and temporal errors, but the false positives

and false negatives depend on the precision of the underlying static points-to-analysis.

Similar to DFI, Write Integrity Testing (WIT) [13] checks only writes and streamlines the im-

plementation by assigning colors to the objects and checks writes. WIT unlike CFI, operates on the

source code, and it attains low overheads. WIT also generalizes the work of Yong et al. [133] that

performs store-only checking to detect security vulnerabilities.

153

7.3.5 Software Fault Isolation

When a complicated piece of software (e.g., the web browser, the kernel and others) needs to be

protected from memory safety errors in its extensions and modules, isolating the errors in the exten-

sions is attractive. Many such software fault isolation systems have been proposed. Software-based

fault isolation techniques like SFI [128] and XFI [52] isolate the kernel extensions with a low over-

head. SafeDrive [139] uses programmer provided annotations in the extensions to bounds check C

code. Although it has low overhead, it provides weak isolation guarantees. Further, these isolation

schemes do not detect temporal errors. Similarly, SVA [40] provides a safe execution environment

for an entire operating system, and can enforce some safety properties to prevent many memory

errors.

In contrast to safety with kernel extensions, Native Client [132] provides a sandboxing facility

to run a subset of untrusted x86 code natively within the browser. The goal of Native Client is to

provide browser based applications the computational performance of native code. Native Client

uses software fault isolation along with a secure runtime to manage interactions and side effects.

7.4 Hardware Support for Memory Safety

Apart from the hardware-based checking schemes described in Chapter 2, we describe few of the

other related proposals that enforce memory safety by performing varying degrees of checking in

hardware.

7.4.1 Checking with Hardware

HardBound [43] is a hardware-based bounds checking approach previously proposed by our re-

search group. HardBound provided spatial safety by injecting micro-operations for each load and

store instruction to perform checks and metadata propagation. HardBound also used the shadow

space based disjoint-metadata for maintaining metadata with pointers. As binaries do not contain

pointer information, HardBound was forced to perform metadata loads and stores on every memory

access. To avoid such overheads, it used a metadata cache that maintained a bit indicating whether

the PC accessed a pointer or not. HardBound did not provide protection against temporal safety

violations. Unlike HardBound, which focused on in-order processors, Watchdog proposed in this

154

dissertation focuses on full memory safety, proposes pointer identification schemes, and proposes

register renaming-based techniques to provide low overhead safety on modern out-of-order proces-

sors.

The work of Chuang et al. [32] is related to our hardware instrumentation Watchdog. The work

of Chuang et al. explores different checking-metadata organizations (per-object or per-pointer),

but places at least some metadata with each pointer and object. Like Watchdog, they also describe

architectural support, including new micro-ops and metadata mapping/caching structures. These

structures require maptable-like checkpointing/recovery on branch predictions, and they are archi-

tecturally visible (and their state must be saved to memory on every context switch). However,

they fail to consider the source-incompatibility implications and loss of comprehensive protection

with such in-line metadata in the presence of memory reuse and unsafe type-casts. Watchdog dif-

fers from Chuang et al.’s work in several significant ways. First, Watchdog places all metadata in

disjoint-metadata spaces, to (1) retain more compatibility with existing programs by leaving the

program layout completely unchanged and (2) provide more comprehensive protection in programs

with unsafe type-casts from corrupting the metadata. Second, Watchdog introduces only simple

structures (a data cache for the lock locations, solely to reduce the contention for data cache ports);

even without this cache, the overhead increased only from 24% to 29%.

AccMon [140] is a hardware proposal that exploits the property that in most programs, a given

memory location is typically accessed by only a few instructions. Therefore, by capturing the

invariant set of program addresses that normally access a given variable, one can detect accesses

by outlier instructions, which are often caused by memory errors. Although, it can detect common

memory errors, it suffers from false positives.

SafeMem [110] is a hardware proposal that provides Purify-like [65] protection but makes novel

use of existing ECC memory technology to insert guards around objects with reasonable overhead.

SafeMem uses invalid ECC codes to detect accesses via dangling pointers (unless the memory has

been re-allocated). Further, SafeMem pads heap allocations with a cache block with invalid ECC

to detect contiguous buffer overflows. Like many other proposals, SafeMem also suffers from false

positives.

155

7.4.2 Hardware Acceleration for Garbage Collection

As temporal safety violations can be avoided by using a garbage collector, many hardware ac-

celeration proposals have attempted to accelerate various aspects of garbage collection. Schmidt

and Nielsen [114] accelerate garbage collection for real-time applications using garbage-collected

memory modules (GCMM), which include both RAM and a microprocessor capable of running a

real time copying collection algorithm locally on the GCMM. Although such hardware is attractive,

the whole heap needs to be allocated to custom memory modules. Further, it prevents the soft-

ware from implementing different allocation and collection policies. As an alternative design point,

Click et al. [34] have proposed Pauseless GC, a concurrent GC with partial compaction supported

by efficient hardware read barriers.

Other proposals have explored hardware-based reference-counting to accelerate reference count-

ing based garbage collection. Peng and Sohi [105] use a in-cache reference-counting mechanism to

accelerate GC. Subsequent efforts in this direction have used reference counted caches managed by

coprocessors that handle object allocation and in-cache collection [28]. Rather than using custom

coprocessors, HAMM [74] proposes a flexible acceleration for reference counting based garbage

collection that works with a general-purpose architecture using standard memory modules and does

not tie the hardware to a particular allocator and GC implementation.

Meyer et al. [89] propose a hardware co-processor to perform concurrent garbage collection.

They propose a native pointer type in the hardware that can be leveraged to accelerate garbage

collection. The use of native pointer type and explicit pointer registers are similar to the ISA-

assisted pointer identification proposed with Watchdog to accelerate pointer-based checking with

disjoint metadata. Existence of pointer registers and instructions that manipulate pointers can avoid

the inefficiencies of pointer identification with Watchdog.

7.4.3 Taint checking and Intrusion Detection

Instead of enforcing memory safety directly, some proposals attempt to detect malicious code when

it is injected into the system, typically by marking some untrusted data as “tainted” and propagating

that information through computations on the processor. Some projects in this vein are Minos [39],

LIFT [109], RIFLE [125], and Raksha [42]. Other techniques detect anomalous behavior [80,

142] or combine tainting and bounds checking [33] to detect memory safety errors. In contrast to

156

approaches that provide complete memory safety, the taint checking approach may permit a program

to overwrite buffers, so long as the data is not provided by some untrusted source. Thus, although

information-flow tracking and intrusion detection can stop some forms of malicious code or data

injection, they do not prevent all bounds violations that can corrupt data. These approaches do have

the complementary advantage in that they are capable of preventing SQL injection, format-string

injection, and related attacks in which untrusted inputs cause security violations without breaking

memory safety. Further, taint tracking mechanisms are ineffective with temporal safety violations

in the presence of memory reallocations.

7.4.4 Cryptographic and Tamper Resistant Hardware

There has also been much recent work on hardware support for cryptographically sealed code [50],

encrypted memory [86, 118], secure processors [85, 119, 124], and tamper resistant hardware [86].

Although this work is largely orthogonal to the memory safety support proposed in this dissertation,

these techniques do provide tamper resistance and some protection against code injection attacks—

the attacker would have to provide code appropriately signed or encrypted in order to inject it into

the instruction stream. These techniques are also not intended to protect against all spatial safety

and temporal safety errors.

7.5 Other Acceleration Techniques

Apart from performing checking to providing various degrees of memory safety, others have pro-

posed alternative memory management techniques to avoid some temporal safety violations, and

general acceleration schemes for various checkers.

7.5.1 Region-Based Memory Management

Region-based schemes [58, 61] allocate the objects in specific regions which can be specified either

implicitly or explicitly. When the region is freed, all the allocated objects in the region are freed.

To ensure that there are no dangling pointers, these systems maintain information about the set of

external pointers pointing to a region by maintaining reference counts and signal an error when the

region being freed has a non-zero reference count. Further, HeapSafe [59] uses reference counts

157

and ideas from region management to make manual management safe, but requires modifications

to the program source code.

Another approach based on automatic pool allocation [47] assigns all heap-allocated objects to

type homogeneous pools, where each member has the same type and alignment. On reallocation of

freed memory, new object will have the same type and alignment as the old object. In similar spirit,

Cling [12] memory allocator also prevents type unsafe address space reuse among objects of differ-

ent types. Thus, dereferencing dangling pointers to reallocated memory cannot cause violations of

type safety. This approach does not prevent erroneous dereferences through dangling pointers but

ensures only that such dereferences do not violate type safety.

7.5.2 Acceleration for Metadata and Checks

A few other researchers [96, 138] have observed mapping shadow memory as one of the per-

formance problems in designing binary translation-based checkers and have proposed efficient

software mechanisms to shadow memory on 64-bit machines with reasonable translation over-

head [138]. In the context of log-based architecture (LBA), instructions to accelerate translation

from program address to metadata address used a separate metadata translation buffer to cache the

first level entry of the trie, requiring extra mechanisms to keep it coherent. To identify redundant

checks, dynamic filtering [64] adds a new instruction to the ISA, dyfl, which identifies such checks

using a lossy set based implementation. Though proposed in the context of garbage collection to

detect redundant checks in the creation of inter-generational references, it can be applied to other

tools and safety related checking. Similarly, idempotent filters and mapping instructions have been

proposed in the LBA context [30]. These acceleration schemes are orthogonal to the techniques pro-

posed in this dissertation and can be used to further reduce the overhead of pointer-based checking

proposed in this dissertation.

158

Chapter 8

Conclusions

In this chapter, we first summarize the dissertation in Section 8.1. We briefly describe the details on

the recent commercial adoption of the ideas proposed in this dissertation in Section 8.2. We provide

directions for future work in the area of enforcing memory safety in Section 8.3. Finally, I describe

the lessons I learned in this process and my reflections on the area of memory safety.

8.1 Dissertation Summary

In this dissertation, we addressed the problem of retrofitting memory safety for C programs with the

three goals: (1) comprehensiveness, (2) compatibility, and (3) competitive performance. To address

this problem, we adopted the pointer-based checking approach that maintains metadata with point-

ers. We proposed the use of bounds metadata and identifier metadata to provide both spatial and

temporal safety. One of the key contributions of this dissertation is to maintain the metadata with

pointers in a disjoint metadata space to provide both spatial and temporal safety. The use of disjoint

metadata enabled us to revisit pointer-based checking (generally considered invasive) to enforce

memory safety. We developed reasoning techniques to illustrate how pointer-based checking with

disjoint metadata can provide comprehensive and compatible spatial and temporal safety even in

the presence of arbitrary type casts and memory reallocations in the program.

The use of disjoint metadata required us to address three problems: (1) design an efficient

organization of the disjoint metadata space, (2) design mechanisms to access the metadata space,

and (3) mitigate the performance overheads in accessing the disjoint metadata space. We organized

159

the disjoint metadata space as a table lookup structure (a trie and a shadow space organized as

a linear array of bytes). To index into this table lookup structure and access the metadata, our

approach uses the address of the pointer rather than what the pointer points to. To mitigate the

performance overheads with this disjoint metadata accesses, our approach performs the accesses

to the metadata space only when pointers are loaded or stored. However, maintaining metadata

only with pointers also results in our approach disallowing the creation of pointers from integers.

To provide efficient implementation of this approach with low overheads, we proposed efficient

instrumentation purely within the compiler, within hardware and with hybrid hardware compiler

support. We also detected both previously unknown (new) and known memory safety errors in

applications, benchmark suites, and test harnesses. We have experimented with more than one

million lines of existing C code, demonstrating the compatibility of the approach.

Unlike prior pointer-based checking schemes that have been source-to-source translations [94],

we proposed SoftBoundCETS instrumentation within the compiler to attain low performance over-

heads. SoftBoundCETS leverages the type information in the LLVM intermediate representation

to identify pointers and perform the instrumentation on optimized code. Further, SoftBoundCETS

uses a shadow stack to propagate metadata for pointer arguments and pointer return values with

function calls. The shadow stack provides dynamic typing for pointer arguments between the call-

site and the callee. A combination of simple local transformation, instrumentation on optimized

code and streamlined implementation enabled SoftBoundCETS to attain low overheads. SoftBound-

CETS’s full checking mode that propagates metadata on all pointer operations and performs spatial

and temporal checks on loads and stores has a performance overhead of 108% on average with the

SPEC benchmark suite. These runtimes overheads are likely more than acceptable for debugging,

internal and external testing, and for mission-critical applications. Further, SoftBoundCETS’s store-

only checking mode that detects security vulnerabilities reduces the average overhead to 41%. The

low overheads with store-only checking while detecting all memory safety based security vulnera-

bilities makes it attractive for active deployment in production code.

To perform pointer-based checking on unmodified binaries with low overheads, we proposed

Watchdog hardware that injected micro-operations to propagate metadata and perform checks. One

of the challenges with Watchdog was related to the identification of pointers as binaries lack such

information. We designed heuristics and tool chain extensions for identifying pointers and showed

that it is effective in identifying pointers and eliminating unnecessary metadata accesses. Watchdog

160

streamlines the implementation by eliminating unnecessary dependences between original program

micro-operations and the injected micro-operations by maintaining the data and metadata in sepa-

rate physical registers. Watchdog eliminates unnecessary copies of the metadata by extending the

register renaming logic to facilitate physical register sharing. Further, we mitigated the structural

hazards that result with the use of memory access ports by the temporal safety checks using a lock

location cache. Watchdog demonstrates that it is possible to perform pointer-based checking purely

in hardware on unmodified binaries with 24% runtime overhead (17% for a single check uop con-

figuration) for enforcing both spatial and temporal memory safety without sophisticated compiler

instrumentation and analyses. Watchdog enforces memory safety on unmodified binaries with low

overheads making it attractive for deployment in production systems.

Leveraging the insights gained from building SoftBoundCETS instrumentation and Watchdog

instrumentation, we proposed HCH instrumentation to minimize the hardware changes compared

to Watchdog while providing significant acceleration for SoftBoundCETS. We observed that most of

the hardware investment in Watchdog was used to identify and propagate metadata with pointers. To

reduce the hardware changes, HCH leverages the compiler instrumentation that already has pointer

information to identify and propagate metadata with pointers. The hardware accelerates the checks

and the metadata accesses with new instructions, which are used by the compiler instrumentation.

Further, the new instructions can be implemented with localized changes to the instruction decoder.

We showed that HCH instrumentation can leverage the vector registers on modern machines to

pack the metadata and reduce the register pressure. HCH instrumentation with new instructions

reduces the overhead of pointer-based checking to 39% on average. These overheads will reduce

further with the new vector extensions that provide 256-bit registers. In summary, HCH provides

full memory safety with reasonably low overheads while incurring low hardware costs and using a

simple local instrumentation, which makes HCH attractive for adoption.

We conclude that it is possible to enforce full spatial and temporal safety with low performance

overheads using pointer-based checking with disjoint metadata on legacy C programs. Efficient

streamlined implementation is crucial in obtaining low performance overheads as we demonstrated

it with SoftBoundCETS, Watchdog and HCH. From our experience in building pointer-based check-

ing in various parts of the tool chain, we conclude that the time is ripe for lightweight HCH like

acceleration that reduces the performance overheads significantly while minimizing the hardware

investment with the help of the compiler.

161

8.2 Impact and Adoption

In the time since we presented our initial research papers that laid the groundwork for this disser-

tation at PLDI 2009, ISMM 2010 and ISCA 2012, Intel has announced support for pointer-based

checking with disjoint metadata in its latest C/C++ production compiler [57]. Like the SoftBound-

CETS instrumentation proposed in this dissertation, Intel’s tool is also a compiler-based implemen-

tation of pointer-based checking with per-pointer disjoint metadata. The motivation (security &

debugging) and the description of the tool’s operation (how bounds information is calculated and

propagated) are similar to what was described in our PLDI paper. Further, Intel’s tool uses the same

solutions proposed in our research to narrow the bounds of the pointers pointing to internal objects.

Although Intel’s tool is primarily focused on detecting bounds errors, it provides some pro-

tection against dangling pointer errors by changing the bounds of the freed pointer. However, to

provide comprehensive protection, such a scheme would need to change the bounds of all point-

ers aliasing with the freed pointers in memory or can adopt the identifier-based checking used in

this dissertation. The Intel tool has a higher overhead than the spatial safety mode of SoftBound-

CETS (our spatial safety scheme has 74% overhead in contrast to Intel’s tool that has 500% or more

overhead), probably because the current Intel tool is focused on debugging and needs to meet the

robustness constraints of an actual product.

To summarize, this industrial adoption of the specific approach used in this dissertation sup-

ports its overall feasibility as an effective and practical technique for preventing memory safety

violations. However, Intel’s compiler-based instrumentation is currently too slow (5× or more

slowdown) to use for production code. Although Intel has not announced any hardware support

for it, the argument for adding such support now becomes a simpler argument for accelerating an

already-established checking paradigm.

8.3 Future Directions and Further Challenges

In this dissertation, we focused on providing comprehensive memory safety for legacy C programs

with low performance overheads. We highlight some of the avenues that we did not explore in this

dissertation but are attractive for wide adoption of memory safety enforcement techniques for C

programs.

162

How Can Static Optimizations Help? We think that there are three directions where static opti-

mizations can significantly help the pointer-based checking approach proposed in this dissertation.

First, we did not explore many optimizations especially on the spatial checking front. Check op-

timizations with sophisticated analyses can not only eliminate the checks [23, 62, 130] but also

metadata accesses that feed just the checks. As we currently do not perform any loop peeling-based

spatial check elimination, there is an opportunity to design custom spatial check elimination that

can eliminate spatial checks [130]. Improving the precision of the alias analysis, custom check

elimination, and domain specific information on eliminating checks will further reduce the over-

head of pointer-based checking. Second, one of the key features that makes checking for C hard is

the conflation of pointers to unary objects (singletons) and arrays. Data structure and shape anal-

ysis that can infer singletons data objects precisely are likely to benefit spatial checking. Third, a

significant direction that we did not explore fully in this dissertation is the use of type adherence

to enforce memory safety for C programs. In this dissertation, we adopted pointer-based checking

as we wanted to enforce memory safety for legacy programs. If we change our goal from legacy

programs to future programs, then creating a subset of C or its variants to enforce type safety while

being expressive is an attractive avenue. In a collaborative effort, we are currently exploring av-

enues to subset C++, a variant of C, that eliminates most unsafe casts to provide type adherence,

which assists in providing memory safety.

How to Leverage and Provide Programmer Guidance? We did not leverage any programmer

provide annotations in this dissertation. Designing annotations that can incorporate programmer

feedback in the process of enforcing memory safety is an attractive avenue. Current language exten-

sions and annotation languages [73] take an all or nothing approach where a programmer is required

to annotate the program without which the system does not work. An incremental approach that

includes a default full memory safety scheme coupled with a system that leverages programmer pro-

vided annotations would further reduce the overheads and make pointer-based checking attractive

for wider adoption.

Further, we did not provide guidance to the programmer about performance overheads. Al-

though a program having a large number of metadata loads/store is indicative of performance over-

heads, providing concrete feedback about regions that are experiencing performance overheads due

to memory safety checks would be useful. Identification of such regions would enable programmers

163

to either restructure their code or provide annotations to reduce the overhead. There are many such

opportunities to restructure the code in existing applications. For example, when we experimented

with equake, we were seeing high overheads (300-400%) with SoftBoundCETS. We observed that

the benchmark was performing a huge number of metadata loads and stores. Further exploration

enabled us to figure out that the bad design choice in use of multidimensional arrays was the reason

for the overheads. We modified a few lines in the program to use a proper multidimensional array

that improved the performance of the baseline (without memory safety instrumentation) by 60%.

Further, it reduced the performance overhead with SoftBoundCETS to around 50%.

What are the Performance Implications with Multi-threaded Code? In this dissertation, we

focused our attention on enforcing memory safety for single-threaded programs. We discussed

the issues that we had to address to provide memory safety for multi-threaded programs in this

dissertation (Section 6.7). Understanding the performance implications of various design choices

in a multi-threaded setting will be interesting. Further, new optimizations probably need to be

designed to eliminate checks in a multithreaded context.

Beyond the future research directions, the goal of this dissertation will come to fruition only

when the broader community embraces these ideas and memory safe C programs become a reality.

8.4 Reflections on Memory Safety

This section offers my thoughts on the future of C programming language, its variants and enforcing

memory safety for them.1 These are opinions that I developed working on this dissertation for the

last five years. These opinions have also been shaped by my experience with real-world tools, other

research in this area, interactions with other safety/security researchers and the user community.

C and its Variants Are Not Going Away Anytime Soon Although many managed language have

emerged and have become popular, the key attribute that distinguishes C (and its variants) from the

rest is its focus on performance. On the other hand, some of the nice aspects of managed languages

are its focus on programmer productivity and safety. To bridge this gap, the C programming lan-

guage and its variants have evolved over time. When C and its variants provide type adherence, and
1These are my own thoughts and opinions and not necessarily shared by my co-authors. I use the singular pronoun

throughout this section.

164

are bestowed with a lightweight runtime that enforces memory safety, the difference in productiv-

ity between the managed world and the C world narrows down significantly, but the performance

advantages may remain. Then, the future C world with a nice ecosystem of libraries and utilities

combined with its focus on performance may become the ecosystem of choice rather than need.

Enforcing Spatial Safety For Type Safe Programs Is Not Hard Among the two concerns in

enforcing memory safety: spatial and temporal safety, enforcing spatial safety for programs that are

type safe is not difficult in agreement with the observations by CCured [94]. When the type casts

are eliminated from C programs or its variants, then a pointer-based checking scheme just needs

to check array accesses. Moreover, there is no need for disjoint metadata. Further, my experience

with C code indicates that programmers use these type casts to create poor man’s object-oriented

paradigms in C programs. An object oriented variant of C, i.e. C++, which provides first class

support for object-oriented programming often eliminates such casts. Spatial safety for such type-

safe variants can be enforced with a low overhead.

Temporal Safety vs Garbage Collection Garbage collection has emerged as an alternative to

manual memory management. Garbage collection address two issues compared to manual memory

management: (1) increases programmer productivity as programmers do not have to manually man-

age memory, and (2) avoids temporal safety violations that result with the incorrect use of manual

memory management. Garbage collection may be an attractive option for domains where either the

programs run for a short duration of time or the programs are not performance sensitive. A variant

of C that is type-safe can benefit from the research in the garbage collection community to build a

precise garbage collector.

On the other hand, for programs where garbage collection is not an option, providing mecha-

nisms to check that the programmers manage memory correctly is important. The use of temporal

safety mechanisms proposed in this dissertation will be attractive in those domains. In contrast

to spatial safety checking, unfortunately, enforcing temporal safety for type-safe programs is not

appreciably easier than it is for non-type safe programs.

Separate Compilation/Libraries and Debugging Support From my experience in developing

and maintaining SoftBoundCETS in the LLVM experimental subversion repository, supporting sep-

165

arate compilation and maintaining library compatibility is important. Many of the widely used util-

ities have esoteric build environments that generally use separate compilation. Enabling memory

safety checking using a push-button methodology with a compile time flag would foster adoption

avoiding the inertia in switching tools.

Ideally one would like to recompile all libraries to enforce memory safety. In the absence of

such recompilation, wrappers are required to interface with the libraries. Although writing wrappers

is a one-time effort, my experience writing it for a wide range of libraries indicates that it is still

hard even with disjoint metadata. To increase adoption, recompilation of libraries is essential.

An important aspect that is often overlooked in building memory safety enforcement tools is

providing good debugging support. Many of the memory safety tools either overlook debugging

support in the hunt for lower performance overheads or neglect performance overheads being pri-

marily debugging tools. Providing good debugging support with low performance overheads is

crucial for programmers to not only detect these bugs but also provide them enough contextual

information to fix them.

Misconceived Notions About Overheads Over the last five years, I have talked to numerous de-

velopers to encourage the wide adoption of memory safety checking tools. I realized that many

developers have misconceived notions of performance overhead. Many developers want tools to

have zero performance impact for programs that they are unwilling to change. In my experience,

I have observed that most programs can be tuned with minor changes that can reduce the perfor-

mance overhead of memory safety checking substantially. Further, my experience in tuning equake

demonstrates that there are opportunities to restructure and tune the existing C programs that not

only reduces the overheads with memory safety checking but also improves the performance of

the baseline. In my opinion, overheads in the range of 40-50% are largely unnoticeable for many

programs except for hand-crafted highly tuned programs. Many developers even disable advanced

compiler optimizations which itself slows down the program more than these reported overheads.

For highly tuned programs, providing annotations and having a feedback loop similar to annotations

with approaches like Deputy [35, 73] are attractive. Building interactive tools that check the validity

of the annotations are equally important as the memory safety checking tools themselves to make C

programs memory safe.

166

Bibliography

[1] Electric Fence. URL http://perens.com/FreeSoftware/ElectricFence/.

[2] Google Hack Attack Was Ultra Sophisticated, New Details Show. URL http://www.

wired.com/threatlevel/2010/01/operation-aurora/.

[3] Heap Spray Exploit Tutorial: Internet Explorer Use After Free Aurora Vul-

nerability. URL http://grey-corner.blogspot.com/2010/01/

heap-spray-exploit-tutorial-internet.html.

[4] National Vulnerability Database. NIST. URL http://web.nvd.nist.gov/.

[5] PageHeap. URL http://msdn.microsoft.com/en-us/library/cc265936.

aspx.

[6] SoftBound website. URL http://www.cis.upenn.edu/acg/softbound/.

[7] Adobe Reader vulnerability exploited in the wild, 2008.

URL http://www.trustedsource.org/blog/118/

Recent-Adobe-Reader-vulnerability-exploited-in-the-wild.

[8] Adobe Security Advisories: APSB08-19, Nov. 2008. URL http://www.adobe.com/

support/security/bulletins/apsb08-19.html.

[9] Dangling pointer vulnerability in nsPluginArray, 2008. URL http://www.mozilla.

org/security/announce/2010/mfsa2010-19.html.

[10] Use-after-free vulnerability when viewing XUL document with script disabled, 2011. URL

http://www.mozilla.org/security/announce/2011/mfsa2011-20.

html.

167

http://perens.com/FreeSoftware/ElectricFence/
http://www.wired.com/threatlevel/2010/01/operation-aurora/
http://www.wired.com/threatlevel/2010/01/operation-aurora/
http://grey-corner.blogspot.com/2010/01/heap-spray-exploit-tutorial-internet.html
http://grey-corner.blogspot.com/2010/01/heap-spray-exploit-tutorial-internet.html
http://web.nvd.nist.gov/
http://msdn.microsoft.com/en-us/library/cc265936.aspx
http://msdn.microsoft.com/en-us/library/cc265936.aspx
http://www.cis.upenn.edu/acg/softbound/
http://www.trustedsource.org/blog/118/Recent-Adobe-Reader-vulnerability-exploited-in-the-wild
http://www.trustedsource.org/blog/118/Recent-Adobe-Reader-vulnerability-exploited-in-the-wild
http://www.adobe.com/support/security/bulletins/apsb08-19.html
http://www.adobe.com/support/security/bulletins/apsb08-19.html
http://www.mozilla.org/security/announce/2010/mfsa2010-19.html
http://www.mozilla.org/security/announce/2010/mfsa2010-19.html
http://www.mozilla.org/security/announce/2011/mfsa2011-20.html
http://www.mozilla.org/security/announce/2011/mfsa2011-20.html

[11] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-Flow Integrity. In Proceedings

of the 12th ACM Conference on Computer and Communications Security, Nov. 2005.

[12] P. Akritidis. Cling: A memory allocator to mitigate dangling pointers. In Proceedings of the

19th USENIX conference on Security, 2010.

[13] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro. Preventing Memory Error Exploits

with WIT. In Proceedings of the 2008 IEEE Symposium on Security and Privacy, 2008.

[14] P. Akritidis, M. Costa, M. Castro, and S. Hand. Baggy Bounds Checking: An Efficient and

Backwards-compatible Defense against Out-of-Bounds Errors. In Proceedings of the 18th

USENIX Security Symposium, Aug. 2009.

[15] D. Arora, A. Raghunathan, S. Ravi, and N. K. Jha. Architectural Support for Safe Software

Execution on Embedded Processors. In Proceedings of the International Conference on

Hardware Software Co-design and System Synthesis, Oct. 2006.

[16] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient Detection of All Pointer and Array

Access Errors. In Proceedings of the SIGPLAN 1994 Conference on Programming Language

Design and Implementation, June 1994.

[17] H. Aygn. D.U.M.A. — Detect Unintended Memory Access. URL http://duma.

sourceforge.net/.

[18] A. Baratloo, N. Singh, and T. Tsai. Transparent Runtime Defense Against Stack Smashing

Attacks. In Proceedings of the 2000 USENIX Annual Technical Conference, 2000.

[19] E. G. Barrantes, D. H. Ackley, T. S. Palmer, D. Stefanovic, and D. D. Zovi. Randomized

Instruction Set Emulation to Disrupt Binary Code Inject Attacks. In Proceedings of the 10th

ACM Conference on Computer and Communications Security, 2003.

[20] E. D. Berger and B. G. Zorn. DieHard: Probabilistic Memory Safety for Unsafe Languages.

In Proceedings of the SIGPLAN 2006 Conference on Programming Language Design and

Implementation, June 2006.

[21] S. Bhatkar and R. Sekar. Data Space Randomization. In Proceedings of the 5th International

Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, 2008.

168

http://duma.sourceforge.net/
http://duma.sourceforge.net/

[22] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Ri-

val. A Static Analyzer for Large Safety-critical Software. In Proceedings of the SIGPLAN

2003 Conference on Programming Language Design and Implementation, June 2003.

[23] R. Bodı́k, R. Gupta, and V. Sarkar. ABCD: Eliminating Array Bounds Checks on Demand.

In Proceedings of the SIGPLAN 2000 Conference on Programming Language Design and

Implementation, June 2000.

[24] H.-J. Boehm. Space Efficient Conservative Garbage Collection. In Proceedings of the SIG-

PLAN 1993 Conference on Programming Language Design and Implementation, June 1993.

[25] C. Cadar, P. Akritidis, M. Costa, J.-P. Martin, and M. Castro. Data Randomization. Technical

report, Microsoft Research, 2008.

[26] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick, E. Brooks, and K. Warren. Introduction

to UPC and Language Specification. Technical report, The UPC Consortium, 1999.

[27] M. Castro, M. Costa, and T. Harris. Securing Software by Enforcing Data-Flow Integrity. In

Proceedings of the 7th USENIX Symposium on Operating Systems Design and Implementa-

tion, Nov. 2006.

[28] J. M. Chang and E. F. Gehringer. Evaluation of an object-caching co-processor design for

object-oriented systems. In Proceedings of the International Conference on Computer De-

sign, Oct. 1993.

[29] S. Chen, M. Kozuch, T. Strigkos, B. Falsafi, P. B. Gibbons, T. C. Mowry, V. Ramachandran,

O. Ruwase, M. Ryan, and E. Vlachos. Flexible Hardware Acceleration for Instruction-Grain

Program Monitoring. In Proceedings of the 35th Annual International Symposium on Com-

puter Architecture, June 2008.

[30] S. Chen, M. Kozuch, T. Strigkos, B. Falsafi, P. B. Gibbons, T. C. Mowry, O. Ruwase,

M. Ryan, and E. Vlachos. Flexible Hardware Acceleration for Instruction-Grain Program

Monitoring. In Proceedings of the 35th Annual International Symposium on Computer Ar-

chitecture, June 2008.

169

[31] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. Non-control-data attacks are realistic

threats. In Proceedings of the 14th conference on USENIX Security Symposium, 2005.

[32] W. Chuang, S. Narayanasamy, and B. Calder. Accelerating Meta Data Checks for Software

Correctness and Security. Journal of Instruction-Level Parallelism, 9, June 2007.

[33] W. Chuang, S. Narayanasamy, and B. Calder. Bounds Checking with Taint-Based Analysis.

In Proceedings of the International Conference on High Performance Embedded Architec-

tures & Compilers (HiPEAC), Jan. 2007.

[34] C. Click, G. Tene, and M. Wolf. The Pauseless GC Algorithm, 2005.

[35] J. Condit, M. Harren, Z. Anderson, D. Gay, and G. C. Necula. Dependent Types for Low-

Level Programming. In Proceedings of the 16th European Symposium on Programming, Apr.

2007.

[36] K. D. Cooper, M. W. Hall, and K. Kennedy. A Methodology for Procedure Cloning. Comput.

Lang., 19(2):105–117, 1993.

[37] M. L. Corliss, E. C. Lewis, and A. Roth. DISE: A Programmable Macro Engine for Cus-

tomizing Applications. In Proceedings of the 30th Annual International Symposium on Com-

puter Architecture, June 2003.

[38] C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole. Buffer Overflows: Attacks and

Defenses for the Vulnerability of the Decade. In Proceedings of the Foundations of Intrusion

Tolerant Systems, 2003.

[39] J. R. Crandall and F. T. Chong. Minos: Control Data Attack Prevention Orthogonal to Mem-

ory Model. In Proceedings of the 37th Annual IEEE/ACM International Symposium on Mi-

croarchitecture, Dec. 2004.

[40] J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve. Secure Virtual Architecture: A Safe

Execution Environment for Commodity Operating Systems. In Proceedings of the 21st ACM

Symposium on Operating Systems Principles, Oct. 2007.

170

[41] R. Cytron, J. Ferrante, B. K. Rosen, M. k. N. Wegman, and F. K. Zadeck. Efficiently com-

puting static single assignment form and the control dependence graph. ACM Transactions

on Programming Languages and Systems, 13:451–490, 1991.

[42] M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: A Flexible Information Flow Architec-

ture for Software Security. In Proceedings of the 34th Annual International Symposium on

Computer Architecture, June 2007.

[43] J. Devietti, C. Blundell, M. M. K. Martin, and S. Zdancewic. Hardbound: Architectural

Support for Spatial Safety of the C Programming Language. In Proceedings of the 13th In-

ternational Conference on Architectural Support for Programming Languages and Operating

Systems, Mar. 2008.

[44] D. Dhurjati and V. Adve. Backwards-Compatible Array Bounds Checking for C with Very

Low Overhead. In Proceedings of the 28th International Conference on Software Engineer-

ing (ICSE), 2006.

[45] D. Dhurjati and V. Adve. Efficiently Detecting All Dangling Pointer Uses in Production

Servers. In Proceedings of the International Conference on Dependable Systems and Net-

works, June 2006.

[46] D. Dhurjati, S. Kowshik, and V. Adve. SAFECode: Enforcing Alias Analysis for Weakly

Typed Languages. In Proceedings of the SIGPLAN 2006 Conference on Programming Lan-

guage Design and Implementation, June 2006.

[47] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner. Memory Safety Without Runtime Checks

or Garbage Collection. In Proceedings of the 2003 ACM SIGPLAN Conference on Language,

Compiler, and Tool for Embedded Systems (LCTES), 2003.

[48] N. Dor, M. Rodeh, and M. Sagiv. CSSV: Towards a Realistic Tool for Statically Detecting All

Buffer Overflows in C. In Proceedings of the SIGPLAN 2003 Conference on Programming

Language Design and Implementation, June 2004.

[49] W. Dormann. Microsoft Internet Explorer Data Binding Memory Corruption Vulnerability.

US-CERT, Dec. 2008. URL http://www.kb.cert.org/vuls/id/493881.

171

http://www.kb.cert.org/vuls/id/493881

[50] M. Drinic and D. Kirovski. A Hardware-Software Platform for Intrusion Prevention. In

Proceedings of the 37th Annual IEEE/ACM International Symposium on Microarchitecture,

Dec. 2004.

[51] F. C. Eigler. Mudflap: Pointer Use Checking for C/C++. In GCC Developer’s Summit, 2003.

[52] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula. XFI: Software Guards

for System Address Spaces. In Proceedings of the 7th USENIX Symposium on Operating

Systems Design and Implementation, Nov. 2006.

[53] D. Evans. Static Detection of Dynamic Memory Safety Errors. In Proceedings of the SIG-

PLAN 1996 Conference on Programming Language Design and Implementation, May 1996.

[54] A. M. Fiskiran and R. B. Lee. Runtime Execution Monitoring (REM) to Detect and Prevent

Malicious Code Execution. In Proceedings of the International Conference on Computer

Design, Oct. 2004.

[55] M. Frigo, C. E. Leiserson, and K. H. Randall. The Implementation of the Cilk-5 Multi-

threaded Language. In Proceedings of the SIGPLAN 1998 Conference on Programming

Language Design and Implementation, June 1998.

[56] V. Ganapathy, S. Jha, D. Chandler, D. Melski, and D. Vitek. Buffer Overrun Detection using

Linear Programming and Static Analysis. In Proceedings of the 10th ACM Conference on

Computer and Communications Security, 2003.

[57] K. Ganesh. Pointer Checker: Easily Catch Out-of-Bounds Memory Accesses. Intel

Corporation, 2012. URL http://software.intel.com/sites/products/

parallelmag/singlearticles/issue11/7080_2_IN_ParallelMag_

Issue11_Pointer_Checker.pdf.

[58] D. Gay and A. Aiken. Memory Management with Explicit Regions. In Proceedings of the

SIGPLAN 1998 Conference on Programming Language Design and Implementation, June

1998.

[59] D. Gay, R. Ennals, and E. Brewer. Safe Manual Memory Management. In Proceedings of

the 2007 International Symposium on Memory Management, Oct. 2007.

172

http://software.intel.com/sites/products/parallelmag/singlearticles/issue11/7080_2_IN_ParallelMag_Issue11_Pointer_Checker.pdf
http://software.intel.com/sites/products/parallelmag/singlearticles/issue11/7080_2_IN_ParallelMag_Issue11_Pointer_Checker.pdf
http://software.intel.com/sites/products/parallelmag/singlearticles/issue11/7080_2_IN_ParallelMag_Issue11_Pointer_Checker.pdf

[60] S. Ghose, L. Gilgeous, P. Dudnik, A. Aggarwal, and C. Waxman. Architectural Support for

Low Overhead Detection of Memory Viloations. In Proceedings of the Design, Automation

and Test in Europe, 2009.

[61] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney. Region-Based Mem-

ory Management in Cyclone. In Proceedings of the SIGPLAN 2002 Conference on Program-

ming Language Design and Implementation, June 2002.

[62] R. Gupta. A Fresh Look at Optimizing Array Bound Checking. In Proceedings of the

SIGPLAN 1990 Conference on Programming Language Design and Implementation, June

1990.

[63] B. Hackett, M. Das, D. Wang, and Z. Yang. Modular Checking for Buffer Overflows in the

Large. In Proceedings of the 28th International Conference on Software Engineering (ICSE),

2006.

[64] T. Harris, S. Tomic, A. Cristal, and O. Unsal. Dynamic filtering: multi-purpose architecture

support for language runtime systems. In Proceedings of the 15th International Conference

on Architectural Support for Programming Languages and Operating Systems, Mar. 2010.

[65] R. Hastings and B. Joyce. Purify: Fast Detection of Memory Leaks and Access Errors. In

Proc. of the Winter Usenix Conference, 1992.

[66] M. Hertz and E. D. Berger. Quantifying the Performance of Garbage Collection vs. Explicit

Memory Management. 2005.

[67] M. Hicks, G. Morrisett, D. Grossman, and T. Jim. Experience With Safe Manual Memory

Management in Cyclone. In Proceedings of the 2004 International Symposium on Memory

Management, Oct. 2004.

[68] A. Hilton and A. Roth. BOLT: Energy-Efficient Out-of-Order Latency-Tolerant Execution.

In Proceedings of the 16th Symposium on High-Performance Computer Architecture, Feb.

2010.

[69] A. Hilton and A. Roth. Decoupled Store Completion/Silent Deterministic Replay: En-

abling Scalable Data Memory for CPR/CFP Processors BOLT: Energy-Efficient Out-of-

173

Order Latency-Tolerant Execution. In Proceedings of the 37th Annual International Sym-

posium on Computer Architecture, June 2010.

[70] A. D. Hilton, S. Nagarakatte, and A. Roth. iCFP: Tolerating All-Level Cache Misses in In-

Order Processors. In Proceedings of the 15th Symposium on High-Performance Computer

Architecture, Feb. 2009.

[71] Microsoft Internet Explorer HTML TIME ’ondatasetcomplete’ Use After Free Vulnerability.

iDefense Labs, June 2009. URL http://labs.idefense.com/intelligence/

vulnerabilities/display.php?id=817.

[72] Multiple Vendor WebKit Error Handling Use After Free Vulnerability. iDe-

fense Labs, June 2009. URL http://labs.idefense.com/intelligence/

vulnerabilities/display.php?id=803.

[73] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang. Cyclone: A Safe

Dialect of C. In Proceedings of the 2002 USENIX Annual Technical Conference, June 2002.

[74] J. A. Joao, O. Mutlu, and Y. N. Patt. Flexible Reference-Counting-Based Hardware Accel-

eration for Garbage Collection. In Proceedings of the 36th Annual International Symposium

on Computer Architecture, June 2009.

[75] R. W. M. Jones and P. H. J. Kelly. Backwards-Compatible Bounds Checking for Arrays and

Pointers in C Programs. In Third International Workshop on Automated Debugging, Nov.

1997.

[76] S. Jourdan, R. Ronen, M. Bekerman, B. Shomar, and A. Yoaz. A novel renaming scheme to

exploit value temporal locality through physical register reuse and unification. In Proceed-

ings of the 31st Annual IEEE/ACM International Symposium on Microarchitecture, Nov.

1998.

[77] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering Code-Injection Attacks With

Instruction-Set Randomization. In Proceedings of the 10th ACM Conference on Computer

and Communications Security, 2003.

174

http://labs.idefense.com/intelligence/vulnerabilities/display.php?id=817
http://labs.idefense.com/intelligence/vulnerabilities/display.php?id=817
http://labs.idefense.com/intelligence/vulnerabilities/display.php?id=803
http://labs.idefense.com/intelligence/vulnerabilities/display.php?id=803

[78] S. C. Kendall. BCC: Runtime Checking for C Programs. In Proceedings of the USENIX

Summer Technical Conference, 1983.

[79] M. Kharbutli, X. Jiang, Y. Solihin, G. Venkataramani, and M. Prvulovic. Comprehensively

and Efficiently Protecting the Heap. In Proceedings of the 12th International Conference on

Architectural Support for Programming Languages and Operating Systems, Oct. 2006.

[80] V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure Execution via Program Shepherding.

In Proceedings of the 11th USENIX Security Symposium, Aug. 2002.

[81] G. Kroah-Hartman. The Linux Kernel Driver Model: The Benefits of Working Together. In

A. Oram and G. Wilson, editors, Beautiful Code: Leading Programmers Explain How They

Think. O’Reilly Media, Inc., June 2007.

[82] C. Lattner. Macroscopic Data Structure Analysis and Optimization. PhD thesis, University

of Illinois at Urbana-Champaign, 2005.

[83] C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong Program Analysis

& Transformation. In Proceedings of the International Symposium on Code Generation and

Optimization, 2004.

[84] C. Lattner and V. Adve. Automatic Pool Allocation: Improving Performance by Controlling

Data Structure Layout in the Heap. In Proceedings of the SIGPLAN 2005 Conference on

Programming Language Design and Implementation, June 2005.

[85] R. B. Lee, P. C. S. Kwan, J. P. McGregor, J. Dwoskin, and Z. Wang. Architecture for Pro-

tecting Critical Secrets in Microprocessors. In Proceedings of the 32nd Annual International

Symposium on Computer Architecture, June 2005.

[86] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, and M. Horowitz. Ar-

chitectural Support for Copy and Tamper Resistant Software. In Proceedings of the Ninth

International Conference on Architectural Support for Programming Languages and Oper-

ating Systems, Nov. 2000.

175

[87] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou. Bugbench: Benchmarks for Evaluating

Bug Detection tools. In In PLDI Workshop on the Evaluation of Software Defect Detection

Tools, June 2005.

[88] V. B. Lvin, G. Novark, E. D. Berger, and B. G. Zorn. Archipelago: trading address space for

reliability and security. In Proceedings of the 13th International Conference on Architectural

Support for Programming Languages and Operating Systems, Mar. 2008.

[89] M. Meyer. A Novel Processor Architecture with Tag-Free Pointers. In IEEE Micro, 2004.

[90] G. Morrisett. Compiling with Types. PhD thesis, Carnegie Mellon University, 1995.

[91] S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. Watchdog: Hardware for Safe and

Secure Manual Memory Management and Full Memory Safety. In Proceedings of the 39th

Annual International Symposium on Computer Architecture, June 2012.

[92] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic. SoftBound: Highly Com-

patible and Complete Spatial Memory Safety for C. In Proceedings of the SIGPLAN 2009

Conference on Programming Language Design and Implementation, June 2009.

[93] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic. CETS: Compiler Enforced

Temporal Safety for C. In Proceedings of the 2010 International Symposium on Memory

Management, June 2010.

[94] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer. CCured: Type-Safe

Retrofitting of Legacy Software. ACM Transactions on Programming Languages and Sys-

tems, 27(3), May 2005.

[95] N. Nethercote and J. Fitzhardinge. Bounds-Checking Entire Programs Without Recompiling.

In Proceedings of the Second Workshop on Semantics, Program Analysis, and Computing

Environments for Memory Management, 2004.

[96] N. Nethercote and J. Seward. How to shadow every byte of memory used by a program. In

Proceedings of the 3rd ACM SIGPLAN/SIGOPS International Conference on Virtual Execu-

tion Environments, 2007.

176

[97] N. Nethercote and J. Seward. Valgrind: A Framework for Heavyweight Dynamic Binary In-

strumentation. In Proceedings of the SIGPLAN 2007 Conference on Programming Language

Design and Implementation, June 2007.

[98] NIST Juliet Test Suite for C/C++. NIST, 2010. URL http://samate.nist.gov/

SRD/testCases/suites/Juliet-2010-12.c.cpp.zip.

[99] G. Novark and E. D. Berger. DieHarder: securing the heap. In Proceedings of the 17th ACM

Conference on Computer and Communications Security, 2010.

[100] G. Novark, E. D. Berger, and B. G. Zorn. Exterminator: Automatically Correcting Memory

Errors with High Probability. In Proceedings of the SIGPLAN 2007 Conference on Program-

ming Language Design and Implementation, June 2007.

[101] G. Novark, E. D. Berger, and B. G. Zorn. Exterminator: Automatically Correcting Memory

Errors with High Probability. In Proceedings of the SIGPLAN 2007 Conference on Program-

ming Language Design and Implementation, June 2007.

[102] Y. Oiwa. Implementation of the Memory-safe Full ANSI-C Compiler. In Proceedings of the

SIGPLAN 2009 Conference on Programming Language Design and Implementation, June

2009.

[103] H. Patil and C. N. Fischer. Low-Cost, Concurrent Checking of Pointer and Array Accesses

in C Programs. Software — Practice & Experience, 27(1):87–110, 1997.

[104] K. Pattabiraman, V. Grover, and B. G. Zorn. Samurai: protecting critical data in unsafe lan-

guages. In Proceedings of the 3rd ACM SIGOPS/EuroSys European Conference on Computer

Systems, 2008.

[105] C. Peng and G. S. Sohi. Cache Memory Design Considerations to Support Languages with

Dynamic Heap Allocation. Technical report, University of Wisconsin-Madison, 1989.

[106] V. Petric, T. Sha, and A. Roth. RENO: A Rename-Based Instruction Optimizer. In Proceed-

ings of the 32nd Annual International Symposium on Computer Architecture, June 2005.

[107] J. Pincus and B. Baker. Beyond Stack Smashing: Recent Advances in Exploiting Buffer

Overruns. IEEE Security & Privacy, 2(4):20–27, 2004.

177

http://samate.nist.gov/SRD/testCases/suites/Juliet-2010-12.c.cpp.zip
http://samate.nist.gov/SRD/testCases/suites/Juliet-2010-12.c.cpp.zip

[108] P. Porras, H. Saidi, and V. Yegneswaran. An Analysis of Conficker’s Logic and Rendezvous

Points. Technical report, SRI International, Feb. 2009.

[109] F. Qin, Z. Li, Y. Zhou, C. Wang, H. Kim, and Y. Wu. LIFT: A Low-Overhead Practical

Information Flow Tracking System for Detecting General Security Attacks. In Proceedings

of the 39th Annual IEEE/ACM International Symposium on Microarchitecture, Dec. 2006.

[110] F. Qin, S. Lu, and Y. Zhou. SafeMem: Exploiting ECC-Memory for Detecting Memory

Leaks and Memory Corruption During Production Runs. In Proceedings of the 11th Sympo-

sium on High-Performance Computer Architecture, Feb. 2005.

[111] P. Ratanaworabhan, B. Livshits, and B. Zorn. NOZZLE: a defense against heap-spraying

code injection attacks. In Proceedings of the 18th conference on USENIX security sympo-

sium, 2009.

[112] A. Roth. Physical Register Reference Counting. IEEE TCCA Computer Architecture Letters,

7(1), Jan. 2008.

[113] O. Ruwase and M. S. Lam. A Practical Dynamic Buffer Overflow Detector. In Proceedings

of the Network and Distributed Systems Security Symposium, Feb. 2004.

[114] W. J. Schmidt and K. D. Nilsen. Performance of Hardware-Assisted Real-Time Garbage

Collector. In Proceedings of the Sixth International Conference on Architectural Support for

Programming Languages and Operating Systems, Oct. 1994.

[115] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. AddressSanitizer: A Fast Ad-

dress Sanity Checker. In Proceedings of the USENIX Annual Technical Conference, 2012.

[116] J. Seward and N. Nethercote. Using Valgrind to Detect Undefined Value Errors with Bit-

Precision. In Proceedings of the 2005 USENIX Annual Technical Conference, Apr. 2005.

[117] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh. On the effectiveness

of address-space randomization. In Proceedings of the 11th ACM conference on Computer

and communications security, 2004.

178

[118] W. Shi, J. Fryman, G. Gu, H.-H. Lee, Y. Zhang, and J. Yang. InfoShield: A Security Archi-

tecture for Protecting Information Usage in Memory. In Proceedings of the 12th Symposium

on High-Performance Computer Architecture, Feb. 2006.

[119] W. Shi and H.-H. S. Lee. Authentication Control Point and its Implications for Secure Pro-

cessor Design. In Proceedings of the 39th Annual IEEE/ACM International Symposium on

Microarchitecture, Dec. 2006.

[120] M. S. Simpson and R. K. Barua. MemSafe: Ensuring the Spatial and Temporal Memory

Safety of C at Runtime. In IEEE International Workshop on Source Code Analysis and

Manipulation, 2010.

[121] A. Slowinska, T. Stancescu, and H. Bos. Body armor for binaries: preventing buffer over-

flows for recompilation, 2012.

[122] G. Smith and D. Volpano. A Sound Polymorphic Type System for a Dialect of C. Science of

Computer Programming, 1998.

[123] J. L. Steffen. Adding Runtime Checking to the Portable C Compiler. Software Practice and

Experience, 22(4):305–316, 1992.

[124] G. E. Suh, C. W. O’Donnell, I. Sachdev, and S. Devadas. Design and Implementation of the

AEGIS Single-Chip Secure Processor Using Physical Random Functions. In Proceedings of

the 32nd Annual International Symposium on Computer Architecture, June 2005.

[125] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan, G. Ottoni, J. A. Blome, G. A. Reis,

M. Vachharajani, and D. I. August. RIFLE: An Architectural Framework for User-Centric

Information-Flow Security. In Proceedings of the 37th Annual IEEE/ACM International

Symposium on Microarchitecture, Dec. 2004.

[126] G. Venkataramani, B. Roemer, M. Prvulovic, and Y. Solihin. MemTracker: Efficient and

Programmable Support for Memory Access Monitoring and Debugging. In Proceedings of

the 13th Symposium on High-Performance Computer Architecture, Feb. 2007.

179

[127] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A First Step towards Automated

Detection of Buffer Overrun Vulnerabilities. In Proceedings of the Network and Distributed

Systems Security Symposium, 2000.

[128] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient Software-based Fault

Isolation. In Proceedings of the 14th Symposium on Operating System Principles, Oct. 1993.

[129] J. Wilander and M. Kamkar. A Comparison of Publicly Available Tools for Dynamic Buffer

Overflow Prevention. In Proceedings of the Network and Distributed Systems Security Sym-

posium, 2003.

[130] T. Würthinger, C. Wimmer, and H. Mössenböck. Array Bounds Check Elimination for the

Java HotSpot Client Compiler. In Proceedings of the 5th International Symposium on Prin-

ciples and Practice of Programming in Java, 2007.

[131] W. Xu, D. C. DuVarney, and R. Sekar. An Efficient and Backwards-Compatible Transforma-

tion to Ensure Memory Safety of C Programs. In Proceedings of the 12th ACM SIGSOFT

International Symposium on Foundations of Software Engineering (FSE), 2004.

[132] B. Yee, D. Sehr, G. Dardyk, B. Chen, R. Muth, T. Ormandy, S. Okasaka, N. Narula, and

N. Fullagar. NativeClient: A Sandbox for Portable, Untrusted x86 Native Code. In Proceed-

ings of the 2009 IEEE Symposium on Security and Privacy, 2009.

[133] S. H. Yong and S. Horwitz. Protecting C Programs From Attacks via Invalid Pointer Derefer-

ences. In Proceedings of the 11th ACM SIGSOFT International Symposium on Foundations

of Software Engineering (FSE), 2003.

[134] Y. Younan, P. Philippaerts, L. Cavallaro, R. Sekar, F. Piessens, and W. Joosen. PAriCheck:

An Efficient Pointer Arithmetic Checker for C Programs. In Proceedings of the 5th ACM

Symposium on Information, Computer and Communication, Computer and Communications

Security, 2010.

[135] Q. Zeng, D. Wu, and P. Liu. Cruiser: concurrent heap buffer overflow monitoring using

lock-free data structures. In Proceedings of the SIGPLAN 2011 Conference on Programming

Language Design and Implementation, June 2011.

180

[136] K. Zetter. Operation Aurora. URL http://en.wikipedia.org/wiki/

Operation_Aurora.

[137] J. Zhao, S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. Formalizing the LLVM Inter-

mediate Representation for Verified Program Transformations. In Proceedings of The 39th

ACM SIGPLAN/SIGACT Symposium on Principles of Programming Languages (POPL), Jan.

2012.

[138] Q. Zhao, D. Bruening, and S. Amarasinghe. Umbra: Efficient and Scalable Memory Shadow-

ing. In Proceedings of the International Symposium on Code Generation and Optimization,

2010.

[139] F. Zhou, J. Condit, Z. Anderson, I. Bagrak, R. Ennals, M. Harren, G. Necula, and E. Brewer.

SafeDrive: Safe and Recoverable Extensions Using Language-Based Techniques. In Pro-

ceedings of the 7th USENIX Symposium on Operating Systems Design and Implementation,

Nov. 2006.

[140] P. Zhou, W. Liu, L. Fei, S. Lu, F. Qin, Y. Zhou, S. Midkiff, and J. Torrellas. AccMon:

Automatically Detecting Memory-related Bugs Via Program Counter-based Invariants. In

Proceedings of the 37th Annual IEEE/ACM International Symposium on Microarchitecture,

Dec. 2004.

[141] P. Zhou, F. Qin, W. Liu, Y. Zhou, and J. Torrellas. iWatcher: Efficient Architectural Support

for Software Debugging. In Proceedings of the 31st Annual International Symposium on

Computer Architecture, June 2004.

[142] X. Zhuang, T. Zhang, and S. Pande. Using Branch Correlation to Identify Infeasible Paths for

Anomaly Detection. In Proceedings of the 39th Annual IEEE/ACM International Symposium

on Microarchitecture, Dec. 2006.

181

http://en.wikipedia.org/wiki/Operation_Aurora
http://en.wikipedia.org/wiki/Operation_Aurora

	Acknowledgments
	Abstract
	Contents
	List of Figures
	Introduction
	Challenges with Existing Proposals
	Pointer-Based Checking with Disjoint Metadata
	Can Pointer-Based Checking be Performed within the Compiler?
	Can Pointer-Based Checking be Performed within the Hardware?
	Can Pointer-Based Checking be Performed with a Hardware/Compiler Hybrid?
	Contributions of this Dissertation
	Dissertation Structure
	Differences from Previously Published Versions of this Work

	Overview of Memory Safety Enforcement
	The Problem of Memory Safety in C
	Spatial and Temporal Safety Violations
	Why are Memory Safety Violations Common with C?
	Consequences of Memory Safety Violations

	Enforcing Memory Safety
	Relationship Between Type Safety and Memory Safety
	Memory Safety with Safe Languages
	Design Alternatives in Enforcing Memory Safety for C
	Bug Finding vs Always-on Dynamic Checking Tools

	Detecting Spatial Safety Violations
	Tripwire Approaches
	Object-Based Approaches
	Pointer-Based Approaches
	Source Incompatibility with Fat Pointers and Arbitrary Type Casts
	Comparison of Spatial Safety Approaches

	Detecting Temporal Safety Violations
	Garbage Collection in Safe Languages
	Garbage Collection in Type-Unsafe Languages like C
	Location-Based Temporal Checking
	Identifier-Based Temporal Checking
	Analysis of the Temporal Checking Design Space

	Program Instrumentation
	Summary

	Pointer-Based Checking with Disjoint Metadata
	Approach Overview
	Metadata with Pointers
	Spatial Memory Safety Metadata and Checking
	Temporal Memory Safety Metadata and Checking
	Lock and Key Metadata
	Temporal Safety Checks

	Control Flow Integrity Checks
	Propagation on Pointer Arithmetic and Assignment
	Optional Narrowing of Pointer Bounds
	Disjoint Metadata
	Mapping Pointers to their Metadata
	Comprehensive and Compatible Detection with Disjoint Metadata

	Modular Checking with Separate Compilation
	Checking Modes With Disjoint Metadata
	Usage Model
	Evaluation of Effectiveness in Detecting Errors
	Spatial Safety
	Temporal Safety
	Previously Unknown Safety Errors

	Evaluation of Source Compatibility
	Summary

	Compiler Instrumentation for Pointer-Based Memory Safety
	Background on LLVM
	Structure of the LLVM IR
	Operations in the LLVM IR

	Memory Safety Instrumentation on the LLVM IR
	Metadata Propagation for Pointer Parameters and Returns
	Metadata Organization
	Instrumentation Handlers for Compiler Instrumentation
	The SoftBoundCETS Instrumentation Algorithm
	Advantages of Compiler Instrumentation
	Instrumenting Optimized Code
	Pointer Identification
	Other Instrumentation Considerations

	Optimizations to SoftBoundCETS
	Implementing Custom Check Elimination
	Optimizing Type-Safe Programs

	Performance Evaluation
	Prototype
	Benchmarks
	Runtime Overheads of Enforcing Spatial and Temporal Safety
	Benefits of Compiler Instrumentation
	Enforcing Spatial-only Safety and Temporal-only Safety
	Comparison With Other Approaches
	Impact of Custom Check Elimination
	Impact of Custom Check Elimination with Type-Safe Programs
	Instruction Overheads with SoftBoundCETS
	Memory Overheads with SoftBoundCETS

	Summary

	Hardware Enforced Memory Safety
	The Watchdog Approach
	Operation Overview
	Metadata Assignment on Memory Allocation/Deallocation
	Checks on Memory Accesses
	In-Memory Pointer Metadata
	In-Register Metadata

	Identifying Pointer Load/Store Operations
	Conservative Pointer Identification
	ISA-Assisted Pointer Identification

	Decoupled Register Metadata
	Strawman: Monolithic Register Data/Metadata
	Decoupled Register Data/Metadata
	Decoupled Metadata Example

	Summary of Hardware Changes
	Performance Evaluation
	Methodology
	Runtime Overheads of Watchdog

	Summary

	Hardware-Accelerated Compiler Instrumentation for Memory Safety
	Sources of Instruction Overhead with Compiler Instrumentation
	New Instructions for Accelerating Checking and Metadata Lookups
	SChk Instruction
	TChk Instruction
	Revisiting Metadata Organization for New Metadata Instructions
	MetaLoad Instruction
	MetaStore Instruction

	Packed Metadata to Reduce Register Pressure and Multiple Loads/Stores
	New Instructions for Packed Metadata Checking and Metadata Loads/Stores
	SChkXMM
	TChkXMM Instruction
	MetaLoadXMM and MetaStoreXMM Instructions

	Summary of Hardware Changes
	Qualitative Comparison of HCH and Watchdog
	Differences between HCH and Watchdog
	Advantages and Disadvantages of HCH
	Advantages and Disadvantages of Watchdog

	Support for Multithreading
	Handling Well-Synchronized Programs without Data Races
	Handling Well-Synchronized Programs with Synchronization Races
	Handling Programs with Data Races

	Experimental Evaluation
	Experimental Methodology
	Runtime Performance Overhead with Packed Metadata
	Overheads with New Instructions
	Impact of Various Instructions

	Summary

	Related Work
	Language Extensions and Static Analysis Based Solutions
	Probabilistic Approaches with Randomization
	Dynamic Checking Solutions
	Pointer Checking Tools
	Object-Based Checking Tools
	Enforcing Memory Safety on Binaries
	Indirect Approaches for Memory Safety
	Software Fault Isolation

	Hardware Support for Memory Safety
	Checking with Hardware
	Hardware Acceleration for Garbage Collection
	Taint checking and Intrusion Detection
	Cryptographic and Tamper Resistant Hardware

	Other Acceleration Techniques
	Region-Based Memory Management
	Acceleration for Metadata and Checks

	Conclusions
	Dissertation Summary
	Impact and Adoption
	Future Directions and Further Challenges
	Reflections on Memory Safety

	Bibliography

