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ABSTRACT

MEMORY MODEL SENSITIVE ANALYSIS OF CONCURRENT DATA TYPES

Sebastian Burckhardt

Rajeev Alur, Milo Martin

Concurrency libraries can facilitate the development of multi-threaded programs
by providing concurrent implementations of familiar data types such as queues and
sets. Many optimized algorithms that use lock-free synchronization have been pro-
posed for multiprocessors. Unfortunately, such algorithms are notoriously difficult
to design and verify and may contain subtle concurrency bugs. Moreover, it is often
difficult to place memory ordering fences in the implementation code. Such fences
are required for correct function on relaxed memory models, which are common on
contemporary multiprocessors.

To address these difficulties, we describe an automated verification procedure
based on bounded model checking that can exhaustively check all concurrent execu-
tions of a given test program on a relaxed memory model and can either (1) verify
that the data type is sequentially consistent, or (2) construct a counterexample.

Given C implementation code, a bounded test program, and an axiomatic mem-
ory model specification, our CheckFence prototype verifies operation-level sequential
consistency by encoding the existence of inconsistent executions as solutions to a
propositional formula and using a standard SAT solver to decide satisfiability.

We applied CheckFence to five previously published algorithms and found several
bugs (some not previously known). Furthermore, we determined where to place
memory ordering fences in the implementations and verified their sufficiency on our
test suite.
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Chapter 1

Introduction

Shared-memory multiprocessor architectures are now ubiquitous. With today’s ad-
vanced chip manufacturing technology, several processors can easily fit onto a single
chip. In fact, because of the better performance/power ratio of multiprocessors,
hardware architects now prefer to provide multiple cores rather than a highly opti-
mized single core.

Unfortunately, even as multiprocessor hardware becomes cheap, writing software
that can unleash its performance potential remains challenging [67]. We see this
gap as an opportunity for researchers, as it is likely to lead to a high demand for
strategies that can aid programmers to write simple, correct, efficient and portable
multi-threaded programs.

In this introductory chapter, we first describe the specific problem this work
addresses (Section 1.1). Next, we present our solution and report on our practical
experiences applying it (Section 1.2). Then, we compare our work to prior results
and tools in this general area (Section 1.3). Finally, we conclude this chapter with a
description of the logical structure of this document and a brief summary of each of
the remaining chapters (Section 1.5).

1.1 The Problem

The specific problem we are solving is the verification of concurrency libraries that
use lock-free synchronization and target multiprocessor architectures with relaxed
memory models.

Concurrency Libraries

Concurrency libraries can alleviate some of the problems associated with the de-
velopment of concurrent software. For example, the java.util.concurrent package
JSR-166 [46] or the Intel Threading Building Blocks [40] support the development of
safe and efficient multi-threaded programs by providing concurrent data types, that

1



is, concurrent implementations of familiar data abstractions such as queues, sets, or
maps.

By raising the data abstraction level, concurrency libraries can free the program-
mer from some of the issues associated with safe sharing of data between threads.
Moreover, libraries can also improve performance, as they may use algorithms that
are optimized for concurrency.

Lock-free Synchronization

Many sophisticated algorithms for concurrent data types that use lock-free synchro-
nization have been proposed [29, 30, 52, 54, 55, 66]. Such implementations are not
race-free in the classic sense because they allow concurrent access to shared memory
locations without using locks for mutual exclusion.

Algorithms with lock-free synchronization are notoriously hard to verify, as wit-
nessed by many formal verification efforts [12, 25, 70, 74] and by bugs found in
published algorithms [17, 53]. Many more interleavings need to be considered than
for implementations that follow a strict locking discipline. Moreover, the deliber-
ate use of races prohibits the use of classic race-avoiding design methodologies and
race-detecting tools [1, 20, 31, 43, 57, 61, 63, 73].

Relaxed Memory Models

Most commonly used multiprocessor architectures use relaxed memory ordering mod-
els [2]. For example, a processor may reorder loads and stores by the same thread
if they target different addresses, or it may buffer stores in a local queue. Whereas
fully lock-based programs are insensitive to the memory model (because the lock
and unlock operations are designed to guarantee the necessary memory ordering),
implementations that use lock-free synchronization require explicit memory ordering
fences to function correctly on relaxed memory models. Nevertheless, fence place-
ments are rarely published along with the algorithm.

Memory ordering fences (or, as they are sometimes called, memory barriers)
counteract the ordering relaxations by enforcing memory order between preceding
and succeeding instructions. A lack of fences can lead to incorrect behavior, whereas
an overzealous use of fences impacts performance.

1.2 Our Solution

To help designers and implementors develop correct and efficient programs for re-
laxed models, we present a verification method which is based on bounded model
checking and can check the correctness of an implementation automatically, for a
suite of bounded test programs written by the user. Furthermore, it can produce
counterexample traces if the implementation is found to be incorrect.

2



C code
for data
type ope−
rations

Symbolic test
thread 1:
     enqueue(X)

     dequeue()−>Y
thread 2:

Memory Model Specification
INCONCLUSIVE
runs out of time
or memory

Counterexample

thread 1:

 
Trace     

thread 2:

FAIL
CheckFence

PASS: all executions of the
test are sequentially
consistent (on the level
of the data type operations)

Figure 1.1: Black-box view of the CheckFence tool.

We describe our solution in the following three sections. Section 1.2.1 describes
our tool CheckFence from a “black-box” perspective. In Section 1.2.2, we describe
in more detail how our tool checks the sequential consistency of an implementation.
Finally, Section 1.2.3 summarizes our experiences with applying the tool to some
implementations from the literature.

1.2.1 The CheckFence Tool

We implemented our verification method in our CheckFence tool (Fig. 1.1). Given
(1) the implementation code, (2) a bounded test, and (3) an axiomatic memory
model specification, CheckFence checks all executions and returns one of the following
answers:

• PASS: all executions of the test are correct.

• FAIL: an incorrect execution was found, and is presented to the user in the
form of a counterexample trace.

• INCONCLUSIVE: the tool exhausted its time or space resources.

We use it in the following manner. First, we write a few small and simple bounded
tests by hand that call the code being verified. For those, our method can decide
quickly whether they are correct, or give us a counterexample if they are not. Then
we can manually increase the size of the tests gradually (fixing any bugs we find
along the way), until we reach the scalability limits. All counterexamples are sound,
and no time is thus wasted on false warnings.
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Although we can not completely verify an implementation in this manner (be-
cause our test suite may be incomplete and not cover all possible cases), our expe-
rience suggests that most bugs can be found on simple, small tests, especially the
bugs that are caused by relaxations in the memory model.

1.2.2 Checking Operation-Level Sequential Consistency

Our correctness condition is sequential consistency [44] on the operation level, which
requires that for all client programs and all executions, the observed outcome is con-
sistent with some atomic interleaving of the operations by each thread. Note that
the consistency of the data type operations is independent of the consistency model
used by the underlying hardware: a concurrent data type may be sequentially consis-
tent on the level of the data type operations even if the underlying multiprocessor’s
memory model (which is specified as one of the inputs to the tool) is not sequentially
consistent.

Bounded Tests

Each bounded test specifies a finite sequence of operation invocations for each thread
and may use nondeterministic input arguments. Because the total number of instruc-
tions is limited for each test, the number of executions is finite. Unlike deterministic
tests, however, a bounded test has an exponential number of executions, because it
considers all possible inputs, all instruction interleavings and reorderings, and non-
deterministic dynamic memory allocation. It is thus easy to cover many executions
with just a few tests.

Note that without bounding the executions in some way, the verification problem
is generally undecidable because (1) C programs that access unbounded amounts of
memory are Turing-complete, and (2) sequential consistency is undecidable even for
implementations with finite memory [3].

Specification Mining

The definition of sequential consistency assumes that we have a formal specification
of the serial semantics of the data type. Because we prefer not to require the user
to write a formal specification, we use an automatic specification mining algorithm
that can extract a specification directly from an implementation. The idea is that
we assume that the serial executions of the implementation are correct and can thus
serve as the serial specification of the data type.

Note that we can verify the serial executions separately, using more conventional
techniques: for serial executions, only one thread executes at a time, and the threads
are interleaved along operation boundaries only. They are thus much easier to verify.
Also, we have the option of writing a separate reference implementation (which need
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not be concurrent and is thus much simpler) and extract the specification from the
latter.

Encoding

At the heart of our method is an encoding that represents the executions of the test
program (on a relaxed memory model) as solutions to a propositional formula. More
specifically, we construct a formula that has a satisfying valuation if and only if there
exists an incorrect execution. Then, we use a standard SAT solver to decide if such
a solution exists; if it does, we can use the assignment provided by the SAT solver
to construct the counterexample trace.

Handling C Code

The C language does not have a language-level memory model, and does not explic-
itly specify what load and store instructions a program may produce. To accurately
model synchronization instructions and the effects of the memory model, we require
a lower-level representation that makes the loads and stores explicit.

To this end, we define an intermediate language called LSL (load-store language)
that has (a) a small syntax, (b) a well-defined semantics even for weak memory
models, and (c) support for spin loops, atomic blocks, and assertions.

Our front end accepts a reasonable subset of C and performs an automatic trans-
lation into LSL.

Memory Model Specifications

Unfortunately, researchers, engineers and programmers do not always agree on how
to interpret the memory model specifications found in the architecture manuals.
Because precise specifications are an absolute prerequisite for formal verification,
we establish a solid formal foundation for multiprocessor executions and develop a
specification format for axiomatic memory models.

Moreover, we capture the most common relaxations (store buffers, out-of-order
execution) by defining a memory model Relaxed. This model abstracts unneeded
details and provides a common conservative approximation of the Sun SPARC v9
TSO/PSO/RMO [72], Alpha [13], and IBM zArchitecture [41]. We chose not to
include a third relaxation (non-global store orders) in Relaxed, which is thus not
quite as weak as IBM PowerPC [24], IA-32 [38], or IA-64 [39]. It remains on our list
of future work to explore the impact of non-global store orders on the correctness of
implementations.

We give a brief introduction to memory models and present examples of these
relaxations in Section 3.1.
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1.2.3 Experiments

We applied CheckFence to five previously published algorithms, writing C code that
closely follows the published pseudocode, and creating test programs. We were thus
able to

1. Reproduce two known bugs in a concurrent deque algorithm known as “snark”
[14, 17, 45].

2. Uncover a not-previously-known bug in a lazy list-based set implementation.
The published pseudocode [30] fails to initialize a field, which was missed by a
prior formal verification using the PVS interactive proof system [12].

3. Show numerous failures on architectures with relaxed memory models (the
original algorithms assume sequentially consistent architectures), and fix them
by inserting appropriate memory ordering fences.

Our experiments confirm that the CheckFence method is very efficient at verify-
ing or falsifying small testcases. As small testcases appear to be sufficient to find
memory-model-related bugs (all of the testcases that we required to expose missing
fences contained fewer than 200 memory accesses and took less than 10 minutes to
verify), CheckFence achieves its main goal.

Furthermore, CheckFence proved to be useful to find algorithmic bugs that are
not related to the memory model. In general, however, we found that the tool does
not scale for testcases that require more than a few hundred memory accesses.

1.3 Related Work

Of course, many aspects of our method were inspired by previous work and build
upon the results of others. The following list should be representative for the various
research areas that we found relevant for our work.

Verification of Concurrent Data Types

Most prior work on verification of concurrent data types is based on interactive proof
construction and assumes a sequentially consistent memory model [12, 25, 62, 70].
These methods are far from automated, but require a laborious proof construction.
Shape analysis can provide a somewhat higher degree of automation[74], but still
requires sophisticated user guidance. To our knowledge, analogous proof strategies
for relaxed memory models have not been investigated.

Runtime verification is highly automatic and scalable (yet less complete) and has
been applied successfully in this domain [18, 68]. These methods require the user to
specify the commit points for each operation manually.
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Relaxed Memory Models

Reasoning about execution traces by means of ordering relations and axioms was
pioneered by Collier [11]. Using similar techniques, Gharacharloo [26] describes
a number of practically relevant models and how they are connected to hardware
implementations. A similar perspective is assumed by the tutorial [2], which is an
excellent introduction to the subject. Contemporary architecture manuals [13, 24,
37, 38, 39, 41, 72] use an axiomatic style for memory model specifications, although
they are often not quite formal, nor quite complete. The Java Memory Model [50]
also uses an axiomatic style.

Model Checking Code on Relaxed Models

Most previous work on model checking executions on relaxed memory models has
focused on relatively small and hand-translated code snippets (such as spinlocks or
litmus tests). It can be divided into two categories: explicit-state model checking
combined with operational memory models [16, 60], and constraint solving combined
with axiomatic memory models [8, 27, 78].

We prefer the latter approach for two reasons: (1) axiomatic models can more
easily capture official specifications because they use an axiomatic style, and (2)
constraint-based encodings can leverage the advances in SAT solving technology.

Operational Memory Models

The first connection between memory model specifications and verification tools was
made using explicit-state model checking [16, 60]. For this approach to work, the
axiomatic specification must first be manually translated into an operational model,
which can be challenging. This same method was applied again more recently to the
C# memory model [36].

We are not aware of any work that demonstrates an application of operational
memory models to the verification of programs that contain more than a few lines
of code.

Axiomatic Memory Model Specifications

The use of constraint solvers rather than explicit-state model checkers was first ap-
plied to the validation of hardware execution traces [27], which inspired our encoding
of executions.

Our axiomatic specification format is very similar also to the one used by the
NEMOS project [75, 78] (Non-operational yet executable memory ordering specifi-
cations), which also proposes the use of SAT solvers to validate execution traces.
The main differences are that (1) our approach uses a custom specification format
rather than a subset of PROLOG, and (2) we connect the memory model specifica-
tion with actual C programs and concurrent data type implementations rather than
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hardware execution traces. More recently, the NEMOS ideas were extended to apply
to software verification as well [76, 77]. However, there is no mention of applying
these techniques to concurrent data types. Also, they consider a custom, abstract
programming language only, and do not demonstrate that their prototype can find
issues in real implementations.

Encoding Program Executions

The idea of encoding program executions as formulae is of course not new, in par-
ticular for sequential programs. Jackson and Vaziri [42] demonstrate that constraint
solving is useful for finding bugs in small, sequential code, using the Alloy constraint
solver. The CBMC tool by Clarke, Kroening and Lerda [10] tackles a problem that is
closely related to ours, as it translates sequential ANSI C code into SAT constraints.
The brief paper on CBMC [10] gave us some important clues on how to encode
programs; however, it does leave many aspects undiscussed and does not present an
encoding algorithm.

For concurrent programs, a SAT encoding based on bounding the context switches
was proposed by Rabinovitz and Grumberg [62]. This encoding is quite different from
ours (and handles sequentially consistent executions only): it models the interleav-
ings by associating with each instruction the number of context switches prior to its
execution, rather than encoding the memory ordering as a binary relation.

Parts of the design of our intermediate language LSL were inspired by prior
work in research areas not related to memory models or concurrent data types. For
instance, we liked the elegant use of exceptions as the fundamental control structure
in the intermediate language for ESC Java [47]. Also, the work on building verifiable
compilers [6, 48] gave helpful clues on the design of a front end, because it describes
in careful detail how to transform C into machine language through a series of steps
that are then formally verified by the Coq proof assistant.

Fence Insertion

Specialized algorithms to insert memory fences automatically during compilation
have been proposed early on [19, 64]. However, these methods are based on a con-
servative program analysis, which makes them less attractive for highly optimized
implementations: inserting fences indiscriminately has a considerable performance
impact [69, 71] and should be used sparingly.

Existing Verification Tools

Today’s state-of-the-art software verification tools offer only indirect help for imple-
mentors of concurrent data types that use lock-free synchronization. Race-detectors
are useless, as the implementations contain intentional data races. Many model
checkers do not support concurrency at all (BLAST, SLAM, CBMC). The ones that
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do (Zing, F-Soft, SPIN) assume a sequentially consistent memory model and offer no
support for checking high-level correctness conditions such as sequential consistency,
which cannot be captured using monitors or assert statements.

Comparison to Our Earlier Publications

We first introduced our verification method in the CAV paper [8]. This paper is
written as a case study that describes our encoding of executions of bounded test
programs, and reports on our experiences applying it to a small example. In our
PLDI paper [9], we add the front end that translates C code, study more exam-
ples, and describe the specification mining (replacing the less automatic and slower
commit point method we used for the case study). Compared to those papers, this
dissertation contains new material in the following areas:

1. We develop a generic specification format for axiomatic memory models. To
demonstrate its use, we use it to formalize the Sparc RMO model (Chapter 3).
Furthermore, we give a quantitative comparison of the various memory model
encodings in Chapter 8.

2. We describe our intermediate language LSL in detail, and present a formal
syntax and semantics (Chapter 4).

3. We present a pseudocode algorithm that shows how we encode programs as
formulae, and prove its correctness (Chapter 5).

1.4 Contributions

Verifying concurrent data type implementations that make deliberate use of data
races and memory ordering fences is challenging because of the many interleavings
and counterintuitive instruction reorderings that need to be considered. Conven-
tional verification tools for multithreaded programs are not sufficient because they
make assumptions on the programming style (race-free programs) or the memory
model (sequential consistency).

Our verification method as embodied in the CheckFence implementation provides
a valuable aid to algorithm designers and implementors because it (1) accepts im-
plementations written as C code, (2) supports relaxed memory models and memory
ordering fences, and (3) can verify that the implementation behaves correctly for a
given bounded test and produce a counterexample trace if it does not.

Our experiments confirm that the CheckFence method is very efficient at finding
memory-model related bugs. All of the testcases we required to expose missing fences
contained fewer than 200 memory accesses and took less than 10 minutes to verify.
Furthermore, CheckFence proved to be useful to find algorithmic bugs that are not
related to the memory model.
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1.5 Overview

To facilitate navigation, we provide a brief summary of each of the remaining chap-
ters.

• Chapter 2 lays the technical foundations of our formalization. We establish
what we mean by an execution of a program on a multiprocessor, including
executions on relaxed memory models.

Furthermore, we introduce the logic framework (formulae, vocabularies, valua-
tions, etc.) needed for describing memory model specifications (Section 3.3.1)
and our encoding of executions (Section 2.2).

• Chapter 3 introduces relaxed memory models and describes our specification
format for axiomatic memory models. We conclude this chapter with a listing
of the axiomatic specifications for sequential consistency, Relaxed, and the
SPARC RMO model.

• Chapter 4 formalizes our notion of programs by introducing an intermediate
language called LSL (load-store language) with a formal syntax and semantics.
Furthermore, it describes how to unroll programs to obtain finite, bounded
versions that can be encoded into formulae.

• Chapter 5 describes how to construct a propositional formula whose solutions
correspond to the concurrent execution of an unrolled program on the specified
memory model. This encoding lays the technical foundation for our verifica-
tion method. It also contains a correctness proof (which is partially broken
out into Appendix A). The construction of this proof heavily influenced our
formalization of concurrent executions and memory traces.

• Chapter 6 introduces concurrent data types and shows how we define correct-
ness and verify it by bounded model checking. This chapter shows how to
assemble the techniques introduced in the earlier chapters, and explains our
verification method.

• Chapter 7 describes the CheckFence tool, which implements our verification
method. We discuss some of the implementation challenges, such as the trans-
lation from C to LSL, and how to encode formulae in CNF form suitable for
SAT solving.

• Chapter 8 describes the results of our experiments. It lists both qualitative re-
sults (bugs we found in the studied implementations), and quantitative results
(performance measurements for the CheckFence tool). For completeness, we
list the C source code of the studied implementations (along with the fences
we inserted) in Appendix B.
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• Chapter 9 summarizes our contributions and discusses future work.
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Chapter 2

Foundations

In this chapter, we lay the technical foundations of our formalization. We address
two topics:

• In Section 2.1, we establish what we mean by an execution of a program on
a multiprocessor. While the execution semantics of uniprocessor machines is
generally well understood by programmers and well specified by architecture
manuals, the situation is less clear for multiprocessors. As we wish to use
precise reasoning, we first establish a solid formal foundation for multiprocessor
executions.

• In Section 2.2, we present the logic framework needed for describing our en-
coding. Specifically, we define a syntax and semantics for formulae (featuring
types, quantifiers, equality, and limited support for second-order variables).
Most of the material in that section is fairly standard and can be skimmed by
most readers.

2.1 Multiprocessor Executions

To achieve a clean separation between the local program semantics (local program
execution for each thread) and the memory model (interaction between different
threads via shared memory), we abstractly represent the communication between
the program and the memory system using memory traces. More specifically, we
adopt the following perspective:

• During an execution, each local program performs a logical sequence of load,
store, and fence instructions, which can be described abstractly by a local
memory trace. Fig. 2.1 shows informal examples of programs and some local
memory traces they may produce (many others are possible). We define the
set Ltr of all local traces in Section 2.1.2.
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r1 = X;

Z = r1 + r2;
r2 = Y;

do {

} while (!reg)
  reg = X;

load X, 1 load X, 0
load Y, 0
store Z, 0

load Y, 1
store Z, 2

load X, 1 load X, 0
load X, 0
load X, 1

Figure 2.1: Informal Example: we show two programs on the left, and for each
program two possible local memory traces it may produce on the right.

do {

} while (!reg)
  reg = X;

X = 0;
X = 1;

processor 1 processor 2 processor 1 processor 2

load X, 0
load X, 0
load X, 0
load X, 1

store X, 0

store X, 1

Figure 2.2: Informal Example: the concurrent program on the left may produce
the global memory trace on the right (among many other possibilities). The arrows
indicate for each load where the value was sourced from.

• The memory system combines the local traces into a global memory trace. The
global trace specifies for each load where its value originated. The origin of
the value can be either a store appearing in one of the local traces, or the
initial value of the memory location. Fig. 2.2 shows an informal example of a
concurrent program and a global trace that it could possibly exhibit (again,
other executions are possible). We define the set Gtr of all global traces in
Section 2.1.4.

Trace Semantics

For the purpose of this chapter, we assume an abstract view of programs and memory
models. We simply foreshadow the definition of suitable sets Prog, Axm and the
semantic functions EL and EG as follows:
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• We assume a definition for the set Prog of local programs (defined in Chapter 4)
and a function

EL : Prog→ P(Ltr× Exs)

where Ltr is the set of local traces (to be defined in Section 2.1.2 below) and
Exs is a set of execution states (to be defined in Chapter 4). EL(p) captures
the semantics of the program p in the following sense: (t, e) ∈ EL(p) if and
only if there is an execution of program p (in some arbitrary environment) that
produces the local memory trace t and terminates with execution state e.

• We assume a definition for the set Axm of axiomatic memory model specifica-
tions (defined in Chapter 3) and a function

EG : Axm→ P(Gtr)

where Gtr is the set of global traces (to be defined in Section 2.1.4 below).
EG(Y ) captures the semantics of the memory model specification Y in the
following sense: T ∈ EG(Y ) if and only if the global trace T is allowed by the
memory model Y .

As we formalize the semantics of the memory system and the individual threads
separately, they both become highly nondeterministic (because they assume the most
general behavior of the environment). For a specific concurrent program and mem-
ory model, the executions are much more constrained because the possible traces
must simultaneously match the semantics of each individual thread and the memory
model. When we encode concurrent executions later on (Chapter 5) we express these
individual constraints as formulae that must be simultaneously satisfied.

In the remainder of this section, we formalize the ideas outlined above and con-
clude with a definition of the set of concurrent executions (Section 2.1.6).

2.1.1 Instructions and Values

To formalize memory traces, we need some preliminary definitions that provide the
framework for representing the machine instructions, memory addresses and data
values used by a program. We also need to consider the fact that programs may
terminate abnormally.

1. Memory traces are made up of individual instructions. We let I be a pool of
instruction identifiers. We will use these identifiers to distinguish individual
instruction instances. Note that a single statement in a program may produce
more than one instruction instance1:

1Computer architects sometimes use a terminology that distinguishes between “static” and
“dynamic” instructions to express this concept.
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• Some statements produce several memory accesses. For example, if x, y
are variables residing in memory, the assignment x = y + 1 first loads
the location y, then adds 1, then stores the result to location x, thus
producing both a load and a store instruction.

• Program statements may be executed more than once if they appear
within a loop or a recursive procedure. Each time it gets executed, a
statement produces fresh instruction instances.

We keep identifiers unique within an execution, and say ‘instruction’ short for
‘instruction identifier’ or ‘instruction instance’.

2. There are different types of instructions. For our purposes, we care about
instructions that are relevant for the memory model only and define the fol-
lowing types: Cmd = {load, store, fence}. We let the type of each instruction
be defined by the function cmd : I → Cmd.

We assume that cmd−1(c) is infinite for all all c ∈ Cmd, so there is an infinite
supply of instruction identifiers for each type. For notational convenience, we
define the following functions on sets of instructions:

loads : P(I)→ P(I) loads(I) = {i ∈ I | cmd(i) = load}
stores : P(I)→ P(I) stores(I) = {i ∈ I | cmd(i) = store}
fences : P(I)→ P(I) fences(I) = {i ∈ I | cmd(i) = fence}

accesses : P(I)→ P(I) accesses(I) = loads(I) ∪ stores(I)

3. We let Val denote the set of values that appear in the traces. We give a full
definition of Val in Section 4.2. For now, we only state its properties as far as
they are relevant for understanding this section:

• Val can represent address and data values used by programs

• Val contains a special value ⊥ to represent an undefined value

2.1.2 Local Memory Traces

A local memory trace describes the logical sequence of memory instructions issued
by the local program, and it includes the specific values that are loaded and stored,
and the addresses of all accessed memory locations. It is defined as follows:

Definition 1 A local memory trace is a tuple t = (I,≺, adr , val) such that

• I ⊂ I is a set of instructions

• ≺ is a total order over I (called the program order)

• adr is a function of type accesses(I)→ Val

15



• val is a function of type accesses(I)→ Val

Let Ltr be the set of all local traces. Let t0 be the local trace for which I = ∅.

For an instruction i, adr(i) is the address of the accessed memory location, and
val(i) is the value loaded or stored.

2.1.3 Local Trace Semantics

What memory traces are possible depends on the local program. The same local
program may exhibit many different memory traces, because the details of its exe-
cution (say, the path taken) usually depends on the behavior of other threads. We
account for this nondeterministic behavior by defining the trace semantics of a pro-
gram to be the set of all memory traces that the program may exhibit in an arbitrary
environment. This set must cover all local program executions, for arbitrary values
returned by each load: when running in an arbitrary environment, other threads
may store any value to any location at any time, so a load may return any value.

In Chapter 4, we will formally define the set Prog of local programs, the set Exs
of execution states and the semantic function EL : Prog → P(Ltr × Exs) such that
(t, e) ∈ EL(p) if and only if there is an execution of program p (in some arbitrary
environment) that produces the local memory trace t and terminates with execution
state e.

2.1.4 Global Memory Traces

A global memory trace is somewhat similar to a local trace, but with a few important
differences. First of all, the trace contains instructions from different processors. As
a result, the program order is no longer a total order, but a partial order. Moreover,
a global trace specifies for each load where the loaded value originated. A loaded
value may originate from some prior store in the trace (if that store targeted the
same address), or it may be the initial value of the loaded memory location (which
we represent using the special value ⊥). Note that a global trace does not specify
any temporal relationships between the instructions, only the logical relationship
between loads and the stores they get their value from.

Definition 2 A global trace is a tuple T = (I,≺, proc, adr , val , seed , stat) such that

• I ⊂ I is a set of instructions

• ≺ is a partial order over I

• proc is a function of type I → N (the processor issuing the instruction)

• ≺ is a total order on proc−1(k) for each k ∈ N
• adr is a function of type accesses(I)→ Val

16



• val is a function of type accesses(I)→ Val

• seed is a partial function of type loads(I) ⇀ stores(I)

• if seed(l) = s, then adr(l) = adr(s) and val(l) = val(s)

• if l ∈ (loads(I) \ dom seed), then val(l) = ⊥
• stat is a partial function of type N→ Exs such that (rg proc ⊂ dom stat)

Let Gtr be the set of all global traces. Let T 0 be the global trace for which I = ∅.

We can project a global trace onto its local components as follows:

Definition 3 For a global trace T ∈ Gtr and an integer k ∈ N define the projection
πk(T ) of T onto processor k to be the tuple (I ′,≺′, adr ′, val ′) where

• I ′ = {i ∈ I | proc(i) = k}
• ≺′=≺|(I′×I′)
• adr ′ = adr |I′
• val ′ = val |I′

It follows directly from the definition that for any global trace T , the projection
πk(T ) is a local trace.

2.1.5 Memory Model Semantics

The memory model defines restrictions on what global traces are possible. For ex-
ample, the simplest memory model (sequential consistency) requires that the global
trace is consistent with some interleaving of the local traces. However, not all mem-
ory models are that strict. We will discuss this topic in more detail in Chapter 3
where we define the set Axm of axiomatic memory model specifications and the se-
mantic function EG : Axm→ P(Gtr) such that T ∈ EG(Y ) if and only if the global
trace T is allowed by the memory model Y .

2.1.6 Concurrent Executions

We can now bring together the notions of programs, memory models, and executions.
First we define concurrent programs.

Definition 4 A concurrent program is a tuple P = (p1, . . . , pn) such that n ≥ 0 and
for each i, pi ∈ Prog is a local program.

We now conclude this section with the definition of concurrent executions.

Definition 5 For a concurrent program P = (p1, . . . , pn) and a memory model Y ,
define the set E(P, Y ) of concurrent executions of P on Y to consist of all global
traces T = (I,≺, proc, adr , val , seed , stat) that satisfy the following conditions:
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• T ∈ EG(Y )

• for all k ∈ {1, . . . , n}, we have (πk(T ), stat(k)) ∈ EL(pk)

• for all other k, πk(T ) = t0

Because memory models are nondeterministic, there are typically many execu-
tions for a given program P . Reasonable memory models will likely satisfy additional
properties (for example, all programs P should have at least one execution).

2.2 Formulae

In this section, we establish the logical framework for formulae. Most of this material
is fairly standard; we start with a quick informal overview which is likely to be
sufficient for most readers.

We construct formulae and terms over a vocabulary of set symbols S, typed
function symbols F and typed variable symbols V , using the syntax shown in Fig. 2.3.
For some interpretation J.K of S ∪F and a valuation ν of the variables in V , we then
define the evaluation function JφKν on a formula or term φ in the usual way.

The following points of interest are marked by an asterisk (*) in Fig. 2.3:

• We provide an (if-then-else) construct φ ? φ1 : φ2 which evaluates to either φ1

or φ2, depending on whether φ evaluates to true or false, respectively.

• We provide a limited quantifier syntax (∀ p X : φ) and (∃ p X : φ), where p is a
predicate that restricts the range over which the variable X is being quantified.
The reason is that we use these quantifiers when expressing memory model
axioms (Section 3.3.1). Our encoding does not support arbitrary quantification,
but requires that the quantifiers range over subsets of instructions in the trace
(which are finite). Using this syntax, we can control the range of quantifiers
by limiting the predicates that are available in the vocabulary.

• We provide second-order relation variables.

For completeness, we provide a more formal exposition of these concepts in the
remainder of this section. We encourage the reader to skim the details.

2.2.1 Vocabularies

To construct formulae, we need some elementary symbols to represent sets, functions,
relations, and variables. Such symbols are provided by the vocabulary, defined as
follows:

Definition 6 An uninterpreted vocabulary is a tuple σ = (S,F ,V) where

• S is a set of set symbols.
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(set) S ∈ V

(function of type T ) fT ∈ FT

(variable of type T ) XT ∈ VT

(term of type S) φS ∈ T S

(term constant) ::= fS

(term variable) | XS

(function) | fS1×···×Sk→S(φS1
1 , . . . , φ

Sk
k )

*(if-then-else) | φ ? φS1 : φS2

(boolean formula) φ ∈ T bool

(false) ::= false

(true) | true

(negation) | ¬φ
(conjunction) | φ1 ∧ φ2

(disjunction) | φ1 ∨ φ2

(implication) | φ1 ⇒ φ2

(equivalence) | φ1 ⇔ φ2

*(forall) | ∀ fS→bool XS : φ

*(exists) | ∃ fS→bool XS : φ

(equality) | φS1 = φS2
(boolean constant) | fbool

(boolean variable) | Xbool

(relation) | fS1×···×Sk→bool(φS1
1 , . . . , φ

Sk
k )

*(relation variable) | XS1×···×Sk→bool(φS1
1 , . . . , φ

Sk
k )

Figure 2.3: The syntax for formulae over a vocabulary (S,F ,V).
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• We define types as follows: a type T is of the form

T ::= bool | S | S1 × · · · × Sk → bool | S1 × · · · × Sk → S

where k ≥ 1 and S, S1, . . . , Sk ∈ S.

• F is a set of typed function symbols. We let FT be the functions of type T .

• V is a set of typed variable symbols. We let VT be the variables of type T .

• the sets S,F ,V are pairwise disjoint

An uninterpreted vocabulary does not assume any particular meaning of the
symbols. If we wish to establish such a meaning, we use an interpretation, defined
as follows:

Definition 7 Given an uninterpreted vocabulary σ, define an interpretation to be a
function J.K on (S ∪ F) that “interprets” the symbols as follows:

• each set symbol S ∈ S is mapped to a set JSK
• each constant c ∈ FS is mapped to an element JcK ∈ JSK
• each constant c ∈ Fbool is mapped to a truth value JcK ∈ {false, true}
• each function f ∈ FS1×···×Sk→S is mapped to a function

JfK : JS1K× · · · × JSnK→ JSK
• each predicate p ∈ FS1×···×Sk→bool is mapped to a function

JpK : JS1K× · · · × JSnK→ {false, true}

The combination of a vocabulary and an interpretation is called an interpreted vo-
cabulary.

Definition 8 An interpreted vocabulary is a tuple σ = (S,F ,V , J.K) such that
(S,F ,V) is an uninterpreted vocabulary and J.K is an interpretation for the latter.

2.2.2 Formula Syntax

We now introduce the formula syntax.

Definition 9 Given a vocabulary (S,F ,V), define

• the set of boolean formulae T bool

• for each set symbol S, the set T S of terms of type S

recursively as specified in Fig. 2.3.

We define free variables as usual.
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Definition 10 Given a vocabulary σ, define the set of free variables FV (φ) of a
formula or term φ inductively as follows:

• FV (true) = FV (false) = ∅
• FV (¬φ) = FV (φ)

• FV (φ1 ∧ φ2) = FV (φ1) ∪ FV (φ2)

• FV (φ1 ∨ φ2) = FV (φ1) ∪ FV (φ2)

• FV (φ1 ⇒ φ2) = FV (φ1) ∪ FV (φ2)

• FV (φ1 ⇔ φ2) = FV (φ1) ∪ FV (φ2)

• FV (∀ p X : φ) = FV (φ) \ {X}
• FV (∃ p X : φ) = FV (φ) \ {X}
• FV (φ1 = φ2) = FV (φ1) ∪ FV (φ2)

• FV (φ ? φ1 : φ2) = FV (φ) ∪ FV (φ1) ∪ FV (φ2)

• FV (X) = {X}
• FV (f) = ∅
• FV (X(φ1, . . . , φk)) = {X} ∪ FV (φ1) ∪ · · · ∪ FV (φk)

• FV (f(φ1, . . . , φk)) = FV (φ1) ∪ · · · ∪ FV (φk)

A formula φ is called closed if FV (φ) = ∅.

2.2.3 Evaluation of Formulae

We can now conclude this chapter with a definition of valuations, and what it means
to evaluate a formula for a given valuation.

Definition 11 Given an interpreted vocabulary σ, define a valuation ν to be a par-
tial function on V which assigns values to variable symbols as follows:

• each term variable X ∈ VS is mapped to an element ν(X) ∈ JSK
• each boolean variable X ∈ Vbool is mapped to truth value ν(X) ∈ {false, true}
• each function variable X ∈ VS1×···×Sk→S is mapped to a function
ν(X) : JS1K× · · · × JSnK→ JSK
• each predicate variable X ∈ VS1×···×Sk→bool is mapped to a function
ν(X) : JS1K× · · · × JSnK→ {false, true}

Definition 12 Given an interpreted vocabulary σ and a valuation ν, we define the
evaluation function JφKν of a formula or term φ that satisfies FV (φ) ⊂ dom ν in-
ductively as follows:

• JfalseKν = false

• JtrueKν = true

21



• J¬φKν = ¬JφKν

• Jφ1 ∧ φ2Kν = Jφ1Kν ∧ Jφ2Kν

• Jφ1 ∨ φ2Kν = Jφ1Kν ∨ Jφ2Kν

• Jφ1 ⇒ φ2Kν = ¬Jφ1Kν ∨ Jφ2Kν

• Jφ1 ⇔ φ2Kν =

{
true if Jφ1Kν = Jφ2Kν
false otherwise

• J∀ p XS : φKν =

{
true if (Jp(XS)⇒ φKν[XS 7→x] = true) for all x ∈ JSK
false otherwise

• J∃ p XS : φKν =

{
true if (Jp(XS) ∧ φKν[XS 7→x] = true) for some x ∈ JSK
false otherwise

• Jφ1 = φ2Kν =

{
true if Jφ1Kν = Jφ2Kν
false otherwise

• Jφ ? φ1 : φ2Kν =

{
Jφ1Kν if (JφKν = true)
Jφ2Kν otherwise

• JXKν = ν(X)

• JfKν = JfK
• JX(φ1, . . . , φk)Kν = ν(X)(Jφ1Kν , . . . , JφkKν)
• Jf(φ1, . . . , φk)Kν = JfK(Jφ1Kν , . . . , JφkKν)
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Chapter 3

Memory Models

In this chapter, we introduce the reader to memory models and describe our speci-
fication format for axiomatic memory models. It is structured as follows:

• Section 3.1 provides a brief introduction to memory models. We give some
background information about the underlying motivations for relaxed memory
models, and we provide an informal description of the most common relax-
ations.

• Section 3.2 describes the two memory models that were most important for our
work: sequential consistency (which is the strictest model and does not relax
any of the ordering guarantees), and Relaxed (which is a weak model that we
use as a simple, conservative approximation for several relaxed models).

• Section 3.3 describes the basic format of axiomatic specifications that we use
to define memory models. For illustration purposes, we show how to express
sequential consistency in this format.

• Section 3.4 describes how we extend the basic format to include atomic blocks,
fences, and control- or data-dependencies.

• Section 3.5 introduces the specification format used by our CheckFence tool,
and gives the full axiomatic specifications for sequential consistency and Re-
laxed.

• Section 3.6 shows and discusses our formalization of the SPARC RMO model.

3.1 Introduction

Memory models describe how to generalize the semantics of memory accesses in
a von Neumann architecture to a setting where several processors access a shared
memory concurrently. Memory models specify the behavior of loads and stores to
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Initially: A = Flag = 0
thread 1 thread 2
store A, 1 load Flag, 1
store Flag, 1 load A, 0

Figure 3.1: An execution trace that is not sequentially consistent, but allowed on
relaxed memory models that allow out-of-order execution (and may swap either the
stores in thread 1 or the loads in thread 2).

shared memory locations, and their interplay with special fence and synchronization
operations.

The simplest memory model is Sequential Consistency [44], which specifies that
a multiprocessor should execute like a single processor that interleaves the loads and
stores of the different threads nondeterministically, yet preserves their relative order
within each thread.

Although sequential consistency is simple to understand and popular with pro-
grammers, most commercially available multiprocessors do not support it. The rea-
son is that it comes with a price: the memory system hardware is forced to maintain
global ordering properties even though the vast majority of all memory accesses do
not require such strict guarantees (usually, the ordering guarantees are important
only with respect to accesses that serve a synchronization purpose).

For that reason, hardware architects tend to prefer Relaxed Memory Models [2]
that provide more freedom for the hardware to optimize performance by reordering
accesses opportunistically. Many different kinds of memory models have been formu-
lated for various purposes [65]. We focus our attention on hardware-level memory
models for multiprocessor architectures where the following three relaxations are
common:

Out-of-order execution. Modern processors may execute instructions out of or-
der where it can speed up execution. On uniprocessors, these “tricks” are
completely invisible to the programmer, but on multiprocessors, they become
visible in some cases, because the order in which loads and stores commit to
memory can be observed by a remote processor. Fig. 3.1 shows an example
of a relaxed execution that could be caused either by out-of-order stores, or
out-of-order loads.

Store Buffers. On most architectures, stores do not commit atomically; when exe-
cuted, they update a local buffer first (a store queue or a memory order buffer)
before they become visible to other processors. Subsequent loads by the same
processor ‘see’ the store (an effect called store-load forwarding) even if it hasn’t
committed globally yet.
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No Global Store Order. Some architectures allow stores to different addresses to
happen in an order that is not globally consistent. This means that different
processors may observe such stores in a different order.

Of course, if a processor could reorder instructions at will, it would be impossible
to write meaningful programs. The relaxations are therefore formulated with the
following goals in mind:

1. Single processor semantics must be preserved; if each processor executes an
independent program, the results are the same as if each program were executed
separately on a uniprocessor.

2. If all accesses to shared memory locations are fully synchronized (i.e., guarded
by critical sections or other suitable synchronization constructs), the memory
model should be indistinguishable from sequential consistency.

3. Special memory ordering instructions (called memory fences, memory barri-
ers, or memory synchronization instructions) are provided, which can be used
to selectively avoid out-of-order execution, or to flush store buffers. Such in-
structions allow the implementation of mutual exclusion locks that have the
desired property as stated above. To avoid confusion with cross-thread syn-
chronization barriers or with synchronization operations such as test-and-set
or compare-and-swap, we consistently use the term memory ordering fences or
just fences to refer to such instructions.

Most architecture manuals provide some code examples to illustrate the use of
fences, and include code for a simple spinlock that can be used to build critical sec-
tions. The precise name and semantics of the fences vary across architectures (for ex-
ample, some of the fence instructions are called: MB, WMB on Alpha; sync, lwsync,
eieio on PowerPC; load-load/load-store/store-load/store-store fences on SPARC; mf
on Itanium, etc.)

3.2 Memory Model Examples

In this section, we present formal presentations of the two main memory models we
used. The first one is the classic sequential consistency [44], which requires that
the loads and stores issued by the individual threads are interleaved in some global,
total order. Sequential consistency is the easiest to understand; however, it is not
guaranteed by most multiprocessors.

The second memory model we describe in this section is Relaxed [8]. The pur-
pose of this model is to provide an abstract, conservative approximation of several
commonly used memory models. Of the relaxations listed above, it models the first
two (out-of-order execution and store buffers), but not the third (it does assume that
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Initially: X = Y = 0
thread 1 thread 2
X = 1 r1 = Y
Y = 1 r2 = X
Eventually: r1 = 1, r2 = 0

Figure 3.2: An execution trace that is not sequentially consistent, but allowed by
Relaxed, because the latter may swap the order of the stores in thread 1, or the
order of the loads in thread 2.

Initially: X = Y = 0
thread 1 thread 2
X = 1 r1 = Y
store-store fence load-load fence
Y = 1 r2 = X

Eventually: r1 = 1, r2 = 0

Figure 3.3: An execution trace that is not allowed by Relaxed because neither the
stores in thread 1 nor the loads in thread 2 may be reordered due to the respective
fences.

stores are globally ordered). Specifically, the relaxations permit (1) reorderings of
loads and stores to different addresses, (2) buffering of stores in local queues, (3) for-
warding of buffered stores to local loads, (4) reordering of loads to the same address,
and (5) reordering of control- or data-dependent instructions.

To illustrate some of the relaxations, we now discuss a few examples. Such
examples are often called litmus tests and are included as part of the official memory
model specification.

• The execution trace in Fig. 3.2 illustrates how out-of-order execution may
become visible to the programmer. The values loaded by thread 2 are not
consistent with any sequentially consistent execution, but may result from a
reordering of the stores by thread 1 or a reordering of the loads by thread 2.

• The trace in Fig. 3.3 illustrates how fences can prevent out-of-order execution.
It shows the same sequence of loads and stores as the previous example, but
with two fences inserted: a store-store fence that enforces the order of preceding
and succeeding stores, and a load-load fence that enforces the order of preceding
and succeeding loads. These fences prevent this trace on Relaxed.
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Initially: X = Y = 0
thread 1 thread 2

Y = 2
X = 1 r1 = Y
store-store fence load-load fence
Y = 1 r2 = X
Eventually: r1 = 2, r2 = 0, Y = 2

Figure 3.4: An execution trace that is not sequentially consistent, but allowed by
Relaxed, because the latter allows store-load forwarding.

Initially: X = Y = 0
thread 1 thread 2 thread 3 thread 4
X = 1 Y = 1 r1 = X r3 = Y

load-load fence load-load fence
r2 = Y r4 = X

Eventually: r1 = r3 = 1, r2 = r4 = 0

Figure 3.5: An execution trace that is theoretically possible on PPC, IA-32, and IA-
64, but not allowed by Relaxed because the latter requires that all stores be globally
ordered.

• The trace in Fig. 3.4 illustrates store-load forwarding. The value 2 stored by
(Y = 2) is loaded by (r1 = Y ) while the store is still sitting in the store buffer.
Thus, it is possible for the store (Y = 2) to take global effect after the load
(r1 = Y ). Without store-load forwarding, this trace is impossible because

– (Y = 2) must happen before (r1 = Y ).

– (r1 = Y ) must happen before (r2 = X) because of the load-load fence.

– (r2 = X) must happen before (X = 1) because it loads value 0, not 1.

– (X = 1) must happen before (Y = 1) because of the store-store fence.

This implies that (Y = 2) must happen before (Y = 1) which contradicts the
final value 2 of Y .

• The trace in Fig. 3.5 illustrates an execution without a globally consistent
ordering of stores. The threads 3 and 4 observe a different ordering of the
stores (X = 1) and (Y = 1). We do not include this relaxation in Relaxed,
which is thus not quite as weak as IBM PowerPC [24], IA-32 [38], or IA-64
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[39]. It remains on our list of future work to explore the impact of non-global
store orders on the correctness of implementations.

3.2.1 Formal Specification

Clearly, memory models can not be completely and precisely specified by giving
examples only. Because precise specifications are an absolute prerequisite for formal
verification, we now proceed to a formal definition of sequential consistency and
Relaxed. We use the formal framework for multiprocessor executions introduced
in Sections 2.1.4 and 2.1.5. Briefly summarized, we define executions as tuples
(I,≺, proc, adr , val , seed , stat) where I is the set of instructions in the global trace,
i ≺ j iff i precedes j in program order, proc(i) is the processor that issued instruction
i, adr(i) and val(i) are the address and data values of instruction i, seed is a partial
function that maps loads to the store that sources their value, and stat is irrelevant
for this chapter. A memory model is then simply a predicate on execution traces
(that is, specifies which global traces are possible and which ones are not).

The axiomatic format of the definitions below foreshadows our generic specifica-
tion format which lets the user specify the memory model directly, as we describe
Section 3.3. To keep the definitions below as simple as possible, we omit atomic
blocks and use a single type of fence only; we describe the full formalization later,
in Sections 3.4 and 3.5.

3.2.2 Sequential Consistency (SeqCons)

A global trace T = (I,≺, proc, adr , val , seed , stat) is sequentially consistent if and
only if there exists a total order <M over accesses(I), called the memory order, such
that the following conditions hold:

For each load l ∈ loads(I), let S(l) be the set of stores that are “visible” to l:

S(l) = {s ∈ stores(I) | adr(s) = adr(l) ∧ (s <M l)}

Then the following axioms must be satisfied:

(A1) if x ≺ y, then x <M y

(A2) if seed(l) = s, then s ∈ S(l)

(A3) if s ∈ S(l) but not seed(l) = s, then there must exist an s′ ∈ stores(I) such
that seed(l) = s′ and s <M s′.

3.2.3 Relaxed

A global trace T = (I,≺, proc, adr , val , seed , stat) is permitted by the memory model
Relaxed if and only if there exists a total order <M over accesses(I), called the
memory order, such that the following conditions hold:
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For each load l ∈ loads(I), let S(l) be the set of stores that are “visible” to l:

S(l) = {s ∈ stores(I) | adr(s) = adr(l) ∧ ((s <M l) ∨ (s ≺ l))}

Then the following axioms must be satisfied:

(A1) if x ≺ y, adr(x) = adr(y), and cmd(y) = store, then x <M y

(A2) if seed(l) = s, then s ∈ S(l)

(A3) if s ∈ S(l) but not seed(l) = s, then there must exist a s′ ∈ stores(I) such that
seed(l) = s′ and s <M s′.

(A4) if x, y ∈ accesses(I) and f ∈ fences(I) and x ≺ f ≺ y, then x <M y.

Discussion

The model Relaxed shows a structure that is very similar to sequential consistency
(Section 3.2.2), and is best understood by comparing the differences:

• Axiom (A1) has been weakened to allow the memory order to be different
from the program order. The program order is only enforced if both accesses
go to the same address (we call such accesses aliased for short), and only if
the second access is a store. These are the minimal guarantees necessary to
maintain single-processor semantics: we may not reorder aliased stores, nor
can we reorder a load past a subsequent aliased store. However, we do allow
a store to be reordered past a subsequent aliased load, because the value will
get forwarded from the store to the load (see next bullet). We also allow two
aliased loads to get reordered.

• We enlarge the set S(l) of stores that are visible to a load, in order to allow
forwarding of values from stores sitting in a store buffer to subsequent aliased
loads by the same processor. S(l) now also contains stores that precede a load
in program order (s ≺ l) but are performed globally only after the load is
performed (l <M s).

• We added axiom (A4) has been added to describe the semantics of fences (there
is no need for fences on sequentially consistent machines).

3.2.4 Comparing Memory Models

Memory models can be directly compared in terms of the execution traces they
allow. We call a model Y stronger than another model Y ′ if Y ⊂ Y ′. For example,
sequential consistency is stronger than Relaxed (because any sequentially consistent
global trace satisfies the axioms for Relaxed as well).

We show a graphic representation that compares the sets of executions of Relaxed
and other memory models in Fig. 3.6. The purpose of Relaxed is to provide a
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Figure 3.6: A comparison of various memory models.

common, conservative approximation of several memory models (Sun SPARC v9
TSO/PSO/RMO [72], Alpha [13], and IBM 370/390/zArchitecture [41]). All of
these models are stronger than Relaxed, which implies that once code runs correctly
on Relaxed, it will run correctly on each of the former.

However, Relaxed is not strictly weaker than the official PowerPC [24], IA-64
[39] and IA-32 [38] models because it globally orders all stores (the execution in
Fig. 3.5 illustrates this point). Even so, Relaxed still captures the most important
relaxations of those models (store buffers and out-of-order execution) and is useful
in determining where to place fences.

3.3 Specification Format

After we studied a number of relaxed memory models in various architecture manu-
als, it became clear that there are many subtle differences between them. Although
our model Relaxed is a useful pragmatic approximation, we sometimes wish to spec-
ify the memory model more precisely or play with the details of the definitions. Of
particular interest are support for ordering constraints created by data or control de-
pendencies, and support for memory models that do not rely on a globally consistent
store order.

We therefore developed a generic axiomatic format for specifying memory models
that generalizes the format of the axiomatic definitions for sequential consistency and

30



Relaxed we used in Section 3.2.1 and provides the desired flexibility.

3.3.1 Axiomatic Memory Model Specifications

We now describe our format for specifying memory models. Our memory model
specifications use boolean formulae to constrain the global traces. Traditionally, this
style of specification is called “axiomatic”, and we call the formulae axioms.

First, in order to write axioms that express constraints over global traces, we in-
troduce symbols that express properties of the global trace as defined in Section 2.1.4.
We need predicates that capture the type of a given instruction, and relations to ex-
press the program order, whether two accesses are aliased (go to the same memory
location), and the partial function seed which assigns to each load the store that
sourced its value.

Definition 13 Define a memory model vocabulary to be a vocabulary σ = (S,F ,V)
(as defined in Section 2.2.1) that contains the following set and function symbols:

{instr} ⊂ S
{load, store, fence, access} ⊂ F instr→bool

{progorder, aliased, seed} ⊂ F instr×instr→bool

Throughout the rest of this document, we assume that we are working with some
fixed memory model vocabulary σ = (S,F ,V). We will thus not bother to mention
it explicitly in every definition.

Axiomatic memory models may contain one or more existentially quantified
second-order variables. For example, a global trace is defined to be sequentially
consistent if and only if there exists a total order over the memory accesses, sub-
ject to some constraints (see Section 3.2.2). We formalize such ordering relations as
relation variables over instructions. This leads to the following definition:

Definition 14 An axiomatic memory model specification Y is a tuple Y = (R, φ1, . . . , φk)
such that (k ≥ 0) and

• R ⊂ V instr×···×instr→bool is a set of relation variables

• φ1, . . . , φk ∈ T bool are formulae with syntax as shown in Fig. 3.7.
We call them axioms.

• FV (φ1) ∪ · · · ∪ FV (φk) ⊂ R

We let Axm be the set of all axiomatic memory model specifications.

Note that the syntax for axioms as shown in Fig. 3.7 is a specialization of the
general syntax for formulae and terms we defined in Fig. 2.3 (Section 2.2.2) with the
following restrictions:
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(predicate) p ∈ F instr→bool

(load) ::= load

(store) | store

(access) | access

(fence) | fence

(binary relation) b ∈ F instr×instr→bool

(program order) ::= progorder

(aliased) | aliased

(seed) | seed

(relation variable) R ∈ V instr×···×instr→bool

(instruction variable) X ∈ V instr

(formula) φ ∈ T bool

(false) ::= false

(true) | true

(negation) | ¬φ
(conjunction) | φ1 ∧ φ2

(disjunction) | φ1 ∨ φ2

(implication) | φ1 ⇒ φ2

(equivalence) | φ1 ⇔ φ2

(forall) | ∀ p X : φ

(exists) | ∃ p X : φ

(equality) | X1 = X2

(predicate) | p(X)

(binary relation) | b(X1, X2)

(relation variable) | R(X1, . . . , Xk) (k ≥ 1)

Figure 3.7: The abstract syntax for memory model axioms.
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• We may use only the set and function symbols listed in Def. 13.

• We may use only variables of type instr and instr× · · · × instr→ bool.

• All terms of type instr must be variables.

We use the same limited quantifier syntax (∀ p X : φ) and (∃ p X : φ), where p is
a predicate that restricts the range over which the variable X is being quantified.
This implies that the quantifiers may range only over subsets of instructions in the
trace (which are finite).

Interpretation

We now define how to interpret an axiomatic specification. To do so, we need to
define the function

EG : Axm→ P(Gtr)

such that EG(Y ) is the set of global traces that are allowed by the specification Y .
First, we define how to interpret the symbols of the memory model signature for a
given global trace T . The symbol instr represents the the set of instructions in the
trace, the predicates load, store, fence, access distinguish the type of an instruction,
the relation progorder represents the program order, the relation seed represents the
partial function seed , and the relation aliased represents whether two instructions
are aliased memory accesses.

Definition 15 For a global trace T = (I,≺, proc, adr , val , seed , stat) and a memory
model vocabulary σ, define the interpretation J.KT as follows:

• JinstrKT = I

• JloadKT is the function that maps i 7→ (i ∈ loads(I))

• JstoreKT is the function that maps i 7→ (i ∈ stores(I))

• JfenceKT is the function that maps i 7→ (i ∈ fences(I))

• JaccessKT is the function that maps i 7→ (i ∈ accesses(I))

• JprogorderKT is the function that maps (i, j) 7→ (i ≺ j)

• JseedKT is the function that maps (i, j) 7→ (seed(i) = j)

• JaliasedKT is the function that maps

(i, j) 7→
{

(adr(i) = adr(j)) if i, j ∈ accesses(I)
false otherwise

We now define the function EG as follows:

Definition 16 Given an axiomatic memory model specification Y = (R, φ1, . . . , φk),
let EG(Y ) be the set consisting of all global traces T = (I,≺, proc, adr , val , seed , stat)
for which there exists a valuation ν such that the following conditions hold:

dom ν = R and Jφ1KνT = · · · = JφkKνT = true
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3.3.2 Illustrative Example: Sequential Consistency

To illustrate how axiomatic specifications work, we now show how to represent se-
quential consistency (defined in Section 3.2.2) by an axiomatic memory model spec-
ification (R, φ1, . . . , φ6). First, define the following variable symbols:

memorder ∈ V instr×instr→bool

X, Y, Z ∈ V instr

Then we define (R, φ1, . . . , φ6) as follows:

R = {memorder}
φ1 = [∀ access X :

∀ access Y :
∀ access Z :

(memorder(X, Y ) ∧memorder(Y, Z))⇒ memorder(X,Z)]
φ2 = [∀ access X :

¬memorder(X,X)]
φ3 = [∀ access X :

∀ access Y :
memorder(X, Y ) ∨memorder(Y,X) ∨ (X = Y )]

φ4 = [∀ access X :
∀ access Y :

progorder(X, Y )⇒ memorder(X, Y )]
φ5 = [∀ load X :

∀ store Y :
seed(X, Y )⇒ memorder(Y,X) ∧ aliased(Y,X)]

φ6 = [∀ load X :
∀ store Y :

aliased(X, Y ) ∧memorder(Y,X) ∧ ¬seed(X, Y )⇒
∃ store Z : (seed(X,Z) ∧memorder(Y, Z)]

We can easily relate these formulae to the earlier definition of sequential consis-
tency in Section 3.2.2): the formulae φ1, φ2 and φ3 express that the memory order
is a total order over all accesses, while the formulae φ4, φ5 and φ6 correspond to the
axioms (A1), (A2) and (A3) respectively.

A valuation that satisfies all conditions thus exists if and only if a valuation for
memorder can be found that satisfies all formulae, which is the case if and only if a
total memory order <M (as defined in Section 3.2.2) exists.

3.4 Extensions

So far, we have used a very simple notion of trace that consists only of loads, stores
and fences. While such simple traces are appropriate to explain the basic concepts,
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bool cas(unsigned *loc,
unsigned old, unsigned new) {

atomic {
if (*loc == old) {

*loc = new;
return true;

} else {
return false;

}
}

}

Figure 3.8: Pseudocode for the compare-and-swap (CAS) operation.

we need more structure to handle realistic memory models that contain synchroniza-
tion operations, mention control- and data-dependencies, and contain various types
of fences.

In this section, we describe how to extend the definitions of local traces, global
traces and memory models to accommodate these concepts.

3.4.1 Atomic Blocks

To model synchronization operations such as compare-and-swap (CAS), we support
atomic blocks. Fig. 3.8 shows how we conceptually model CAS using an atomic
block. To express atomic blocks on the abstraction level of memory traces, we express
atomicity as an equivalence relation ∼A on instructions in the trace. The idea is that
two instructions are in the same equivalence class whenever they are produced by
code that is enclosed in some atomic block. Instructions that are not contained in an
atomic block go into an equivalence class of their own. Because atomic blocks never
span multiple processors, each equivalence class is totally ordered by the program
order.

Different memory models may implement slightly different semantic variations
of atomicity. We can specify the meaning of atomic blocks by adding axioms to
the memory model. In the case of sequential consistency or Relaxed, the case is
relatively simple because it is straightforward to express atomicity by constraining
the memory order, as follows:

Sequential Consistency. (Section 3.2.2) Add the axiom

(A4) if x, y, z ∈ accesses(I) and x ∼A y and x 6∼A z and x ≺ y and x <M z,
then y <M z
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Relaxed. (Section 3.2.3) Add the axioms

(A5) if x, y, z ∈ accesses(I) and x ∼A y and x 6∼A z and x ≺ y and x <M z,
then y <M z

(A6) if x, y ∈ accesses(I) and x ∼A y and x ≺ y, then x <M y

Note that axiom (A6) is not just about atomicity, but also about ordering. We
found that in all cases where we use atomic blocks, we implicitly also require that
the ordering of the accesses within the block be maintained, so we chose to make
this a part of the definition of atomic blocks.

In order to add the axioms above, we need to represent the atomic block structure
within the definitions of local and global traces, as follows:

• Modify the definitions of local trace and global trace (Sections 2.1.2 and 2.1.4)
by extending the trace tuples as follows:

t = (I,≺, adr , val ,∼A) (3.1)

T = (I,≺, proc, adr , val , seed , stat ,∼A) (3.2)

and add the requirement that ∼A be an equivalence relation over I such that
≺ is a total order on each partition of ∼A.

• Extend Definition 13 (Section 3.3.1) to include the following second-order vari-
able:

atomic ∈ F instr×instr→bool

• Extend Definition 15 (Section 3.3.1) with the following item:

JatomicKT is the function that maps (i, j) 7→ (i ∼A j)

3.4.2 Control and Data Dependencies

Most memory models make some intrinsic ordering guarantees for instructions that
are control- or data-dependent. For example, consider the common code sequence

1. read a pointer p to some structure

2. read a field p->f

This sequence produces two loads, the second of which is data dependent on the first
(the address used by the second load depends on the value loaded by the first). On
most memory models, such a data dependence guarantees that the memory system
will execute the accesses in order. However, this is not true on all systems: on some
architectures (most notably Alpha [13]), the processor is allowed to perform the load
of p->f before the load of p by speculating on the value of p and then confirming
it afterward [51]. On a multiprocessor, this early load may read an incorrect value
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because p->f may not have been written yet at the time it is loaded (we give an
example in Section 8.2.2).

Our memory model specifications must express what ordering (if any) is implied
by data and control dependencies. To do so, we express them as binary relations
on the instructions in the trace. We use the following definition for control and
data dependency. Note that because we have not formalized the actual instruction
set (to be introduced in Chapter 4), we use the terms “instruction” and “register”
informally here.

Data Dependency. we say an instruction y is data-dependent on a load x (written
x <D y) if there exists a k ≥ 1 and instructions z0, . . . , zk such that z0 = x,
zk = y and for all 1 ≤ i ≤ k, instruction zi reads a data register that is written
by instruction zi−1.

Control Dependency. we say an instruction y is control-dependent on a load x
(written x <C y) if there exists a conditional branch instruction b such that b
precedes y in the program trace, and b is data dependent on x.

Neither of the memory models we introduced so far (sequential consistency and
Relaxed) make reference to data- or control-dependencies. However, the RMO model
(for which we give a definition later in this chapter) does define a special dependency
order that restricts the reorderings a processor may perform. Moreover, in the next
section, we add special fences to Relaxed that order data- or control-dependent
instructions.

To represent control- and data-dependencies in our formalism, we modify the
following definitions.

• Modify the definitions of local trace and global trace (Sections 2.1.2 and 2.1.4)
by extending the trace tuples as follows:

t = (I,≺, adr , val ,∼A, <D, <C) (3.3)

T = (I,≺, proc, adr , val , seed , stat ,∼A, <D, <C) (3.4)

and add the requirements that

– <D is a binary relation over loads(I)× accesses(I)

– <C is a binary relation over loads(I)× accesses(I)

– for all i, j ∈ I: if i <D j then i ≺ j

– for all i, j ∈ I: if i <C j then i ≺ j

• Extend Definition 13 (Section 3.3.1) to include the following second-order vari-
ables:

data dependent, control dependent ∈ F instr×instr→bool
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• Extend Definition 15 (Section 3.3.1) with the following item:

Jdata dependentKT is the function that maps (i, j) 7→ (i <D j)

Jcontrol dependentKT is the function that maps (i, j) 7→ (i <C j)

3.4.3 Fences

Most memory models support multiple weaker fence variations. The reason is that a
full fence is quite expensive and rarely needed. Most of the time, light-weight fences
are appropriate to achieve the necessary synchronization.

Many architectures provide fences that order specific types of accesses only. For
example, a “load-load” fence enforces ordering of loads that occur prior to the fence
relative to loads that occur after the fence. Similarly, a “load-store” fence enforces
ordering of loads that occur prior to the fence relative to stores that occur after the
fence. Fig. 3.9 shows an example (adapted from the SPARC manual [72]) that shows
how to build a mutual exclusion lock with partial fences.

In addition to these four fences (ll fence, ls fence, sl fence, ss fence) we found
it convenient to include special fences for data-dependent loads (ddl fence) and for
control-dependent accesses (cd fence) to Relaxed. The reason is that when we stud-
ied some implementations of concurrent data types on Relaxed (see Chapter 8) we
found failures caused by reordered data- or control-dependent loads. In those situ-
ations, we prefer to use a specialized fence (that is, place a ddl fence between the
data-dependent loads, or cd fence between the control dependent accesses) rather
than using a general load-load or load-store fence. This makes it easier to remember
why a particular fence is needed, and allows us to drop those fences if we port the
implementation to a stronger memory model that enforces them automatically.

For the same reasons, we added another fence al fence to order aliased loads; by
inserting this fence in between loads that target the same address, we guarantee that
they will not be reordered (almost all memory models already enforce the relative
order of such loads, but Relaxed and SPARC RMO do not).

To represent these various fence types in the the memory model definition of
Relaxed, we make the following modifications to the formalism:

• Replace axiom (A4) in the definition of Relaxed (Section 3.2.3) by the following
seven axioms

(A4.1) if x ∈ loads(I) and y ∈ loads(I) and f ∈ fences(I) and ftyp(f) = ll fence
and x ≺ f ≺ y, then x <M y.

(A4.2) if x ∈ loads(I) and y ∈ stores(I) and f ∈ fences(I) and ftyp(f) = ls fence
and x ≺ f ≺ y, then x <M y.

(A4.3) if x ∈ stores(I) and y ∈ loads(I) and f ∈ fences(I) and ftyp(f) = sl fence
and x ≺ f ≺ y, then x <M y.

(A4.4) if x ∈ stores(I) and y ∈ stores(I) and f ∈ fences(I) and ftyp(f) =
ss fence and x ≺ f ≺ y, then x <M y.
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typedef enum { free, held } lock_t;

void lock(lock_t *lock) {
lock_t val;
do {
atomic {

val = *lock;

*lock = held;
}

} while (val != free);
fence("load-load");
fence("load-store");

}

void unlock(lock_t *lock) {
fence("load-store");
fence("store-store");
atomic {
assert(*lock == held);

*lock = free;
}

}

Figure 3.9: Pseudocode for the lock and unlock operations. The fences in the lock call
prevent accesses in the critical section (which is below the call to lock) from drifting
up and out of the critical section, past the synchronizing load. Symmetrically, the
fences in the unlock call prevent accesses in the critical section (which is above the call
to unlock) from drifting down and out of the critical section, past the synchronizing
store.
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(A4.5) if x ∈ loads(I) and y ∈ loads(I) and f ∈ fences(I) and ftyp(f) = al fence
and adr(x) = adr(y) and x ≺ f ≺ y, then x <M y.

(A4.6) if x ∈ loads(I) and y ∈ loads(I) and f ∈ fences(I) and ftyp(f) =
ddl fence and x <D y and x ≺ f ≺ y, then x <M y.

(A4.7) if x ∈ loads(I) and y ∈ accesses(I) and f ∈ fences(I) and ftyp(f) =
cd fence and x <C y and x ≺ f ≺ y, then x <M y.

• Modify the definitions of local traces and global traces (Sections 2.1.2 and
2.1.4) by extending the trace tuples as follows:

t = (I,≺, adr , val ,∼A, <D, <C , ftyp) (3.5)

T = (I,≺, proc, adr , val , seed , stat ,∼A, <D, <C , ftyp) (3.6)

and add the requirement that ftyp be a function

ftyp : fences(I)→ {ll fence, ls fence,

sl fence, ss fence, al fence, ddl fence, cd fence}.

• Extend Definition 13 (Section 3.3.1) to include the following predicates:

{load, store, fence, access, ll fence, ls fence,

sl fence, ss fence, al fence, ddl fence, cd fence} ⊂ F instr→bool

• Extend Definition 15 (Section 3.3.1) with the following items:

Jll fenceKT is the function that maps i 7→ (ftyp(i) = ll fence)

Jls fenceKT is the function that maps i 7→ (ftyp(i) = ls fence)

Jsl fenceKT is the function that maps i 7→ (ftyp(i) = sl fence)

Jss fenceKT is the function that maps i 7→ (ftyp(i) = ss fence)

Jal fenceKT is the function that maps i 7→ (ftyp(i) = al fence)

Jddl fenceKT is the function that maps i 7→ (ftyp(i) = ddl fence)

Jcd fenceKT is the function that maps i 7→ (ftyp(i) = cd fence)

3.5 Axiomatic Memory Model Specifications

In this section, we demonstrate the syntax we use to specify memory models. We
start by giving a short description of the format (Section 3.5.1), to clarify how it
expresses an axiomatic specification as defined earlier in this chapter. We then
list the complete source file for sequential consistency (Section 3.5.2) and Relaxed
(Section 3.5.3).
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A third specification (for the SPARC RMO model) is presented in Section 3.6.
We plan to specify more models in the future; we expect our format to handle all
common hardware memory models and some software models. Of particular interest
is the support of models that do not enforce a global store order. However, we have
not finished those formalizations; it is likely that they require minor modifications
to the format presented here, which we consider to be somewhat experimental still.

3.5.1 Short Description of the Format

Each model definition is prefixed by the keyword model, followed by the name of
the model. The model definition ends with the keyword end model. In between, the
following sections are specified:

Predefined section. In this section, we declare the symbols that have some prede-
fined meaning. The symbols listed in this section may include (1) sets that are
part of the standard vocabulary, such as instr, and (2) boolean-valued second-
order variables (that is, predicates and relations) that represent properties of
the instructions in the trace. The syntax indicates the arity (number and type
of arguments) to each variable. We defined these predicates and relations in
Definition 13 (Section 3.3.1) and in Section 3.4 (the names are slightly more
verbose, but easy to match up).

Exists section. In this section, we declare second-order variable symbols for use
in the axioms, using the same syntax. The variables in this section are exis-
tentially quantified (in the sense that a global trace is allowed by the memory
model if and only if we can find a valuation for them, see Def. 16 in sec-
tion 3.3.1). For sequential consistency and Relaxed, this section consists of a
single variable, the memory order. For RMO, it contains both the memory
order and a dependency order (as defined by the official RMO specification).

Forall section. In this section, we declare the type of the first-order variable sym-
bols we wish to use in the axioms. To distinguish these first-order variables
visually from the second-order variables declared in the previous sections, we
require them to start with a capital letter.

Require section. In this section, we list the axioms. Each axiom is prefixed with
a label enclosed in angle brackets 〈 〉. The axioms are boolean formulae using
standard syntax for negation, conjunction, disjunction, implication, and quan-
tification. The atomic subformulae are either boolean constants (true, false),
second-order variables applied to first-order variables (rel(X, Y, Z)), or equality
expressions involving first-order variables (X = Y ). If an axiom contains free
variables, we implicitly replicate it for all possible valuations (or equivalently,
wrap universal quantifiers around the axiom to obtain a closed formula). We
then take the conjunction of all the axioms (in the sense that a global trace is
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allowed by the memory model if and only if it satisfies all axioms, see Def. 16
in Section 3.3.1).

3.5.2 Axiomatic Specification of Sequential Consistency

model sc

predefined
set instruction
predicate access(instruction)
predicate load(access)
predicate store(access)
relation aliased(access,access)
relation seed(load,store)
predicate has_seed(load)
relation program_order(instruction,instruction)
relation atomic(instruction,instruction)

exists
relation memory_order(access,access)

forall
L : load
S,S’ : store
X,Y,Z : access

require

<T1> memory_order(X,Y) & memory_order(Y,Z) => memory_order(X,Z)
<T2> ˜memory_order(X,X)
<T3> memory_order(X,Y) | memory_order(Y,X) | X = Y

<M1> program_order(X,Y) => memory_order(X,Y)

<v1> seed(L,S) => memory_order(S,L)
<v2> seed(L,S) & aliased(L,S’) & memory_order(S’,L) & ˜(S = S’)

=> memory_order(S’,S)
<v3> aliased(L,S) & memory_order(S,L) => has_seed(L)

<a1> atomic(X,Y) & program_order(X,Y) & ˜atomic(Y,Z)
& memory_order(X,Z) => memory_order(Y,Z)

end model
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3.5.3 Axiomatic Specification of Relaxed

model relaxed

predefined
set instruction
predicate access(instruction)
predicate load(access)
predicate store(access)
relation program_order(instruction,instruction)
relation aliased(access,access)
relation seed(load,store)
predicate has_seed(load)
predicate fence(instruction)
predicate ll_fence(fence)
predicate ls_fence(fence)
predicate sl_fence(fence)
predicate ss_fence(fence)
predicate al_fence(fence)
predicate ddl_fence(fence)
predicate cd_fence(fence)
relation data_dependent(load,instruction)
relation control_dependent(load,instruction)
relation atomic(instruction,instruction)

exists
relation memory_order(access,access)

forall
L,L’ : load
S,S’ : store
X,Y,Z : access
F : fence

require

<T1> memory_order(X,Y) & memory_order(Y,Z) => memory_order(X,Z)
<T2> ˜memory_order(X,X)
<T3> memory_order(X,Y) | memory_order(Y,X) | X = Y

<M1> program_order(X,S) & aliased(X,S) => memory_order(X,S)

<ll> ll_fence(F) & program_order(L,F) & program_order(F,L’)
=> memory_order(L,L’)

<ls> ls_fence(F) & program_order(L,F) & program_order(F,S’)
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=> memory_order(L,S’)
<sl> sl_fence(F) & program_order(S,F) & program_order(F,L’)

=> memory_order(S,L’)
<ss> ss_fence(F) & program_order(S,F) & program_order(F,S’)

=> memory_order(S,S’)
<al> al_fence(F) & program_order(L,F) & program_order(F,L’)

& aliased(L,L’) => memory_order(L,L’)
<dd> ddl_fence(F) & program_order(L,F) & program_order(F,L’)

& data_dependent(L,L’) => memory_order(L,L’)
<cd> cd_fence(F) & program_order(L,F) & program_order(F,X)

& control_dependent(L,X) => memory_order(L,X)

<v1> seed(L,S) => memory_order(S,L) | program_order(S,L)
<v2> seed(L,S) & aliased(L,S’)

& (memory_order(S’,L) | program_order(S’,L))
& ˜(S = S’) => memory_order(S’,S)

<v3> aliased(L,S) & (memory_order(S,L) | program_order(S,L))
=> has_seed(L)

<a1> atomic(X,Y) & program_order(X,Y) & ˜atomic(Y,Z)
& memory_order(X,Z) => memory_order(Y,Z)

<a2> atomic(X,Y) & program_order(X,Y) => memory_order(X,Y)

end model

3.6 The RMO Model

In this section we show our formalization of the RMO memory model. The RMO
model is officially defined by the SPARC v9 manual [72]. Out of the many relaxed
models that exist, we chose RMO as an example because it features a realistic level
of detail and the manual specifies it with reasonable precision.1.

The most important difference between RMO and either sequential consistency
or Relaxed is that two ordering relations are used. Apart from the memory order
(which is a total order as usual), the manual defines a dependence order, a partial
order between accesses by the same thread.

We first show the complete definition in our specification format (Section 3.6.1).
Then we briefly discuss how the RMO model relates to Relaxed(Section 3.6.2), and
show how it corresponds to the official specification [72] (Section 3.6.3).

For more information on the SPARC models, we recommend the architecture
manual [72] and previous work on model checking relaxed models [16, 60].

1Unfortunately, hardware memory models are often underspecified in the architecture manual
and thus become a matter of discussion.
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3.6.1 Axiomatic Specification of RMO

model rmo

predefined
set instruction
predicate access(instruction)
predicate load(access)
predicate store(access)
relation program_order(instruction,instruction)
relation aliased(access,access)
relation seed(load,store)
predicate has_seed(load)
relation data_dependent(load,instruction)
relation control_dependent(load,instruction)
predicate fence(instruction)
predicate ll_fence(fence)
predicate ls_fence(fence)
predicate sl_fence(fence)
predicate ss_fence(fence)
relation atomic(instruction,instruction)

exists
relation memory_order(access,access)
relation dependence_order(access,access)

forall
L,L’ : load
S,S’ : store
X,Y,Z : access
F : fence

require

<T1> memory_order(X,Y) & memory_order(Y,Z) => memory_order(X,Z)
<T2> ˜memory_order(X,X)
<T3> memory_order(X,Y) | memory_order(Y,X) | X = Y

<A1> program_order(L,X) & dependence_order(L,X)
=> memory_order(L,X)

<A2_ll> ll_fence(F) & program_order(L,F)
& program_order(F,L’) => memory_order(L,L’)

<A2_ls> ls_fence(F) & program_order(L,F)
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& program_order(F,S’) => memory_order(L,S’)
<A2_sl> sl_fence(F) & program_order(S,F)

& program_order(F,L’) => memory_order(S,L’)
<A2_ss> ss_fence(F) & program_order(S,F)

& program_order(F,S’) => memory_order(S,S’)

<A3> program_order(X,S) & aliased(X,S) => memory_order(X,S)

<v1> seed(L,S) => memory_order(S,L) | program_order(S,L)
<v2> seed(L,S) & aliased(L,S’)

& (memory_order(S’,L) | program_order(S’,L))
& ˜(S = S’) => memory_order(S’,S)

<v3> aliased(L,S) & (memory_order(S,L) | program_order(S,L))
=> has_seed(L)

<D1> program_order(X,S) & control_dependent(X,S)
=> dependence_order(X,S)

<D2> program_order(X,Y) & data_dependent(X,Y)
=> dependence_order(X,Y)

<D3> program_order(S,L) & aliased(S,L) => dependence_order(S,L)

<Dt> program_order(X,Y) & program_order(Y,Z)
& dependence_order(X,Y) & dependence_order(Y,Z)

=> dependence_order(X,Z)

<a1> atomic(X,Y) & program_order(X,Y) & ˜atomic(Y,Z)
& memory_order(X,Z) => memory_order(Y,Z)

<a2> atomic(X,Y) & program_order(X,Y) => memory_order(X,Y)

end model

3.6.2 Comparison to Relaxed

We now compare the RMO axioms above with Relaxed. We claimed earlier that
Relaxed conservatively approximates RMO. This claim can now be verified: any
trace that satisfies the axioms for RMO must also satisfy the axioms for Relaxed (at
least for code without special Relaxed-specific fence types) because the latter are a
subset of the former:

• The axioms 〈T1〉, 〈T2〉, 〈T3〉, 〈v1〉, 〈v2〉, 〈v3〉, 〈a1〉, and 〈a2〉 are identical in
both models.

• The axiom 〈M1〉 is identical to 〈A3〉.
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• The axioms 〈ll〉, 〈ls〉, 〈sl〉, and 〈ss〉 are identical to 〈A2 ll〉, 〈A2 ls〉, 〈A2 sl〉,
〈A2 ss〉.

• The axioms 〈cd〉, 〈ddl〉 and 〈al〉 are vacuously satisfied for code that does not
contain any of the respective fences.

Essentially, we are simply removing all references to the dependence order, thus
allowing the processor to reorder dependent instructions at will.

3.6.3 Comparison to the SPARC Specification

We derived the RMO axioms above from the official SPARC v9 architecture man-
ual [72], Appendix D (titled “Formal Specification of the Memory Models”). They
correspond as follows:

• The axioms 〈T1〉, 〈T2〉, and 〈T3〉 encode that the memory order be a total
order, as usual.

• The axioms 〈A1〉 and 〈A3〉 correspond to the axioms (1) and (3) in section
D.4.4 of the SPARC manual, respectively. Furthermore, the axioms 〈A2 ll〉,
〈A2 ls〉, 〈A2 sl〉 and 〈A2 ss〉 all correspond to axiom (2), each treating one
fence type.

• The axioms 〈v1〉, 〈v2〉 and 〈v3〉 define the value flow as stated in section D.4.5
(which allows store forwarding).

• The axioms 〈D1〉, 〈D2〉 and 〈D3〉 correspond to the axioms (1), (2) and (3) in
section D.3.3, respectively, which define the dependence order.

• The axiom 〈Dt〉 defines transitivity of the dependence order. We use a little
‘trick’ here to improve the encoding. Because we know the dependence order
applies to accesses in the same thread only, we prefix the axiom with conditions
that make it vacuously satisfied if the accesses are not in the same thread.
During our encoding, no constraints are thus generated to express transitivity
across threads.

• The axioms 〈a1〉 and 〈a2〉 have no corresponding definitions in the SPARC
manual, as they define atomic sections (which do not exist on the latter).
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Chapter 4

Programs

In this section, we formalize our notion of program, by introducing an intermedi-
ate language called LSL (load-store language) with a formal syntax and semantics.
Furthermore, we describe how to unroll programs to obtain finite, bounded versions
that can be encoded into formulae.

4.1 Motivation for an Intermediate Language

The C language does not specify a memory model (standardization efforts for C/C++
are still under way). Therefore, executing memory-model-sensitive C code on a mul-
tiprocessor can have unpredictable effects [7] because the compiler may perform
optimizations that alter the semantics on multiprocessors. On the machine language
level, however, the memory model is officially defined by the hardware architecture.
It is therefore possible to write C code for relaxed models by exerting direct control
over the C compilation process to prevent optimizations that would alter the pro-
gram semantics. Unfortunately, the details of this process are machine dependent
and not portable.

To keep the focus on the key issues, we compile C into an an intermediate language
LSL (load-store language) that resembles assembly language, but abstracts irrelevant
machine details. We describe LSL and the translation in more detail later in this
chapter. The design of LSL addresses the following requirements:

Trace Semantics. LSL programs have a well-defined behavior on multiprocessors,
for a variety of memory models. Specifically, for each LSL program, we give
a formal definition of what memory traces it may produce (in the sense of
Section 2.1.3).

Conciseness. LSL is reasonably small and abstract to simplify reasoning and keep
proofs manageable.
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Translation. LSL has enough features to model programs in the target domain.
Specifically, our CheckFence tool can automatically translate typical C imple-
mentation code for concurrent data types into LSL.

Encoding. We can encode the execution of unrolled LSL programs as formulae.

4.2 Syntax

Fig. 4.1 shows the abstract syntax of LSL, slightly simplified.1 It lists the syntactic
entities used to construct LSL programs. We discuss their meaning in the following
sections.

4.2.1 Types

The C type system does not make strong guarantees and is therefore of little use to
our encoding. We thus decided against using a static type system for LSL. We do
however track the “runtime type” of each value: rather than encoding all values as
“flat” integers as done by the underlying machine, we distinguish between undefined,
pointer, or number values.

4.2.2 Values

We let v represent a value. We use the following values:

• We let ⊥ represent an undefined value. It is the default value of any register
or memory location before it is assigned or stored the first time.

• We let n represent a signed integer. We assume a two’s complement bitvector
representation for integers. However, unlike C, we do not model any overflow
issues (assuming that the vectors are always wide enough to hold all values
that appear in the executions under consideration).

• Pointers are represented as non-empty integer lists [n1 . . . nk]; the first integer
n1 represents the base address, and the following integers n2, . . . , nk represent
the sequence of offsets that are applied to the base pointer.

Using this extra structure on values has the following advantages:

• We can perform some automatic runtime type checks that help to catch pro-
grammer mistakes early (Section 7.1.1). For example, we flag it as an error if
a programmer dereferences a non-pointer value.

1To simplify the presentation, we assume that there is only a single type of fence. Adding more
fence types (as discussed in Section 3.4.3) is technically straightforward. We also do not show the
syntax for atomic blocks here, but defer it until Section 4.6.2.
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(register) r ∈ Reg

(procedure) p ∈ Proc

(label) l ∈ Lab

(primitive op) f ∈ Fun

(value) v ∈ Val

(undefined) ::= ⊥
(number) | n n ∈ Z
(pointer) | [n1 . . . nk] (k ≥ 1 and n0, . . . , nk ∈ Z)

(execution state) e ∈ Exs

(ok) ::= ok

(abort) | abort

(break) | break l

(continue) | continue l

(program statement) s ∈ Stm

(composition) ::= s ; s

(label) | l : s

(throw) | throw(e) (e 6= ok)

(conditional) | if (r) s

(procedure call) | p(r1, . . . , rk)(r1, . . . , rl) (k, l ≥ 0)

(assign) | r := (f r1 . . . rk) (k ≥ 0)

(store) | *r := r

(load) | r := *r

(fence) | fence

(procedure definition) def p(r1, . . . , rk)(r1, . . . , rl) = s (k, l ≥ 0)

Figure 4.1: The abstract syntax of LSL
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• We can optimize the encoding by using type-specific encodings. For example,
rather than calculating pointer offsets using multiplication and addition (which
are expensive to encode), we use a simple list-append operation which we can
encode very efficiently (shifting bits).

• We can recover some of the benefits of static type systems (in particular,
achieve more succinct encodings) by using a light-weight flow-insensitive pro-
gram analysis that recovers static type information (Section 7.3.2).

4.2.3 Identifiers

• We let r represent a register identifier. Registers are used to store intermediate
computation values. We assume that there is an infinite supply of registers.

• We let p represent a procedure identifier. Procedure identifiers are used to
connect procedure calls to the corresponding procedure definition.

• We let l represent a label. Labels are used to model control flow, including
loops. Labels are not required to be unique.

• We let f represents a basic function identifier. We describe the supported
functions in more detail in Section 4.2.8 below.

4.2.4 Execution States

We let e represent an execution state. Whenever a statement executes, it terminates
with some execution state, which is one of the following:

• The state ok represents normal termination. It also means “proceed normally”,
in the following sense: If we execute a composed statement (s ; s), we start by
executing the first one. If it terminates with execution state ok, the second
statement is executed next.

• The state abort represents an error condition that causes a thread to abandon
regular program execution immediately, such as a failing programmer assertion,
or a runtime error (e.g. a division by zero or a null dereference).

• The state break l indicates that the program should immediately exit the
nearest enclosing block with label l. It is always caused by a throw(break l)
statement, and acts just like an exception (as defined by Java, for example).
If there is no enclosing block with label l, the whole program terminates with
execution state break l.

• The state continue l indicates that the program should immediately restart
execution of the nearest enclosing block with label l. It is always caused by a
statement throw(continue l), and acts like continue statements in C or Java.
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The execution states break l and continue l are used in conjunction with labeled
blocks to implement control structures such as switch statements or loops. We
encourage the reader to look at the examples in Fig. 4.3, Fig. 4.4 and Fig. 4.6 now,
which illustrate how LSL represents control flow.

4.2.5 Procedure Definitions

A procedure definition has the form def p(r1, . . . , rk)(r
′
1, . . . , r

′
l) = s. The regis-

ters r1, . . . , rk are called input registers, and the registers r′1, . . . , r
′
l are called output

registers. The statement s represents the procedure body.
When a procedure is executed, the input registers contain the argument values of

the call, and the procedure body assigns the return value(s) to the output registers.

4.2.6 Program Statements

s ∈ Stm represents a program statement (or an entire program). The individual
statements are as follows:

• Composition of statements s1 ; s2. The statement s1 is executed first; if it
completes with an execution state other than ok, the statement s2 is skipped.

• Labeled statement l : s. If the statement s completes with an execution state
of continue l, then it is executed again. If the statement s completes with an
execution state of break l, then l : s completes with an execution state of ok.
Otherwise, l : s behaves the same as s.

• Throw statement throw(e). Completes with execution state e. It can there-
fore be used for aborting the thread, for continuing an enclosing loop, or for
breaking out of an enclosing block.

• Conditional if (r) s. If register r is nonzero, s is executed, otherwise s is
skipped.

• Procedure call p(r1, . . . , rk)(r
′
1, . . . , r

′
l). All arguments are call-by-value. When

a procedure is called, we execute the body of the procedure definition for p,
after assigning the contents of registers r1, . . . , rk to the input registers of p. If
the execution completes with state ok, the contents of the output registers of
p are assigned to the registers r′1, . . . , r

′
l. Otherwise the output registers retain

the value they had before the procedure call.

• Assignment r := (f r1 . . . rk). The function f is applied to the values contained
in the registers r1, . . . , rk, and the resulting value is assigned to the register r.

• Load r := *r′. The memory location whose address is contained in register r′

is loaded, and the resulting value is assigned to register r.
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• Store *r′ := r. The value contained in register r is stored into the memory
location whose address is contained in register r′.

• Fence fence. Produces a memory fence instruction.

4.2.7 Programs

With the syntactic entities thus defined, we are ready to define the set of programs.

Definition 17 A program p is a tuple (s,D) where s is a statement and D is a set
of procedure definitions such that there is a unique matching definition for each call
that appears in s or D. Let Prog be the set of all such programs.

4.2.8 Basic Functions

We now describe the basic functions available in LSL in more detail. For the most
part, these functions are similar to the corresponding C operators, but they reside
at a somewhat higher abstraction level, with the following differences:

• We ignore all effects that result from the bounded width of the underlying
bitvector representation.

• We use special operators for pointer manipulation, instead of relying on normal
integer multiplication and addition for offset calculations.

• We do not support floating-point operations or values.

The set Fun contains the following basic functions. For each basic function, we
describe the arity, the domain, and the semantics. Conceptually, basic functions are
partial functions only as they may not be well-defined on all inputs (for example,
the division function is not defined for zero divisors). For convenient formalization,
we specify that a basic function produce the special value ⊥ if undefined.2

• For each value v ∈ Val, there is a corresponding zero-arity constant function
constant〈v〉. It produces the value v.

• The unary function identity returns the same value as given. Its domain is the
entire set Val.

• The binary function equals is defined on Val×Val and returns 1 if its argument
values are the same, or 0 otherwise. The binary function notequals is defined
on Val×Val and returns 0 if its argument values are the same, or 1 otherwise.

2In practice, it makes more sense to abort execution and report the runtime error to the user,
which is in fact what our CheckFence implementation does. We do not include this mechanism in
the basic presentation, but it should be fairly clear how to support it by instrumenting the source
code with assertions.
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• The unary function bitnot and the binary functions bitand, bitor, bitxor are
defined on numbers and have the same semantics as the respective bitwise C
operators ~, &, |, and ^.

• The unary function minus and the binary functions add, subtract,multiply are
defined on numbers and have the same semantics as the respective arithmetic
C operators -, +, -, and *.

• The binary functions div,mod are defined on all pairs of numbers such that
the second number is not zero. They have the same semantics as the respective
arithmetic C operators / and %.

• The binary functions lessthan, lesseq are defined on all pairs of numbers. They
have the same semantics as the respective C comparison operators < and <=.

• The binary functions shiftleft, shiftright are defined on all pairs of numbers and
have the same semantics as the respective C operators << and >>.

• The unary function pointer takes a numerical argument n and produces the
pointer [n]. The binary function offset takes two arguments, a pointer [n1 . . . nk]
and a number n, and produces the pointer [n1 . . . nk n]. The unary function
getoffset takes a pointer argument [n1 . . . nk] and produces the number nk. The
unary function getbase takes a pointer argument [n1 . . . nk] such that k ≥ 2
and produces the pointer [n1 . . . nk−1].

We do not need basic functions for every single C operator. For instance, to
provide > or >=, we can simply swap the operands and use < or <= instead. We
also do not directly implement the logic operators !, && and ||, but rather use
equals 0/notequals 0 and the bitwise logical functions to implement the logical func-
tion. We also use explicit conditionals to express the implicit control flow aspect
of && and || (the second expression is only evaluated if the first does not already
satisfy the logical connective).

4.3 Memory Trace Semantics

In this section, we give a formal semantics for LSL programs. Specifically, we define a
local trace semantics (in the sense of Section 2.1.3) that defines the possible memory
traces for a given LSL program.

We found that a big-step operational style fits our purpose best. We thus give a
set of inference rules to derive sentences of the form

Γ, t, s ⇓D Γ′, t′, e

with the following intuitive interpretation: “when starting with a register map Γ,
a local trace t, and a set D of procedure definitions, execution of the statement s
completes with a register map Γ′, a local trace t′, and execution state e.”

To prepare for the actual inference rules, we first need to define register maps
and introduce syntactic shortcuts for constructing local traces.
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Definition 18 A register map is a function Γ : Reg→ Val such that Γ(r) = ⊥ for
all but finitely many registers r. Define the initial register map Γ0 to be the constant
function such that Γ0(r) = ⊥ for all r.

We construct the memory trace of a program by appending instructions one
at a time. The following definition provides a notational shortcut to express this
operation:

Definition 19 For a local memory trace t = (I,≺, adr , val) and for elements i ∈
I \ I and a, v ∈ Val we use the notation

t.append(i, a, v)

to denote a local memory trace (I ′,≺′, adr ′, val ′) where

• I ′ = I ∪ {i}
• ≺′=≺ ∪(I × {i})

• adr ′(x) =

{
adr(x) if x 6= i
a if x = i

• val ′(x) =

{
val(x) if x 6= i
v if x = i

4.3.1 Inference Rules

With these definitions in place, we can now give the inference rules.
We use two rules for composition. Which one applied depends on whether the

first statement terminates with execution state ok:

Γ, t, s ⇓D Γ′, t′, ok Γ′, t′, s′ ⇓D Γ′′, t′′, e

Γ, t, s ; s′ ⇓D Γ′′, t′′, e
(Comp-ok)

Γ, t, s ⇓D Γ′, t′, e e 6= ok

Γ, t, s ; s′ ⇓D Γ′, t′, e
(Comp-skip)

We use three rules for labeled blocks. They correspond to cases where the label has
no effect, where the label catches a break, and where the label catches a continue:

Γ, t, s ⇓D Γ′, t′, e e /∈ {break l, continue l}
Γ, t, l : s ⇓D Γ′, t′, e

(Label)

Γ, t, s ⇓D Γ′, t′, break l

Γ, t, l : s ⇓D Γ′, t′, ok
(Label-break)
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Γ, t, s ⇓D Γ′, t′, continue l Γ′, t′, l : s ⇓D Γ′′, t′′, e

Γ, t, l : s ⇓D Γ′′, t′′, e
(Label-cont)

The throw statement simply changes the execution state:

Γ, t, throw(e) ⇓D Γ, t, e (Throw)

We use two rules for conditionals, depending on the outcome of the test;

Γ(r) = 0

Γ, t, if (r) s ⇓D Γ, t, ok
(If-not)

Γ(r) 6= 0 Γ, t, s ⇓ Γ′, t′, e

Γ, t, if (r) s ⇓D Γ′, t′, e
(If-so)

Assignments do modify the registers, but do not change the memory trace:

v = f(Γ(r1), . . . ,Γ(rk))

Γ, t, r := (f r1 . . . rk) ⇓D Γ[r 7→ v], t, ok
(Assign)

The three rules for store, load, and fence instruction append a (nondeterministically
chosen) fresh instruction identifier to the trace:

i ∈ (cmd−1(store) \ t.I) t′ = t.append(i,Γ(r′),Γ(r))

Γ, t,*r′ := r ⇓D Γ, t′, ok
(Store)

v ∈ Val i ∈ (cmd−1(load) \ t.I) t′ = t.append(i,Γ(r′), v)

Γ, t, r := *r′ ⇓D Γ[r 7→ v], t′, ok
(Load)

i ∈ (cmd−1(fence) \ t.I) t′ = t.append(i,⊥,⊥)

Γ, t, fence ⇓D Γ, t′, ok
(Fence)

The rules for procedure calls are a little more complicated. We use one of two
rules, depending on whether the procedure body finishes with execution state ok.
The registers r̂i and r̂′i represent the input and output registers of the procedure,
respectively. The registers ri contain the argument values, and the registers r′i are
the destination registers for the return values.

def p(r̂1, . . . , r̂k)(r̂
′
1, . . . , r̂

′
l) = s ∈ D

[r̂1 7→ Γ(r1)] . . . [r̂k 7→ Γ(rk)], t, s ⇓D Γ′, t′, ok

Γ, t, p(r1, . . . , rk)(r
′
1, . . . , r

′
l) ⇓D Γ[r′1 7→ Γ′(r̂′1)] . . . [r′l 7→ Γ′(r̂′l)], t

′, ok
(Call-ok)

def p(r̂1, . . . , r̂k)(r̂
′
1, . . . , r̂

′
l) = s ∈ D

[r̂1 7→ Γ(r1)] . . . [r̂k 7→ Γ(rk)], t, s ⇓D Γ′, t′, e e 6= ok

Γ, t, p(r1, . . . , rk)(r
′
1, . . . , r

′
l) ⇓D Γ, t′, e

(Call-ex)
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struct {

long a;

int b[3];

} x;

int y;

Pointer C value LSL value
&(x) 0x000 [ 0 ]

&(x.a) 0x000 [ 0 0 ]

&(x.b) 0x008 [ 0 1 ]

&(x.b[0]) 0x008 [ 0 1 0 ]

&(x.b[1]) 0x00C [ 0 1 1 ]

&(x.b[2]) 0x010 [ 0 1 2 ]

&(y) 0x014 [ 1 ]

Figure 4.2: Representing C pointers in LSL.

We can now conclude this section with the definition of the function EL : Prog →
P(Ltr× Exs) which describes the local traces that a given program may produce.

Definition 20 For a given program p = (s,D), let EL(p) be the set of all tuples (t, e)
such that there exists a register map Γ and a derivation for Γ0, t0, s ⇓D Γ, t, e.

4.4 From C to LSL

An important design goal of LSL is to allow an automatic translation from C to
LSL. Such a translation is quite similar to a standard compilation of C into machine
language. However, because LSL sits at a somewhat higher abstraction level than
machine language, there are some differences. We discuss the implementation issues
we encountered, our solutions, and our compromises in more detail in Chapter 7.
For now, let us just give a few brief examples to illustrate how to utilize LSL.

• Pointer values are represented as a sequence of natural numbers, representing
the base address and sequence of offsets. The offsets may be field or array
offsets, providing a unified way of handling arrays and structs. See Fig. 4.2 for
an example of how C pointers may be represented.

• Two-armed conditionals can be modeled by labeled blocks and break state-
ments. We show an example in Fig. 4.3 in the abstract syntax.

• Loops can be modeled by labeled blocks and continue statements (Fig. 4.4).

As apparent in the examples, the abstract syntax is quite cumbersome to write
and read; for that reason, our tool introduces a concrete syntax for LSL (which we
won’t discuss in detail here) that leads to more streamlined code (for example, it
does not require semicolons, allows direct use of constants, and provides syntactic
sugar to simplify common use of control structures).
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if (x.a) {

y = 1;

} else {

y = 2

};

int y;

pxa := (constant〈[0 0]〉);
r := *pxa;
cond : {

if (r) {
py := (constant〈[1]〉);
one := (constant〈1〉);
*py := one;
throw(break cond)
};
py := (constant〈[1]〉);
two := (constant〈2〉);
*py := two
}

Figure 4.3: Example of how to translate a two-armed conditional from C to LSL.

int i = 0;

while (i < 2) {

i = i + 1;

}

i := (constant〈0〉);
one := (constant〈1〉);
two := (constant〈2〉);
loop : {

c := (lessthan i two);
c := (bitnot c);
if (c) throw(break loop);
i := (add i one);
throw(continue loop)
}

Figure 4.4: Example of how to translate a loop from C to LSL.
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4.5 Unrolling Programs

In the next chapter (Chapter 5) we will present a way of encoding programs into
a formula such that the solutions of the formula correspond to executions of the
program. However, this encoding works only for unrolled programs. We now explain
how we unroll programs, and how the executions of the unrolled program correspond
to the original program.

First, we show how we unroll a given program, by explaining the various steps
of the program transformation (Section 4.5.1). For the targeted domain, programs
are naturally bounded and we can often find an unrolling that is sufficient for all
executions. We then describe the syntax and semantics of the unrolled programs
(Section 4.5.2). Finally, we clarify how the unrolled program relates to the original
program (Section 4.5.3).

4.5.1 Unrolling Programs

When unrolling programs, we perform a number of transformation steps. In this
section, we give a brief overview of this transformation and the resulting format.

As inputs to the unrolling procedure, we are given a concurrent program P =
(p1, . . . , pn) and a pruning specification. A pruning specification consists of individual
iteration bounds for each loop instance, and recursion bounds for recursive calls.

First, we perform the following steps on each program pi:

• Unroll each loop as many times as indicated by the pruning specification, and
replace the remaining iterations with a throw(pruned) statement (to catch the
situation where our unrolling was not sufficient to cover all executions).

• Inline procedure calls. Roughly, we proceed as follows. First, we rename the
registers in the body if there is any overlap with the calling context. Then,
we replace the call with a composition of the following three steps: (1) assign
the actual arguments to the input registers of the procedure, (2) execute the
procedure body, and (3) assign the output registers of the procedure to the
destination registers. If there is recursion, we handle it analogously to loop
unrolling (that is, inline to the specified depth and replace the remaining calls
with a throw(pruned) statement).

• Express all conditionals using conditional throws. This simplifies the encoding
algorithm and does not reduce the expressive power (we can wrap labeled
blocks around conditionally executed statements, and conditionally exit the
block before executing them).

After these transformations, the code contains no more calls, and the throw
statements may only cause pruned, abort, or break l. Therefore, each throw has the
effect of a forward jump; speaking in terms of control flow graphs, our program is now
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a DAG (directed acyclic graph). The program is thus clearly bounded: the program
source contains a finite number of loads, stores, and fences, and each statement can
be executed at most once.

We now go through one final transformation step: we modify the syntax for loads,
stores, and fences by affixing a unique instruction identifier i (chosen from the pool
I) such that cmd(i) matches the command type. Note that the inference rules that
describe evaluation of LSL programs choose a nondeterministic identifier; we now
reduce this nondeterminism somewhat by choosing a fixed identifier at the time the
unrolling is performed.

4.5.2 Unrolled Programs

The result of the transformation is an unrolled program, which we formally define
as follows.

Definition 21 An unrolled program is a statement s formed according to the rules
in Fig. 4.5, such that each identifier i ∈ I occurs at most once in s. An unrolled
concurrent program is a tuple of statements (s1, . . . , sn) where each si is an unrolled
program, and such that each identifier i ∈ I occurs at most once in s1, . . . , sn.

We continue to use the same big-step operational style the semantics (introduced
in Section 4.3.1), with the following changes:

• We no longer need the rule (Label-cont) because the code contains no more
loops.

• We no longer need the subscript D that represents procedure definitions in
sentences of the form (Γ, t, s ⇓D Γ′, t′, e), and we no longer need the rules
(Call-ex) and (Call-ok), because the code contains no more calls.

• For loads, stores, and fences, the identifier i is now part of the syntax.

The derived sentences are thus of the form

Γ, t, s ⇓ Γ′, t′, e

with the following intuitive interpretation: “when starting with a register map Γ
and a local trace t, execution of the statement s completes with a register map Γ′,
a local trace t′, and execution state e.” The inference rules are as follows:

Γ, t, s ⇓ Γ′, t′, ok Γ′, t′, s′ ⇓ Γ′′, t′′, e

Γ, t, s ; s′ ⇓ Γ′′, t′′, e
(Comp-ok)

Γ, t, s ⇓ Γ′, t′, e e 6= ok

Γ, t, s ; s′ ⇓ Γ′, t′, e
(Comp-skip)
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(register) r ∈ Reg

(procedure) p ∈ Proc

(label) l ∈ Lab

(primitive op) f ∈ Fun

(instruction id) i ∈ I

(value) v ∈ Val

(undefined) ::= ⊥
(number) | n n ∈ Z
(pointer) | [n1 . . . nk] (k ≥ 1 and n0, . . . , nk ∈ Z)

(execution state) e ∈ Exs

(ok) ::= ok

(abort) | abort

(break) | break l

(pruned) | pruned

(program statement) s ∈ Stm

(composition) ::= s ; s

(label) | l : s

(conditional throw) | if (r) throw(e) (e 6= ok)

(assign) | r := (f r1 . . . rk) (k ≥ 0)

(store-id) | *r :=i r

(load-id) | r :=i *r

(fence-id) | fencei

Figure 4.5: The abstract syntax of unrolled LSL programs
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Γ, t, s ⇓ Γ′, t′, e e /∈ {break l, continue l}
Γ, t, l : s ⇓ Γ′, t′, e

(Label)

Γ, t, s ⇓ Γ′, t′, break l

Γ, t, l : s ⇓ Γ′, t′, ok
(Label-break)

Γ, t, throw(e) ⇓ Γ, t, e (Throw)

Γ(r) = 0

Γ, t, if (r) s ⇓ Γ, t, ok
(If-not)

Γ(r) 6= 0 Γ, t, s ⇓ Γ′, t′, e

Γ, t, if (r) s ⇓ Γ′, t′, e
(If-so)

v = f(Γ(r1), . . . ,Γ(rk))

Γ, t, r := (f r1 . . . rk) ⇓ Γ[r 7→ v], t, ok
(Assign)

t′ = t.append(i,Γ(r′),Γ(r))

Γ, t,*r′ :=i r ⇓ Γ, t′, ok
(Store-id)

v ∈ Val t′ = t.append(i,Γ(r′), v)

Γ, t, r :=i *r′ ⇓ Γ[r 7→ v], t′, ok
(Load-id)

t′ = t.append(i,⊥,⊥)

Γ, t, fencei ⇓ Γ, t′, ok
(Fence-id)

Just as for regular programs (Def. 20 in Section 4.3.1), we define the semantic func-
tion EL on unrolled programs:

Definition 22 For an unrolled program s let EL(s) be the set of all tuples (t, e) such
that there exists a register map Γ and a derivation for Γ0, t0, s ⇓ Γ, t, e.

For notational convenience, define the following function:

Definition 23 For an unrolled concurrent program P = (s1, . . . , sn), let instrs(P ) ⊂
I be the set of all instruction identifiers that appear in the programs s1, . . . , sn).

4.5.3 Sound Unrollings

We have not formalized our unrolling algorithm at this point. This section provides
a suggested starting point for characterizing soundness of unrollings. However, there
remain some open questions about how to unroll concurrent programs soundly on
memory models that allow circular dependencies (Section 4.5.4).

62



loop : {
c := (lessthan i j);
if (c) throw(break loop);
i := (subtract i one);
throw(continue loop)
}

loop : {
c := (lessthan i j);
if (c) throw(break loop);
i := (subtract i one);
c := (lessthan i j);
if (c) throw(break loop);
i := (subtract i one);
c := (lessthan i j);
if (c) throw(break loop);
if (true) throw(pruned)
}

Figure 4.6: Unrolling Example: the unrolled LSL program on the right is a sound
unrolling of the program on the left.

To clarify how the unrolled program relates to the original program, we introduce
the concept of a sound unrolling. Roughly speaking, a sound unrolling of a program
p is an unrolled program that (1) models a subset of the executions of p faithfully,
and (2) models the remaining executions partially, by terminating with a special
execution state pruned.

We show an example of a sound unrolling in Fig. 4.6. The right hand side
shows how we unroll the loop two times, and replace the remaining iterations with
a “throw pruned” statement. This is a sound unrolling; if the third loop iteration is
unreachable, we know that unrolling the loop twice is sufficient. If it is reachable,
then there exists an execution that terminates with pruned state.

Sound unrollings are useful for verification because we can start with heavily
pruned program, and gradually relax the pruning as we discover which parts of the
program are reachable. If a reachability analysis can prove that a sound unrolled
program never terminates with the state pruned, we know that the unrolled pro-
gram is equivalent to the original program and have thus successfully reduced the
potentially unbounded verification problem for p to a bounded verification problem
for p′.

We now define this idea more formally. First, we need to define prefixes and
isomorphy of memory traces.

Definition 24 A local memory trace t = (I,≺, adr , val) is a prefix of the memory
trace t′ = (I ′,≺′, adr ′, val ′) (written t v t′) if there exists a function ϕ : I → I ′ such
that all of the following hold:

• ϕ is injective
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• for all i ∈ I and j ∈ (I \ ϕ(I)): ϕ(i) ≺′ j
• for all i ∈ I : cmd(i) = cmd(ϕ(i))

• for all i, j ∈ I: i ≺ j ⇔ ϕ(i) ≺′ ϕ(j)

• for all i ∈ I: adr ′(ϕ(i)) = adr(i)

• for all i ∈ I: val ′(ϕ(i)) = val(i)

Definition 25 Two local memory traces t and t′ are isomorphic (written t ∼= t′) if
t v t′ and t′ v t.

The following definition captures the requirement on unrollings.

Definition 26 An unrolled program su is a sound unrolling for the program p =
(s,D) if both of the following conditions are satisfied:

• if Γ, t, su ⇓ Γ′, t′, e and e 6= pruned, then Γ, t, s ⇓D Γ′, t′, e.

• if Γ, t, s ⇓D Γ′, t′, e, then one of the following must be true:

1. There exists a local memory trace t′′ ∼= t′ such that Γ, t, su ⇓ Γ′, t′′, e.

2. There exists a local memory trace t′′ v t′ and a register map Γ′′ such that
Γ, t, su ⇓ Γ′′, t′′, pruned.

4.5.4 Circular Dependencies

While the definition of sound unrolling above seems reasonable when considering
uniprocessor executions, some problems may arise on multiprocessors with patho-
logical memory models that allow circular dependencies. Fig. 4.7 illustrates what we
mean, by showing a relaxed trace of a concurrent program where the naive unrolling
described in the previous section does not work.

We have neither investigated nor formalized this problem yet and leave it as
future work to fix the corresponding issues (for example, by specifying restrictions
on the memory model under which the unrolling is sound). None of the hardware
memory models we studied would allow such a behavior. However, in the presence
of speculative stores, such executions are possible and may need to be considered.
Parts of the Java Memory Model [50] address similar problems, motivated by security
concerns.

4.6 Extensions

We now define a few extensions to the basic LSL syntax and semantics that proved
useful for our CheckFence implementation. We only briefly mention the aspects of
the formalization here, and return to a discussion of how we use them in Chapter 7.
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if (X == 2)
  Y = 1;

do {

} while (Y)
  X = X+1;

processor 1 processor 2

if (X == 2)
  Y = 1;

X = X+1;

  throw(pruned)
if (Y)

processor 1 processor 2

store X, 1
load Y, 1
load X, 1

load X, 2

store Y, 1

load X, 0

store X, 2
...

processor 1 processor 2

Figure 4.7: Informal Example: the concurrent program on the top left may produce
the global memory trace on the right on a pathological memory model that allows
circular dependencies. However, the naive unrolling on the bottom left does neither
produce the trace on the right, nor is there an execution that throws pruned.
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4.6.1 Nondeterministic Choice

Under certain circumstances, it is convenient to allow explicit nondeterminism in
programs. Usually, this case arises if we wish to replace some system component
with a nondeterministic abstraction. For example, instead of modeling a particular
memory allocator, we can abstract it using nondeterministic choice. We return to
this example in Section 7.2.4. Here, we simply give a technical description of how
we support nondeterministic choice.

First, we add a new statement called choose that assigns a nondeterministically
chosen value to the specified target register:

r := choose a . . . b a, b ∈ Z and a ≤ b

The bounds a, b must be fixed numbers (they are not registers). Then, we add the
following (nondeterministic) inference rule to the trace semantics:

v ∈ Val a ≤ v v ≤ b

Γ, t, r := choose a . . . b ⇓ Γ[r 7→ v], t, ok
(Assign-choose)

4.6.2 Atomic Blocks

To model synchronization operations, we support atomic blocks. On the level of LSL
programs, atomic blocks are statements with the following syntax:

atomic s

Atomic blocks may be nested; however, all but the outermost block are redundant.
The semantic meaning of atomic blocks is not local to a thread (it involves the
particulars of the memory model) and is described in Section 3.4.1.

4.6.3 Tagged Unions

During our implementation of the CheckFence tool, we found that it is desirable
to add some limited form of user-defined types to LSL. Such types are useful in
supporting packed words, or in implementing extended runtime type checking. Our
tagged unions are not meant for supporting C unions and bear no similarity; they
are more similar to tagged unions as used by OCaml.

We found that the following “simple-minded” version of tagged unions provides
a reasonable compromise between expressive power and implementability:

• A program may declare a tagged union type using the following syntax (where
k ≥ 0 and tag, field1, . . . , fieldk are identifiers):

composite tag (field1, . . . , fieldk)
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• For each tagged union declaration, we enlarge the set of syntactic values Val
to include values of the form tag(v1, . . . , vk) where the vi are regular (not
composite) syntactic values.

• For each tagged union declaration, we add the following basic functions to Fun:

– The k-ary function make tag is defined on all k-tuples (v1, . . . , vk) such
that each vi is a non-composite value. The function produces the value
tag(v1, . . . , vk).

– For each i ∈ {1, . . . , k}, the unary function get tag fieldi is defined on
values tag(v1, . . . , vk) and returns the value vi.

– For each i ∈ {1, . . . , k}, the binary function set tag fieldi is defined on
pairs (tag(v1, . . . , vk), v) where v is a non-composite value, and it returns
the value tag(v1, . . . , vi−1, v, vi+1, . . . , vk).

Note that we do not need to provide a function corresponding to the case

expression in OCaml, because C programs can not query the runtime type of
a value.

We describe how we use tagged unions to support packed words in Section 7.2.5.
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Chapter 5

Encoding

In this chapter, we describe how to construct, for a given unrolled concurrent program
P = (s1, . . . , sn) and memory model Y , a propositional formula ΦP,Y over a set of
variables VP,Y such that each solution of ΦP,Y corresponds to a concurrent execution
of P on Y and vice versa:

[
Concurrent Executions

T ∈ E(P, Y )

]
← (correspond to)→

[
Valuations ν of VP,Y

such that JΦP,Y Kν = true

]

This encoding lays the technical foundation for our verification method. In Chap-
ter 6, we will show how to utilize ΦP,Y to check the consistency of concurrent data
type implementations, by expressing the correctness of executions T in such a way
that we can carry it over to valuations ν under the above correspondence and then
use a SAT solver to decide whether all executions are correct.

This chapter describes how to construct Φ = ΦP,Y (we assume fixed P, Y and thus
drop the subscript) and proves that Φ indeed captures the semantics of the program
P and memory model Y . We start by defining the vocabulary, the variables, and
the correspondence between the variables and the executions:

• In Section 5.1, we describe the vocabulary we use for constructing the formula
Φ. We give a list of the required set symbols S and typed function symbols F ,
and define the set of variable symbols VP,Y ⊂ V that we need to capture the
particulars of executions of P on Y . Note that because we are operating on
an unrolled program that produces a bounded number of instructions, a finite
number of variables is sufficient.

• In Section 5.2, we show how valuations and executions correspond, by defining
two maps (1) for each global trace T ∈ E(P, Y ) a valuation ν(T ), and (2) for
each valuation ν a structure T (ν).
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Next, we break down the formula Φ into individual components

Φ = Ψ ∧Θ ∧
n∧
k=1

Πk

that capture the individual requirements on concurrent executions (as defined in
Section 2.1.6):

• A concurrent execution is a global trace. The formula Ψ captures the corre-
sponding constraints. We show how to construct Ψ in Section 5.3.

• The execution must be allowed by the memory model Y . The formula Θ
encodes the corresponding constraints. We show how to construct Θ in Sec-
tion 5.4.

• For each thread k ∈ {1, . . . , n}, the execution must be consistent with the se-
mantics of the program sk. The formulae Π1, . . . ,Πn capture the corresponding
constraints. In Section 5.5, we show how we encode each Πk. We introduce
symbolic local traces and give a pseudocode algorithm for the encoding. We
then prove that the encoding algorithm is correct. Because it is quite volumi-
nous, the core of the proof is broken out into Appendix A.

Finally, in Section 5.6, we show that Φ is correct, in the following sense: for all
valuations ν that satisfy Φ, T (ν) is in E(P, Y ), and conversely, for all executions
T ∈ E(P, Y ), the valuation ν(T ) satisfies Φ.

To simplify the notation throughout this chapter, we assume that we are work-
ing with a fixed unrolled concurrent program P = (s1, . . . , sn) (as defined in Sec-
tion 4.5.2) and memory model Y = (R, φ1, . . . , φk) (as defined in Section 3.3.1).
Moreover, we make the following definitions:

• IP ⊂ I is the (finite) set of all instruction identifiers that occur in P .

• procP : IP → {1, . . . , n} is the function that maps an instruction i onto the
number of the thread within which it occurs.

• ≺P is the partial order on IP such that i ≺P j if procP (i) = procP (j) and i
precedes j in sk (lexically).

5.1 Vocabulary for Formulae

We construct our formulae over an interpreted vocabulary which defines set symbols
S, typed function symbols F and typed variable symbols V , as well as an interpre-
tation of the symbols (to review the logic framework, refer to Section 2.2).

Our formula Φ (as well as its subformulae Ψ, Θ, and Πk) are formed over the
interpreted vocabulary σ = (S,F ,V) using a finite set of variables VP,Y ⊂ V . The
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variables in VP,Y represent the particulars of the execution (what instructions are
executed, the values they assume, etc.). We now define these components in more
detail.

5.1.1 Set Symbols

We let S contain the following set symbols

{instr, value, status} ⊂ S,

and we define the following interpretation

• JinstrK = IP is the set of instruction identifiers that appear in the program P .

• JvalueK = Val is the set of syntactic LSL values.

• JstatusK = Exs is the set of execution states.

The sets Val and Exs are defined in Fig. 4.5 in Section 4.5.2.

5.1.2 Function Symbols

We let F contain the following function symbols which represent the basic unary
and binary functions used by LSL:

{identity, bitnot,minus, pointer, getbase, getoffset} ∈ Fvalue→value

{bitand, bitor, bitxor, add, subtract,multiply, div,mod,

equals, notequals, lessthan, lesseq, shiftleft, shiftright, offset} ∈ Fvalue×value→value

We interpret these functions according to how they were defined in Section 4.2.8.
Furthermore, we let F contain the constant functions

{v | v ∈ Val} ⊂ Fvalue

{i | i ∈ IP} ⊂ F instr

with interpretation JvK = v and JiK = i, respectively.

5.1.3 Variable Symbols

We let VP,Y be the disjoint union of the following variable sets:

VP,Y = VD ∪ VA ∪ VG ∪ VU ∪ VS ∪ VM ,

where the individual variable sets are defined as follows:

• We let VD = {Di | i ∈ accesses(IP )} ⊂ Vvalue be a set of first-order variable
symbols that represent values loaded or stored by instructions. The type of
these variables is value.
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• We let VA = {Ai | i ∈ accesses(IP )} ⊂ Vvalue be a set of first-order variable
symbols that represent the address of a memory access. The type of these
variables is value.

• We let VG = {Gi | i ∈ IP} ⊂ Vbool be a set of first-order variable symbols used
to represent whether the instruction i is executed or not. The type of these
variables is bool.

• We let VU = {Uk | 1 ≤ k ≤ n} ⊂ Vstatus be a set of first-order variable symbols
used to represent the execution state with which each thread terminates (where
n is the number of threads in P ). The type of these variables is status.

• We let VS = {Sij | i ∈ loads(IP )∧j ∈ stores(IP )} ⊂ Vbool be a set of first-order
variable symbols such that Sij represents whether the seed of load i is the store
j. The type of these variables is bool.

• We let VM be a set of first-order variables that represent properties of the trace
related to the memory model Y = (R, φ1, . . . , φk). To simplify the notation,
let |R| be the arity of each variable R ∈ R. Then we define the variables

VM = {MR
i1...i|R|

| R ∈ R and i1, . . . , i|R| ∈ IP} ⊂ Vbool

to be a set of first-order boolean variables. The role of these variables is
to represent the relational variables R used by the axiomatic memory model
specification Y .

For example, for sequential consistency, R = {memorder} and we define VM =
{Mmemorder

ij | i, j ∈ IP}. The variable Mmemorder
ij then represents (i <M j).

5.2 Valuations and Executions

To describe the correspondence between valuations and executions, we first define
the execution T (ν) that corresponds to a given valuation ν.

Definition 27 For a valuation ν that assigns values to all variables in σ, define

T (ν) = (Iν ,≺ν , procν , adr ν , valν , seedν , statν),

where

• Iν = {i ∈ IP | JGiKν = true}
• procν = proc|Iν
• ≺ν=≺P |Iν×Iν
• adr ν : Iν → Val is the function that maps i 7→ JAiKν
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• valν : Iν → Val is the function that maps i 7→ JDiKν

• seedν : Iν ⇀ Iν is the partial function such that (1) i ∈ dom seedν iff there is
exactly one j ∈ Iν such that JSijKν = true, and (2) seedν(i) = j for the j such
that JSijKν = true.

• statν : N→ Exs is the function that maps k 7→ JUkKν

We now proceed to the definition of the valuation ν(T ) that corresponds to a
given execution T . The situation is slightly more complicated than before, because
there is in general more than one valuation to describe the same execution.

Specifically, the memory model axioms state that for any valid execution, there
exists a valuation of the memory model relation variablesR that satisfies the axioms.
However, there could be any number of such justifying valuations for the same global
trace. For example, looking at sequential consistency, we see that the same global
trace can be the result of more than one interleaving, because the global trace only
captures the seeding store for each load, but not how accesses are globally interleaved.

To “determinize” the function ν(T ), we pick an arbitrary but fixed valuation ν
among all the possible ones; we achieve this by assuming some arbitrary total order
over all valuations, and picking the minimal one.

Definition 28 For an execution

T ∈ E(P, Y ) T = (IT ,≺T , procT , adrT , valT , seedT , statT )

define the valuation ν(T ) as follows

• For i ∈ accesses(IP ), we let ν(T )(Di) =

{
valT (i) if i ∈ IT
⊥ otherwise

• For i ∈ accesses(IP ), we let ν(T )(Ai) =

{
adrT (i) if i ∈ IT
⊥ otherwise

• For i ∈ IP , we let ν(T )(Gi) =

{
true if i ∈ IT
false otherwise

• For k ∈ {1, . . . , n}, we let ν(T )(Uk) = statT (k)

• For i ∈ loads(IP ) and j ∈ stores(IP ), we let

ν(T )(Sij) =

{
true if i, j ∈ IT and seedT (i) = j
false otherwise

• Because T ∈ E(P, Y ) implies T ∈ EG(Y ), we know (by Def. 16 in Sec-
tion 3.3.1) that there exists a valuation ν of the variables R such that for
all axioms φ of Y , JφKνT = true. Now, pick a minimal such ν (according to
some arbitrary, fixed order on valuations), and extend it by defining for each
second-order variable R ∈ R and i1, . . . , i|R| ∈ IP

ν(T )(MR
i1...i|R|

) = JRKν(i1, . . . , i|R|).
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5.3 The Formula Ψ

We start by showing how we construct the formula Ψ, which captures the properties
of global traces in the following sense:

• for each global trace T , JΨKν(T ) = true

• T (ν) is a global trace for each valuation ν such that JΨKν = true

To simplify the notation, let L = loads(IP ) and S = stores(IP ). Then we define:

Ψ =
∧
l∈L

∧
s∈S

(Sls ⇒ Gl ∧Gs ∧ (Dl = Ds) ∧ (Al = As)) (5.1)

∧
∧
l∈L

((
Gl ∧

∧
s∈S

¬Sls

)
⇒ (Dl = ⊥)

)
(5.2)

∧
∧
l∈L

∧
s∈S

∧
s′∈(S\{s})

¬(Sls ∧ Sls′) (5.3)

Clearly, the formula reflects the conditions in the definition of global traces (Sec-
tion 2.1.4) by requiring (1) that the variables Sls encode a valid partial function seed
from the set of executed loads to the set of executed stores, and (2) that the address
and data values are consistent with that seed function.

The following two lemmas capture the properties of Ψ more formally. We use
them in our final correctness theorem.

Lemma 29 For all valuations ν such that dom ν ⊃ VA ∪ VD ∪ VG ∪ VS and JΨKν =
true, the structure T (ν) is a global trace.

Lemma 30 For any execution T ∈ E(P, Y ) and for all k ∈ {1, . . . , n}, we have
JΨKν(T ) = true.

The proofs are conceptually easy, but a little tedious. We include them for
completeness; the reader may skim them and proceed to the next section.
Proof. (Lemma 29) We have to show the items listed in Def. 2 (Section 2.1.4),
assuming Iν , ≺ν , procν , adr ν , valν , seedν , statν are as defined in Def. 27) above.
They are mostly straightforward, and we show only the slightly more interesting
ones here:

• Show [seedν is a partial function loads(Iν) ⇀ stores(Iν)].
By construction, seedν always satisfies this.

• Show [if seedν(l) = s, then adr ν(l) = adr ν(s) and valν(l) = valν(s)].
If seed(l) = s, then JSlsKν = true. Therefore (because (5.1) evaluates to true)
we know (1) JGlKν = JGsKν = true and therefore s, l are elements of both
dom adr ν and dom valν , and (2) JDlKν = JDsKν and JAlKν = JAsKν , and thus
the claim follows.
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• Show [if l ∈ (loads(Iν) \ dom seedν), then valν(l) = ⊥].
l ∈ loads(Iν) implies JGlKν = true. Also, the fact that l /∈ dom seedν implies
that there is no s such that JSlsKν = true (the only other possibility would be
that JSlsKν = true for more than one j, which is ruled out by (5.3)). Therefore,
(5.2) guarantees that JDlKν = ⊥ from which the claim follows.

�
Proof. (Lemma 30) Let T = (IT ,≺T , procT , adrT , valT , seedT , statT ) and ν =
ν(T ) as defined in Def. 28. Then IT ⊂ IP because the executed instructions must
be a subset of the instructions appearing in the concurrent program. Now, we know
each line of Ψ must be satisfied by ν:

• Show (5.1). If JSlsKν = true, then seedT (l) = s, which implies (1) l, s ∈ IT and
thus JGlKν = JGsKν = true, and (2) adrT (l) = adrT (s) and thus JAl = AsKν =
true, and (3) valT (l) = valT (s) and thus JDl = DsKν = true. This implies that
(5.1) is satisfied.

• Show (5.2). We consider each l ∈ loads(IP ) of the outer conjunction separately.
If JGlKν = false or JDlKν = ⊥, we are done for this l. Otherwise, we know l ∈ IT
and valT (l) 6= ⊥. Because T is a global trace, this implies that there exists a
s ∈ stores(IT ) such that seedT (l) = s. Then JSlsKν = true and the clause is
satisfied.

• Show (5.3). By definition of global traces, seedT is a partial function and there
can therefore be at most one s for any l such that seedT (l) = s. This implies
that there is at most one s such that JSlsKν = true and the clause is thus always
satisfied.

�

5.4 Encoding the Memory Model

In this section we describe how to encode the memory model constraints given by
the axiomatic specification Y as a propositional formula Θ.

The specification Y = (R, φ1, . . . , φk) already contains formulae (the “axioms”
φ1, . . . , φk). However, these axioms still need to be converted to propositional format.
To do so, we perform the following steps:

• Eliminate quantifiers. Because we use a restricted form of quantifiers, we know
each quantifier ranges over a subset of instructions. We can therefore replace
quantifiers by finite disjunctions or conjunctions.
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• Eliminate the second-order variables in R. By definition (Def. 13 in Sec-
tion 3.3.1), the variables in R are of the type

instr× · · · × instr︸ ︷︷ ︸
k

→ bool

for some k ≥ 0. We can thus represent each such variable by |IP |k boolean
first-order variables. Each first-order variable represents the value of the second
order value for a specific instruction tuple.

We now describe this procedure with a little more detail.

5.4.1 Encoding procedure

For all axioms, we perform the following transformations.

1. First, we eliminate all quantifiers. Because of the syntax we use for axiomatic
memory model specifications (see Fig. 3.7 in Section 3.3.1), the quantifiers oc-
cur in the form (∀ p X : φ) and (∃ p X : φ) where p ∈ {load, store, fence, access}
and X ∈ V instr. We use the following notations: (1) for a set of instructions
I ⊂ I we let p(I) ⊂ I be the subset described by p, (2) we let [i/X]φ denote
the formula φ where each free occurrence of X has been replaced by i. Then
we can describe the transformation step by the following rules:

(∀ p X : φ) 7→
∧

i∈p(IP )

(¬Gi) ∨ [i/X]φ

(∃ p X : φ) 7→
∨

i∈p(IP )

Gi ∧ [i/X]φ

As a result, we obtain transformed formulae φ′1, . . . , φ
′
k.

2. Now, for each occurrence of each relation variable R ∈ R, we perform the
following replacement

R(i1, . . . , i|R|) 7→ MR
i1...i|R|

(note that the ik are constants because we replaced all occurrences of instruc-
tion variables by constants during the previous step). As a result, we obtain
transformed formulae φ′′1, . . . , φ

′′
k.
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3. Finally, we replace all occurrences of the following function symbols:

load(i) 7→
{

true if cmd(i) = load
false otherwise

store(i) 7→
{

true if cmd(i) = store
false otherwise

fence(i) 7→
{

true if cmd(i) = fence
false otherwise

access(i) 7→
{

true if cmd(i) ∈ {load, store}
false otherwise

progorder(i, j) 7→
{

true if i ≺P j
false otherwise

aliased(i, j) 7→
{

(Ai = Aj) if i, j ∈ accesses(IP )
false otherwise

seed(i, j) 7→


Sij if i ∈ loads(IP )

and j ∈ stores(IP )
false otherwise

As a result, we obtain transformed formulae φ′′′1 , . . . , φ
′′′
k .

5.4.2 The Formula Θ

After performing the transformation steps described in the previous section, our
axioms are now propositional formulae φ′′′1 , . . . , φ

′′′
k with variables in VA∪VG∪VS∪VM .

We can then simply take the conjunction to obtain the desired formula

Θ = φ′′′1 ∧ · · · ∧ φ′′′k .

The following two lemmas capture the properties of Θ more formally. We use
them in our final correctness theorem.

Lemma 31 If ν is a valuation of σ such that dom ν = VP,Y and JΘKν = true and
JΨKν = true, then T (ν) ∈ EG(Y ).

Lemma 32 JΘKν(T ) = true for any execution T ∈ E(P, Y ).

Proof. (Lemma 31). First, let ν ′ be the valuation that extends ν to the relation
variables R ∈ R by defining ν ′(R)(i1, . . . , i|R|) = JMR

i1...i|R|
Kν . Now we want to show

that JφkKν
′

T (ν) = true for all k, because that then implies T (ν) ∈ EG(Y ) as desired.
Assume we are given some fixed k.
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Define the interpretation J.Kν as follows:

JinstrKν = IP

JloadKν(i) =

{
true if cmd(i) = load
false otherwise

JstoreKν(i) =

{
true if cmd(i) = store
false otherwise

JfenceKν(i) =

{
true if cmd(i) = fence
false otherwise

JaccessKν(i) =

{
true if cmd(i) ∈ {load, store}
false otherwise

JprogorderKν(i, j) =

{
true if i ≺P j
false otherwise

JaliasedKν(i, j) =

{
true if i, j ∈ accesses(IP ) and JAiKν = JAjKν
false otherwise

JseedKν(i, j) =

{
true if i ∈ loads(IP ), j ∈ stores(IP ) and JSijKν = true
false otherwise

Now, looking at transformation step 1, observe that

JφkKν
′

T (ν) = Jφ′kK
ν′

ν

because

• The conjunctions/disjunctions that we substituted in precisely capture the se-
mantics of the quantification: the quantifier of the left goes over a smaller
domain than the conjunction/disjunction on the right, because the latter in-
cludes instructions that are not executed. However, for such instructions, the
guard evaluates to false and renders the corresponding subformula of the con-
junction/disjunction irrelevant.

• On subformulae u(i) or b(i, j) where u, b are unary/binary relations and JGiKν =
JGjKν = true, the evaluation functions J.Kν′T (ν) and J.Kν′ν are the same:

– For load, store, access, fence, progorder, and aliased it is clear directly
from the definitions.

– For seed, we need to use the assumption of the Lemma that states JΨKν =
true, which guarantees that JSijKν

′
= true if and only if seedT (ν)(i) = j.

• Therefore, the evaluations of the formula are the same except on subformulae
u(i) or b(i, j) where i, j are instruction constants and not both guards evaluate
to true. Because the original formula φk does not contain instruction constants,
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such subformulae must have been substituted in during the transformation
step. This implies that the value to which u(i) or b(i, j) evaluate is irrelevant
because the subformula of the conjunction/disjunction that contains u(i) or
b(i, j) already evaluates to true/false and has no bearing on the satisfaction of
the containing conjunction/disjunction.

Next, looking at transformation step 2, observe that Jφ′kKν
′
ν = Jφ′′kKνν because we

defined ν ′ purposely so that the substituted variables evaluate to the same value.
Looking at transformation step 3, observe that Jφ′′kKνν = Jφ′′′k Kν because we constructed
the interpretation J.Kν to match the substitutions performed in this step.

Putting the three observations together, we conclude

JφkKν
′

T (ν) = Jφ′kK
ν′

ν = Jφ′′kK
ν
ν = Jφ′′′k Kν = true.

�
Proof. (Lemma 32). We want to show Jφ′′′k Kν(T ) = true for all k. Let k be fixed.
First, define the interpretation J.Kν(T ) the same way as we defined J.Kν in the proof
of Lemma 31.

By definition of ν(T ) we know that JφKν(T )
T = true.

For the same reasons as explained in the proof of Lemma 31, this implies that
Jφ′Kν(T )

ν(T ) = true. In transformation step 2, we substitute terms with identical values

under ν(T ) (by Definition of ν(T )), and therefore we know Jφ′′Kν(T )
ν(T ) = true. Finally,

in transformation step 3, observe that we constructed the interpretation J.Kν(T ) to
match the substitutions performed in this step, so Jφ′′′k Kν(T ) = true as needed to
conclude the proof. �

5.5 Encoding Local Traces

In this section, we describe how to encode the local program semantics of each thread
k ∈ {1, . . . , n} as a formula Πk such that each solution of Πk corresponds to a local
trace of the unrolled program sk.

To represent the local program semantics, we first define symbolic traces. The
purpose of symbolic traces is to concisely represent the highly nondeterministic se-
mantics of unrolled programs (Section4.5.2) by representing values using variables,
terms, and formulae.

We now give a rough overview of the structure of this section:

• In Section 5.5.1, we define symbolic traces. Our definition of a symbolic trace
t is similar to the definition of a local memory traces t (the overline serves as
a visual reminder of the symbolic nature of the trace), but it uses variables,
terms, and formulae rather than explicit values.

• In Section 5.5.2, we describe how to evaluate a symbolic trace t for a given
valuation ν of the variables in t, obtaining a local memory trace JtKν .
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• Next, we describe our encoding algorithm, both with pseudocode and formal
inference rules (Sections 5.5.4 and 5.5.5). Our encoding algorithm takes an
unrolled program s and produces a symbolic trace.

• In Section 5.5.6, we show that the encoding is correct, in the sense that the
satisfying valuations of the symbolic trace exactly correspond to the executions
of the unrolled program. This proof is the key to to our encoding algorithm and
its construction heavily influenced our formalization of concurrent executions
and memory traces. Because it is quite voluminous, the core of the proof is
broken out into Appendix A.

• Finally, in Section 5.5.7 we utilize our encoding algorithm to construct the
formula Πk, which is the primary goal of this section.

5.5.1 Symbolic Traces

Just like local memory traces, symbolic traces consist of a totally ordered set of
instructions of a fixed type (load, store, or fence). However, a symbolic trace repre-
sents many actual memory traces with varying values. Therefore, a symbolic trace
differs from a normal trace as follows:

• The values returned by loads are represented by variables of type value, rather
than by explicit value.

• The address and data values of each instruction are represented by terms of
type value, rather than by explicit values. These terms follow the syntax
defined in Fig. 2.3 and use the vocabulary defined in Section 5.1.

• Some instructions may not always be executed (depending on the path taken
through the program). We express this by defining a guard for each instruction;
the guard is a formula representing the conditions under which this instruction
gets executed.

We show an informal example of a symbolic trace that represents the traces of a
program in Fig. 5.1.

Definition 33 A symbolic trace is a tuple t = (I,≺, V, adr , val , guard) such that

• I is a set of instructions

• ≺ is a total order over I

• V ⊂ Vvalue is a finite set of first-order variables of type value.

• adr is a function I → T value that maps each instruction to a term of type value
over the variables V .
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x = [0 1];

r = *x;

if (r != 0)

r = *r;

*x = r

guard command address,value

true load [0 1], D1

(D1 6= 0) load D1, D2

true store [0 1], ((D1 6= 0) ? D2 : D1)

Figure 5.1: Informal Example: the program on the left is represented by the symbolic
trace on the right. The symbols D1, D2 represent the values loaded by the first and
second load, and they appear in the formulae that represent subsequent guards,
values, and addresses.

• val is a function I → T value that maps each instruction to a term of type value
over the variables V .

• guard is a function I → T bool that maps each instruction to a formula over
the variables V .

Let Ltr be the set of all symbolic traces. Let t
0

be the symbolic trace for which
I = V = ∅.

5.5.2 Evaluating Symbolic Traces

If we assign values to the variables of a symbolic trace, we get a local memory
trace. More formally, we extend the evaluation function J.Kν (defined for formulae
in Section 2.2.3) to symbolic traces as follows.

Definition 34 For a symbolic trace t = (I,≺, V, adr , val , guard) and valuation ν
such that V ⊂ dom ν, define JtKν = (I ′,≺′, adr , val) where

• I ′ = {i ∈ I | Jguard(i)Kν = true}
• ≺′=≺|(I′×I′)
• adr(i) = Jadr(i)Kν

• val(i) = Jval(i)Kν

It follows directly from the definitions that the evaluation JtKν of a symbolic trace t
is a local trace.

5.5.3 Appending Instructions

During our encoding algorithm, we build symbolic traces by appending instructions
one at a time. The following definition provides a notational shortcut to express this
operation.
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Definition 35 For a symbolic trace t = (I,≺, V, adr , val , guard) and for an instruc-
tion i ∈ (I \ I), terms a, v ∈ T value and a formula g ∈ T bool we use the notation

t.append(i, a, v, g)

to denote the symbolic trace (I ′,≺′, V ′, adr
′
, val

′
, guard

′
) where

• I ′ = I ∪ {i}
• ≺′=≺ ∪(I × {i})
• V ′ = V ∪ FV (a) ∪ FV (v) ∪ FV (g)

• adr
′
(x) =

{
adr(x) if x 6= i
a if x = i

• val
′
(x) =

{
val(x) if x 6= i
v if x = i

• guard
′
(x) =

{
guard(x) if x 6= i
g if x = i

We now proceed to the description of the encoding algorithm for programs. The
algorithm takes as input an unrolled program (as defined in Section 4.5.1), and
returns a symbolic trace that represents all executions of the program. We start with
a somewhat informal pseudo-code version, and then proceed to a formal presentation
of the algorithm based on inference rules. Finally, we formulate and prove correctness
of the algorithm.

5.5.4 Pseudocode Algorithm

We show a pseudocode version of the encoding algorithm below. The algorithm
performs a forward symbolic simulation on the unrolled LSL program: we process
the program in forward direction and record the trace and register values by building
up terms and formulae. We track the program state individually for all possible
current execution states.

There are three global variables:

• The variable trace stores the current symbolic trace. We assume that our im-
plementation provides a suitable abstract data structure to represent symbolic
traces as defined in Section 5.5.1, including an append operation as specified
by Def. 35 in Section 5.5.3.

• The variable guardmap is an array that stores for each execution state a for-
mula. The formula guardmap[e] captures the conditions under which execu-
tion is in state e, expressed as a function of the loaded values.
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• The variable regmap is an array of arrays; for each execution state, it stores
a map from register names to terms. The term regmap[e][r] represents the
register content of register r if the execution state is e, as a function of the
loaded values.

The variables are initialized to their default in the section marked initially.
We then call the recursive procedure encode(s) with the unrolled LSL program s.
After the call returns, the variable trace contains the resulting symbolic trace.

var

trace : symbolic_trace;

guardmap : array [Exs] of boolean_formula;

regmap : array [Exs][Reg] of value_term;

initially {

trace := empty_trace;

foreach e in Exs do {

guardmap[e] := (e = ok) ? true : false;

foreach r in Reg do {

regmap[e][r] := ⊥;

}

}

}

function encode(s : Stm) {

match s with

| (fencei) ->

trace := trace.append(i, ⊥, ⊥, guardmap[ok]);

| (r := (f r1 ... rk)) ->

regmap[ok][r] := f(regmap[ok][r1],...,regmap[ok][rk]);

| (*r’ :=i r) ->

trace := trace.append(i, regmap[ok][r’], regmap[ok][r],

guardmap[ok]);

| (r :=i *r’) ->

trace := trace.append(i, regmap[ok][r’], Di, guardmap[ok]);
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regmap[ok][r] := Di;

| (if (r) throw e) ->

var fla : boolean_formula;

fla := ¬ (regmap[ok][r] = 0);

guardmap[ok] := guardmap[ok] ∧ ¬ fla;

guardmap[e] := guardmap[ok] ∧ fla;

foreach r in Reg do

regmap[e][r] := regmap[ok][r];

| (l : s) ->

encode(s);

foreach r in Reg do

regmap[ok][r] := (guardmap[break l] ?

regmap[break l][r] : regmap[ok][r]);

guardmap[ok] := guardmap[ok] ∨ guardmap[break l];

guardmap[break l] := false;

| (s1 ; s2) ->

var gm : array [Exs] of boolean_formula;

var rm : array [Exs][Reg] of value_term;

encode(s1);

gm := guardmap; // make a copy

rm := regmap; // make a copy

foreach e in Exs do

if (e 6= ok)

guardmap[e] := false;

encode(s2);

foreach e in Exs do

if (e 6= ok) {

guardmap[e] := gm[e] ∨ guardmap[e];

foreach r in Reg do

regmap[e][r] := (gm[e] ? rm[e][r] : regmap[e][r]);

}

}
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The encoding algorithm is deterministic and always terminates. Moreover, be-
cause the unrolled program is guaranteed to contain each instruction identifier at
most once (Definition 21 in Section 4.5.2), all calls to trace.append are valid (that
is, use fresh identifiers).

5.5.5 Formal Algorithm

The pseudocode algorithm in the previous section is somewhat informal, and its
format is not proof-friendly. To clarify the technical details and prepare for proving
correctness, we translate the pseudocode into a (logically equivalent) precise, formal
notation that uses inference rules.

Given the combination of state and recursion of the algorithm, we choose a for-
malization that expresses how the program under translation “drives” the encoding
algorithm through encoder states (similar to a word driving a finite automaton). We
derive sentences of the form

(γ,∆, t)
s−→ (γ′,∆′, t

′
)

with the following interpretation:

if encode(s) is called with state guardmap=γ, regmap=∆ and trace=t,
it returns with state guardmap=γ′, regmap=∆′ and trace=t

′
.

First, we need to define guard maps and symbolic register maps formally.

Definition 36 A guard map is a function γ : Exs → T bool. We use a subscript
notation to indicate function application: γe denotes γ(e). We define the guardmap
γ0 to be the function such that γ0

ok = true and γ0
e = false for all e 6= ok.

Definition 37 A symbolic register map is a function ∆ : Exs → (Reg → T value).
We use a subscript notation to indicate function application of the first argument:
∆e denotes ∆(e) (which is a function Reg→ T bool). We define the symbolic register
map ∆0 to be the function that such that ∆0

e(r) = ⊥ for all e and r.

To keep the inference rules from spilling over page boundaries, we use the follow-
ing notational shortcuts.

Definition 38 Given two functions m,m′ : Reg → T value and a boolean formula φ
we write

(φ ? m : m′)

to represent the function Reg→ T value that maps r 7→ (φ ? m(r) : m′(r)).
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Definition 39 Given a guard map γ and a syntactic expression expr, we let

γJe 7→ exprKe6=ok

denote the guardmap that maps ok 7→ γok and maps e 7→ expr for all e 6= ok. We
also use the analogous notation ∆Je 7→ exprKe6=ok for symbolic register maps.

With these definitions in place, we can now give the inference rules.

t
′
= t.append(i,⊥,⊥, γok)

(γ,∆, t)
fencei−−−→ (γ,∆, t

′
)

(EFence)

∆′ = ∆[ok 7→ ∆ok[r 7→ f(∆ok(r1), . . . ,∆ok(rk))]]

(γ,∆, t)
r:=(f r1 ... rk)−−−−−−−−−→ (γ,∆′, t)

(EAssign)

t
′
= t.append(i,∆ok(r′),∆ok(r), γok)

(γ,∆, t)
*r′:=ir−−−−→ (γ,∆, t

′
)

(EStore)

t
′
= t.append(i,∆ok(r′), Di, γok)

(γ,∆, t)
r:=i*r

′
−−−−→ (γ,∆[ok 7→ ∆ok[r 7→ Di]], t

′
)

(ELoad)

γ′ = γ[ok 7→ γok ∧ ¬φ][e 7→ γok ∧ φ] φ = ¬(∆ok(r) = 0)

(γ,∆, t)
if (r) throw(e)−−−−−−−−→ (γ′,∆[e 7→ ∆ok], t)

(ECondThrow)

(γ,∆, t)
s−→ (γ′,∆′, t

′
) γ′′ = γ′[ok 7→ γ′ok ∨ γ′break l][break l 7→ false]

(γ,∆, t)
l:s−→ (γ′′,∆′[ok 7→ (γ′break l ? ∆′break l : ∆′ok)], t

′
)

(ELabel)

(γ,∆, t)
s−→ (γ′,∆′, t

′
) (γ′Je 7→ falseKe 6=ok,∆

′, t
′
)
s′−→ (γ′′,∆′′, t

′′
)

(γ,∆, t)
s ;s′−−→ (γ′′Je 7→ γ′e ∨ γ′′e Ke 6=ok,∆

′′Je 7→ (γ′e ? ∆′e : ∆′′e)Ke 6=ok, t
′′
)

(EComp)

We verified the correspondence of the inference rules above with the pseudocode
manually, by a careful inspection of each case. Because the pseudocode algorithm is
deterministic and terminating, we can define the encoding function enc as follows:

Definition 40 For an unrolled program s, define the symbolic encoding enc(s) to

be the triple (γ,∆, t) such that (γ0,∆0, t
0
)

s−→ (γ,∆, t).
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5.5.6 Correctness of the Algorithm

In this section, we formalize our expectations on the encoding algorithm for pro-
grams and prove that they are satisfied. This proof is the key to to our encoding
algorithm and its construction heavily influenced our formalization of concurrent
executions and memory traces. We moved the core of the proof to Appendix A to
avoid overburdening this chapter.

The following theorem expresses the key property of our encoding: the corre-
spondence between the trace semantics EL and the valuations to the variables in the
symbolic trace.

Theorem 41 Let s be an unrolled program and let enc(s) = (γ,∆, t) be its symbolic
encoding.

1. If ν is a valuation such that dom ν ⊃ t.V and JγeKν = true, then

(JtKν , e) ∈ EL(s).

2. If (t, e) ∈ EL(s), then there exists a valuation ν such that

dom ν = t.V, JγeKν = true, and JtKν = t.

Proof. The two claims follow directly from Lemmas 55 and 54 which are stated
and proven in the appendix, in Section A.3. �

5.5.7 The Formulae Πk

We now describe how we obtain the formulae Π1, . . . ,Πn that represent the local
semantics of the individual threads. Let P = (s1, . . . , sn) be an unrolled concurrent
program, and let Y be a memory model. Furthermore, for 1 ≤ k ≤ n, let

enc(sk) = (γk,∆k, tk) and tk = (Ik,≺k, Vk, adrk, valk, guardk).

To simplify the notation, let Lk = loads(Ik) and Sk = stores(Ik). Then define:

Πk =
∧
i∈Ik

Gi ⇔ guardk(i)

∧
∧

i∈(Lk∪Sk)

Ai = adrk(i)

∧
∧

i∈(Lk∪Sk)

Di = valk(i)

∧
∧
e∈Exs

(Uk = e)⇔ γe

The following two lemmas capture the properties of Θ formally. We use them in
our final correctness theorem.
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Lemma 42 If ν is a valuation of σP,Y such that dom ν ⊃ VA ∪ VD ∪ VG ∪ VU and
JΠkKν = true, then (πk(T (ν)), JUkKν) ∈ EL(sk).

Lemma 43 For any execution T ∈ E(P, Y ) and for all k ∈ {1, . . . , n}, we have
JΠkKν(T ) = true.

We omit the proofs, which are straightforward (the heavy lifting being done by
Theorem 41).

5.6 Correctness

We conclude by showing that the primary objective of this chapter is met, namely
that each solution of Φ corresponds to a concurrent execution of P on Y .

Theorem 44 Let P be an unrolled concurrent program, let Y be an axiomatic mem-
ory model specification, and let VP,Y and Φ be the set of variables and the formula
constructed as described in this chapter, respectively. Then:

1. For all valuations ν such that dom ν = VP,Y and JΦKν = true, we have T (ν) ∈
E(P, Y ).

2. For all executions T ∈ E(P, Y ), we have JΦKν(T ) = true.

The theorem is a quite direct consequence of the Lemmas we stated throughout
this chapter, where the main work resided.
Proof. First, we examine the (easier) Claim 2. This claim follows directly from
the definition of Φ and the combination of Lemma 30 (Section 5.3), Lemma 32
(Section 5.4.2), and Lemma 43 (Section 5.5.7).

Next, we examine Claim 1. By Lemma 29 (Section 5.3), we know that T (ν) is a
global trace. Furthermore, we can apply Lemma 31 (Section 5.4.2) to conclude that

T (ν) ∈ EG(Y ). (5.4)

Now, by Lemma 42 (Section 5.5.7) we know for each k that (πk(T (ν)), JUkKν) ∈
EL(sk). Because JUkKν = statν(k) this implies that

∀k ∈ {1, . . . , n} : (πk(T (ν)), statν(k)) ∈ EL(sk). (5.5)

Furthermore, from the way we constructed T (ν) it is immediately clear that

∀k 6= {1, . . . , n} : πk(T (ν)) = t0. (5.6)

Finally, the combination of the facts (5.4), (5.5) and (5.6) implies that T (ν) ∈
E(P, Y ) as desired (Def. 2 in section 2.1.4). �
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Chapter 6

Checking Consistency

In this chapter, we introduce concurrent data types and show how we define correct-
ness and verify it by bounded model checking. The structure of the chapter is as
follows:

• In Section 6.1, we introduce concurrent data types and articulate why there is
a need for automated verification.

• In Section 6.2, we describe the two most common correctness criteria, lineariz-
ability and sequential consistency. We also explain why we chose the latter for
our purposes.

• In Section 6.3, we show how we bound the verification problem using bounded
test programs.

• In Section 6.4, we show how we verify the correctness of an implementation for
a bounded test program, using the encoding techniques from Chapter 5 and a
solver.

• In Section 6.5, we show how we automate our method by mining the specifi-
cation from the implementation automatically rather than asking the user to
provide it.

6.1 Introduction

Concurrent data types provide familiar data abstractions (such as queues, hash ta-
bles, or trees) to client programs that have concurrently executing threads. They can
facilitate the development of safe and efficient multi-threaded programs in the form
of concurrency libraries. Examples of such libraries include the java.util.concurrent
package JSR-166 [46], the Intel Threading Building Blocks [40], or Keir Fraser’s
lock-free library [21].
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void enqueue(int val) {
...
}
int dequeue() {
...
}

...
enqueue(1)

enqueue(2)
   ...

...

...
a = dequeue()

   ...
b = dequeue()

...

Processor 1 Processor 2

Figure 6.1: Illustration example: concurrent queue.

Client programs with concurrent threads can benefit from implementations that
are optimized for concurrency. Many sophisticated algorithms that use lock-free
synchronization have been proposed for this purpose [29, 30, 52, 54, 55, 66, 23]. Such
implementations are not race-free in the classic sense because they allow concurrent
access to shared memory locations without using locks for mutual exclusion. They
are thus sensitive to relaxations in the memory model, and typically need additional
memory ordering fences to work correctly on relaxed memory models.

Fig. 6.1 shows an illustrative example: a client program executes concurrently on
a multiprocessor (left) and makes invocations to a queue implementation (right). The
implementation may guarantee that the operations never block on locks, by using
lock-free synchronization (we show such a queue implementation in Section 8.2.1).

Algorithms with lock-free synchronization are notoriously hard to verify, as wit-
nessed by many formal verification efforts [12, 25, 70, 74] and by bugs found in
published algorithms [17, 53]. Many more interleavings need to be considered than
for implementations that follow a strict locking discipline. Moreover, the deliber-
ate use of races prohibits the use of classic race-avoiding design methodologies and
race-detecting tools [1, 20, 31, 43, 57, 61, 63, 73].

In the remainder of this section, we provide some additional background on con-
current data types and lock-free synchronization. The material is intended to serve
as background information and motivation only, and is not required to understand
the following sections; the reader may choose to proceed to Section 6.2 directly.

6.1.1 Lock-based Implementations

The most common strategy for implementing concurrent data types is to use mutual
exclusion locks. Typically (but not always), implementors use such locks to construct
critical sections. Each process must acquire a lock before executing its critical section
and must release it afterwards. Because this prevents more than one thread from
being within the critical section, competing accesses to the data are serialized and
appear to execute atomically.
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Despite their apparent simplicity, experience has shown that there are many
problems with lock-based solutions; the symptoms range from relatively harmless
performance issues to more serious correctness problems such as deadlocks or missed
deadlines in a real-time system.

6.1.2 Lock-free Synchronization

To overcome the drawbacks of locks, many lock-free implementations of concurrent
data types have been proposed [29, 30, 52, 54, 55, 66, 23]. An implementation is called
lock-free if global progress is guaranteed regardless of how threads are scheduled.
Lock-free implementations are called wait-free if they further guarantee that each
operation completes within a bounded number of steps by the calling process.

To write lock- and wait-free implementations, the hardware needs to support non-
blocking synchronization primitives such as compare-and-swap (CAS), load-linked /
store-conditional (LL/SC), or transactional memory [34]. Multiprocessor architec-
tures commonly used today do not support anything stronger than a 64-bit compare-
and-swap and a restricted form of LL/SC (sometimes called RLL/RSC), however,
and we focus our attention on implementations designed for those.

Lock- and wait-free implementations have been the subject of much theoreti-
cal and practical research. On the more theoretical end, we find existential results
[32] or universal constructions for wait-free implementations [33, 4]. In practice,
such universal constructions have inferior performance characteristics when com-
pared to simple lock-based alternatives, however. Therefore, many researchers have
presented more specialized algorithms that directly implement specific data types
such as queues, lists or sets, or provide universal building blocks such as multiword-
CAS, multiword-LL/SC, or software transactional memory.

6.1.3 Correctness Proofs

Because programming with lock-free synchronization is well recognized to be diffi-
cult, most publications of lock- or wait-free algorithms include some sort of correct-
ness argument, ranging from a few informally described invariants to more formally
structured proof sketches or full proofs. In some cases [12, 74], researchers have even
undertaken the considerable effort of developing fully machine-checked proofs, using
interactive theorem provers such as PVS [59] or shape analysis.

Such proofs (whether fully formal or not) are important to establish that the basic
algorithms are correct, as it is only too easy to miss corner cases (as witnessed by
the bug in the original pseudocode of the snark algorithm [14, 17]). Unfortunately,
proofs are labor-intensive and often operate on a level of abstraction that is well
above the architectural details. The actual implementations may thus contain errors
even if the high-level algorithm has been proven correct. Our experiments confirmed
this as we found a bug in a formally verified implementation (see Section 8.2).
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Of particular concern is the fact that almost all published algorithms (and all
published correctness proofs) assume a sequentially consistent multiprocessor. Such
implementations do not work correctly on a relaxed memory model unless memory
ordering fences are added (see Section 3.1). Publications on lock-free algorithms
usually ignore this problem, or at best, mention that it remains to be addressed.1

6.2 Correctness Criteria

The two most common correctness criteria for concurrent data types are sequential
consistency [44] and linearizability [35]. We discuss them only briefly in this section.
For a more detailed discussion we recommend the original paper [35].

6.2.1 Linearizability

Briefly stated, linearizability requires that each operation must appear to execute
atomically at some point of time between its call and its return. More specifically,
it is defined as follows:

• We assume that we have a serial specification of the data type, which describes
the intended semantics (for example, whether it is a queue, a set, etc.) The
specification describes the possible return values if given a linear sequence of
operation calls and input arguments.

• We describe concurrent executions as a single sequence of events (the global
history) where the events are the calls and returns of data type operations,
along with the corresponding input arguments and return values.

• We define a global history to be linearizable if it is possible to extend the
global history by inserting linearization points for each operation such that (1)
the linearization point for an operation is ordered between its call and return
events, and (2) the observed return values are consistent with what the serial
specification allows for the operations if they are executed in the order of their
linearization points.

6.2.2 Sequential Consistency

Sequential consistency predates linearizability and is slightly weaker. It does not
require that the operations happen somewhere in between call and return, only that
the relative order within each thread be respected.

Sequential consistency is defined as follows:

1The notable exceptions are Keir Fraser’s lock-free library [21] and Michael’s lock-free memory
allocator [52] which do discuss the fence issue informally and indicate where fences may be required
in the pseudocode.
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• Just as for linearizability, we assume that we have a serial specification of the
data type, which describes the intended semantics.

• We describe concurrent executions as tuples of n operation sequences which
describe the sequence of operation calls made by each of the n threads along
with the input arguments and return values.

• We define a tuple of n operation sequences to be sequentially consistent if they
can be interleaved to form a single sequence of calls that is consistent with the
serial specification.

Note that this definition of sequential consistency of concurrent data types coin-
cides with the definition of sequential consistency as a memory model (Section 3.2.2)
if we interpret the shared memory itself as a concurrent data type that supports the
operations “load” and “store”.

6.2.3 Our Choice

Linearizability has become the de-facto correctness standard and is used pervasively
by the concurrent data type community. We believe its success is largely due to
its intuitive nature and its attractive compositionality property. However, while
perfectly sensible for sequentially consistent multiprocessors, we face some issues
when we try to apply this definition to relaxed memory models:

• Executions as defined for general memory models (Section 2.1.4) do not provide
a global history of events; the loads and stores that occur in different threads
are related by the seed function only which matches loads to the stores that
source their value. There is no obvious way of recovering a global history from
this limited information.

• Under limited circumstances, reordering of memory accesses across operation
boundaries should be permitted for performance reasons. For example, it may
be desirable for an enqueue call to a concurrent queue to return before the en-
queue becomes globally visible to all processors. For a quantitative comparison
between sequential consistency and linearizability, see [5].

Because of these issues, we chose to use the sequential consistency criterion, which
is well-defined on relaxed memory models, but weaker than linearizability and not
compositional (as explained in the original paper [35]). Finding a suitable general-
ization for linearizability on relaxed memory models remains an open challenge that
we may address in future work.
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6.3 Bounded Verification

In this section, we describe how we restrict the verification problem (checking se-
quential consistency of concurrent data types) to bounded instances, which is crucial
to allow automatic verification. It is known [3] that the sequential consistency of
concurrent data types (for unbounded client programs) is an undecidable problem
even if the implementations are finite-state.

To bound the verification problem, we represent the possible client programs
using a suite of bounded test programs written by the user. For each individual
test program, we then try to verify the data type implementation or produce a
counterexample if it is incorrect. Of course, we may miss bugs if the test suite does
not contain the tests required to expose them.

6.3.1 Bounded Test Programs

A bounded test program specifies a finite sequence of operation calls for each thread.
It may choose to use nondeterministic argument values, which conveniently allows
us to cover many scenarios with a single test. It may also specify initialization code
to be performed prior to the concurrent execution of the threads. Fig. 6.2 shows an
example of a bounded test program for a concurrent queue. The input values v1 and
v2 are nondeterministic.

For a given test T , implementation I and memory model Y , we let ET,I,Y denote
the set of concurrent executions of T and I on Y (where executions are defined as
in Section 2.1.6).

6.3.2 Correctness Condition

For a test to succeed, all executions of the test must be sequentially consistent in
the sense of the general definition of sequential consistency2 (Section 6.2). Applying
the general definition to the special case of bounded testcases, we can simplify it by
(1) narrowly defining the parts of an execution that need to be observed to decide
whether it is sequentially consistent, and (2) by finding a simple way to specify the
serial behavior of the data type.

• Sequential consistency defines the observables of a concurrent execution to be
the sequence of calls made by each thread, along with the argument and return
values. All executions of a test T use the same sequence of calls. However,

2Note that we are talking about sequential consistency on the level of the data type operations
here, not on the level of memory accesses as in Section 3.2.2. The two are independent: a data type
implementation may be sequentially consistent on the operation level even if the memory model is
not sequential consistency. In fact, we take the perspective that a correct implementation hides the
underlying memory model from the programmer and provides the illusion of sequential consistency
to the client program.
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thread 1: thread 2:
enqueue(v1) (v3, v4) = dequeue()
enqueue(v2)

Meaning of the operations:

— enqueue(v)
adds value v to the queue

— dequeue() returns values (r, v)
if queue is empty, returns r = 0;
otherwise, returns r = 1 and the
dequeued value v

Figure 6.2: Example: A bounded test.

the argument and return values may vary. We define the observation vector
of an execution to be the tuple consisting of all argument and return values
appearing in T , and we define the set VT to be the set of all observation vectors:

obs : ET,I,Y → VT

For example, for the test T in Fig. 6.2, the set VT is the set of all valuations
(v1, v2, v3, v3) ∈ Val× Val× Val× Val.

• For a fixed test, we can decide whether an execution is sequentially consistent
by looking only at the observation vector. We can thus specify the serial
semantics of the data type (for example, whether it is a queue, a set, or so on)
by specifying the subset S ⊂ VT of the observation vectors that are consistent
with the serial semantics. For example, for the test T in Fig. 6.2, we would
specify the intended queue behavior as follows:

S = {(v1, v2, v3, v4) | (v3 = 1 ∧ v4 = v1) ∨ (v3 = 0)}

6.3.3 Checking Tests

To decide whether all executions of T , I on Y are sequentially consistent, we perform
the following two steps independently:

1. We perform a specification mining that can extract a finite specification S
automatically from the serial executions of an implementation. We describe
this procedure in Section 6.5.

2. We perform a consistency check that verifies whether all executions of T , I on
Y satisfy the specification S in the sense of Def. 45 below. We describe this
procedure in Section 6.4.

Definition 45 The test T and implementation I on memory model Y satisfy the
specification S if and only if {obs(T ) | T ∈ ET,I,Y )} ⊂ S.
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6.4 Consistency Check

In this section, we show how we can decide whether T, I on Y satisfy a finite specifi-
cation S by encoding executions as formulae and using a solver to determine if they
are satisfiable or not. We call this step the consistency check.

We perform the consistency check by constructing a formula Λ of boolean type
such that Λ has a satisfying solution if and only if I is not sequentially consistent.
Then, we call a solver to determine if Λ has a satisfying valuation: if not, I is
sequentially consistent. Otherwise, we can construct a counterexample trace from
the satisfying valuation.

To start with, we represent the bounded test program T and implementation I
by an unrolled concurrent program PT,I = (s1, . . . , sn) where each sk is an unrolled
program (as defined in Section 4.5.1) that makes the sequence of operation calls as
specified by thread k of I and uses nondeterministic input arguments. For now, we
simply assume that the unrolled program is a sound pruning (Section 4.5.3); in prac-
tice, we check this separately, and gradually unroll the program until it is. Although
the unrolling may not always terminate, it did so for all the implementations we
studied because of their global progress guarantees.

By using the the techniques described in Chapter 5, we can then construct the
following formulae:

• a formula ΦT,I,Y such that for all total valuations ν,

JΦT,I,Y Kν = true ⇔ T (ν) ∈ ET,I,Y .

• a formula ΞT,I,Y such that for all total valuations ν,

JΞT,I,Y Kν = obs(T (ν)).

Then we define the formula

Λ = ΦT,I,Y ∧
∧
o∈S

ΞT,I,Y 6= o.

Now we claim that Λ has the desired property: Λ has a satisfying valuation if
and only if I is not sequentially consistent on memory model Y for a given test T
with specification S:

• If ET,I,Y is not contained in S, there exists an execution T such that obs(T ) 6= o
for all o ∈ S, and the valuation ν(T ) must thus satisfy Λ.

• If ν is a valuation such that JΛKν = true, then T (ν) is an execution in ET,I,Y
such that obs(T (ν)) 6= o for all o ∈ S, which implies that ET,I,Y is not contained
in S. The execution T (ν) serves as a counterexample.
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6.5 Specification Mining

In this section, we show how we can further automate the verification by mining
the specification automatically rather than requiring the user to specify the set S.
The basic idea is that we use the serial executions of the implementation as the
specification for the concurrent executions.

For a test T and I, we extract the observation set ST,I as

ST,I = {obs(T ) | T ∈ ET,I,Serial},

where ET,I,Serial is defined to be the set of serial executions of T and I, consisting of
all executions T ∈ ET,I,SeqCons such that the operations are treated as atomic in T ;
that is, the execution never switches threads in the middle of an operation, but at
operation boundaries only.

We can make use of a mined specification ST,I in two somewhat different ways.
The first one is slightly more automatic, while the second one can potentially find
more bugs.

1. We can extract the observation set ST,I directly from the implementation I
that we are verifying, and then check whether I is sequentially consistent with
respect to ST,I .

While fully automatic (the user need not specify anything beyond the test T ),
this method may miss some bugs:

• We may miss bugs that manifest identically in all serial and concurrent
executions. For example, if a dequeue() call always returns zero by mis-
take, our method would not detect it. However, such bugs are easy to
find using classic sequential verification approaches; it is thus reasonable
to exclude them from our observational seriality check and then check
separately whether the serial executions are correct.

• This method may fail to work if the serial executions are more constrained
than the specification. Although certainly imaginable (a specification for
a data type may allow nondeterministic failure of operations, while such
failures do not occur in the implementation if it is restricted to serial
executions) the implementations we studied did not exhibit this problem.

2. We can extract the observation set ST,I′ from a reference implementation I ′

that is specifically written to serve as a semantic reference, and then check
whether I is sequentially consistent with respect to ST,I′ .

In essence, this means that we are reverting back to the user providing a
formal specification. However, the specification is written in the form of regular
implementation code, rather than some formal specification language. Note
that I ′ need not be concurrent and is thus simple to write correctly.
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6.5.1 Algorithm

In this section we give a more technical description of how we perform the specifica-
tion mining by encoding executions as formulae and then calling a solver.

As in Section 6.4, we start by

• representing the bounded test program T and implementation I by an unrolled
concurrent program

PT,I = (s1, . . . , sn).

• constructing a formula ΦT,I,Y such that for all total valuations ν,

JΦT,I,Y Kν = true ⇔ T (ν) ∈ ET,I,Y .

• constructing a formula ΞT,I,Y such that for all total valuations ν,

JΞT,I,Y Kν = obs(T (ν)).

To construct the observation set ST,I we then use the following iterative proce-
dure. Basically, we keep solving for serial executions that give us fresh observations
(by adding clauses to the formula to exclude observations already found). When the
formula becomes unsatisfiable, we know we have found all observations.

function mine(T : test; I : implementation) : set of observations
var

obsset : set of observations;
fla : boolean_formula;

{
obsset := empty_set;
fla := ΦT,I,Serial;
while (has_solution(fla)) {

var valuation := solve(fla);
var observation := JΞT,I,Y Kvaluation;
obsset := obsset ∪ { observation };
fla := fla ∧ ¬ ( ΞT,I,Y = observation );

}
return obsset;

}

Our practical experience suggests that even though the set of serial executions
ET,I,Serial can be quite large (due to nondeterministic memory layout and interleav-
ings), the observation set ST,I contains no more than a few thousand elements for the
testcases we used (Section 8.3.2). Therefore, the iterative procedure described above
is sufficiently fast, especially when used with a SAT solver that supports incremental
solving.
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Chapter 7

The CheckFence Implementation

In this section, we describe the tool CheckFence, which implements our verifica-
tion method, and discuss a few of the implementation challenges. The chapter is
structured as follows:

• Section 7.1 gives a general description of the tool (the “black-box” view).

• Section 7.2 describes the front end that translates C to LSL.

• Section 7.3 describes the back end that unrolls loops, encodes executions as
SAT formulae, and makes calls to the SAT solver.

7.1 General Description

Our CheckFence tool works as follows (see also the example in Fig. 7.1). The user
supplies (1) an implementation for a concurrent data type such as a queue or a set
(written in C, possibly with memory ordering fences), (2) a symbolic test program (a
finite list of the operation calls made by each thread, with nondeterministic argument
values), and (3) a choice of memory model. The tool then verifies that all executions
of this test on the chosen memory model meet the following correctness criteria:

• the values returned by the operations of the data type are consistent with some
serial execution of the operations (that is, an execution where the threads are
interleaved along operation boundaries only).

• all runtime checks are satisfied (e.g. no null pointers are dereferenced). We
describe the checks below in Section 7.1.1.

If there is an incorrect execution, the tool creates a counterexample trace. Otherwise,
it produces a witness (an arbitrarily selected valid execution). The execution traces
are formatted in HTML and can be inspected using a browser. We show a screenshot
in Fig. 7.2.
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CIL−based
Front−End solver

SAT

Back−End

Trace
Formatter

(observation set)
SpecificationLoop

Bounds

C code
for data
type ope−
rations

Symbolic test
thread 1:
     enqueue(X)

     dequeue()−>Y
thread 2:

Counterexample

thread 1:
     enqueue(1)

thread 2:

 
Trace     X=1 Y=0

     dequeue()

        return 0
Memory Model
Specification

Figure 7.1: An example run of the tool. The counterexample reveals an execution for
which the return values of the operations are not consistent with any serial execution
of the test.

Figure 7.2: A screenshot showing a counterexample that is viewed with a standard
HTML browser
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CheckFence is sound in the sense that all counterexamples point out real code
problems. It is complete in the sense that it exhaustively checks all executions of the
given symbolic test. Of course, bugs may be missed because the test suite (which
is manually written by the user) does not cover them. However, our experience
with actual examples (Chapter 8) suggests that a few simple tests are often suffi-
cient to find memory-model related errors. A single test covers many executions
because all interleavings, all instruction reorderings, and all choices for input values
are considered.

7.1.1 Runtime Type Checks

Before performing the consistency check (which determines whether all concurrent
executions are observationally equivalent to a serial execution), it makes sense to
check a few simpler ’sanity’ conditions. The reason is that we would like to reduce
the time required by the user to understand the counterexample. A symptom such
as a null pointer dereference is much easier to debug if the tool directly reports it as
such.

For this reason, we distinguish the type of a value (one of undefined, pointer, or
number) at runtime, and check the following conditions for all executions (we call
them runtime type checks).

• All loads and stores must use pointers for accessing memory. Using an unde-
fined value or a number fails the test.

• All equality tests must be either between two numbers, between two pointers, or
between a pointer and the number 0 (which is used in C to denote an invalid
pointer). Comparing an undefined value to any other value or comparing a
pointer to a nonzero number fails the test.

• All basic functions are applied to arguments for which they are defined (as de-
scribed in Section 4.2.8). For example, arithmetic operations require numbers,
division or modulus operators require nonzero divisors, and pointer manipula-
tion functions require pointers.

7.2 Front End

The translation from C to LSL is in many ways similar to a standard compilation
of C into assembly language. However, because LSL sits at a somewhat higher
abstraction level than assembly language, there are some differences.
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7.2.1 General Philosophy

To limit the complexity of the translation, we take advantage of the domain-specific
nature of the code we are targeting. Furthermore, we assume a cooperating pro-
grammer who is willing to perform some minor rewriting of the C code for verifi-
cation purposes. However, we are careful to avoid any negative implications on the
performance of the resulting libraries; we do not disallow any of the optimizations
programmers of concurrent data types tend to use, such as packing several fields into
a single machine word.

Where implementations require the use of special low-level C idioms, we provide
library functions that let the programmer express her intentions on the correct ab-
straction level. For example, if there is a need to apply negative offsets (say we have
a pointer to a field and wish to get a pointer to the containing structure), we provide
a library function

lsl get struct pointer(structtype, fieldname, fieldpointer)

which is more readable and easier to translate than cryptic pointer arithmetic.

7.2.2 Parsing

We chose to use the OCaml language for implementing our front end, because it
offers powerful pattern matching that is very convenient for transforming programs.

Our front end relies heavily on the CIL (C Intermediate Language) component
[58]. Using CIL frees us from many of the cumbersome details associated with C
programs: it parses the C source and provides us with a cleaned up and simplified
program representation with the following properties:

• Rather than using a generic control flow graph, the block structure of the
program is preserved. For instance, loops are directly represented as such, and
need not be recovered from the CFG.

• Pointer offset arithmetic is recognized as such, and represented by different
operators than integer arithmetic.

We then transform the program we get from CIL into LSL. Here are some of the
design choices we made:

Local Variables. If a local variable is scalar (not an array or struct), and its address
is not taken, we represent it as a LSL register (simulating register allocation
by the compiler). Otherwise, we reserve space in main memory.

Structs and Arrays. We reserve space for structures and arrays in the “address
space”. Because our addresses are simply lists of integers, our job is much
easier than that of an actual C compiler: we need not know the size of the
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allocated structures, but can simply use consecutive numbers for all offsets,
regardless of whether they are arrays or structs (see Fig. 4.2 in Section 4.4 for
an illustration of this concept).

Gotos. We do not currently support arbitrary goto statements, but only allow
forward-directed gotos that do not jump into bodies of loops and conditionals
(which we can easily model in LSL by exiting an enclosing block using a break
statement).

Memory Access Alignment. We currently assume that the memory is accessed
at a uniform granularity. Specifically, any two memory accesses in the program
must go to either disjoint or identical memory regions. This implies that structs
may not be copied as entire blocks (note that such an operation has unspecified
multiprocessor semantics).

Unsupported Features. We do not currently model unions, function pointers,
floating point operations, string operations, or standard library calls.

We used the implementations as a guide to decide what features to include, and
will add more features as needed when studying more implementations.

7.2.3 Locks

Some of the implementations we studied use locks. To implement locks, we provide
functions

void lsl_initlock(lsl_lock_t *lock);
void lsl_lock(lsl_lock_t *lock);
void lsl_unlock(lsl_lock_t *lock);

The front end replaces calls to these functions with the equivalent of a spinlock
implementation (Fig. 3.9 in Section 3.4.3) that we adapted from the SPARC manual
[72]. It uses an atomic load-store primitive and (partial) memory ordering fences.

To deal with the spinloop in the back end (note that we can not meaningfully
unroll a spin loop) we use a special LSL construct for side-effect-free spinloops. Our
encoding then (1) models the last iteration of the spin loop only (all others being
redundant), and (2) checks specifically for deadlocks. We did not formalize this part
of the algorithm yet, but may do so in the future.

7.2.4 Dynamic Memory Allocation

To simulate dynamic allocation, we provide two variants of memory allocation for
the user to choose from. Both follow the same syntax as the standard C calls:
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void *lsl_malloc_noreuse(size_t size);
void lsl_free_noreuse(void *ptr);

void *lsl_malloc(size_t size);
void lsl_free(void *ptr);

1. The lsl_malloc_noreuse function simply returns a fresh memory location
every time it is called. We can encode this mechanism easily and efficiently,
but it may miss bugs in the data type implementation that are caused by
reallocations of previously freed memory.

2. The lsl_malloc and lsl_free functions model dynamic memory allocation
more accurately. To do so, we create an array of blocks, each with its own lock.
We make the array contain as many blocks as there are calls to lsl_malloc

in the unrolled code. A call to lsl_malloc then nondeterministically selects
a free block in the array and locks it. A call to lsl_free unlocks it again (or
flags an error if it is already unlocked).

By using the lsl_malloc and lsl_free we can detect ABA problems1 that are
common for implementations based on compare-and-swap. Our simplified nonblock-
ing queue implementation (Section 8.1) is susceptible to the ABA problem because
we removed the counter from the original implementation. We confirmed experimen-
tally that it fails when we use the lsl_malloc and lsl_free.

7.2.5 Packed Words

Many lock-free implementations use a compare-and-swap primitive to achieve non-
blocking synchronization. Such primitives are available on all major hardware plat-
forms. However, the hardware implementations operate on limited word widths only,
typically 32 or 64 bit. As a result, algorithm designers must often resort to packing
structures into a single word or doubleword.

Since LSL does support structures (by using pointer offsets, see Fig. 4.2) it may
seem at first that there is no need for adding direct support for packed words. How-
ever, we found that for the practice of lock-free programming, packed words have a
fairly different flavor than structures and deserve special treatment. For one, packed
words are not nested (because they are intended to be used with a fixed-width CAS).
Moreover, programs cannot access individual fields of the packed word but are forced
to load and/or store the entire word, which has implications on the multiprocessor
semantics.

1The ABA problem occurs if a compare-and-swap succeeds when it should fail, because it sees a
new value that coincidentally matches an old value (as could happen with a freed and reallocated
pointer) and wrongly assumes that the value was never modified.
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To support packed words, we have the front end recognize functions that create
or modify packed words by means of a special naming convention. For example, to
work with a “marked pointer” type mpointer_t which combines a pointer and a
boolean into a single word, the programmer can simply declare and use the following
functions (as done by the set implementation harris listed in Section B.4):

mpointer_t lsl_make_mpointer(node_t *ptr, boolean_t marked)
node_t *lsl_get_mpointer_ptr(mpointer_t mpointer)
boolean_t lsl_get_mpointer_marked(mpointer_t mpointer)
mpointer_t lsl_set_mpointer_ptr(mpointer_t mpointer, node_t *ptr)
mpointer_t lsl_set_mpointer_marked(mpointer_t mpointer,boolean_t marked)

Internally, the front end ignores the C definitions of these functions (if any are
supplied) and substitutes them with basic functions that construct and access a LSL
tagged union type

composite mpointer (ptr, marked)

(as defined in Section 4.6.3).

7.3 Back End

In the back end of our CheckFence tool, we unroll the LSL program and encode it
into one or more formulae that are then handed to the SAT solver. In the following
sections, we discuss some of the technical issues associated with this step.

7.3.1 Lazy Loop Unrolling

For the implementations and tests we studied, all loops are statically bounded. How-
ever, this bound is not necessarily known in advance. We therefore unroll loops lazily
as follows. For the first run, we unroll each loop exactly once. We then run our reg-
ular checking, but restrict it to executions that stay within the bounds. If an error
is found, a counterexample is produced (the loop bounds are irrelevant in that case).
If no error is found, we run our tool again, solving specifically for executions that
exceed the loop bounds. If none is found, we know the bounds to be sufficient. If
one is found, we increment the bounds for the affected loop instances and repeat the
procedure.

7.3.2 Range Analysis

To reduce the number of boolean variables and determine the required bitwidth
to represent values, we perform a range analysis before encoding the concurrent
execution formula. Specifically, we use a simple lightweight flow-insensitive analysis
to calculate for each assignment to an SSA register r and each memory location m,
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sets Sr, Sm that conservatively approximate the values that r or m may contain
during a valid execution. We can sketch the basic idea as follows. First, initialize
Sr and Sm to be the empty set. Then, keep propagating values as follows until a
fixpoint is reached:

• constant assignments of the form r = c propagate the value c to the set Sr.

• assignments of the form r = f(r1, . . . , rk) propagate values from the sets
Sr1 , . . . , Srk to the set Sr (applying the function).

• stores of the form ∗r′ = r propagate values from the set Sr to the sets {Sm |
m ∈ Sr′}.

• loads of the form r = ∗r′ propagate values from the sets {Sm | m ∈ Sr′} to the
set Sr.

This analysis is sound for executions that do not have circular value dependencies.2

To ensure termination, we need an additional mechanism. First, we count the number
of assignments in the test that have unbounded range. That number is finite because
we are operating on the unrolled, finite test program. During the propagation of
values, we tag each value with the number of such functions it has traversed. If that
number ever exceeds the total number of such functions in the test, we can discard
the value.

We use the sets Sr for four purposes: (1) to determine a bitwidth that is sufficient
to encode all integer values that can possibly occur in an execution, (2) to determine
a maximal depth of pointers, (3) to fix individual bits of the bitvector representation
(such as leading zeros), and (4) to rule out as many aliasing relationships as possible,
thus reducing the size of the memory model formula.

7.3.3 Using a SAT Solver

Using the method described in Chapter 6, we can decide whether a test is observa-
tionally serial or not by using a solver that takes some propositional formula Ψ and
either finds a valuation ν such that JΨKν = true, or proves that no such valuation
exists. We now show how we “dumb” this problem down to the level of a SAT solver
(which is a well-known standard procedure). Essentially, we need to (1) convert the
formula to CNF (conjunctive normal form), and (2) express all values using boolean
variables only.

Note that our actual implementation does not closely follow the procedure de-
scribed below (much of our conversion takes place as a byproduct of the translation

2We do not define formally what we mean by “circular dependency”. For an informal example,
see Fig. 4.7 which shows an execution with circular dependencies that may be allowed by some
pathological memory model. None of the hardware models we studied would allow such a behavior.
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of the program into instruction streams). Nevertheless, the description we include
below gives a fair impression of the concept.

Assume that we are given some propositional formula Ψ over a vocabulary σ.
Then, we perform the following steps.

• We introduce an auxiliary variable Fψ for each non-atomic subformula ψ of
Ψ, of the same type as ψ. We let σ′ denote this new, larger vocabulary that
includes the auxiliary variables.

• For a given formula ψ with non-atomic subformulae ψ1, . . . , ψk, let ψ′ be the
formula that results from substituting Fψi for ψi in ψ.

• Define the following formula over σ′:

Ψ′ = FΨ ∧
∧

ψ is a non-atomic subformula of Ψ

(FΨ = ψ′)

Now, it is easy to see that Ψ and Ψ′ are equivalent in the sense that (1) any
valuation ν satisfying Ψ can be extended to a valuation ν ′ that satisfies Ψ′, and (2)
any valuation ν ′ satisfying Ψ′ restricts to a valuation ν that satisfies Ψ.

To get Ψ′ down to CNF form suitable for use with a SAT solver, we represent
each boolean variable by a SAT variable, and each value variable by a vector of SAT
variables (our range analysis helps us to determine a sufficient width for the vectors).
We can then encode the equations (FΨ = ψ′) directly using SAT clauses.

For some functions (such as the elementary logical functions) the resulting clauses
are very easy; for some they are more complex and may require additional auxiliary
variables. For example, to express signed integer additions, we require carry bits.
Multiplication and division also require a large number of auxiliary bits.

7.3.4 Optimized Memory Models

Before we added support for user-specified axiomatic memory models, our tool used
handwritten memory model encoding procedures for SeqCons and Relaxed. These
encoding procedures are optimized for the specific properties of the memory model,
and differ from the generic memory model encoding (Section 5.4) as follows:

• Rather than representing the memory order by |accesses(I)|2 variables {Mxy |
x, y ∈ accesses(I)} such that Mxy = true if and only if both x and y are
executed and x <M y, we “internalize” the fact that the memory order is a
total order and use only |accesses(I)| ∗ |accesses(I)−1|/2 literals {Mxy | x, y ∈
accesses(I) ∧ x < y} for some arbitrary total order < over the accesses.

• Many axioms contain redundant guard conditions when expanded automati-
cally; our handwritten encoding does not have this drawback.
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• We statically establish the connection between the program order (which is
statically known) and the memory order. That is, if x ≺ y, we statically fix
the variable Mxy = 1; where necessary, we also adjust all axioms that use
these variables to account for the fact that the guards of x and y are no longer
implicit in Mxy.

These optimizations lead to much smaller encodings and significantly faster solv-
ing time, as our measurements demonstrate (Section 8.3.4). Of course, it should be
possible (and interesting) to apply these optimizations in a generic way, that is, to
arbitrary memory model specifications. We have not investigated this yet, however,
and leave it as future research.
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Chapter 8

Experiments

In this chapter, we describe the experiments we performed with CheckFence and
analyze the results. The primary goal of the experiments is to answer the following
questions:

• How well does CheckFence achieve the stated goal of supporting the design
and implementation of concurrent data types?

• How scalable is CheckFence? Is it reasonably efficient at finding bugs and/or
missing fences?

• How does the choice of memory model and encoding impact the tool perfor-
mance?

To answer these questions, we studied the five implementations shown in Fig. 8.1.
All of them make deliberate use of data races. Although the original publications
contain detailed pseudocode, they do not indicate where to place memory ordering
fences. Thus, we set out to (1) verify whether the algorithm functions correctly on a
sequentially consistent memory model, (2) find out what fails on the relaxed model
and (3) add memory fences to the code as required.

First we wrote symbolic tests (Fig. 8.2). To keep the counterexamples small, we
started with small and simple tests, say, two to four threads with one operation each.
We then gradually added larger tests until we reached the limits of the tool.

Using CheckFence, we found a number of bugs in the implementations, both
algorithmic bugs that are not related to the memory model, and failures that are
caused by missing fences. The performance results confirm that our method provides
an efficient way to check bounded executions of concurrent C programs with up to
about 200 memory accesses.
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ms2 Two-lock queue [54] 54 loc
Queue is represented as a linked list, with two
independent locks for the head and tail.

msn Nonblocking queue [54] 74 loc
Similar to ms2, but uses compare-and-swap for
synchronization instead of locks (Section 8.2.1).

lazylist Lazy list-based set [12, 30] 111 loc
Set is represented as a sorted linked list. Per-node
locks are used during insertion and deletion, but the
list supports a lock-free membership test.

harris Nonblocking set [28] 140 loc
Set is represented as a sorted linked list. Compare-
and-swap is used instead of locks.

snark Nonblocking deque [14, 17] 141 loc
Deque is represented as linked list. Uses double-
compare-and-swap.

Figure 8.1: The implementations we studied. We use the mnemonics on the left for
quick reference.

8.1 Implementation Examples

Fig. 8.1 lists the implementations we used for our experiments. The implementations
provide commonly used abstract data types (queues, sets, and deques). All of the
implementations were taken from the cited publication, where they appear in the
form of C-like pseudocode. To subject them to our experiments, we translated the
pseudocode to C (making a few modifications as listed in the next paragraph). In the
rightmost column, we show the (approximate) number of lines of the C programs.

With respect to the original algorithms, we simplified the code in one case: the
original code for the nonblocking queue stores a counter along with each pointer
to avoid the so-called ABA problem.1 To put more focus on the core algorithm,
we decided to remove the counter and instruct the memory allocator not to reuse
memory locations.2

1The ABA problem occurs if a compare-and-swap succeeds when it should fail, for instance, if
a dynamically allocated pointer was freed and re-allocated, thus appearing to be the same pointer
and making the CAS wrongly assume that the list was not modified.

2We confirmed that without counters and with reallocation of freed memory locations (see
Section 7.2.4), the code fails, exhibiting an ABA problem on test Ti2.
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Queue tests: (e,d for enqueue, dequeue)

T0 = ( e | d ) Ti2 = e ( ed | de )
T1 = ( e | e | d | d ) Ti3 = e ( de | dde )
Tpc2 = ( ee | dd ) T53 = ( eeee | d | d )
Tpc3 = ( eee | ddd ) T54 = ( eee | e | d | d )
Tpc4 = ( eeee | dddd ) T55 = ( ee | e | e | d | d )
Tpc5 = ( eeeee | ddddd ) T56 = ( e | e | e | e | d | d )
Tpc6 = ( eeeeee | dddddd )

Set tests: (a, c, r for add, contains, remove)

Sac = ( a | c ) Sar = ( a | r )
Sacr = ( a | c | r ) Saacr = a ( a | c | r )
Sacr2 = aar ( a | c | r ) Saaarr = aaa ( r | rc )
S1 = (a’ | a’ | c’ | c’ | r’ | r’) Sarr = ( a | r | r )

Deque tests: (al, ar, rl, rr for add/remove left/right)

D0 = (al rr | ar rl) Db = (rr rl | ar | al)
Da = al al (rr rr | rl rl)
Dm = (a′l a

′
l a
′
l | r′r r′r r′r | r′l | a′r)

Dq = (a′l | a′l | a′r | a′r | r′l | r′l | r′r | r′r )

Figure 8.2: The tests we used. We show the invocation sequence for each thread
in parentheses, separating the threads by a vertical line. Some tests include an
initialization sequence which appears before the parentheses. If operations need an
input argument, it is chosen nondeterministically out of {0, 1}. Primed versions of
the operations are restricted forms that assume no retries (that is, retry loops are
restricted to a single iteration).
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Data Type Description Bugs found Fences inserted
LL SS CL DL

ms2 Two-lock queue 0 0 1 0 1
msn Nonblocking queue 0 4 2 2 1
lazylist Lazy list-based set 1 (new) 0 1 0 3
harris Nonblocking list-based set 0 0 1 3 2
snark(buggy) Buggy “snark” algorithm 2 (prev. known)
snark(fixed) Fixed “snark” algorithm 0 2 4 6 4

Figure 8.3: The issues we found using our CheckFence tool.

8.2 Bugs Found

Fig. 8.3 summarizes the issues we found with the code. We discuss these results in
the remainder of this section.

We found several bugs that are not related to relaxations in the memory model.
The snark algorithm has two known bugs [17, 45]. We found the first one quickly on
test D0. Finding the other one requires a fairly deep execution. We found it with
the test Dq, which took about an hour.

We also found a not-previously-known bug in the lazy list-based set: the pseu-
docode fails to properly initialize the ‘marked’ field when a new node is added to
the list. This simple bug went undetected by a formal correctness proof [12] because
the PVS source code did not match the pseudocode in the paper precisely [49]. This
confirms the importance of using actual code (rather than pseudocode and manual
modeling) for formal verification.

8.2.1 Missing Fences

As expected, our tests revealed that all five implementations require memory fences
to function correctly on relaxed memory models (the original algorithms are designed
for sequentially consistent architectures and do therefore not need any fences). To our
knowledge, there is no established, sound methodology of determining where fences
are required in such implementations. The following passage from Keir Fraser’s
dissertation Practical Lock-Freedom [22] describes the state of the art:

Unfortunately, there is no automatic method for determining the optimal
placement of memory barriers. [...] In the absence of an automated method,
the accepted technique is to determine manually, and in an ad hoc fashion,
where barriers need to be placed. I base these decisions on analysis of the
pseudocode [...]. This is backed up with extensive testing on real hardware
[...].
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Nonblocking Queue with Memory Fences

To give a concrete example, we show the source code for the non-blocking queue
with appropriate fences below. The algorithm uses a list-based representation of the
queue, with individual pointers to the head and tail. It enqueues elements at the
tail and dequeues them at the head. The actual modification of the list is carried
out by a compare-and-swap operation that operates on pointers.

Without fences, the algorithm does not work correctly on a relaxed memory
model, for a number of reasons that we discuss in Section 8.2.2.

To our knowledge, this is the first published version of Michael and Scott’s non-
blocking queue that includes memory ordering fences (besides the one appearing in
our paper [9]). We verified that on Relaxed these fences are sufficient and necessary
for the tests in Fig. 8.2. Of course, our method may miss some fences if the tests do
not cover the scenarios for which they are needed. An interesting observation is that
the implementations we studied required only load-load and store-store fences. On
some architectures (such as Sun TSO or IBM zSeries), these fences are automatic and
the algorithm therefore works without inserting any fences on these architectures.

1 typedef struct node {
2 struct node *next;
3 value_t value;
4 } node_t;
5 typedef struct queue {
6 node_t *head;
7 node_t *tail;
8 } queue_t;
9
10 extern void assert(bool expr);
11 extern void fence(char *type);
12 extern int cas(void *loc,
13 unsigned old, unsigned new);
14 extern node_t *new_node();
15 extern void delete_node(node_t *node);
16
17 void init_queue(queue_t *queue)
18 {
19 node_t *node = new_node();
20 node->next = 0;
21 queue->head = queue->tail = node;
22 }
23 void enqueue(queue_t *queue, value_t value)
24 {
25 node_t *node, *tail, *next;
26 node = new_node();
27 node->value = value;
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28 node->next = 0;
29 fence("store-store");
30 while (true) {
31 tail = queue->tail;
32 fence("load-load");
33 next = tail->next;
34 fence("load-load");
35 if (tail == queue->tail)
36 if (next == 0) {
37 if (cas(&tail->next,
38 (unsigned) next, (unsigned) node))
39 break;
40 } else
41 cas(&queue->tail,
42 (unsigned) tail, (unsigned) next);
43 }
44 fence("store-store");
45 cas(&queue->tail,
46 (unsigned) tail, (unsigned) node);
47 }
48 bool dequeue(queue_t *queue, value_t *pvalue)
49 {
50 node_t *head, *tail, *next;
51 while (true) {
52 head = queue->head;
53 fence("load-load");
54 tail = queue->tail;
55 fence("load-load");
56 next = head->next;
57 fence("load-load");
58 if (head == queue->head) {
59 if (head == tail) {
60 if (next == 0)
61 return false;
62 cas(&queue->tail,
63 (unsigned) tail, (unsigned) next);
64 } else {
65 *pvalue = next->value;
66 if (cas(&queue->head,
67 (unsigned) head, (unsigned) next))
68 break;
69 }
70 }
71 }
72 delete_node(head);
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73 return true;
74 }

8.2.2 Description of Typical Failures

We now describe the different types of failures that we found to occur commonly on
relaxed memory models.

Incomplete initialization. A common failure occurs with code sequences that (1)
allocate a new node, (2) set its fields to some value and (3) link it into the list. On
relaxed memory models, the stores to the fields (in step 2) may be delayed past the
pointer store (in step 3). If so, operations by other threads can read the node fields
before they contain the correct values, with fatal results. All five implementations
showed this behavior. The fix is the same in all cases: adding a store-store fence
between steps (2) and (3). In our example, the store-store barrier on line 29 was
added for this reason.

Reordering of value-dependent instructions. Some weak architectures (such
as Alpha [13]) allow loads to be reordered even if they are value dependent. For
example, the common code sequence (1) read a pointer p to some structure and (2)
read a field p->f is (somewhat surprisingly) susceptible to out-of-order execution:
the processor may perform the load of p->f before the load of p by speculating on
the value of p and then confirming it afterward [51]. We found this behavior to cause
problems in all five implementations. To avoid it, we add a load-load fence between
the two instructions. In our example, the load-load fence on line 32 was inserted for
this reason.

Reordering of CAS operations. We model the compare-and-swap operation
without any implied fences (Fig. 3.8). As a result, two CAS instructions to different
addresses may be reordered. We observed this behavior only for the nonblocking
queue, where it causes problems in the dequeue operation if the tail is advanced
(line 45) before the node is linked into the list (line 37). To fix this problem, we
added a store-store fence on line 44.

Reordering of load sequences. The nonblocking queue uses simple load se-
quences to achieve some synchronization effects. For example, queue->tail is loaded
a first time on line 31; next, tail->next is loaded (line 33); then, queue->tail is
loaded a second time (line 35) and the value is compared to the previously loaded
value. If the values are the same, the implementation infers that the values that were
loaded for queue->tail and tail->next are consistent (that is, can be considered
to have been loaded atomically). A similar load sequence is used in the enqueue
operation (lines 52 and 58). For this mechanism to work, we found that the loads
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in the sequence must not be reordered, and we added a number of load-load fences
to achieve this effect (lines 32, 34, 53, 55, 57). The other implementations did not
exhibit this behavior.

8.3 Quantitative Results

Our experiments confirm that the CheckFence method is very efficient at verifying or
falsifying small tests. As small tests appear to be sufficient to find memory-model-
related bugs (all of the tests that we required to expose missing fences contained
fewer than 200 memory accesses and took less than 10 minutes to verify), CheckFence
achieves its main goal.

Furthermore, CheckFence proved to be useful to find algorithmic bugs that are
not related to the memory model. In general, however, However, some of those bugs
require deeper executions which challenge the scalability of the tool. For example,
the test Dq (see Fig. 8.2) required about 1 hour of time to expose the second snark
bug. In general, we found that the tool does not scale for tests that contain more
than a few hundred memory accesses.

We first describe the performance numbers of the consistency check in more detail
(Section 8.3.1). Then we show data on the observation mining (Section 8.3.2). Next,
we discuss the results on how the range analysis and the memory model encoding
algorithm affect the tool performance (Sections 8.3.3 and 8.3.4).

8.3.1 Consistency Check Statistics

To illustrate the performance of the consistency checks, we show statistics in Fig. 8.4.
We plot the resource requirements in Fig. 8.5. The dots correspond to individual
tests, and we use separate marks to show which implementation is being tested. The
placement of the dots shows the correlation between the number of memory accesses
in the test (X axis, linear scale) and the resource requirement (Y axis, logarithmic
scale).

As described in Section 2.1.6, CheckFence encodes the consistency check as a CNF
formula which is then refuted by the zChaff SAT solver [56] (version 2004/11/15).
To keep the trends visible, we do not include the time required for the lazy loop
unrolling because it varies greatly between individual tests and implementations.

8.3.2 Specification Mining Statistics

We show information about the specification mining in Fig. 8.6. Most observation
sets were quite small (less than 200 elements). The time spent for the specification
mining averaged about a third of the total runtime (Fig. 8.7a). However, in practice,
much less time is spent for observation set enumeration because (1) observation sets
need not be recomputed after each change to the implementation, and (2) we can
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Test Unrolled code Encoding CNF formula Zchaff Total
Name instrs loads stores time [s] vars clauses [MB] time [s] time [s]
T0 142 13 20 0.1 433 5,077 <1 <0.1 0.1
T1 256 25 33 0.6 1,266 40,454 4 0.2 0.8
T53 346 33 47 2.0 2,445 125,831 12 1.9 3.9
T54 346 33 47 1.8 2,378 125,745 12 5.1 6.9
T55 346 33 47 1.6 2,331 125,788 12 7.2 8.7
T56 346 33 47 1.6 2,304 123,660 12 3.3 4.9
Ti2 301 29 40 0.8 1,409 42,418 4 0.2 1.0
Ti3 370 37 46 1.7 2,116 90,066 12 0.7 2.4
Tpc2 256 25 33 0.7 1,294 41,553 4 0.1 0.8
Tpc3 370 37 46 2.4 2,591 142,742 15 1.6 4.0
Tpc4 484 49 59 7.4 4,324 342,446 47 12.0 19.4
Tpc5 598 61 72 16.4 6,493 677,390 94 91.6 108.0
Tpc6 712 73 85 35.0 9,098 1,178,842 186 367.0 402.0
T0 214 22 14 0.2 1,004 12,151 1 <0.1 0.2
T1 1000 115 55 22.0 14,848 1,597,115 189 314.0 336.0
T53 966 107 57 22.0 14,536 1,426,104 188 105.0 127.0
Ti2 843 93 48 8.5 10,407 709,416 94 7.2 15.7
Ti3 1086 122 60 25.6 16,344 1,633,713 190 35.4 61.0
Tpc2 454 48 27 1.4 3,496 126,013 12 0.7 2.0
Tpc3 694 74 40 5.4 7,638 468,274 48 6.5 11.9
Tpc4 934 100 53 16.4 12,979 1,165,993 186 74.0 90.4
Tpc5 1174 126 66 42.0 19,679 2,347,472 372 455.0 497.0
Tpc6 1414 152 79 130.0 27,747 4,133,783 610 1930.0 2060.0
Sac 254 29 23 0.5 1,396 24,658 2 <0.1 0.5
Sar 435 56 39 4.0 4,521 210,799 24 0.8 4.8
Sacr 505 65 39 5.2 5,435 280,223 47 0.7 5.9
Saa 543 69 48 8.7 7,120 424,579 80 2.1 10.8
Saacr 747 97 58 11.7 9,233 504,304 81 3.5 15.2
Sacr2 1071 141 81 16.3 14,364 555,692 93 11.6 27.9
Sarr 842 114 67 103.0 15,941 1,731,774 318 47.3 150.3
S1 821 107 56 18.2 13,610 1,201,727 186 66.4 84.6
Saaarr 1183 158 93 93.6 23,474 1,945,051 321 86.4 180.0
Sac 406 34 14 0.4 1,882 25,456 2 <0.1 0.5
Sar 575 51 18 1.4 3,670 85,824 12 0.1 1.6
Saa 896 77 28 5.2 8,629 333,128 48 1.0 6.3
Sacr 1349 125 32 28.0 16,411 1,157,264 187 6.9 34.9
Da 760 77 51 4.1 5,229 230,292 24 0.8 4.9
D0 810 89 65 19.9 9,254 1,075,792 121 9.3 29.2
Db 980 107 75 47.4 12,278 1,815,494 191 49.6 97.0
Dm 748 77 57 8.1 8,086 698,752 62 28.7 36.8
Dq 748 77 57 7.0 8,015 710,252 62 123.0 130.0
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Figure 8.4: Statistics about the consistency checks. For a given implementation
(listed in Fig. 8.1) and test (listed in Fig. 8.2), we show (from left to right): the size
of the unrolled code, the time required to create the SAT instance, the size of the
SAT instance, the resources required by the SAT solver to refute the SAT instance,
and the overall time required. All measurements were taken on a 3 GHz Pentium 4
desktop PC with 1GB of RAM, using zchaff [56] version 2004/11/15.
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Figure 8.5: Time/Memory required by SAT solver (on Y axis, logarithmic scale)
increases sharply with the number of memory accesses in the unrolled code (on
X axis, linear scale). The data points represent the individual tests, grouped by
implementation.
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Figure 8.6: Time required to enumerate the observation set (Y axis), and the number
of elements in the observation set (X axis). The data points represent the individual
tests (Fig. 8.2), grouped by implementation.
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Figure 8.7: (a) average breakdown of total runtime. (b) impact of range analysis
on runtime. The data points represent the individual tests.

often compute observation sets much more efficiently by using a small, fast reference
implementation (as shown by the data points for “refset”).

8.3.3 Impact of Range Analysis

As described in Section 7.3.2, we perform a range analysis prior to the encoding to
obtain data bounds, alias analysis, and range information. This information is used
to improve the encoding by reducing the number of boolean variables. Fig. 8.7b
shows the effect of the range analysis on runtime. On average, the performance
improvement was about 42%. On larger tests (where we are most concerned), the
positive impact is more pronounced (the tool finished up to 3× faster).

Although the performance improvement certainly justifies the use of a range
analysis, it is less pronounced than we expected. A possible reason is that the SAT
solver algorithm already produces effects that approximate a range analysis.

8.3.4 Memory Model Encoding

We compared the performance of different memory model encodings. Fig. 8.8 shows
the SAT solving time and memory requirements as a function of the chosen tests
and memory model encoding. To make it easier to spot trends, all tests are for the
same implementation (the nonblocking queue). The Y axis shows the normalized
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Figure 8.8: SAT solving time and memory requirements for various memory model
encodings. The Y axis shows normalized time/space requirements; the X axis shows
the tests, in order of increasing runtime.
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SAT runtime (top) and memory footprint (bottom) for each test. The X axis shows
the test used, in order of increasing runtime.

The first three of the five encodings shown are the models SeqCons, Relaxed
and RMO, which we showed in Section 3.5, encoded automatically by the procedure
described in Section 5.4. The last two encodings are optimized CNF encodings as
we described in Section 7.3.4.

We make two observations:

• The three models SeqCons, Relaxed and RMO show significantly different per-
formance. However, it appears that the relative speed is less a function of the
weakness of the model (Relaxed is the weakest model, yet performs better than
RMO) than a result of the complexity of the specification.

• The optimized encoding performs significantly better. Much of this improve-
ment is probably due to the smaller number of memory order variables which
leads to speedier SAT solving. Future work may address how to generalize
these optimizations to arbitrary memory model specifications.
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Chapter 9

Conclusions

Verifying concurrent data type implementations that make deliberate use of data
races and memory ordering fences is challenging because of the many interleavings
and counterintuitive instruction reorderings that need to be considered. Conven-
tional automated verification tools for multithreaded programs are not sufficient
because they make assumptions on the programming style (race-free programs) or
the memory model (sequential consistency).

Our CheckFence verification method and tool address this challenge and provide
a valuable aid to algorithm designers and implementors.

Our experiments confirm that the CheckFence method is very efficient at finding
memory-model related bugs. All of the testcases we required to expose missing fences
contained fewer than 200 memory accesses and took less than 10 minutes to verify.
Furthermore, CheckFence proved to be useful to find algorithmic bugs that are not
related to the memory model.
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9.1 Contributions

Our main contributions are as follows:

• Our CheckFence implementation is the first model checker for C code that
supports relaxed memory models.

• The CheckFence method does not require formal specifications or annotations,
but mines a specification directly from the C code (either from the implemen-
tation under test, or from a reference implementation).

• CheckFence supports a reasonable subset of C, as required for typical imple-
mentations. This subset includes conditionals, loops, pointers, arrays, struc-
tures, function calls, locks, and dynamic memory allocation.

In addition to achieving our overall goal of applying automated model checking
to the verification of concurrent data types, we solved a number of problems during
our implementation of CheckFence whose solutions may be of interest in their own
right:

• To work around the lack of precision and completeness of typical hardware
memory model specifications, we developed a specification method for memory
models and used it to formalize a number of memory models.

• To separate issues related to the C language semantics from the fundamen-
tal problem of encoding concurrent executions, we developed an intermediate
language with formal syntax and semantics.

• To model executions of concurrent programs on axiomatically specified mem-
ory models, we developed a general encoding algorithm that expresses the
executions as solutions to a formula, and provided a correctness proof.

9.2 Future Work

As we developed our CheckFence method and tool, we naturally discovered many
new leads for future research. We distinguish two categories: Promising directions
for research in the general area of concurrent data types and relaxed memory models,
and research that may directly improve the CheckFence tool.

9.2.1 General Research Directions

• It seems that axiomatic encodings provide a novel, state-free way of modeling
concurrent systems which may be of use for general asynchronous verification
problems (such as protocol verification). We would like to compare such solu-
tions to state-of-the art explicit or symbolic model checking.
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• General reasoning techniques for relaxed memory models (such as a suitable
generalization of linearizability) could allow us to go beyond testcases and
prove sufficiency of fences for some programs.

• We would like to develop an algorithm that can insert fences automatically.

9.2.2 Improving CheckFence

• Recent progress in the area of theorem proving, SMT solving and SAT solving
may be leveraged to improve the scalability of CheckFence. In particular, the
use of SMT or SAT solvers with special support for relational variables may
reduce the time and/or memory requirements.

• Our experimental results (Section 8.3.4) indicate that the hand-optimized en-
codings we use for sequential consistency and Relaxed can greatly improve
the solving time. We would like to generalize these optimizations to arbitrary
memory model specifications.

• We would like to explore how our specification format could be extended to
cover applications beyond hardware-level models, such as the Java Language
Memory Model [50].

Last but not least, we are curious to see how our CheckFence tool (which is freely
available for download and includes the full source code) will be received and utilized
by the community.
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Appendix A

Correctness of Encoding

In this chapter, we prove that the encoding algorithm for unrolled LSL programs
(Chapter 5) correctly captures the trace semantics of the program (Chapter 4): for
each execution, there must be a solution to the formula, and vice versa. We prove
each direction separately (Lemmas 52 and 53). The proofs are based on structural
induction, using the inference rules for evaluation and for encoding.

The chapter is structured as follows:

• Because the technical details can get complicated if we try to fit them all into
a single proof, we establish some basic invariants of the encoding algorithm
and state some invariance lemmas in Section A.1.

• In Section A.2 we describe how a state of the encoder corresponds to an execu-
tion, by defining a correspondence relation (similar to a simulation relation).

• In Section A.3 we state the core lemmas.

• In Section A.4 we prove the core lemmas.

A.1 Basic Invariants

Our encoding algorithm is designed to maintain a number of invariants. We capture
them in this section, in the form of the following technical lemma.

Definition 46 We call a triple (γ,∆, t) a valid encoder state if it satisfies all of the
following conditions

1. for all e we have FV (γe) ⊂ t.V

2. for all e and r, FV (∆e(r)) ⊂ t.V

3. for all valuations ν satisfying dom ν ⊃ t.V , there is at most one e such that
JγeKν = true
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Definition 47 A valid encoder state (γ,∆, t) is called void for a valuation ν if

1. dom ν ⊃ t.V and

2. JγeKν = false for all e

Lemma 48 If we have a derivation

(γ,∆, t)
s−→ (γ′,∆′, t

′
),

and (γ,∆, t) is a valid encoder state, then all of the following hold

(i) (γ′,∆′, t
′
) is a valid encoder state

(ii) t.V ⊂ t
′
.V

(iii) for all e we have FV (γ′e) ⊂ t
′
.V

(iv) for all e and r we have FV (∆′e(r)) ⊂ t
′
.V

(v) if ν is a valuation with dom ν ⊃ t
′
.V and (γ,∆, t) is void for ν, then (γ′,∆′, t

′
)

is void for ν.

(vi) if ν is a valuation and dom ν ⊃ t
′
.V , then JγeKν = true for at most one e

(vii) if ν is a valuation with dom ν ⊃ t
′
.V and (γ,∆, t) is void for ν, then Jt′Kν =

JtKν

Proof. By structural induction. The proof is thus a collection of induction
cases, one for each inference rule. The cases (ECondThrow), (EAssign), (EStore),
(ELoad) and (EFence) are axioms of the inference rule system, and need not use
the induction hypothesis. (ELabel) uses the induction hypothesis once, and can do
so directly. For (EComp), we need to apply induction twice; the first time works
directly, but the second application requires a little more consideration. What makes
it work is that the first induction tells us that (γ′,∆′, t

′
) is a valid encoding state,

which in turn implies (by Def. 46) that (γ′Je 7→ falseKe6=ok,∆
′, t
′
) is a valid encoding

state also and lets us apply the induction to the premise on the right.
For each inference rule, we need to prove each individual claim (i), (ii), (iii), (iv),

(v), (vi), (vii). For easier readability, we organize these proof components by the
individual claims, rather than by the inference rules.

Claim (i). Follows from (iii), (iv), and (vi) which are proven below.
Claim (ii). (ECondThrow), (EAssign), (EStore) and (EFence) do not modify

t.V . (ELoad) actually modifies t.V , adding a fresh variable. In (ELabel) we need
to apply the induction hypothesis, which directly tells us that t.V ⊂ t

′
.V . For

(EComp), we need to apply induction twice; this works because the first induction
tells us that (γ′,∆′, t

′
) is a valid encoding state, which in turn implies (by Def. 46)

that (γ′Je 7→ falseKe6=ok,∆
′, t
′
) is a valid encoding state also and lets us apply the

induction to the premise on the right.
Claim (iii). (EAssign),(EStore), (ELoad) and (EFence) do not modify γ

and may only increase t.V (as we know by (ii)), so the claim follows immediately.
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(ECondThrow) modifies γ, but the new formulae are built from subformulae whose
free variables are contained in t.V , so the claim follows with (ii). For (ELabel)
we first apply induction to the premise on the left, then use the same argument.
For (EComp) we apply induction twice (as discussed before under the proof of (ii)).
Then we can use the same argument.

Claim (iv). (EStore) and (EFence) do not modify γ or t.V so the claim follows
immediately. (EAssign) constructs formulae from subformulae whose variables are
contained in t.V . (ELoad) constructs formulae from subformulae whose variables
are contained in t.V , as well as a new variable that it specifically adds. The other
cases are similar to the proof of (iii)(use induction once or twice, apply the same
argument).

Claim (v). (EAssign),(EStore), (ELoad) and (EFence) do not modify γ so the
claim follows easily. In (ECondThrow), the property follows because JγokKν = false.
The same argument holds for (ELabel) after applying induction, which guarantees
Jγ′okKν = false. In (EComp), we use induction twice (as usual), checking that the
encoder state remains void. We then know that for all e, both Jγ′eKν = false and
Jγ′′e Kν = false from which we get the desired property.

Claim (vi). (EAssign),(EStore), (ELoad) and (EFence) do not modify γ
so the claim follows easily. In (ECondThrow), the fields ok and e are modified,
but in a way that guarantees the desired property. The same argument holds for
(ELabel). In (EComp), the situation is not as obvious. To see why the property is
guaranteed, we make a case distinction based on the value of Jγ′okKν . If it is true,
Jγ′eKν = false for all e 6= ok and we can deduce Jγ′′′okKν = Jγ′′okKν for all e, and the
property follows because we know γ′′ has the desired property. If it is false, then
we can apply induction claim (v): we know (γ′Je 7→ falseKe6=ok,∆

′, t
′
) is void for

ν, implying J∆′′eKν = false for all e. From that, the desired property follows quite
directly.

Claim (vii). (EAssign) and (ECondThrow) do not modify the trace, so the
claim is immediate. For (EStore), (ELoad) and (EFence), we observe that all in-
structions added to the trace are guarded by γok, so the claim follows with Lemma 49.
For (ELabel), we use simple induction. For (EComp), we use induction claims (vii)
and (v) on the left, and (vii)on the right.
�

We use the following lemma during the induction proof. It expresses how the
append operation and the J.Kν commute.

Lemma 49 Let t = (I,≺, V, adr , val , guard) be a symbolic trace, let i ∈ (I \ I), let
a, v ∈ T value and let g ∈ T bool. Then, for any valuation ν such that dom ν ⊃ V , the
following is true:

Jt.append(i, a, v, g)Kν =

{
JtKν.append(i, JaKν , JvKν) if JgKν = true
JtKν if JgKν = false

Proof. Directly from the definitions. �
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A.2 Correspondence

We now describe how a state of the encoder corresponds to a trace, by defining a
correspondence relation (similar to a simulation relation).

Definition 50 For an encoder state (γ, ∆, t), a trace t, a register map Γ, an
execution state e, and a valuation ν, we write

(γ,∆, t)Bν (Γ, t, e)

to express the conjunction of the following properties:

(a) (γ, ∆, t) is a valid encoder state

(b) dom ν ⊃ t.V

(c) JtKν = t

(d) JγeKν = true

(e) for all r ∈ Reg, we have J∆e(r)Kν = Γ(r)

The initial encoder state corresponds to the empty trace.

Lemma 51 For all valuations ν, (γ0,∆0, t
0
)Bν (Γ0, t0, ok)

Proof. Directly from the definitions. �

A.3 Core Lemmas

We now state the core lemmas.

Lemma 52 If the following condition holds

(γ,∆, t)Bν (Γ, t, ok) (A.1)

and for some statement s, we have derivations for

(γ,∆, t)
s−→ (γ′,∆′, t

′
) and Γ, t, s ⇓ Γ′, t′, e (A.2)

then there exists a ν ′ that extends ν and satisfies (γ′,∆′, t
′
)Bν′ (Γ′, t′, e).

Proof. See Section A.4.2. �
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Lemma 53 If the following condition holds

(γ,∆, t)Bν (Γ, t, ok) (A.3)

and for some statement s we have

(γ,∆, t)
s−→ (γ′,∆′, t

′
) (A.4)

dom ν ⊃ t
′
.V (A.5)

then there exists a register map Γ′, a trace t′ and an execution state e such that

Γ, t, s ⇓ Γ′, t′, e (A.6)

(γ′,∆′, t
′
)Bν (Γ′, t′, e) (A.7)

Proof. See Section A.4.1. �

Lemma 54 If s is an unrolled program, and

(γ0,∆0, t
0
)

s−→ (γ,∆, t), and Γ0, t0, s ⇓ Γ, t, e,

then there exists a valuation ν such that

dom ν = t.V, and JγeKν = true, and JtKν = t

Proof. The combination of Lemma 51 and Lemma 52 tells us that there exists a
valuation ν such that

(γ,∆, t)Bν (Γ, t, e) (A.8)

This directly implies (by Def. 50) that JγeKν = true and JtKν = t as required. It also
implies that dom ν ⊃ t.V . Because we know that γ, ∆ and t contain only variables
in t.V (by Lemma 48), we can restrict ν if needed such that dom ν = t.V , without
affecting the validity of the other two claims. �

Lemma 55 If s is an unrolled program and

(γ0,∆0, t
0
)

s−→ (γ,∆, t)

and ν is a valuation such that dom ν ⊃ t.V and JγeKν = true, then

Γ0, t0, s ⇓ Γ, JtKν , e

Proof. The combination of Lemma 51 and Lemma 53 tells us that there exists a
register map Γ, a trace t and an execution state e′ such that

Γ0, t0, s ⇓ Γ, t, e′ (A.9)

(γ,∆, t)Bν (Γ, t, e′) (A.10)

Now, by (A.10)(c) (see Def. 50), this implies

JtKν = t (A.11)

Moreover, by (A.10)(d), we know that Jγe′Kν = true. Applying Lemma 48(vi), we
can deduce that

e = e′ (A.12)

The claim then follows from (A.9), (A.11) and (A.12). �
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A.4 Core Proofs

A.4.1 Proof of Lemma 52

We perform a simultaneous structural induction over the derivations (A.2). Each
case treats a combination of the last respective inference rules used, shown in a box.
Following each box, we give the proof of the corresponding case.

(γ,∆, t)
s−→ (γ′,∆′, t

′
) (γ′Je 7→ falseKe 6=ok,∆

′, t
′
)
s′−→ (γ′′,∆′′, t

′′
)

(γ,∆, t)
s ;s′−−→ (γ′′Je 7→ γ′e ∨ γ′′e Ke6=ok,∆

′′Je 7→ (γ′e ? ∆′e : ∆′′e)Ke6=ok, t
′′
)

(EComp)

Γ, t, s ⇓ Γ′, t′, ok Γ′, t′, s′ ⇓ Γ′′, t′′, e

Γ, t, s ; s′ ⇓ Γ′′, t′′, e
(Comp-ok)

For briefer reference, let us name the following expressions:

γ′′′ = γ′′Je 7→ γ′e ∨ γ′′e Ke6=ok

∆′′′ = ∆′′Je 7→ (γ′e ? ∆′e : ∆′′e)Ke6=ok

We now show how to find a valuation ν ′′ that extends ν from (A.1) and satisfies
(γ′′′,∆′′′, t

′′
)Bν′′ (Γ′′, t′′, e) as claimed by the lemma.

First, we apply the induction to the hypotheses appearing on the left of the
inference rules which gives us a valuation ν ′ that extends ν and satisfies

(γ′,∆′, t
′
)Bν′ (Γ′, t′, ok) (A.13)

This same valuation ν ′ also satisfies (γ′Je 7→ falseKe6=ok,∆
′, t
′
)Bν′ (Γ′, t′, ok) (directly

from Def. 50). Therefore, we can apply the induction hypothesis once more, this
time to the hypotheses appearing on the right. This gives us a valuation ν ′′ that
extends ν ′ (and therefore ν) and satisfies

(γ′′,∆′′, t
′′
)Bν′′ (Γ′′, t′′, e) (A.14)

Now we can prove the individual pieces of (γ′′′,∆′′′, t
′′
) Bν′′ (Γ′′, t′′, e) as follows to

complete this case:

(a) using Lemma 48(i)

(b) directly from (A.14)(b)

(c) Jt′′Kν′′ = t′′ by (A.14)(c)

(d) Jγ′′′e Kν′′ =

{
Jγ′′e Kν

′′
if e = ok

Jγ′e ∨ γ′′e Kν
′′

if e 6= ok

In either case, we can easily conclude Jγ′′′e Kν′′ = true because we know that
Jγ′′e Kν

′′
= true by (A.14)(d).
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(e) for all r ∈ Reg, we have

J∆′′′e (r)Kν′′ =

{
J∆′′e(r)Kν

′′
if e = ok

Jγ′e ? ∆′e(r) : ∆′′e(r)Kν
′′

if e 6= ok

By (A.13)(d), we know that Jγ′okKν
′

is true. Moreover, because of (A.13)(a),
we know (γ′,∆′, t

′
) is a valid encoder state and therefore Jγ′eKν

′
= false for all

e 6= ok (by Lemma 48(vi)). This implies Jγ′eKν
′′

= false for all e 6= ok (because
ν ′′ extends ν ′). Therefore, we can see that in either case (e = ok or e 6= ok) we

have J∆′′′e (r)Kν′′ = J∆′′e(r)Kν
′′ (A.14)

= Γ′′(r)

(γ,∆, t)
s−→ (γ′,∆′, t

′
) (γ′Je 7→ falseKe 6=ok,∆

′, t
′
)
s′−→ (γ′′,∆′′, t

′′
)

(γ,∆, t)
s ;s′−−→ (γ′′Je 7→ γ′e ∨ γ′′e Ke6=ok,∆

′′Je 7→ (γ′e ? ∆′e : ∆′′e)Ke6=ok, t
′′
)

(EComp)

Γ, t, s ⇓ Γ′, t′, e e 6= ok

Γ, t, s ; s′ ⇓ Γ′, t′, e
(Comp-skip)

For briefer reference, let us name the following expressions:

γ′′′ = γ′′Je 7→ γ′e ∨ γ′′e Ke6=ok

∆′′′ = ∆′′Je 7→ (γ′e ? ∆′e : ∆′′e)Ke6=ok

We now show how to find a valuation ν ′′ that extends ν from (A.1) and satisfies
(γ′′′,∆′′′, t

′′
)Bν′′ (Γ′, t′, e) as claimed by the lemma.

First, we apply the induction to the hypotheses appearing on the left of the
inference rules which gives us a valuation ν ′ extending ν such that

(γ′,∆′, t
′
)Bν′ (Γ′, t′, e) (A.15)

This implies that Jγ′eKν
′

= true (by (A.15)(d)) and therefore Jγ′okKν
′

= false (by
Lemma 48(vi)). Thus, (γ′Je 7→ falseKe6=ok,∆

′, t
′
) is void for ν. Now, by assigning

arbitrary values to the variables in (t
′′
.V \ dom ν ′), we can extend ν ′ to a valuation

ν ′′ such that
dom ν ′′ ⊃ t

′′
.V (A.16)

Then by Lemma 48(vii),
Jt′′Kν

′′
= Jt′Kν

′
(A.17)

Now we can prove the individual pieces of (γ′′′,∆′′′, t
′′
) Bν′′ (Γ′, t′, e) as follows to

complete this case:

(a) using Lemma 48(i)

(b) by (A.16)

(c) Jt′′Kν′′
(A.17)

= Jt′Kν′
(A.15)

= t′
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(d) Jγ′′′e Kν′′ = Jγ′e ∨ γ′′e Kν
′′

= Jγ′eK
ν′′︸ ︷︷ ︸

=Jγ′eKν
′=true

∨ Jγ′′e Kν
′′

= true

(e) for all r ∈ Reg, we have J∆′′′e (r)Kν′′ = J(γ′e ? ∆′e : ∆′′e)(r)Kν
′′

Now, we know Jγ′eKν
′′

= Jγ′eKν
′
= true and therefore

J∆′′′e (r)Kν′′ = J∆′e(r)Kν
′′ (A.15)

= Γ′(r)

(γ,∆, t)
s−→ (γ′,∆′, t

′
) γ′′ = γ′[ok 7→ γ′ok ∨ γ′break l][break l 7→ false]

(γ,∆, t)
l:s−→ (γ′′,∆′[ok 7→ (γ′break l ? ∆′break l : ∆′ok)], t

′
)

(ELabel)

Γ, t, s ⇓ Γ′, t′, e e /∈ {break l, continue l}
Γ, t, l : s ⇓ Γ′, t′, e

(Label)

For briefer reference, let us name the following expression:

∆′′ = ∆′[ok 7→ (γ′break l ? ∆′break l : ∆′ok)]

We now show how to find a valuation ν ′ that extends ν from (A.1) and satisfies
(γ′′,∆′′, t

′
)Bν′ (Γ′, t′, e) as claimed by the lemma.

First, we apply the induction to the hypotheses appearing in the inference rules
which gives us a valuation ν ′ extending ν such that

(γ′,∆′, t
′
)Bν′ (Γ′, t′, e) (A.18)

Now we can prove the individual pieces of (γ′′,∆′′, t
′
) Bν′ (Γ′, t′, e) as follows to

complete this case:

(a) using Lemma 48(i)

(b) by (A.18)(b)

(c) by (A.18)(c)

(d) Jγ′′e Kν
′
=

{
Jγ′ok ∨ γ′break lKν

′
if e = ok

Jγ′eKν
′

otherwise

In either case, we can easily conclude Jγ′′e Kν
′

= true because we know that
Jγ′eKν

′
= true by (A.18)(d).

(e) We do a case distinction on e = ok. If e 6= ok, then ∆′′e = ∆′e and the claim
follows from (A.18)(e). If e = ok, then JγokKν

′
= true by (A.18)(d), and thus

Jγ′break lKν
′

= false by Lemma 48(vi). This implies that J∆′′e(r)Kν
′

= J∆′ok(r)Kν′

for all r and the claim follows with (A.18)(e).
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(γ,∆, t)
s−→ (γ′,∆′, t

′
) γ′′ = γ′[ok 7→ γ′ok ∨ γ′break l][break l 7→ false]

(γ,∆, t)
l:s−→ (γ′′,∆′[ok 7→ (γ′break l ? ∆′break l : ∆′ok)], t

′
)

(ELabel)

Γ, t, s ⇓ Γ′, t′, break l

Γ, t, l : s ⇓ Γ′, t′, ok
(Label-break)

For briefer reference, let us name the following expression:

∆′′ = ∆′[ok 7→ (γ′break l ? ∆′break l : ∆′ok)]

We now show how to find a valuation ν ′ that extends ν from (A.1) and satisfies
(γ′′,∆′′, t

′
)Bν′ (Γ′, t′, ok) as claimed by the lemma.

First, we apply the induction to the hypotheses appearing in the inference rules
which gives us a valuation ν ′ extending ν such that

(γ′,∆′, t
′
)Bν′ (Γ′, t′, break l) (A.19)

Now we can prove the individual pieces of (γ′′,∆′′, t
′
) Bν′ (Γ′, t′, ok) as follows to

complete this case:

(a) using Lemma 48(i)

(b) by (A.19)(b)

(c) by (A.19)(c)

(d) Jγ′′okKν
′
= Jγ′ok ∨ γ′break lKν

′
= true

(because we know Jγ′break lKν
′
= true by (A.19)(d)).

(e) J∆′′ok(r)Kν′ = J(γ′break l ? ∆′break l : ∆′ok)(r)Kν′ = J∆′break l(r)Kν
′

and the claim
follows from (A.19)(e).

γ′ = γ[ok 7→ γok ∧ ¬φ][e 7→ γok ∧ φ] φ = ¬(∆ok(r) = 0)

(γ,∆, t)
if (r) throw(e)−−−−−−−−→ (γ′,∆[e 7→ ∆ok], t)

(ECondThrow)

Γ(r) 6= 0 Γ, t, throw(e) ⇓ Γ, t, e

Γ, t, if (r) throw(e) ⇓ Γ, t, e
(If-so)(throw)

By assumption, we know that

(γ,∆, t)Bν (Γ, t, ok) (A.20)

To prove this case, we show that for the same ν,

(γ′,∆[e 7→ ∆ok], t)Bν (Γ, t, e)

because each individual claim is satisfied:
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(a) using Lemma 48(i)

(b) by (A.20)(b)

(c) by (A.20)(c)

(d) First, observe that JφKν = J¬(∆ok(r) = 0)Kν = true because J∆ok(r)Kν = Γ(r)
by (A.20)(e), and Γ(r) 6= 0 by the first prerequisite of (If-so).
Now, Jγ′eKν = Jγok ∧ φKν = JγokKν = true because of (A.20)(d).
Note that e 6= ok because throw(ok) is not allowed (Table 4.1).

(e) J(∆[e 7→ ∆ok])e(r)Kν = J∆okKν(r) = Γ(r) because of (A.20)(e).

γ′ = γ[ok 7→ γok ∧ ¬φ][e 7→ γok ∧ φ] φ = ¬(∆ok(r) = 0)

(γ,∆, t)
if (r) throw(e)−−−−−−−−→ (γ′,∆[e 7→ ∆ok], t)

(ECondThrow)

Γ(r) = 0

Γ, t, if (r) throw(e) ⇓ Γ, t, ok
(If-not)

By assumption, we know that

(γ,∆, t)Bν (Γ, t, ok) (A.21)

To prove this case, we show that for the same ν,

(γ′,∆[e 7→ ∆ok], t)Bν (Γ, t, ok)

because each individual claim is satisfied:

(a) using Lemma 48(i)

(b) by (A.21)(b)

(c) by (A.21)(c)

(d) First, observe that JφKν = J¬(∆ok(r) = 0)Kν = false because J∆ok(r)Kν = Γ(r)
by (A.21)(e), and Γ(r) = 0 by the prerequisite of (If-not).
Now, Jγ′okKν = Jγok ∧ ¬φKν = JγokKν = true because of (A.21)(d).
Note that e 6= ok because throw(ok) is not allowed (Table 4.1).

(e) J(∆[e 7→ ∆ok])ok(r)Kν = J∆okKν(r) = Γ(r) because of (A.21)(e).

t
′
= t.append(i,⊥,⊥, γok)

(γ,∆, t)
fencei−−−→ (γ,∆, t

′
)

(EFence)

t′ = t.append(i,⊥,⊥)

Γ, t, fencei ⇓ Γ, t′, ok
(Fence-id)
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By assumption, we know that

(γ,∆, t)Bν (Γ, t, ok) (A.22)

To prove this case, we show that for the same ν,

(γ,∆, t
′
)Bν (Γ, t′, ok)

because each individual claim is satisfied:

(a) using Lemma 48(i)

(b) By Def. 35,

t
′
.V = t.V ∪ FV (i) ∪ FV (⊥) ∪ FV (⊥) ∪ FV (γok)

By Lemma 48(iii), FV (γok) ⊂ t.V and thus t′.V = t.V . Therefore, the claim
follows from (A.22)(b).

(c) First, note that JγokKν = true by (A.22)(d). Now

Jt′Kν = Jt.append(i,⊥,⊥, γok)Kν Lemma 49
= JtKν.append(i, J⊥Kν , J⊥Kν)

Because we know that JtKν = t by (A.22)(c), the latter is equal to

= t.append(i,⊥,⊥) = t′

(d) by (A.22)(d)

(e) by (A.22)(e)

t
′
= t.append(i,∆ok(r′),∆ok(r), γok)

(γ,∆, t)
*r′:=ir−−−−→ (γ,∆, t

′
)

(EStore)

t′ = t.append(i,Γ(r′),Γ(r))

Γ, t,*r′ :=i r ⇓ Γ, t′, ok
(Store-id)

By assumption, we know that

(γ,∆, t)Bν (Γ, t, ok) (A.23)

To prove this case, we show that for the same ν,

(γ,∆, t
′
)Bν (Γ, t′, ok)

because each individual claim is satisfied:
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(a) using Lemma 48(i)

(b) By Def. 35,

t
′
.V = t.V ∪ FV (i) ∪ FV (∆ok(r′)) ∪ FV (∆ok(r)) ∪ FV (γok)

By Lemma 48(iii) and Lemma 48(iv), we can conclude t′.V = t.V . Therefore,
the claim follows from (A.23)(b).

(c) First, note that JγokKν = true by (A.23)(d). Now

Jt′Kν = Jt.append(i,∆ok(r′),∆ok(r), γok)Kν

Lemma 49
= JtKν.append(i, J∆ok(r′)Kν , J∆ok(r)Kν)

Because we know that JtKν = t by (A.23)(c), and because J∆ok(r′)Kν = Γ(r′)
and J∆ok(r)Kν = Γ(r) (by (A.23)(e)), the latter is equal to

= t.append(i,Γ(r′),Γ(r)) = t′

(d) by (A.23)(d)

(e) by (A.23)(e)

t
′
= t.append(i,∆ok(r′), Di, γok)

(γ,∆, t)
r:=i*r

′
−−−−→ (γ,∆[ok 7→ ∆ok[r 7→ Di]], t

′
)

(ELoad)

v ∈ Val t′ = t.append(i,Γ(r′), v)

Γ, t, r :=i *r′ ⇓ Γ[r 7→ v], t′, ok
(Load-id)

For briefer reference, let us name the following expressions:

∆′ = ∆[ok 7→ ∆ok[r 7→ Di]]

Γ′ = Γ[r 7→ v]

By assumption, we know that

(γ,∆, t)Bν (Γ, t, ok) (A.24)

To prove this case, we show that for the valuation ν ′ = ν[Di 7→ v],

(γ,∆′, t
′
)Bν′ (Γ′, t′, ok)

because each individual claim is satisfied:

(a) using Lemma 48(i)
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(b) By Def. 35,

t
′
.V = t.V ∪ FV (i) ∪ FV (∆ok(r′)) ∪ FV (Di) ∪ FV (γok)

By Lemma 48(iii) and Lemma 48(iv), we can conclude t′.V = t.V ∪ {γok}.
Therefore, the claim follows from (A.24)(b) and the fact that we explicitly
assign γok in ν ′

(c) First, note that JγokKν
′
= JγokKν = true by (A.24)(d). Now

Jt′Kν
′
= Jt.append(i,∆ok(r′), Di, γok)Kν

′

Lemma 49
= JtKν

′
.append(i, J∆ok(r′)Kν

′
, JDiKν

′
)

Because we know that JtKν = t by (A.24)(c), and because J∆ok(r′)Kν = Γ(r′)
(by (A.24)(e)) and JDiKν

′
= v, the latter is equal to

= t.append(i,Γ(r′), v) = t′

(d) by (A.24)(d)

(e) for an arbitrary register r′, do a case distinction on r′ = r:
(1) If r′ 6= r, then J∆′ok(r′)Kν′ = J∆ok(r′)Kν′ = Γ(r) = Γ′(r) by (A.24)(e).
(2) If r = r′, then J∆′ok(r)Kν′ = JDiKν

′
= v = Γ′(r).

∆′ = ∆[ok 7→ ∆ok[r 7→ f(∆ok(r1), . . . ,∆ok(rk))]]

(γ,∆, t)
r:=(f r1 ... rk)−−−−−−−−−→ (γ,∆′, t)

(EAssign)

v = f(Γ(r1), . . . ,Γ(rk))

Γ, t, r := (f r1 . . . rk) ⇓ Γ[r 7→ v], t, ok
(Assign)

For briefer reference, let us name the following expression:

Γ′ = Γ[r 7→ v]

By assumption, we know that

(γ,∆, t)Bν (Γ, t, ok) (A.25)

To prove this case, we show that for the same valuation ν,

(γ,∆′, t)Bν (Γ′, t, ok)

because each individual claim is satisfied:
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(a) using Lemma 48(i)

(b) by (A.25)(b)

(c) by (A.25)(c)

(d) by (A.25)(d)

(e) for an arbitrary register r′, do a case distinction on r′ = r:
(1) If r′ 6= r, then J∆′ok(r′)Kν = J∆ok(r′)Kν = Γ(r) = Γ′(r) by (A.25)(e).
(2) If r = r′, then

J∆′ok(r)Kν = Jf(∆ok(r1), . . . ,∆ok(rk))Kν = f(J∆ok(r1)Kν , . . . , J∆ok(rk)Kν)

Because we know that J∆ok(ri)Kν = Γ(ri) by (A.23)(e), the latter is equal to

= f(Γ(r1), . . . ,Γ(rk)) = Γ′(r)

A.4.2 Proof of Lemma 53

We perform a structural induction over the derivation for (A.4). We start each case
by showing the last used inference rule in a box.

(γ,∆, t)
s−→ (γ′,∆′, t

′
) (γ′Je 7→ falseKe 6=ok,∆

′, t
′
)
s′−→ (γ′′,∆′′, t

′′
)

(γ,∆, t)
s ;s′−−→ (γ′′Je 7→ γ′e ∨ γ′′e Ke6=ok,∆

′′Je 7→ (γ′e ? ∆′e : ∆′′e)Ke6=ok, t
′′
)

(EComp)

For briefer reference, let us introduce explicit names for the guard and register maps
appearing on the second line:

γ′′′ = γ′′Je 7→ γ′e ∨ γ′′e Ke6=ok

∆′′′ = ∆′′Je 7→ (γ′e ? ∆′e : ∆′′e)Ke6=ok

We now show how to find e, Γ′′ and t′′ such that

Γ, t, s ; s′ ⇓ Γ′′, t′′, e (A.26)

(γ′′′,∆′′′, t
′′
)Bν (Γ′′, t′′, e) (A.27)

First, we apply induction on the left (note that t
′
.V ⊂ t

′′
.V by Lemma 48(ii) and

thus dom ν ⊃ t
′
.V ) which gives us e′, Γ′, and t′ such that

Γ, t, s ⇓ Γ′, t′, e′ (A.28)

(γ′,∆′, t
′
)Bν (Γ′, t′, e′) (A.29)

We now distinguish two cases.
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Case (e′ = ok). From (A.29) we get (γ′Je 7→ falseKe6=ok,∆
′, t
′
)Bν (Γ′, t′, ok) (directly

from Def. 50, exploiting e′ = ok). We can thus apply induction on the right, which
gives us Γ′′, t′′ and e such that

Γ′, t′, s′ ⇓ Γ′′, t′′, e (A.30)

(γ′′,∆′′, t
′′
)Bν (Γ′′, t′′, e) (A.31)

We now use rule

Γ, t, s ⇓ Γ′, t′, ok Γ′, t′, s′ ⇓ Γ′′, t′′, e

Γ, t, s ; s′ ⇓ Γ′′, t′′, e
(Comp-ok)

to get (A.26) from (A.28) and (A.30). To get (A.27) (and conclude this case), we
need the following components:

(a) using Lemma 48(i)

(b) from (A.5)

(c) by (A.31)(c)

(d) observe that γ′′′ evaluates the same as γ′′ (because Jγ′xKν = false for all x 6= ok,
because of Lemma 48(vi) and Jγ′okKν = Jγ′e′Kν = true by (A.29)(d)) and then
use (A.31)(d)

(e) for the same reasons, observe that ∆′′′ evaluates the same as ∆′′ and then use
(A.31)(e)

Case (e′ 6= ok). We set Γ′′ = Γ′ and t′′ = t′ and e = e′. Now we can use the inference
rule

Γ, t, s ⇓ Γ′, t′, e e 6= ok

Γ, t, s ; s′ ⇓ Γ′, t′, e
(Comp-skip)

to get (A.26) from (A.28). To get (A.27) (and conclude this case), we show

(γ′′′,∆′′′, t
′′
)Bν (Γ′, t′, e)

which has the following components:

(a) using Lemma 48(i)

(b) from (A.5)

(c) By (A.29)(d) we know Jγ′e′Kν = true. Because e′ 6= ok and because of Lemma 48(vi),
this implies Jγ′okKν = false. Therefore, (γ′Je 7→ falseKe 6=ok,∆

′, t
′
) is void for ν,

and by Lemma 48(vii) we know Jt′′Kν = Jt′Kν . Therefore, we get the claim
directly from by (A.29)(c).

(d) because e′ 6= ok, Jγ′′′e′ Kν = Jγ′e′ ∨γ′′e′Kν = true because Jγ′e′Kν = true by (A.29)(d)
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(e) J∆′′′e (r)Kν = J∆′e(r)Kν because e′ 6= ok and Jγ′eKν = true. Therefore, the claim
follows from (A.29)(e).

(γ,∆, t)
s−→ (γ′,∆′, t

′
) γ′′ = γ′[ok 7→ γ′ok ∨ γ′break l][break l 7→ false]

(γ,∆, t)
l:s−→ (γ′′,∆′[ok 7→ (γ′break l ? ∆′break l : ∆′ok)], t

′
)

(ELabel)

For briefer reference, let us name the following expression:

∆′′ = ∆′[ok 7→ (γ′break l ? ∆′break l : ∆′ok)]

We are now showing that there exist e′, Γ′ and t′ such that

Γ, t, l : s ⇓ Γ′, t′, e′ (A.32)

(γ′′,∆′′, t
′
)Bν (Γ′, t′, e′) (A.33)

First, we apply induction to the left premise. That gives us Γ′, t′ and e satisfying

Γ, t, s ⇓ Γ′, t′, e (A.34)

(γ′,∆′, t
′
)Bν (Γ′, t′, e) (A.35)

We now distinguish two cases.
Case (e 6= break l). Because we are running on unrolled programs, we know that
e 6= continue l also and can therefore soundly apply rule

Γ, t, s ⇓ Γ′, t′, e e /∈ {break l, continue l}
Γ, t, l : s ⇓ Γ′, t′, e

(Label)

to get (A.32) from (A.34), by setting e′ = e. To get (A.33) (and conclude this case),
we show the following claims:

(a) using Lemma 48(i)

(b) from (A.5)

(c) by (A.35)(c)

(d) we know Jγ′eKν = true (because of (A.35)(d)) and can use Lemma 48(vi) to
conclude Jγ′break lKν = false. Thus, Jγ′′e Kν = Jγ′eKν = true by (A.35)(d).

(e) because Jγ′break lKν = false we can see that ∆′′ evaluates the same as ∆′, so the
claim folllows from (A.35)(e)

Case (e = break l). We apply rule

Γ, t, s ⇓ Γ′, t′, break l

Γ, t, l : s ⇓ Γ′, t′, ok
(Label-break)

to get (A.32) from (A.34), by setting e′ = ok. To get (A.33) (and conclude this case),
we show the following claims:

140



(a) using Lemma 48(i)

(b) from (A.5)

(c) by (A.35)(c)

(d) we know Jγ′break lKν = true (because of (A.35)(d)), therefore Jγ′′okKν = true

(e) because Jγ′break lKν = true we can see that for all r, J∆′′okKν is equal to J∆′break lKν
which is in turn equal Γ′(r) by (A.35)(e)

γ′ = γ[ok 7→ γok ∧ ¬φ][e 7→ γok ∧ φ] φ = ¬(∆ok(r) = 0)

(γ,∆, t)
if (r) throw(e)−−−−−−−−→ (γ′,∆[e 7→ ∆ok], t)

(ECondThrow)

For briefer reference, let us name the register map appearing on the second line:

∆′ = ∆[e 7→ ∆ok]

By assumption of the lemma, we know

(γ,∆, t)Bν (Γ, t, ok) (A.36)

We are now showing that there exists an e′ such that

Γ, t, if (r) throw(e) ⇓ Γ, t, e′ (A.37)

(γ′,∆′, t)Bν (Γ, t, e′) (A.38)

To do so, we distinguish two cases.
Case JφKν = false. This implies J∆ok(r)Kν = 0 and thus Γ(r) = 0 by (A.36)(e). By
setting e′ = ok we can therefore use rule

Γ(r) = 0

Γ, t, if (r) s ⇓ Γ, t, ok
(If-not)

to get (A.37). To get (A.38) (and conclude this case), we show the following claims:

(a) using Lemma 48(i)

(b) from (A.5)

(c) by (A.36)(c)

(d) Jγ′′okKν = Jγok ∧ ¬φKν which is true because JφKν = false and JγokKν = true by
(A.36)(d).

(e) for all r we have J∆′ok(r)Kν = J∆ok(r)Kν and the latter is equal to Γ(r) by
(A.36)(e).
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Case JφKν = true. This implies J∆ok(r)Kν 6= 0 and thus Γ(r) 6= 0 by (A.36)(e). By
setting e′ = e, Γ′ = Γ, t′ = t and s = throw(e) we can combine the rules

Γ, t, throw(e) ⇓ Γ, t, e (Throw)

Γ(r) 6= 0 Γ, t, s ⇓ Γ′, t′, e

Γ, t, if (r) s ⇓ Γ′, t′, e
(If-so)

to get (A.37). To get (A.38) (and conclude this case), we show the following claims:

(a) using Lemma 48(i)

(b) from (A.5)

(c) by (A.36)(c)

(d) Jγ′′e Kν = Jγok ∧ φKν which is true because JφKν = true and JγokKν = true by
(A.36)(d).

(e) for all r we have J∆′e(r)Kν = J∆ok(r)Kν and the latter is equal to Γ(r) by
(A.36)(e).

∆′ = ∆[ok 7→ ∆ok[r 7→ f(∆ok(r1), . . . ,∆ok(rk))]]

(γ,∆, t)
r:=(f r1 ... rk)−−−−−−−−−→ (γ,∆′, t)

(EAssign)

By assumption of the lemma, we know

(γ,∆, t)Bν (Γ, t, ok) (A.39)

We are showing that there exists a Γ′ such that

Γ, t, r := (f r1 . . . rk) ⇓ Γ′, t, ok (A.40)

(γ,∆′, t)Bν (Γ′, t, ok) (A.41)

To do so, set Γ′ = Γ[r 7→ f(Γ(r1), . . . ,Γ(rk))] and use the inference rule

v = f(Γ(r1), . . . ,Γ(rk))

Γ, t, r := (f r1 . . . rk) ⇓ Γ[r 7→ v], t, ok
(Assign)

to get (A.40). To get (A.41) (and conclude this case), we show the following claims:

(a) using Lemma 48(i)

(b) from (A.5)

(c) by (A.39)(c)

(d) by (A.39)(d).
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(e) For a given r′, look at J∆′ok(r′)Kν and distinguish two cases. If r′ 6= r, then it
is equal to J∆ok(r′)Kν which is equal to Γ(r′) by (A.39)(e). If r′ = r, then it is
equal to Jf(∆ok(r1), . . . ,∆ok(rk))Kν . Now, by (A.39)(e), we know that for all
i, J∆ok(ri)Kν = Γ(ri) and the claim follows.

t
′
= t.append(i,∆ok(r′),∆ok(r), γok)

(γ,∆, t)
*r′:=ir−−−−→ (γ,∆, t

′
)

(EStore)

By assumption of the lemma, we know

(γ,∆, t)Bν (Γ, t, ok) (A.42)

We are showing that there exists a t′ such that

Γ, t,*r′ :=i r ⇓ Γ, t′, ok (A.43)

(γ,∆, t
′
)Bν (Γ, t′, ok) (A.44)

To do so, use the inference rule

t′ = t.append(i,Γ(r′),Γ(r))

Γ, t,*r′ :=i r ⇓ Γ, t′, ok
(Store-id)

to get (A.43). To get (A.44) (and conclude this case), we show the following claims:

(a) using Lemma 48(i)

(b) from (A.5)

(c) We need to show that Jt.append(i,∆ok(r′),∆ok(r), γok)Kν = t′. This follows
from Lemma 49 and the following individual facts:

• JγokKν = true by (A.42)(d)

• J∆ok(r′)Kν = Γ(r′) by (A.42)(e)

• J∆ok(r)Kν = Γ(r) by (A.42)(e)

• JtKν = t by (A.42)(c)

(d) by (A.42)(d).

(e) by (A.42)(e).

143



t
′
= t.append(i,∆ok(r′), Di, γok)

(γ,∆, t)
r:=i*r

′
−−−−→ (γ,∆[ok 7→ ∆ok[r 7→ Di]], t

′
)

(ELoad)

For briefer reference, let us name the following expression:

∆′ = ∆[ok 7→ ∆ok[r 7→ v]]

By assumption of the lemma, we know

(γ,∆, t)Bν (Γ, t, ok) (A.45)

We are showing that there exists a Γ′ and t′ such that

Γ, t, r :=i *r′ ⇓ Γ′, t′, ok (A.46)

(γ,∆′, t
′
)Bν (Γ′, t′, ok) (A.47)

First, let v = JDiKν . Now we set Γ′ = Γ[r 7→ v] and use the inference rule

v ∈ Val t′ = t.append(i,Γ(r′), v)

Γ, t, r :=i *r′ ⇓ Γ[r 7→ v], t′, ok
(Load-id)

to get (A.46). To get (A.47) (and conclude this case), we show the following claims:

(a) using Lemma 48(i)

(b) from (A.5)

(c) We need to show that Jt.append(∆ok(r′), Di, γok)Kν = t′. This follows from
Lemma 49 and the following individual facts:

• JγokKν = true by (A.45)(d)
• J∆ok(r′)Kν = Γ(r′) by (A.45)(e)
• JDiKν = v
• JtKν = t by (A.45)(c)

(d) by (A.45)(d).

(e) For a given r′′, look at J∆′ok(r′′)Kν and distinguish two cases. If r′′ 6= r, then it
is equal to J∆ok(r′′)Kν which is equal to Γ(r′′) by (A.45)(e), and thus also equal
to Γ′(r′′). If r′′ = r, then it is equal to JDiKν which is equal to v and thus also
equal to Γ′(r′′) as required.

t
′
= t.append(i,⊥,⊥, γok)

(γ,∆, t)
fencei−−−→ (γ,∆, t

′
)

(EFence)
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By assumption of the lemma, we know

(γ,∆, t)Bν (Γ, t, ok) (A.48)

We are showing that there exists a t′ such that

Γ, t, fencei ⇓ Γ, t′, ok (A.49)

(γ,∆, t
′
)Bν (Γ, t′, ok) (A.50)

To do so, use the inference rule

t′ = t.append(i,⊥,⊥)

Γ, t, fencei ⇓ Γ, t′, ok
(Fence-id)

to get (A.49). To get (A.50) (and conclude this case), we show the following claims:

(a) using Lemma 48(i)

(b) from (A.5)

(c) We need to show that Jt.append(i,⊥,⊥, γok)Kν = t′. This follows from Lemma 49
and the following individual facts:

• JγokKν = true by (A.45)(d)
• JtKν = t by (A.45)(c)

(d) by (A.48)(d).

(e) by (A.48)(e).
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Appendix B

C Implementation Sources

In this chapter, we show the C code for the implementations we studied (see Table 8.1
in Chapter 8), including the memory ordering fences we placed. We verified that
these fences are sufficient for the testcases shown in Table 8.2, using our CheckFence
tool.

B.1 Prototypes

The file lsl_protos.h captures (1) common, useful definitions, and (2) function
prototypes for externally defined functions that have a special meaning and are
substituted for appropriate LSL stubs by our frontend.

3 /* general */
4 enum boolean { false=0, true=1 };
5 typedef enum boolean boolean_t;
6
7 /* unsigned types */
8 typedef unsigned uint32;
9 typedef unsigned long long uint64;
10
11 /* dynamic memory allocation */
12 extern void *lsl_malloc(size_t size);
13 extern void lsl_free(void *ptr);
14
15 /* dynamic memory allocation without pointer reuse */
16 extern void *lsl_malloc_noreuse(size_t size);
17 extern void lsl_free_noreuse(void *ptr);
18
19 /* verification directives */
20 extern void lsl_assert(boolean_t expr);
21 extern void lsl_assume(boolean_t expr);
22
23 /* simple lock */
24 typedef unsigned lsl_lock_t;
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25 extern void lsl_initlock(lsl_lock_t *lock);
26 extern void lsl_lock(lsl_lock_t *lock);
27 extern void lsl_unlock(lsl_lock_t *lock);
28
29 /* fences */
30 extern void lsl_fence(char *fencetype);
31
32 /* thread id */
33 extern int lsl_get_number_threads();
34 extern int lsl_get_thread_id();
35
36 /* observables */
37 extern void lsl_observe_label(char *opname);
38 extern void lsl_observe_input(char *name, int val);
39 extern void lsl_observe_output(char *name, int val);
40
41 /* nondeterministic values */
42 extern int lsl_nondet(int min, int max);
43 extern int lsl_choose();
44
45 /* compare-and-swap */
46 extern boolean_t lsl_cas_32(void *loc, uint32 old, uint32 new);
47 extern boolean_t lsl_cas_64(void *loc, uint64 old, uint64 new);
48 extern boolean_t lsl_cas_ptr(void *loc, void *old, void *new);
49
50 /* double compare-and-swap */
51 extern boolean_t lsl_dcas_32(void *loc1, void *loc2,
52 uint32 old1, uint32 old2, uint32 new1, uint32 new2);
53 extern boolean_t lsl_dcas_64(void *loc1, void *loc2,
54 uint64 old1, uint64 old2, uint64 new1, uint64 new2);
55 extern boolean_t lsl_dcas_ptr(void *loc1, void *loc2,
56 void *old1, void *old2, void *new1, void *new2);
57

B.2 Two-Lock Queue (ms2)

1 #include "lsl_protos.h"
2
3 /* ---- data types ---- */
4
5 typedef int value_t;
6
7 typedef struct node {
8 struct node *next;
9 value_t value;
10 } node_t;
11
12 typedef struct queue {
13 node_t *head;
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14 node_t *tail;
15 lsl_lock_t headlock;
16 lsl_lock_t taillock;
17 } queue_t;
18
19 /* ---- operations ---- */
20
21 void init_queue(queue_t *queue)
22 {
23 node_t *dummy = lsl_malloc(sizeof(node_t));
24 dummy->next = 0;
25 dummy->value = 0;
26 queue->head = dummy;
27 queue->tail = dummy;
28 lsl_initlock(&queue->headlock);
29 lsl_initlock(&queue->taillock);
30 }
31
32 void enqueue(queue_t *queue, value_t val)
33 {
34 node_t *node = lsl_malloc(sizeof(node_t));
35 node->value = val;
36 node->next = 0;
37 lsl_lock(&queue->taillock);
38 lsl_fence("store-store"); /* trace1 */
39 queue->tail->next = node;
40 queue->tail = node;
41 lsl_unlock(&queue->taillock);
42 }
43
44 boolean_t dequeue(queue_t *queue, value_t *retvalue)
45 {
46 node_t *node;
47 node_t *new_head;
48 lsl_lock(&queue->headlock);
49 node = queue->head;
50 new_head = node->next;
51 if (new_head == 0) {
52 lsl_unlock(&queue->headlock);
53 return false;
54 }
55 lsl_fence("data-dependent-loads"); /* trace2 */
56 *retvalue = new_head->value;
57 queue->head = new_head;
58 lsl_unlock(&queue->headlock);
59 lsl_free(node);
60 return true;
61 }
62
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B.3 Nonblocking Queue (msn)

1 #include "lsl_protos.h"
2
3 /* ---- data types ---- */
4
5 typedef int value_t;
6
7 typedef struct node {
8 struct node *next;
9 value_t value;
10 } node_t;
11
12 typedef struct queue {
13 node_t *head;
14 node_t *tail;
15 } queue_t;
16
17 /* ---- operations ---- */
18
19 void init_queue(queue_t *queue)
20 {
21 node_t *node = lsl_malloc_noreuse(sizeof(node_t));
22 node->next = 0;
23 queue->head = queue->tail = node;
24 }
25
26 void enqueue(queue_t *queue, value_t value)
27 {
28 node_t *node;
29 node_t *tail;
30 node_t *next;
31
32 node = lsl_malloc_noreuse(sizeof(node_t));
33 node->value = value;
34 node->next = 0;
35 lsl_fence("store-store"); /* trace3 */
36 while (true) {
37 tail = queue->tail;
38 lsl_fence("data-dependent-loads"); /* trace9 */
39 next = tail->next;
40 lsl_fence("load-load"); /* trace7 */
41 if (tail == queue->tail)
42 if (next == 0) {
43 if (lsl_cas_64(&tail->next, next, node))
44 break;
45 } else
46 lsl_cas_ptr(&queue->tail, tail, next);
47 }
48 lsl_fence("store-store"); /* trace5 */
49 lsl_cas_ptr(&queue->tail, tail, node);
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50 }
51
52 boolean_t dequeue(queue_t *queue, value_t *pvalue)
53 {
54 node_t *head;
55 node_t *tail;
56 node_t *next;
57
58 while (true) {
59 head = queue->head;
60 lsl_fence("load-load"); /* trace6 */
61 tail = queue->tail;
62 lsl_fence("load-load"); /* trace1 */
63 next = head->next;
64 lsl_fence("load-load"); /* trace8 */
65 if (head == queue->head) {
66 if (head == tail) {
67 if (next == 0)
68 return false;
69 lsl_cas_ptr(&queue->tail, tail, next);
70 } else {
71 *pvalue = next->value;
72 if (lsl_cas_ptr(&queue->head, head, next))
73 break;
74 }
75 }
76 }
77 lsl_free_noreuse(head);
78 return true;
79 }

B.4 Nonblocking List-Based Set (harris)

1 #include "lsl_protos.h"
2
3 /* ---- data types ---- */
4
5 /* data values */
6 typedef int value_t;
7
8 /* marked pointers */
9 typedef void *mpointer_t;
10
11 typedef struct node {
12 mpointer_t next;
13 value_t key;
14 } node_t;
15
16 typedef struct list {
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17 mpointer_t head;
18 mpointer_t tail;
19 } list_t;
20
21
22 /* ---- constructor & accessors for marked pointers---- */
23
24 inline mpointer_t lsl_make_mpointer(node_t *ptr, boolean_t marked) {
25 return (void*) (((ptrdiff_t) ptr) | marked);
26 }
27 inline node_t *lsl_get_mpointer_ptr(mpointer_t mpointer) {
28 return (node_t *) ((((ptrdiff_t) mpointer) >> 1) << 1);
29 }
30 inline boolean_t lsl_get_mpointer_marked(mpointer_t mpointer) {
31 return ((ptrdiff_t) mpointer) & 0x1;
32 }
33 inline mpointer_t lsl_set_mpointer_ptr(mpointer_t mpointer, node_t *ptr) {
34 return (void*) (((ptrdiff_t) ptr) | (((ptrdiff_t) mpointer) & 0x1));
35 }
36 inline mpointer_t lsl_set_mpointer_marked(mpointer_t mpointer,
37 boolean_t marked){
38 return (void*) ((((ptrdiff_t) mpointer >> 1) << 1) | marked);
39 }
40
41
42 /* ---- operations ---- */
43
44 void init(list_t *list, value_t sentinel_min_value,
45 value_t sentinel_max_value)
46 {
47 node_t *node;
48
49 node = lsl_malloc_noreuse(sizeof(node_t));
50 node->next = lsl_make_mpointer(0, false);
51 node->key = sentinel_max_value;
52 list->tail = lsl_make_mpointer(node, false);
53 node = lsl_malloc_noreuse(sizeof(node_t));
54 node->next = list->tail;
55 node->key = sentinel_min_value;
56 list->head = lsl_make_mpointer(node, false);
57 }
58
59 mpointer_t search(list_t *list, value_t search_key,
60 mpointer_t *l_node, boolean_t allow_retries)
61 {
62 mpointer_t l_node_next, r_node, t, t_next;
63
64 do {
65 t = list->head;
66 t_next = lsl_get_mpointer_ptr(list->head)->next;
67
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68 /* 1 : find l_node and r_node */
69 do {
70 if (! lsl_get_mpointer_marked(t_next)) {
71 *l_node = t;
72 l_node_next = t_next;
73 }
74 t = lsl_set_mpointer_marked(t_next, false);
75 if (t == list->tail)
76 break;
77 lsl_fence("data-dependent-loads"); /* trace2 */
78 t_next = lsl_get_mpointer_ptr(t)->next;
79 } while ( lsl_get_mpointer_marked(t_next) ||
80 (lsl_get_mpointer_ptr(t)->key < search_key)); /* B1 */
81 r_node = t;
82 lsl_fence("data-dependent-loads"); /* trace1 */
83
84 /* 2 : check nodes are adjacent */
85 if (l_node_next == r_node)
86 if ((r_node != list->tail) && lsl_get_mpointer_marked(
87 lsl_get_mpointer_ptr(r_node)->next)) {
88 lsl_assume(allow_retries);
89 continue; /* G1 */
90 }
91 else
92 return r_node; /* R1 */
93
94 /* 3 : Remove one or more marked nodes */
95 if (lsl_cas_ptr (&(lsl_get_mpointer_ptr(*l_node)->next),
96 l_node_next, r_node)) /* C1 */
97 if ((r_node != list->tail) && lsl_get_mpointer_marked(
98 lsl_get_mpointer_ptr(r_node)->next)) {
99 lsl_fence("aliased-loads"); /* trace4 */

100 continue; /* G2 */
101 }
102 else
103 return r_node; /* R2 */
104
105 } while (true); /* B2 */
106 }
107
108 boolean_t contains(list_t *list,
109 value_t search_key, boolean_t allow_retries)
110 {
111 mpointer_t r_node, l_node;
112
113 r_node = search(list, search_key, &l_node, allow_retries);
114 if ((r_node == list->tail)
115 || (lsl_get_mpointer_ptr(r_node)->key != search_key))
116 return false;
117 else
118 return true;
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119 }
120
121 boolean_t add(list_t *list, value_t key, boolean_t allow_retries)
122 {
123 mpointer_t n_node, r_node, l_node;
124
125 n_node = lsl_make_mpointer(lsl_malloc_noreuse(sizeof(node_t)), false);
126 (lsl_get_mpointer_ptr(n_node))->key = key;
127
128 do {
129 r_node = search(list, key, &l_node, allow_retries);
130 if ((r_node != list->tail)
131 && (lsl_get_mpointer_ptr(r_node)->key == key)) /*T1*/
132 return false;
133 lsl_get_mpointer_ptr(n_node)->next = r_node;
134 lsl_fence("store-store"); /* trace3 */
135 if (lsl_cas_ptr(
136 &(lsl_get_mpointer_ptr(l_node)->next), r_node, n_node)) /*C2*/
137 return true;
138 lsl_assume(allow_retries);
139 lsl_fence("aliased-loads"); /* trace4 */
140 } while(true); /*B3*/
141 }
142
143 boolean_t remove(list_t *list, value_t search_key, boolean_t allow_retries)
144 {
145 mpointer_t r_node, r_node_next, l_node;
146
147 do {
148 r_node = search(list, search_key, &l_node, allow_retries);
149 if ((r_node == list->tail)
150 || (lsl_get_mpointer_ptr(r_node)->key != search_key)) /*T1*/
151 return false;
152 r_node_next = lsl_get_mpointer_ptr(r_node)->next;
153 if (! lsl_get_mpointer_marked(r_node_next))
154 if (lsl_cas_ptr( &(lsl_get_mpointer_ptr(r_node)->next),
155 r_node_next, lsl_set_mpointer_marked(r_node_next, true))) /*C3*/
156 break;
157 lsl_assume(allow_retries);
158 lsl_fence("aliased-loads"); /* trace4 */
159 } while (true); /*B4*/
160
161 if (allow_retries) {
162 if (! lsl_cas_ptr(&(lsl_get_mpointer_ptr(l_node)->next),
163 r_node, r_node_next)) /*C4*/
164 r_node = search (list, lsl_get_mpointer_ptr(r_node)->key,
165 &l_node, allow_retries);
166 }
167 return true;
168 }
169
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170

B.5 Lazy List-Based Set (lazylist)

1 #include "lsl_protos.h"
2
3 /* ---- data types ---- */
4
5 /* data values */
6 typedef int value_t;
7
8 typedef struct node {
9 struct node *next;
10 value_t key;
11 lsl_lock_t lock;
12 boolean_t marked;
13 } node_t;
14
15 typedef struct list {
16 node_t *head;
17 node_t *tail;
18 } list_t;
19
20 /* ---- operations for list ---- */
21
22 void init(list_t *list, int sentinel_min_value, int sentinel_max_value)
23 {
24 node_t *node;
25 node = lsl_malloc_noreuse(sizeof(node_t));
26 node->next = 0;
27 node->key = sentinel_max_value;
28 node->marked = false; /* trace1 */
29 lsl_initlock(&node->lock);
30 list->tail = node;
31 node = lsl_malloc_noreuse(sizeof(node_t));
32 node->next = list->tail;
33 node->key = sentinel_min_value;
34 node->marked = false; /* trace1 */
35 lsl_initlock(&node->lock);
36 list->head = node;
37 }
38
39 boolean_t contains(list_t *list, value_t key, boolean_t allow_retries) {
40 node_t *curr;
41
42 curr = list->head;
43 while(curr->key < key) {
44 curr = curr->next;
45 lsl_fence("data-dependent-loads"); /* trace5 */
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46 }
47 if (curr->key == key && !curr->marked)
48 return true;
49 else
50 return false;
51 }
52
53 void locate(list_t *list, value_t key, node_t **left,
54 node_t **right, boolean_t allow_retries) {
55 node_t *pred;
56 node_t *curr;
57
58 while (1) {
59 pred = list->head;
60 curr = pred->next;
61 lsl_fence("data-dependent-loads"); /* trace2 */
62 while(curr->key < key) {
63 pred = curr;
64 curr = curr->next;
65 lsl_fence("data-dependent-loads"); /* trace6 */
66 }
67 lsl_lock(&pred->lock);
68 lsl_lock(&curr->lock);
69 if ( ! pred->marked
70 && (! curr->marked)
71 && (pred->next == curr)) {
72 *left = pred;
73 *right = curr;
74 return;
75 }
76 lsl_assume(allow_retries);
77 lsl_unlock(&pred->lock);
78 lsl_unlock(&curr->lock);
79 }
80 }
81
82 boolean_t add(list_t *list, value_t key, boolean_t allow_retries) {
83 node_t *pred;
84 node_t *curr;
85 node_t *entry;
86 boolean_t res;
87
88 locate(list, key, &pred, &curr, allow_retries);
89 if (curr->key != key) {
90 entry = lsl_malloc_noreuse(sizeof(node_t));
91 entry->key = key;
92 entry->next = curr;
93 entry->marked = false; /* trace1 */
94 lsl_initlock(&entry->lock); /* trace4 */
95 lsl_fence("store-store"); /* trace3 */
96 pred->next = entry;
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97 res = true;
98 } else
99 res = false;

100 lsl_unlock(&pred->lock);
101 lsl_unlock(&curr->lock);
102 return res;
103 }
104
105 boolean_t remove(list_t *list, value_t key, boolean_t allow_retries) {
106 node_t *pred;
107 node_t *curr;
108 node_t *entry;
109 boolean_t res;
110
111 locate(list, key, &pred, &curr, allow_retries);
112 if (curr->key == key) {
113 curr->marked = true;
114 entry = curr->next;
115 pred->next = entry;
116 res = true;
117 } else
118 res = false;
119 lsl_unlock(&pred->lock);
120 lsl_unlock(&curr->lock);
121 return res;
122 }

B.6 Snark Deque (snark)

This is the code for the (corrected) snark deque [17].

1 #include "lsl_protos.h"
2
3 /* data values */
4 typedef int value_t; // positive number (-1 reserved for special value)
5 #define CLAIMED -1
6
7 /* node objects */
8 typedef struct node {
9 struct node *R;
10 struct node *L;
11 value_t V;
12 } node_t;
13
14 /* deque objects */
15 typedef struct deque {
16 node_t *Dummy;
17 node_t *LeftHat;
18 node_t *RightHat;
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19 } deque_t;
20
21 /* ---- operations for deque ---- */
22
23 void init_deque(deque_t *deque)
24 {
25 node_t *dummy = lsl_malloc_noreuse(sizeof(node_t));
26 dummy->L = dummy->R = dummy;
27 deque->Dummy = dummy;
28 deque->LeftHat = dummy;
29 deque->RightHat = dummy;
30 }
31
32 void push_right(deque_t *deque, value_t value, boolean_t allow_retries)
33 {
34 node_t *nd, *rh, *rhR, *lh;
35
36 nd = lsl_malloc_noreuse(sizeof(node_t));
37 nd->R = deque->Dummy;
38 nd->V = value;
39 while (true) {
40 rh = deque->RightHat;
41 lsl_fence("data-dependent-loads"); /* trace3 */
42 rhR = rh->R;
43 if (rhR == rh) {
44 nd->L = deque->Dummy;
45 lh = deque->LeftHat;
46 lsl_fence("store-store"); /* trace4 */
47 lsl_fence("aliased-loads"); /* trace10 */
48 if (lsl_dcas_ptr(&(deque->RightHat),
49 &(deque->LeftHat), rh, lh, nd, nd)) /* A */
50 return;
51 } else {
52 nd->L = rh;
53 lsl_fence("store-store"); /* trace6 */
54 if (lsl_dcas_ptr(&(deque->RightHat),
55 &(rh->R), rh, rhR, nd, nd)) /* B */
56 return;
57 }
58 lsl_assume(allow_retries);
59 lsl_fence("aliased-loads"); /* trace9 */
60 }
61 }
62
63 void push_left(deque_t *deque, value_t value, boolean_t allow_retries)
64 {
65 node_t *nd, *lh, *lhL, *rh;
66
67 nd = lsl_malloc_noreuse(sizeof(node_t));
68 nd->L = deque->Dummy;
69 nd->V = value;
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70 while (true) {
71 lh = deque->LeftHat;
72 lsl_fence("data-dependent-loads"); /* trace3 */
73 lhL = lh->L;
74 if (lhL == lh) {
75 nd->R = deque->Dummy;
76 rh = deque->RightHat;
77 lsl_fence("store-store"); /* trace4 */
78 lsl_fence("aliased-loads"); /* trace10 */
79 if (lsl_dcas_ptr(&(deque->LeftHat),
80 &(deque->RightHat), lh, rh, nd, nd)) /* A’ */
81 return;
82 } else {
83 nd->R = lh;
84 lsl_fence("store-store"); /* trace6 */
85 if (lsl_dcas_ptr(&(deque->LeftHat),
86 &(lh->L), lh, lhL, nd, nd)) /* B’ */
87 return;
88 }
89 lsl_assume(allow_retries);
90 lsl_fence("aliased-loads"); /* trace9 */
91 }
92 }
93
94 boolean_t pop_right(deque_t *deque, value_t *value,
95 boolean_t allow_retries) {
96 node_t *rh, *rhL;
97 value_t result;
98 while(true) {
99 rh = deque->RightHat;

100 lsl_fence("data-dependent-loads"); /* trace5 */
101 rhL = rh->L;
102 if (rh->R == rh) {
103 lsl_fence("load-load"); /* trace7 */
104 if (deque->RightHat == rh)
105 return false;
106 } else {
107 if (lsl_dcas_ptr(&(deque->RightHat),
108 &(rh->L), rh, rhL, rhL, rh)) {/*D*/
109 result = rh->V;
110 if (result != CLAIMED) {
111 if (lsl_cas_ptr(&(rh->V), result, CLAIMED)) {
112 rh->R = deque->Dummy;
113 *value = result;
114 return true;
115 } else
116 return false;
117 } else
118 return false;
119 }
120 }
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121 lsl_assume(allow_retries);
122 lsl_fence("aliased-loads"); /* trace8 */
123 }
124 }
125
126 boolean_t pop_left(deque_t *deque,
127 value_t *value, boolean_t allow_retries) {
128 node_t *lh, *lhR;
129 value_t result;
130 while(true) {
131 lh = deque->LeftHat;
132 lsl_fence("data-dependent-loads"); /* trace5 */
133 lhR = lh->R;
134 if (lh->L == lh) {
135 lsl_fence("load-load"); /* trace7 */
136 if (deque->LeftHat == lh)
137 return false;
138 } else {
139 if (lsl_dcas_ptr(&(deque->LeftHat),
140 &(lh->R), lh, lhR, lhR, lh)) {/*D*/
141 result = lh->V;
142 if (result != CLAIMED) {
143 if (lsl_cas_ptr(&(lh->V), result, CLAIMED)) {
144 lh->L = deque->Dummy;
145 *value = result;
146 return true;
147 } else
148 return false;
149 } else
150 return false;
151 }
152 }
153 lsl_assume(allow_retries);
154 lsl_fence("aliased-loads"); /* trace8 */
155 }
156 }
157
158

B.7 Harnesses

These files serve to connect the test definitions (Table 8.2) to the source code that
implements the operations.

3 /* ---- harness for queue ---- */
4
5 queue_t queue;
6
7 void i()
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8 {
9 init_queue(&queue);
10 }
11 void e()
12 {
13 value_t val = lsl_nondet(0, 1);
14 lsl_observe_label("enqueue");
15 lsl_observe_input("val", val);
16 enqueue(&queue, val);
17 }
18 void d()
19 {
20 boolean_t res;
21 value_t val;
22 lsl_observe_label("dequeue");
23 res = dequeue(&queue, &val);
24 lsl_observe_output("res", res);
25 if (res)
26 lsl_observe_output("val", val);
27 }

3 /* ---- harness for set ---- */
4
5 list_t list; /* use global variable for list object */
6
7 #define sentinel_min_value 0
8 #define min_value 2
9 #define max_value 3
10 #define sentinel_max_value 4
11
12 void i() {
13 init(&list, sentinel_min_value, sentinel_max_value);
14 }
15
16 void c()
17 {
18 value_t val;
19 boolean_t result;
20 val = lsl_nondet(min_value, max_value);
21 lsl_observe_label("contains");
22 lsl_observe_input("val", val);
23 result = contains(&list, val, true);
24 lsl_observe_output("result", result);
25 }
26 void a()
27 {
28 value_t val;
29 boolean_t result;
30 val = lsl_nondet(min_value, max_value);
31 lsl_observe_label("add");
32 lsl_observe_input("val", val);
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33 result = add(&list, val, true);
34 lsl_observe_output("result", result);
35 }
36 void r()
37 {
38 value_t val;
39 boolean_t result;
40 val = lsl_nondet(min_value, max_value);
41 lsl_observe_label("remove");
42 lsl_observe_input("val", val);
43 result = remove(&list, val, true);
44 lsl_observe_output("result", result);
45 }
46 void c_n()
47 {
48 value_t val;
49 boolean_t result;
50 val = lsl_nondet(min_value, max_value);
51 lsl_observe_label("contains");
52 lsl_observe_input("val", val);
53 result = contains(&list, val, false);
54 lsl_observe_output("result", result);
55 }
56 void a_n()
57 {
58 value_t val;
59 boolean_t result;
60 val = lsl_nondet(min_value, max_value);
61 lsl_observe_label("add");
62 lsl_observe_input("val", val);
63 result = add(&list, val, false);
64 lsl_observe_output("result", result);
65 }
66 void r_n()
67 {
68 value_t val;
69 boolean_t result;
70 val = lsl_nondet(min_value, max_value);
71 lsl_observe_label("remove");
72 lsl_observe_input("val", val);
73 result = remove(&list, val, false);
74 lsl_observe_output("result", result);
75 }

3 /* ---- harness for deque ---- */
4
5 deque_t deque; /* use global variable for deque object */
6
7 void init()
8 {
9 init_deque(&deque);
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10 }
11 void pushL()
12 {
13 value_t val = lsl_nondet(0, 1);
14 lsl_observe_label("pushleft");
15 lsl_observe_input("value", val);
16 push_left(&deque, val, true);
17 }
18 void pushR()
19 {
20 value_t val = lsl_nondet(0, 1);
21 lsl_observe_label("pushright");
22 lsl_observe_input("value", val);
23 push_right(&deque, val, true);
24 }
25 void popL()
26 {
27 boolean_t res;
28 value_t val;
29 lsl_observe_label("popleft");
30 res = pop_left(&deque, &val, true);
31 lsl_observe_output("nonempty", res);
32 if (res)
33 lsl_observe_output("value", val);
34 }
35 void popR()
36 {
37 boolean_t res;
38 value_t val;
39 lsl_observe_label("popright");
40 res = pop_right(&deque, &val, true);
41 lsl_observe_output("nonempty", res);
42 if (res)
43 lsl_observe_output("value", val);
44 }
45 void pushL_n()
46 {
47 value_t val = lsl_nondet(0, 1);
48 lsl_observe_label("pushleft");
49 lsl_observe_input("value", val);
50 push_left(&deque, val, false);
51 }
52 void pushR_n()
53 {
54 value_t val = lsl_nondet(0, 1);
55 lsl_observe_label("pushright");
56 lsl_observe_input("value", val);
57 push_right(&deque, val, false);
58 }
59 void popL_n()
60 {
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61 boolean_t res;
62 value_t val;
63 lsl_observe_label("popleft");
64 res = pop_left(&deque, &val, false);
65 lsl_observe_output("nonempty", res);
66 if (res)
67 lsl_observe_output("value", val);
68 }
69 void popR_n()
70 {
71 boolean_t res;
72 value_t val;
73 lsl_observe_label("popright");
74 res = pop_right(&deque, &val, false);
75 lsl_observe_output("nonempty", res);
76 if (res)
77 lsl_observe_output("value", val);
78 }
79
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