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Abstract: Although measuring the similarity of business processes based on activity labels, structural and behavioural factors
can be effective, defining inexact and incomplete labels and the existence of multiple labels for similar activities cause
challenges for determining similar processes. Recent attempts to consider data in business process management and the
support of data modelling in business process standards have led to the creation of multiple business models with data access.
In this study, a method considering data for measuring business process similarity is presented in which first the similarity of
activities is measured according to their structures and behaviours in a process and also their data access. Then based on the
similarity of activities, the similarity of processes is determined using the proposed algorithm.

1 Introduction
The increasing application of workflow systems in different
businesses and organisations raised a lot of new issues in the field
of business process management. Many large enterprises require
hundreds of processes to fulfil their duties. For example, the total
number of business process models in the Systems, Applications
and Products (SAP) reference model or the repository of Dutch
Local Governments exceeds 600 [1] and in office automation (OA)
System of China Mobile Communications Corporation (CMCC)
this number has been over 8000 [2] of which many are similar or
even identical. While most existing approaches rely on the
structure of the process and label of activities to find similar
processes, in this paper, we study the role of data in process
similarity measurement.

Measuring the similarity of business processes is significant in
business process management domain for various reasons. First,
there may be identical or similar processes being executed in
different parts of an organisation; the identification and merging
these processes prevent the duplication of activities. Furthermore,
businesses are constantly being changed and extended. In many
cases, separate small businesses unite with each other and form a
unique business; identifying similar business processes can be used
to reduce the cost of expanding businesses [3]. Similarity
measurement can also be used by multinational enterprises to
identify national branch processes that no longer comply with
enterprise reference model [4]. In brief, scenarios such as
organisation merging, user requirements changing, and model
repository management are some applications of process similarity
measurement [2].

Most of similarity measurement approaches depend on the
labels of activities. To calculate the similarity of labels of different
activities, schema matching [5] and ontology matching [6]
techniques are used. Labels can be compared either syntactically or
semantically. To compare the labels on the syntactic level, string
edit distance is used in some approaches [7]. Some other methods
tokenize strings into words and then compare the similarity [8].
Natural language processing techniques [9, 10] are used to
compare labels on semantic level. There are several drawbacks of
using labels in similarity measurement. First of all, labels may be
chosen in an inexact and incomplete way that does not reflect what
really a task does. In addition, there may be meaningless labels
which do not convey useful information about the desired activity.
Moreover, different words or synonyms may be used to describe
the same activity [11]. So there may be an activity with multiple
labels. Although there have been a lot of attempts to overcome the

challenges caused by labels such as ontology-based techniques and
Natural Language Processing (NLP), which can help reduce the
negative effects of the mentioned problems, yet the accuracy of
those methods are not satisfactory.

On the other hand, there has been a significant attention towards
data role in business process management. In order to fulfil a
business process, the various data objects are required and the
result of process execution can be observed in creation or update of
data. For this reason, data is considered as the core of a business
process in different frameworks and methods [12–14]. Modelling
data access as a part of a process is supported in modelling
standards such as Business Process Model and Notation (BPMN)
and organisations attempt to model data while modelling the
process in order to show their processes more exactly.

There have been various advantages of modelling data
dependencies in processes. First, having an integrated view of tasks
and data facilitates communication with stakeholders about
processes and their data manipulations. In addition, since the model
contains complex data dependencies, automatic enactment of
processes can be performed from the model only. Different process
representations such as models showing the evolution of a data
object throughout a process can also be generated automatically.
Finally the integrated model of control and data flow help
analysing the consistency and correctness of processes [15].

To overcome the problem of different, multilingual or
meaningless labels, and due to the importance of using data, the
proposed method uses the similarity of data access patterns to find
similar processes that use the same data model. In fact, the problem
can be defined as follows: Given a pair of business processes
which have access to same data model, find the similarity of those
two processes.

The proposed method uses the structural, behavioural and data
access similarities as the basis of similarity measurement process.
To do so, processes with their data accesses (read or write) are
modelled as graphs. Graphs enable us to compare different
processes modelled with different modelling languages such as
BPMN and Event-driven Process Chain (EPC). Then, the mutual
similarity of activities of different processes is calculated. The
structural and behavioural similarity is calculated based on the
position of activity in a process, the number of successor,
predecessor, parallel activities and so on. The data similarity is
calculated based on the similarity of access to data. By computing
structural, behavioural, and data similarity, the similarity of two
different processes can be calculated. First, one process is
considered as the base process and for each activity the most
similar activity from the other process is selected. By using an
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algorithm like A*, but with higher efficiency due to prevention of
extending extra nodes, the total similarity is calculated.

This paper is organised as follows. Process modelling is
presented in Section 2. The focus of Section 3 is on measuring
similarity between activities. Section 4 provides an algorithm to
measure similarity between processes. In Section 5, an evaluation
of our method is presented. Related work is discussed in Section 6,
and Section 7 concludes the paper.

2 Process modelling
In this section, we introduce a formal model for business processes.
The key notions include ‘business process graph’, ‘activity vector’,
and ‘activity vector operation’.

Business process refers to a set of related activities which is
done co-ordinately to achieve a product or a business service [16].
Modelling these processes is performed with the aim of showing
and understanding the execution of a task better. Also business
processes are used for several purposes in domain of service
computing, such as service identification [17] and service
composition [18]. EPC, UML activity diagram and BPMN are the
most common modelling languages. The main elements of a
process include activities, events, gateways, and control flow edges
[19]. As it is mentioned before, due to the importance of data, data
objects and data flow edges which show the access of activities to
data are added to process elements. Although all the above-
mentioned languages can be used to model a business process, a
graph structure to support all modelling languages is used in this
paper. Mapping a process to a graph increases the generality of the
proposed method and also provides the possibility for using graph
similarity techniques.
 
Example 1: Figs. 1 and 2 show two types of loan processes. These
processes are modelled using BPMN 2.0 standard. In the first
process, the documents of loan applicant are checked. This
information is obtained from the application and the customer
objects and the result of checking is written on the customer's
application. The next step is checking the customer credit and
writing the results on the application. On the basis of these two
steps, the bank makes a decision to accept or reject the application.
The decision should be written on the application. In case of
acceptance, a new record is created in the loan object. Finally, the
bank informs the customer about the decision. The second process
is almost similar to the first one, but it first checks the customer
balance and then checks the paper archive. It also has another step
to check the loan risk. In each step if the customer situation is not
satisfactory the bank rejects the loan and notifies the customer. 

There are several researches on mapping a business process to a
graph where we use some notations from [20]. In our formal
model, a ‘process’ is a graph with edges corresponding to control
flow and data flow transitions and nodes representing start/end
events, activities, gateways, or data object. We assume the
existence of countably infinite, pairwise disjoint sets of UA, UX,
UAND, UXOR, and UD as activities, events, And (split/join)
gateways, XOR (choice/merge) gateways, and object names,
respectively. Let UG = UAND ∪ UXOR be the set of gateways and
U = UA ∪ UX ∪ UG be the set of nodes. Two classes of events are
considered: start and end events. An activity represents an atomic
unit of work. A gateway node in a process alters the current
execution path. There are four kinds of frequently used gateways in
process modelling standards: choice, merge, split, and join. Most of
the proposed graph structures for modelling processes ignore
gateways; this may lead to decrease in the accuracy of similarity
measuring method because there is no difference between a parallel
gateway and a choice gateway. However, the parallel execution of
processes differs a lot from the execution of a chosen path.
Although considering gateways can improve accuracy, merging
them can cause challenges. For instance, in BPMN two similar
gateways can be connected while in Petri nets two gateways are
merged. In fact, showing two similar gateways separately or
merging them does not make any differences in business logic;
therefore in the proposed method for two consecutive gateways
from the same type, only one node is used. This cannot be applied
to gateways with different types. Finally, A data (node) shows a
data object.
 
Definition: (Business Process Graph): A Business Process Graph
is a tuple G = (N, s, F, V , D, O) such that

• N ⊆ U is a finite non-empty set of control flow nodes,
• s ∈ (N ∩ UX) is the start node,
• F ⊆ (N ∩ UX) − {s} is a finite set of final nodes,
• V ⊆ (N − F) × (N − {s}) is a finite set of control flow relations

such that

i. s has one outgoing edge and no incoming edges,
ii. each node in F has one incoming edge and no outgoing

edges,
iii. each node in N ∩ UA is an activity node with one incoming

and one outgoing edge, and
iv. for each node in N ∩ UG, the number of incoming edges

plus number of outgoing edges are at least three,
• D ⊆ UD is a finite set of data object nodes, and

Fig. 1  First type of loan process
 

Fig. 2  Second type of loan process
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• O ⊆ ((N ∩ UA) × D) ∪ (D × (N ∩ UA)) is a finite set of data flow
relations.

Different business process graphs have different sizes that can
influence their similarities. The size of a graph usually is defined as
the number of its nodes. For process graph, we define the size of
graph G (size(G) or |G|) as the number of activities inside the
process. We use graph size later on to measure similarity.
 
Example 2: Figs. 3 and 4 represent the business process graphs
corresponding to the business process models of Figs. 1 and 2,
respectively. As it can be seen, four types of nodes are specified in
those graphs: start/end nodes, data object nodes, activity nodes, and
gateway nodes. Also two types of edges are defined: control flow
edges, which are directed solid black lines and data flow edges,
which are directed double white lines. For the first process, the size
is equal to 5 and the size of second one is equal to 6. 

One of the most important parts of the proposed formal model
is data flow relation which is used to show data accesses. To show

the data accesses for each activity, an activity vector is defined.
The activity vector has two elements for each data object; one
represents the read access, and other one represents the write
access. Also weight can be defined for each activity vector. Since
in the literature the weight of write access is considered as twice as
the weight of read access, to calculate the weight of an activity
vector, the weight of elements that correspond to the write accesses
are doubled.
 
Definition: (Activity Vector): Let G = (N, s, F, V , D, O) be a
process graph, t ∈ (N ∩ UA) an activity(task) node in G, and
|D | = m, αt = (v1, v2, …, v2m) is an activity vector for activity node t
where for each i ∈ [1, …, m], di ∈ D,

• if (di × t) ∈ O then v2i − 1 = 1,
• if (t × di) ∈ O then v2i = 1.

Let αt = (v1, v2, …, v2m) be an activity vector corresponding to
activity node t, weight of αt defines as

w(αt) = ∑
k = 1

m
(v2k − 1 + 2(v2k))

 
Example 3: Continuing with Example 2, for loan processes
activities, activity vectors are defined as follows:

αu1 = (1, 1, 1, 0, 0, 0), αu2 = (0, 1, 1, 0, 0, 0),
αu3 = (0, 1, 0, 0, 0, 1), αu4 = (0, 1, 0, 0, 0, 0),
αu5 = (1, 0, 0, 0, 0, 0)
αv1 = (1, 1, 1, 0, 0, 0), αv2 = (1, 1, 1, 0, 0, 0),
αv3 = (0, 1, 0, 0, 1, 0), αv4 = (0, 1, 0, 0, 0, 1),
αv5 = (0, 1, 0, 0, 0, 0), αv6 = (1, 0, 0, 0, 0, 0)

Representing the data accesses of activities using vectors helps
us define some operations on those vectors. These operations are
used in the future to define data similarity between different
activities. Operations are simple logic operations such as AND,
OR, and XOR. These operations perform on same elements of any
two activity vectors to create a new vector. Basically, AND of two
activity vectors shows the same data access of those activities. OR
represents all the data that are accessed by any of those activities,
and XOR indicates the data which is accessed by only one of those
two activities. To do so we need to ensure that the size of activity
vectors are equal, because of that we union the data nodes’ sets add
sufficient zero digits to the vectors.
 
Definition: (Activity Vector Operations): Let G = (N, s, F, V , D, O)
and G′ = (N′, s′, F′, V′, D′, O′) be two graphs and t ∈ (N ∩ UA),
t′ ∈ (N′ ∩ UA) be two activity nodes in G and G′, respectively.
Without loss of generality αt = (u1, u2, …, u2m) and
αt′ = (v1, v2, …, v2m) where m is equal to |D ∪ D′|.
Three activity vector operations are defined as follows:

• αAND(t, t′) = (w1, w2, …, w2m) is an activity vector, where

∀k ∈ [1, …, 2m]:wk = uk ∧ vk,
• αOR(t, t′) = (x1, x2, …, x2m) is an activity vector, where

∀k ∈ [1, …, 2m]: xk = uk ∨ vk,
• αXOR(t, t′) = (y1, y2, …, y2m) is an activity vector, where

∀k ∈ [1, …, 2m]: yk = uk ⊕ vk .

For each of these three vectors, weight can be calculated as
stated before.
 

Fig. 3  Loan process (type 1) graph
 

Fig. 4  Loan process (type 2) graph
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Example 4: Continuing with Example 2, following vectors show
activity vector operations and the weight of each vector on some
activities:

• αAND(u2, v2) = (0, 1, 1, 0, 0, 0), where w(αAND(u2, v2)) = 3,
• αOR(u2, v4) = (0, 1, 1, 0, 0, 1), where w(αOR(u2, v4)) = 5,
• αXOR(u4, v4) = (0, 0, 0, 0, 0, 1), where w(αXOR(u4, v4)) = 2.

The first vector shows that both of u2 and v2 write on D1 and read
D2. In this vector, the corresponding element to read from D1 is 0,
because D1 is read only by activity v2. The second vector says that
D1 and D3 are written and D2 is read by u2 or v4. Finally, the third
vector shows that D3 is written by only on u4 or v4. In this vector,
the corresponding element to write on D1 is 0, because D1 is written
by both activities.

3 Measuring similarity between activities
In this section, a metric to measure the similarity of activities is
proposed. This metric is based on data and behaviour similarities of
activity nodes. Where data similarity is defined based on the
activities’ data accesses, behaviour similarity is related to the
position of those activities inside processes.

Two activities are similar from the data point of view, if they
have access to similar sets of data objects. To measure the data
similarity of two activities, we use activity vectors. As defined in
the previous section, AND operation can be used to measure the
share access of two activities. In addition, we need to compute
XOR of those activities to measure the differences between them.
So, basically data similarity of two activities is defined as the
weight of shared access divided by the weight of all data accesses
of two activities.
 
Definition: (Data Similarity): Let G = (N, s, F, V , D, O) and
G′ = (N′, s′, F′, V′, D′, O′) be two graphs and t ∈ (N ∩ UA),
t′ ∈ (N′ ∩ UA) be two activities such that αt = (u1, u2, …, u2m) and
αt′ = (v1, v2, …, v2m).

The value of data similarity between two activities is defined as
follows:

Simd(t, t′) = 2 × w(αAND(t, t′))
2 × w(αAND(t, t′)) + w(αXOR(t, t′)) (1)

 
Example 5: Continuing with Example 2, following are data
similarities that are calculated on some activity pairs:

•
Simd(u1, v1) = 2 ∗ w(αAND(u1, v1))

2 ∗ w(αAND(u1, v1)) + w(αXOR(u1, v1))

= 2 × 4
2 × 4 + 0 = 1,

• Simd(u5, v3) = 2 × 0
2 × 0 + 4 = 0,

• Simd(u3, v5) = 2 × 2
2 × 2 + 2 = 0.66.

Table 1 shows data similarity between activities of Loan processes
of Figs. 1 and 2. 

The next similarity measure is behavioural similarity.
Behavioural similarity between two activities is defined based on

the structure of processes. To find similar activities within different
business processes, the positions of those activities are taken into
account. Each activity within a process has a set of successor and a
set of predecessor activities. Also it can have a set of tasks that
may be executed in parallel with. The similar situation exists for
conditional positions. Moreover, finally tasks can be executed in
loop situations.
 
Definition: (Structural Relations between Activities): Let
G = (N, s, F, V , D, O) be a Business Process Graph, for each
activity node t ∈ (N ∩ UA):

• σ(t) is a set of successor activity node, associating to activity
node t, a set of activity nodes in G.

• The transitive closure of the successor function, denoted as σ∗

σ∗(t) = {p | p ∈ σ(t) ∨ (∃s:s ∈ σ(t) ∧ p ∈ σ∗(s))}
• π(t) is a set of predecessor activity nodes represents the set of

activity nodes in G that have t as successor

π(t) = {s | t ∈ σ(s)}
• The transitive closure of the predecessor function, denoted as π∗

π∗(t) = {p | p ∈ π(t) ∨ (∃s:s ∈ π(t) ∧ p ∈ π∗(s))}
• χ(t) is a set of activities that are mutual exclusive with t,
• γ(t) is a set of activities that can be executed in parallel with t,
• ϕ(t) is a set of activities that are in a same loop with t.

 
Example 6: Continuing with Example 2, the following sets show
the different dependency sets of some activities:

• σ(u2) = {u3, u4}, σ∗(u2) = {u3, u4, u5}, π(u2) = {u1}, π∗(u2) = {u1},
χ(u2) = ∅, γ(u2) = ∅, ϕ(u2) = ∅,

• σ(u3) = {u5}, σ∗(u2) = {u5}, π(u3) = {u2}, π∗(u3) = {u1, u2},
χ(u3) = {u4}, γ(u2) = ∅, ϕ(u2) = ∅,

• σ(v1) = {v2, v5}, σ∗(v1) = {v2, v3, v4, v5, v6}, π(v1) = ∅, π∗(v1) = ∅,
χ(v1) = ∅, γ(v1) = ∅, ϕ(v1) = ∅,

• σ(v3) = {v4, v5}, σ∗(v3) = {v4, v5, v6}, π(v3) = {v2}, π∗(v3) = {v2, v1},
χ(v3) = ∅, γ(v3) = ∅, ϕ(v3) = ∅.

Based on these different sets that are related to the structure of a
process, behavioural similarity can be defined. In fact, behavioural
similarity considers both the behaviour and the structure of a
process. To this end, all the previous sets are considered and based
on the differences between these sets for any pair of activities; the
behavioural similarity for that pair is calculated.
 
Definition: (Behavioural Similarity): Let G = (N, s, F, V , D, O) and
G′ = (N′, s′, F′, V′, D′, O′) be two graphs and t ∈ (N ∩ UA),
t′ ∈ (N′ ∩ UA) be two activity node such that αt = (u1, u2, …, u2m),
αt′ = (v1, v2, …, v2m). The value of behavioural similarity between
activity nodes t and t′ is defined based on the sum of the
differences of corresponding sets (see (2)) 
 
Example 7: Continuing with Example 2, the behavioural similarity
of some activities is shown below:

Table 1 Data similarity between activities of the loan processes
v1 v2 v3 v4 v5 v6

u1 1 1 0.57 0.5 0.66 0.4
u2 0.86 0.86 0.66 0.66 0.8 0
u3 0.5 0.5 0.57 1 0.66 0
u4 0.66 0.66 0.4 0.66 1 0
u5 0.4 0.4 0 0 0 1
 

4 IET Softw.
© The Institution of Engineering and Technology 2017



• simb(u2, v1) = 1 − |1 − 0 | + |3 − 5 | + 0 + 0 + 0 /(5 + 6)
= 0.73

,

• simb(u3, v3) = 1 − ((|2 − 2 | + |1 − 3 | + |1 − 0 | + 0 + 0)/
(5 + 6)) = 0.73.

Table 2 shows behavioural similarity between activities of Loan
processes of Figs. 1 and 2. 

Finally, the average of data similarity and behavioural similarity
is considered as the integrated similarity.
 
Definition: (Integrated Similarity): Let G = (N, s, F, V , D, O) and
G′ = (N′, s′, F′, V′, D′, O′) be two graphs and t ∈ (N ∩ UA),
t′ ∈ (N′ ∩ UA) be two activity nodes. Integrated similarity of t and
t′ can be defined as

integrated_Sim(t, t′) = Simd(t, t′) + Simb(t, t′)
2 (3)

 
Example 8: Table 3 shows the integrated similarity between
activities of the loan processes. 

4 Measuring similarity between processes
In this section, the proposed algorithm to calculate the similarity of
the two processes is introduced. This algorithm calculates the
similarity of two processes using the similarity of activity pairs.

To begin with, let define an enumeration for process activities.
Let G be a graph with size(G) = n, the sequence of activities
a1, a2, …, an is a valid(fixed) enumeration for activity nodes within
G, when for all i, j, if i ≤ j and i ∉ ϕ( j) then aj ∉ π∗ai.

The algorithm takes two processes (one as the base) and
enumeration of activities in each process as input and outputs a
number as similarity of those two processes.

First, three sets called New, Open, and Closed are defined. The
new set initially contains start, which is the start event of the base
process and Open and Closed are empty. Start node is taken out of
the New set and two matchings with the largest integrated_sim of
the first activity in the activity enumeration of the base process
[e.g. (v1, vm), (v1, vn)] are added to New, also start is added to the
Open set. Sim_score of these two pairs is calculated based on their
integrated_sim. Then the element with the largest sim_score value
[e.g. (v1, vm)] is removed from New and is added to Open set and
instead of that element in the two matchings with the largest values
of the next activity (v2), are added to the tree as the children of v1.
They are also added to New set [e.g. (v2, vp), (v2, vq)]. For these two

elements, sim_score is calculated based on their integrated_sim ant
their parent's sim_score. At this time, the New set contains three
pairs: (v2, vp), (v2, vq), and (v1, vn) and the Open set contains start
and (v1, vm). Once again the largest element of New set is chosen
and added to Open. If the chosen element of New set is the last
existing child, no other siblings exist in New and the parent node is
in Open set (is not completely extended) the next largest sibling is
added to New. For example, if (v1, vn) is the largest element of New,
after removing it from New, since it does not have any other
siblings such as (v1, vx) and the start is still in Open, the next child
of start with the largest value for sim_score(v1, vk) is added to New.

For each element in Open set, a counter is defined that counts
the extended children. When all children are extended, the node is
removed from Open set and is added to Closed set. The algorithm
continues until when the largest element of the New set is a
matching of the last activity of the base process or in other words
no extension is possible. In this case, the sim_score is returned as
the similarity of two processes. Algorithm 1 (see Fig. 5) shows the
proposed algorithm. 

Although the worst case of the proposed algorithm has the same
complexity as the worst case of A∗ algorithm, for other cases the
complexity is different. For example, for the best case, the
complexity of our algorithm in equal to 2n, while the A∗ needs to
calculate (n(n + 1)/2) nodes.
 
Example 9: Fig. 6 shows the results of performing Algorithm 1
(Fig. 5) on the loan business processes graphs (Figs. 3 and 4). The
grey nodes show the best matching. Let's consider the first loan
process (Fig. 3) as the base one. Node u1 is the first node to extend.
The algorithm adds the two largest matchings of this activity,
which are (u1, v1) and (u1, v2), and their corresponding similarity
scores to the tree. Then the first one, here (u1, v1), is extended and
two largest matchings of the next activity are added to the tree and
their similarity scores are calculated. In this example, (v2, u2) and
(v2, v3) are the best matchings. Now, except root, the tree has four
nodes; (u1, v1) and (u1, v2) as children of the root node and (u2, v2)
and (u2, v3) as children of the (u1, v1) node where (u1, v1) is in the
Open set and other three nodes are in the New set. Next, the
algorithm chooses the node in the New set with the largest
similarity score, which is (u1, v2), extends it by adding its two most
appropriate children to the tree and moves it to the Open set. Here
(u2, v1) and (v2, v3) both with score 0.948 are added to the New node.
Again the node in the New set with the largest similarity score
((u2, v2), 0.968) is selected and extended. The algorithm continues
until node (u5, v6) is added as the child of (u4, v5) and since it is the

Simb(t, t′)

= 1 − | |σ∗(t) | − |σ∗(t′) | | + | |π∗(t) | − |π∗(t′) | | + | | χ(t) | − | χ(t′) | | + | |γ(t) | − |γ(t′) | | + | |ϕ(t) | − |ϕ(t′) | |
|G | + |G′|

(2)

Table 2 Behaviour similarity between activities of the loan processes
v1 v2 v3 v4 v5 v6

u1 0.91 0.91 0.73 0.36 0.36 0.18
u2 0.73 0.91 0.91 0.55 0.55 0.36
u3 0.36 0.55 0.73 0.91 0.91 0.55
u4 0.36 0.55 0.73 0.91 0.91 0.55
u5 0.18 0.36 0.55 0.73 0.73 0.91
 

Table 3 Integrated similarity between activities of the loan processes
v1 v2 v3 v4 v5 v6

u1 0.95 0.95 0.65 0.43 0.52 0.29
u2 0.79 0.89 0.79 0.61 0.67 0.18
u3 0.43 0.52 0.65 0.95 0.79 0.27
u4 0.52 0.61 0.76 0.79 0.95 0.27
u5 0.29 0.38 0.27 0.36 0.36 0.95
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matching for the last node of the base process (u5) and there is no
node in New set with the larger similarity score, the algorithm is
finished and returns the similarity score of the last node as the
output. 

As it can be seen the similarity of those two processes is equal to
0.938.

Fig. 5  Algorithm 1: Measuring similarity of two business processes
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5 Discussion and evaluation
In this part, the proposed method is evaluated using two different
methods. First, ten different real processes from four different
businesses are considered as base processes and for each of those
processes, four other variants are taken into account. Variants are
process models which are similar to the base process and are
modelled to achieve the same business goal. Most of these variants
are obtained from papers, reference models, and real businesses
and some others are designed manually. By finishing this step,
basically we had 50 models from 10 different processes where
different variants of a process have access to same data model.
Since the origin of these processes is different, we had to manually
modify their data model. Basically, we modify the name of data
objects to be unified. Then, using the proposed method the
similarity of each base process model and its four variants are
measured. Finally, we asked experts of those businesses to rank
these variants based on the similarity with the base model. For each
process three experts are asked to rank variants separately. In case
their rankings were different, we ask them to discuss and agree on
rankings. Form these ten processes, in two cases, experts did not
agree even after negotiation, so we just consider the average of all
three rankings and rank the variants. Table 4 shows the resulted
similarity scores. Each row belongs to one process and its variants.
For each variant we specify the similarity score and then two
different ranks. The first rank is based on the similarity score and
the second rank is the result of experts ranking. For example, for
process P2, similarity scores for variants 1, 2, 3, and 4, are 0.88,
0.84, 0.82, and 0.45%, respectively. Since the variant 1 has the
maximum score, its rank is 1. Similarly, variants 2, 3, and 4 ranks
are 2, 3, and 4. However, from the experts point of view variant 3
has the most similarity to the base model, the rank is 1, variant 1 is
rank 2, variant 2 is rank 3, and finally variant 4 is rank 4. 

Next, we want to quantify the conformance of our method with
experts’ opinions using the resulting ranks from both the proposed

method and experts. To do this, if the variant with the maximum
similarity score is identified correctly, the method gains four
points. This point for ranks 2, 3, and 4 variants are 3, 2, and 1,
respectively. Also, if we just need to substitute ranks 1 and 2
variants, the method gains four points (from seven total points), for
the substitution of ranks 2 and 3, the method gains three points
(instead of five total points) and it gains two points if we need to
substitute ranks 3 and 4 variants.

For instance, in the above example, since there are four variants
for each process, the maximum gained points can be 10 per
process. So, process P1 gets nine points, since it ranks variants 1
and 2 correctly and we just need to substitute variants 3 and 4.
However, process P2 gains only one point, since the first, second,
and third variants are ranked incorrectly. The last column of
Table 4 represents the score of each process where the proposed
method gets totally 82 scores out of 100. The promising aspect of
the results is that the faults occur only when the similarity scores of
variants are very close to each other, e.g. in process P2, the
difference between the similarity score of the first and the second
instances is just 0.03.

The next evaluation is done to figure out the precision, recall
and accuracy of the proposed method. We again consider the
above-mentioned processes. In this time, we defined a threshold for
similar processes and find the variant with similarity more than it.
To define this threshold based on experts’ ideas and results from
different businesses, we selected 80% as an acceptable threshold
for process similarity. Then we asked experts to find the variants of
each process (from those four variants) with similarity more than
the defined threshold, and based on these results we figured out the
precision and recall of our method. Table 5 shows the result of our
method and experts’ opinions. In this table, V stands for Variant.
For example, for process P2, our method detects variants 1, 2, and 3
as the set of variants which are >80% similar to the base model,
whereas the experts only detects variants 1 and 2. There are totally

Fig. 6  Measuring similarity between the loan processes
 

Table 4 Measuring the similarity of different processes
Base process Variant 1 Variant 2 Variant 3 Variant 4 Score(10)
process P1 0.93 1 1 0.84 2 2 0.65 3 4 0.61 4 3 9
process P2 0.88 1 2 0.84 2 3 0.82 3 1 0.45 4 4 1
process P3 1 1 1 0.81 2 2 0.68 3 3 0.62 4 4 10
process P4 0.94 1 2 0.91 2 1 0.72 3 3 0.64 4 4 7
process P5 0.73 1 1 0.54 2 2 0.48 3 4 0.44 4 3 9
process P6 0.91 1 1 0.84 2 2 0.70 3 3 0.54 4 4 10
process P7 0.79 1 1 0.75 2 3 0.72 3 2 0.57 4 4 8
process P8 0.96 1 1 0.93 2 2 0.87 3 4 0.87 4 3 9
process P9 0.98 1 1 0.91 2 2 0.66 3 4 0.63 4 3 9
process P10 0.66 1 1 0.58 2 2 0.47 3 3 0.44 4 4 10
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40 variants for 10 processes that can be categorised into four
groups based on the results from the proposed method:

i. Similar variants that are detected as similar by the proposed
method (true positive – TP),

ii. Similar variants that are detected as non-similar by the
proposed method (false negative – FN),

iii. Non-similar variants that are detected as similar by the
proposed method (false positive – FP), and

iv. Non-similar variants that are detected as non-similar by the
proposed method (true negative – TN).

Table 6 shows these four metrics which help us define
precision, recall, and accuracy, respectively,

precision = TP
TP + FP = 13

13 + 4 = 0.76 (4)

recall = TP
TP + FN = 13

13 + 2 = 0.87 (5)

accuracy = TP + TN
TP + TN + FP + FN

= 13 + 21
13 + 21 + 4 + 2 = 0.85

(6)

6 Related work
In this section, we discuss related work in two areas. First, methods
to map two different activities are presented, then we focus on
measuring the similarity between models that can be computed
using the similarity of activities. These two areas are two main
steps of comparing two business processes [21].

6.1 Mapping between two process activities

To calculate the similarity of two process models or rank processes
that satisfy a given query, first the similarity of activities must be
considered as the basis. Different parameters and methods can be
applied to measure elements similarity. Some approaches intend to
map activities based on experts’ ideas [22]. Others try to use a

combination of both methods; first, they use an automatic method
to map activities, then final results are evaluated by experts [23].
Three ways of measuring elements similarity are mentioned in [3]
which are mainly based on the labels: syntactic similarity, semantic
similarity, and contextual similarity. Beside activity label, the role
of activity is used to calculate the similarity of nodes in [24, 25]. In
those paper role refers to the neighbour nodes in process and can
be of forms start, stop, split, join, and regular roles. Similar to
many approaches, Dijkman et al. [26] used string edit distance to
compute node similarity. Baumann et al. [11] involved actors, data
objects, and their order of appearing in the model to match
activities based on their labels. The proposed mapping is partial
and injective. Also Klinkmüller et al. [27] used label matching to
find similarity activities. The method works based on the bag-of-
word technique. An algorithm for determining correspondences
between activities using PST is introduced in [28]. The algorithm
has two phases, first establishing correspondences based on
similarity of model element attributes such as types and names and
then refining the result based on the structure of the models. Also
Montani et al. [29] used a semantic approach to compare process
activities by making use of domain knowledge. It takes into
account complex control flow constructs (such as AND and XOR
splits/joins). Leopold et al. [30] used another approach based on
semantic techniques and probabilistic optimisation The ICoP
framework [31] focuses on matchers that also detect complex
correspondences between groups of activities, where existing
matchers focus on 1:1 correspondences.

While most of the proposed methods are based on labels, label-
based matching probably fails, e.g. when modellers use different
vocabulary. So it is useless or even impossible to use only label
matching to analyse sets of activities [11].

6.2 Calculating the similarity with maximal mapping

After mapping activities either manually or automatically, it is time
to calculate the similarity of processes. The similarity measuring
procedure can be performed mainly in two forms:

i. The similarity of the two processes is computed. This can be
the computation of similarity between process pairs in a same
repository to find similar ones or the computation of similarity
between a given process with processes in a repository and
then ranking processes based on their similarity with the given
process. Actually, there are different similarity measures that
are analysed in [32].

ii. Some specifications are expressed in a form of query, then
processes which hold those specifications are ranked based on
their similarity with the given query [33]. Whatever the form
of similarity measuring is, common approaches with minor
changes can be applied for different objectives.

To calculate the similarity of processes, methods mostly use either
structural or behavioural similarity. Structural methods consider the
business process as a graph in which nodes of graph are tasks and
use techniques such as graph edit distance (GED) [34] and
maximal common sub-graph (MCS) [35] to find the similarity. The
GED measures the distance between graphs by using a set of
editing operations. The MCS measures the distance by examining
the difference between minimal common super-graph and maximal
common sub-graph. Similarity methods using behavioural measure
consider the order of execution of tasks as behaviour. A similar
idea as GED is used in [24] by considering the structural features
for each process and compute the number of features in one
process model that are matched by features of another process. In
[3, 26] text similarity based on pairwise comparisons of node
labels, structural similarity using graph edit similarity and
behavioural similarity by considering indirect relations in structural
similarity are introduced to find similar processes. There are
several researches in domain of behavioural similarity. A
behavioural process similarity algorithm named CFS based on
complete firing sequences is proposed in [2]. Complete firing
sequences are used to express model behaviour. To find an optimal
mapping between two sets of complete firing sequences A*

Table 5 Finding similar processes’ variants
Base process Similar variants by

method
Similar variants by

expert
process 1 {V1, V2} {V1}
process 2 {V1, V2, V3} {V1, V2}
process 3 {V1, V2} {V1}
process 4 {V1, V2} {V1, V2}
process 5 { } {V1}
process 6 {V1, V2} {V1}
process 7 { } {V1}
process 8 {V1, V2, V3, V4} {V1, V2, V3, V4}
process 9 {V1, V2} {V1, V2}
process 10 {V1} {V1}

 

Table 6 Measuring precision and recall in sample
processes
Metrics Number of

variants
similar variants detected by method as similar (TP) 13
similar variants detected by method as non-similar
(FN)

2

non-similar variants detected by method as similar
(FP)

4

non-similar variants detected by method as non-
similar (TN)

21
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algorithm is used. Given two process models, Armas-Cervantes et
al. [36] determined if they are behaviourally equivalent, and if not,
it describes their differences in terms of behavioural relations. The
technique is based on a translation from process models to event
structures, a formalism that describes the behaviour as a collection
of events (task instances) connected by binary behavioural
relations. Kunze et al. [37] present a proper metric to quantify
process similarity based on behavioural profiles grounded in the
Jaccard coefficient, which leverages behavioural relations between
pairs of process model activities. A method to compare a given
query with candidate process models using few relevant aspects
expressed by a user is presented in [38]. It finds the ones that share
common features with the query. The precedence relation and the
weak order relation are introduced to model behavioural relations.
Approximate clone detection introduced in [39] is the process of
identifying similar process fragments in business process model
collections. The tool presented in this paper cluster approximate
clones in large process model repositories. Another clustering
method to compute process models similarity is introduced in [40].

Since most approaches for process similarity are either
structural or behavioural, they suffer from exponential complexity,
so the abstractions are proposed in [33] in which the order of
execution of two activities is considered. Indexing techniques can
be applied to implement searching for all similar processes to a
query process, more efficient. The indexing can be done in two
ways: indexing process elements and indexing complete process
models. To reduce the comparisons required for finding desired
models in a repository an indexing approach based on metric trees,
a hierarchical search structure is proposed [41].

7 Discussion and conclusion
This paper is focused on business process similarity and proposed a
method for calculating the similarity of processes. The proposed
method calculates the similarity in two steps: First between activity
pairs and then between process pairs. Existing methods use activity
labels to find the similar activities, while these labels are
ambiguous, inexact and even meaningless. To overcome this
problem and due to the use of data in process modelling in the
recent decades, the proposed method uses data features along with
structural and behavioural features to calculate the similarity of two
processes. To this end, the read and write accesses of activities to
same data objects are considered as the basis of data similarity.
Also the position of an activity within a process and its connections
with other nodes are taken into account to obtain a more accurate
similarity metric. In the next step, the proposed algorithm is used to
calculate the similarity of two processes. This algorithm finds the
best matching between activities while trying to minimise the
number of visited activities. Our evaluations showed a satisfactory
result in comparison with other methods especially when data
accesses are specified and activity labels are not appropriate.

7.1 Limitations of the method

There are some limitations and restrictions for the proposed
method. First, we do not support every business process models.
The method basically supports BPMN processes where no event is
defined in the model.

Second, we measure the similarity of processes pair, means if
we want to measure the similarity of every processes pair in a data
set; we need to run the algorithm for each pair separately.

The third limitation is about data. From the data point of view,
we model object read and write while in today's workflow systems
data is not only a set of objects which are read or written. Each data
object has several attributes, can be in different states and affects a
business process a lot. Therefore, we need to have a deep look at
role of data in business processes. In addition, when data objects
are taken into account measuring the similarity between different
objects which are accessible from processes could be an interesting
problem.

7.2 Future work

As future work, activities with different granularities can be taken
into account. These activities can be identified by considering their
data accesses [11]. Also we are working on calculating the
similarity of different data objects. To this end attribute labels and
types, also the relationship between objects (e.g. foreign keys) can
be used [42–45]. Adding these features to the proposed method can
provide a complete framework for calculating the similarity of
processes.
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