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Abstract
Traditional test case generation approaches focus on design and implementation models while a large percentage of software 
errors are caused by the lack of understanding in the early phases. One of the most important models in the early phases of 
software development is business process model which closely resembles the real world and captures the requirements pre-
cisely. The aim of this paper is to present a model-based approach to automatically generate test cases from business process 
models. We first model business processes and convert them to state graphs. Then, the graphs are traversed and transformed 
to the input format of the “Spec explorer” tool that generates the test cases. Furthermore, we conduct a study to evaluate the 
impact of process characterizations on the performance of the proposed method.
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1  Introduction

The software testing area has a wealth of techniques that can 
be used in software development in order to detect software 
defects [1]. Software testing methods describe how to test 
software in details and introduce a process to test validity 
and verifiability of software. This process starts with test 
planning and continues with designing test cases, sketching 
test cases, preparing for execution and evaluating the status 
till the test closure [2]. Test case generation is one of the 
most important tasks in software testing. Indeed, increasing 
the probability of finding errors using a limited number of 
test cases that are performed in a short time with minimum 
effort is a desirable property [3]. A goal is to find a minimum 
set of test cases that have the highest coverage and maximum 
fault detection percentage to satisfy the test adequacy criteria 
of the software under test and at the same time being capable 
of finding errors in early phases of software development. 
This paper provides a step to realize this goal.

While the code-based generation of test cases helps to 
capture errors at the implementation level, analysis and 
design misunderstanding and errors remain in code [4]. 
To solve this issue, software developers produce test cases 
before generating code through model and system specifica-
tions. This strategy is known as model-based testing. Gen-
erally, model-based testing (MBT) involves extracting test 
cases from a model to show the expected system behavior in 
the format of a behavioral model [5]. The main activities 
in test design are creating the behavioral model of the sys-
tem and determining how it relates to the original system. 
Model-based testing consists of four main steps: (1) mod-
eling, (2) test generation, (3) test concretization and (4) test 
execution [6, 7].

The majority of development methodologies treat require-
ments activities separately from the development activities 
[8]. Generating test cases from design models and even use-
case diagrams ends in test cases that are unable to capture 
errors in the requirement extraction phase. The requirements 
extraction phase is the most critical phase of the software 
development lifecycle (SDLC) and any wrong or missing 
requirements lead to wrong or incomplete product; no matter 
how good the subsequent phases are [9]. On the other hand, 
creating test cases based on the requirements will maximize 
the independence between the model and the system under 
test [10]. Also, requirement specifications are the origin of 
the information that realizes the functionality of a software 
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[11]. The goal of this paper is to introduce a method to gen-
erate test cases that cover requirement specifications.

Organizational models show the structure and behavior 
of an enterprise and are very useful in helping developers 
properly understand the organizational environment and 
the requirements that the system must fulfill. Therefore, a 
good knowledge of the application domain is critical to be 
able to succeed in requirements elicitation [12]. Business 
process models are widely used in requirement engineering 
area to extract requirements [13, 14]. Although requirements 
engineering is the bridge between enterprise and system 
domains, most of the research in this area is still solution 
oriented, which does not address the real problems of the 
organization. As a consequence, since the enterprise is not 
correctly analyzed, the information system may not meet 
expectations and business/IT alignment will not be achieved 
[12]. In this paper, we study the problem of test case genera-
tion and describe a business process-driven approach that 
allows generation of test cases from software requirements 
to support the operations of an enterprise and assure busi-
ness/IT alignment.

A business process model is a set of related and collabo-
rative activities or tasks that produce a specific service or 
product [15]. We model processes to have a comprehensive 
understanding of the system, make process improvement 
easy, or execute them [16]. Although some research uses 
process-oriented approaches to generate test cases [17], in 
these researches process models are generated in the soft-
ware design phase and do not capture the flow of activities 
in organizations and businesses.

The main contribution of this paper is to propose a tech-
nique to generate test cases from requirement specifications 
using business process models. To this end, execution paths 
are extracted from business processes. These paths resemble 
the real word and can capture requirements more precisely. 
Based on this, in the proposed method, the business process 
model is first generated using the BPMN 2.0 standard [18] 
and transformed to a state graph. Then, behavioral scenar-
ios are extracted from the state graph, and finally using the 
Spec Explorer software [19], test cases are generated from 
the graph. In this model, test sequences are extracted from 
business process models with the highest coverage. A main 
feature of the model-based testing is the ability to generate 
tests from models for different test purposes. This is usually 
based upon certain metrics that measure the adequacy of 
the test suites toward addressing a given test purpose [20]. 
The proposed method saves time and costs of generating test 
cases while maintaining coverage.

This paper is organized as follows. Section 2 reviews the 
related work of automatic test case generation. Section 3 
describes the steps of the proposed method. In Sect.  4, 
experimental evaluation is established for the proposed 
method, and finally, Sect. 5 concludes the paper.

2 � Related work

Test case generation techniques can be either model based 
or manual. We will briefly discuss existing methods in each 
category.

Model-based methods mainly generate test cases from a 
sequence, use-case, or activity diagram. Nayak and Samanta 
[21] proposed an approach of synthesizing test data from 
the information embedded in class and sequence diagrams 
using object language constraints (OCL). In their approach, 
sequence diagrams are annotated with attribute and con-
straint information derived from a class diagram and object 
language constraints and then mapped onto a structured 
composite graph called SCG. The test specification is then 
generated from a structured composite graph in two steps. 
First, a finite set of scenarios which are complete paths start-
ing from the initial node to a final node is generated from 
SCG, and then the test input satisfying all the constraints 
along the path is found. Since their method generates test 
cases from design models, any possible errors in earlier 
phases, e.g., requirement elicitation, cannot be captured. 
Sarma and Mall [22] transform use-case and sequence dia-
grams to use-case diagram graph (UDG) and sequence dia-
gram graph (SDG), respectively, and then integrate these 
two graphs to form a system-testing graph (STG). The 
system-testing graph is then traversed to generate test sce-
narios using state-based transition path coverage criteria. 
This approach finds three important faults, which usually 
occur during system development: use-case initialization 
faults, use-case dependency faults and operational faults. 
The first two categories can be covered using UDG, whereas 
the last can be covered using SDG. In [4], sequential mes-
sages and interactions between objects are also explored 
using sequence and interaction overview diagrams of UML 
2. In [23, 24], several coverage criteria based on use-case 
diagrams are proposed. These criteria are use-case step cov-
erage, use-case branch coverage, use-case scenario coverage, 
use-case boundary body coverage and use-case path cover-
age. To generate test cases from UML activity diagrams in 
[25], activity diagrams are transformed to a grammar called 
activity convert (AC) grammar, and then the activity convert 
grammar is used to generate the test cases.

Traditional software testing methods generate test cases 
manually through system analysis [26] resulted in incompe-
tence and lack of test cases integrity. These methods can be 
divided into specifications-based, design-based and code-
based methods. Among design-based methods, UML state 
chart [27, 28] is mainly used to generate test cases; how-
ever, faults in requirements analysis and business modeling 
are not taken into account. In [29], test cases are generated 
by transforming state design diagram to an expanded finite 
state machine (EFSM) where the resulting graph has no 
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hierarchy or synchronization. A combination of state and 
sequence diagrams is used in [30] to generate test cases. 
In this method, the main information is extracted from the 
sequence and state diagrams. The main challenges are the 
lack of automatic test cases generation and incomplete cov-
erage of all paths in the system under test. [31] also gener-
ates test cases using state and sequence diagrams. In [32], 
authors take advantage of the requirements models to gen-
erate test cases using the Communication Analysis (CA). 
Transformation rules are defined to facilitate the generation 
of test models, and refinement rules are defined to obtain the 
abstract test cases from the test model. This method lacks 
the automatic generation of test cases. In [33], a combination 
of states model and activities of the target system is used to 
produce the state-activity diagram (SAD). This diagram is 
then used to generate test cases that cover states and activi-
ties. However, the possible differences between states model 
and the real requirements are not considered.

Ignoring requirement analysis in design-based methods 
makes those methods unable to capture any possible errors 
or misunderstanding that can occur in the analysis phase. In 
[32], authors try to capture requirements manually result-
ing in incompetence and lack of integrity of test cases. In 
[34], an extended control flow graph (XCFG) is proposed to 
represent a BPEL process. To generate test cases, first, they 
introduce an algorithm to generate sequential test paths from 
the XCFG according to branch coverage criterion. Then, the 
sequential test paths will be combined into concurrent test 
paths based on various BPEL structures, and finally, a con-
straint solver is used to generate test data.

Our work is also closely related to business process trans-
formation methods wherein these methods process models 

are transformed to either an executable code like BPEL [35] 
or an analysis model like use-case diagram [36–38]. In [39] 
also a mapping from business process model to states chart 
is presented where for each element in process model a 
translation in state chart is provided. Although the mapping 
covers all elements, it suffers from lack of optimization that 
makes the resulting state graph very large in terms of the 
number of states.

3 � Test case generation

The proposed method generates test cases from business 
process models. Since the selection and construction of a 
behavioral model is a design task, it is assumed that after 
understanding the target system, the development team mod-
els the system using business process models. Basically, to 
create the models, workflow patterns should be used. Using 
these patterns affects the coverage and the number of test 
cases. In the next phase, business processes are modeled 
and mapped to state graphs. In fact, through this mapping, a 
simple graph is established and the complexity of business 
processes is reduced. Since the finite state machines describe 
the overall behavior of an object, test cases can be generated 
from them. In this graph, the ultimate goal is to meet each 
state and test each event at least once. Finally, in the last 
step, the test cases are generated using Spec Explorer tool. 
An outline of the proposed method is shown in Fig. 1. As 
it can be seen, business processes are modeled and mapped 
to state graphs, then test cases are generated and finally, the 
behavior of the system is examined according to these test 
cases and the test results shown.

Fig. 1   The proposed model for 
test case generation
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To describe the proposed method, a Seminar Organiz-
ing process is considered as a running example which is 
explained as follows.

3.1 � Running example

Consider a Seminar Organizing process at a university. The 
process starts with preparing the seminar description. Then, 
the description will be published and the seminar will be 
announced. By performing early registration and depend-
ing on the number of participants, the organizer decides to 
confirm or cancel the seminar. In case of confirmation, they 
prepare for the seminar and perform late registration simul-
taneously. When these two tasks are performed the seminar 
can be run.

Figure 2 shows the Seminar Organizing process using 
Business Process Model and Notation (BPMN 2.0) stand-
ard. Simplicity, expressiveness and high usage have been 
the main advantages of this standard, compared with other 
methods of business process modeling [40, 41]. Nonethe-
less, every business process modeling language that supports 
basic workflow notions, e.g., different types of node and 
edges, can be used in the proposed method.

3.2 � Modeling business processes

In the first step, business processes are modeled using 
BPMN [18]. Each business process is a graph consisting of 
a set of tasks, gateways, events and connectors [42]. In this 
paper, we adopt the formal definition of a process from [43]. 
We focus on one type of edges corresponding to “sequence 
flow” in BPMN, and three types of nodes: “event,” “activ-
ity” and “gateway.” Furthermore, we consider two classes 
of start and end events. An activity represents an atomic 
unit of work. Gateways are used to control the divergence 
and convergence of sequence flows. There are four kinds of 
frequently used gateways in BPMN: choice, merge, split and 
join. Choice and merge gateways allow a flow in a process 
to follow one of several alternatives (choice) or choose only 

one flow from possibly several incoming edges to continue 
(merge). Split and join gateways, on the other hand, forward 
a flow to every outgoing edge for parallel execution (split) 
or synchronize flow from all incoming edges and combine 
them into one (join). Let’s assume the existence of countably 
infinite, pairwise disjoint sets of UA and UG as activities and 
gateways, respectively.

Definition  A business process is a tuple P = (V, s, f, E, τ) 
such that

•	 V ⊆ UA ∪ UG ∪ {s, f} is a finite non-empty set of control 
flow nodes where s and f are the start and final nodes 
(resp.),

•	 E ⊆ (V–{f}) × (V–{s}) is a finite set of control flow edges 
such that

•	 s has one outgoing edge and no incoming edges,
•	 f has one incoming edge and no outgoing edges,
•	 each node in (V ∩ UA) is an activity node with one incom-

ing and one outgoing edge,
•	 for each node in (V ∩ UG), the number of incoming edges 

plus the number of the outgoing edges is at least three,
•	 τ: (V ∩ UG) → {GA, GX} is a mapping that assigns each 

gateway a type being AND (Split/Join) Gateway GA and 
XOR (Choice/Merge) gateway GX.

Figure 2 shows the Seminar Organizing process, where s 
and f are the start and final nodes (resp.), ti’s (1 ≤ i ≤  T9) are 
the activity nodes, and gi’s (1 ≤ i ≤ 4) are the gateway nodes 
where τ(g1) = τ(g4) = GX and τ(g2) = τ(g3) = GA.

We define a path as a set of activities (can be empty) that 
can exist between two gateways, between the start node and 
a gateway, between a gateway and an end node, or between 
the start node and a final node.

Definition  Given a process P = (V, s, f, E, τ), and a sequence 
of nodes v0, v1, v2, …, vn, vn+1 where for each i ∈ [0…n + 1], 

Fig. 2   BPMN process model for 
Seminar Organizing
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vi ∈ V. A path φ is a sequence v1, v2, …, vn such that for each 
i ∈ [1…n], vi is a node in (V ∩ UA), v0 is a node in (V ∩ UG) 
U {s} and vn+1 is a node in (V ∩ UG) U {f}. Let φ0 and φz 
denote the first node (activity) and the last node (activity) of 
the path φ, respectively.

Depending on v0 and vn+1, 4 types of paths can be defined 
in a process:

1.	 v0 is the start node and vn+1 is the final node,
2.	 v0 is the start node and vn+1 is a node in (V ∩ UG)
3.	 v0 is a node in (V ∩ UG) and vn+1 is the final node
4.	 Both v0 and vn+1 are nodes in (V ∩ UG).

Given a process P = (V, s, f, E, τ), node vi derives node vj, 
denoted as π(vj) = vi, iff (vi, vj) ∈ E. In other words, an outgo-
ing edge of vi can be an incoming edge of vj.

The following paths are defined for the running example 
(Fig. 2).

•	 Prepare Description, Publish Description, Announce 
Seminar, Perform Early Registration [t1, t2, t3, t4] (type2).

•	 Confirm Seminar [t5] (type4)
•	 Cancel Seminar [t9] (type4)
•	 Seminar Preparation [t6] (type4)
•	 Perform Late Registration [t7] (type4)
•	 Run Seminar [t8] (type4).

Business process models not only have to capture busi-
ness requirements precisely but also are required to ensure 
successful workflow execution. Therefore, we need to ver-
ify the correctness of business processes before the process 
models are implemented [44]. One accepted notion of cor-
rectness is structuredness. A structured process consists of 
m sequential blocks, B1, …, Bm. Each block Bi is either an 
activity or a composite block. A composite block consists of 
n parallel, conditional, or loop sub-fragments where each of 
them is again either an activity or a composite block.

In order to construct a well-structured process model, we 
define a set of incremental process update operations. These 
update operations extend a process by replacing an activity 
with a basic process block, i.e., a sequence of two activities, 
choice block, parallel block, or loop block.

Definition  Let P = (V, s, f, E, τ) be a business process. δ 
is an incremental update operation on P that transforms P 
to P’ = (V’, s, f, E’, τ’). Assuming (u, a) and (a, v) are the 
incoming and the outgoing edges of the activity a, four dif-
ferent types of update operations are defined as follows:

a) AddActivity(activity a, activity a’)

Replaces activity a with a sequence of activities a and a’ 
where a’ is a new activity in UA–V.

•	 V’ = V ∪ {a’},
•	 E’ = E–{(a, v)} ∪ {(a, a’), (a’, v)} and
•	 τ’ = τ.
•	 b) AddChoiceBlock(activity a, activity a’, (choice) gate-

way g1, (merge) gateway g2)

Replaces an existing activity a with a choice block contain-
ing a new choice gateway g1, a new merge gateway g2, and 
two mutually exclusive activities a and a’ where a’ is a new 
activity in UA–V.

•	 V’ = V ∪ {a’, g1, g2},
•	 E’ = E–{(u, a), (a, v)} ∪ {(u, g1), (g1, a), (g1, a’), (a, g2), 

(a’, g2), (g2, v)},
•	 τ’(g1) = τ’(g2) = GX, and for each gateway node g in 

(V ∩ UG), τ’(g) = τ(g).
•	 c) AddParallelBlock(activity a, activity a’, (split) gateway 

g1, (join) gateway g2)

Replaces an existing activity a with a parallel block con-
taining a new split gateway g1, a new join gateway g2, and 
two parallel activities a and a’ where a’ is a new activity in 
UA–V.

•	 V’ = V ∪ {a’, g1, g2},
•	 E’ = E–{(u, a), (a, v)} ∪ {(u, g1), (g1, a), (g1, a’), (a, g2), 

(a’, g2), (g2, v)},
•	 τ’(g1) = τ’(g2) = GA, and for each gateway node g in 

(V ∩ UG), τ’(g) = τ(g).
•	 d) AddLoopBlock(activity a, activity a’, (merge) gateway 

g1, (choice) gateway g2)

Replaces an existing activity a with a loop block containing 
a new merge gateway g1, a new choice gateway g2, and two 
activities a and a’ where a’ is a new activity in UA–V.

•	 V’ = V ∪ {a’, g1, g2},
•	 E’ = E–{(u, a), (a, v)} ∪ {(u, g1), (g1, a), (a, g2), (g2, a’), 

(a’, g1), (g2, v)},
•	 τ’(g1) = τ’(g2) = GX, and for each gateway node g in 

(V ∩ UG), τ’(g) = τ(g).

Definition  Given a business process P = (V, s, f, E, τ), P is 
a well-structured business process if there is a sequence of 
incremental update operations δ1, δ2, …, δn where δnδn−1, 
…, δ1(P’) = P and P’ = ({s, a, f}, s, f, {(s, a), (a, f)}, τ) is an 
atomic schema.
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The running example is already well-structured.

3.3 � Creating state graph from business process 
model

In this subsection, an algorithm to create the state graph 
from process models is introduced. We first define state 
graph which is needed later to generate test cases.

Definition  A State graph is a tuple G = (N, T, sε, sγ) such 
that

•	 N is a non-empty set of nodes indicating states,
•	 T ⊆ N × N is a finite set of state transitions,
•	 sε ∈ N is the initial state, and
•	 sγ ∈ N is the final state

To create a state graph, we traverse the process model 
and consider gateways and paths as states and state transi-
tions, respectively. To optimize the resulted state graph, if 
a parallel block has no nested block, it (both split and join 
gateways and both paths from the split to the join gateway) 
is considered as one state of the graph. Also, since the split 
and choice gateways have more than one incoming edge, a 
counter is assigned to each gateway to count the number of 
visited incoming edges. The algorithm begins with visiting 
the start node and adding a state sε to the corresponding state 
graph. Then, the process is traversed to visit other nodes. 
Three situations can happen:

1.	 The visited node is an activity node: the status of the 
node is changed to visited and traversing continues.

2.	 The visited node is an end event: the corresponding state 
sγ is added to the graph and FindEdge function is called 
to add the related edge. The FindEdge function finds 
the related edge based on the type of an input node. It 
has two inputs: a state s and a node v. If the node v is 
connected to the start node, then we connect sε (initial 

state) to s in the state graph; otherwise, we find the state 
corresponding to the predecessor node of v and connect 
that state to s.

3.	 The visited node is a gateway:

(a)	 If the type of gateway is a choice (it has only one 
incoming edge), we change the status of the gateway to 
visited, add a state to the state graph, and call FindEdge 
function.

(b)	 If node is a split gateway and there is no other gateway 
through the path between the split and the correspond-
ing join gateway, then both gateways and all nodes on 
both existing paths between them are marked as visited 
and a state is added to the graph; otherwise, the split 
gateway is marked as visited and a state is added to the 
graph. In both cases, the FindEdge function has to be 
called.

(c)	 For join and merge gateways, the counter is incre-
mented and if the counter is equal to two (the num-
ber of incoming edges of each gateway), the gateway 
is marked as visited. Then, the corresponding state is 
added to the graph and by calling FindEdge function 
the edge is added.

For example, let’s consider a loop block with merge gate-
way g1 and choice gateway g2 in a process. When the pro-
cess is traversed from the start node, we first visit the merge 
gateway (in contrast to choice blocks where we first visit 
choice gateways). When the merge gateway g1 is seen, a cor-
responding state and an edge from the related state are added 
to the graph. Then, the algorithm proceeds to the outgoing 
path to find the next gateway. There may be some gateways 
on the path from g1 to g2 in the process and for all those gate-
ways, corresponding states will be added to the graph, but 
finally, when the corresponding choice gateway g2 is seen 
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due to the well-structuredness of the process, there must be 
a path from g2 to g1.

Algorithm 1 shows the creation of state graphs from pro-
cess models.

Algorithm1: Mapping Business Process Model to Graph
Input: A well-structured Process P = (V, s, f, E, τ)
Output: A state graph G = (N, T, sᵋ, s )γ

1. Let G be the empty graph (with no nodes, no edges)
2. m = 0, s = 1
3. Let countg = 0, for each gateway node g ∈ (V ∩ UG)
4. Let s be a start event in P
5. Tag s as visited
6. Add s as sᵋ to G as the initial state
7. Let v be the node in V such that π(v) = s //v can be derived from s
8. Tag v as new
9. while there is a new node v in P do
10. //case1: v is a task node
11. if v is a node in (V ∩ UA) then
12. Change v’s tag to visited
13. Let v’ be the node in V such that π(v') = v
14. if visited(v') = false then
15. Tag v' as new
16. endif
17. //case2: v is an end event
18. elseif v is an end event in F then
19. Change v’s tag to visited
20. Add sᵧ to state graph G
21. call findEdge(sᵧ,v)
22. //case3: v is a gateway
23. elseif v is a gateway node in (V ∩ UG) then
24. if v is a split or a choice gateway then
25. Change v’s tag to visited         
26. Add sm to state graph G
27. call findEdge(sm,v)
28. m++
29. if τ(v)= GA and these is a gateway node u in (V ∩ UG) s.t τ(v)= τ(u) and for each outgoing path 

φo=vjvj+1…vk from v, π(u)=vk or π(u)=v (in case that path is empty) then //parallel paths have only activities
30. for each node vi (j ≤ i ≤ k) in each φo from v do
31. Change vi’s tag to visited
32. endFor
33. Change u’s tag to visited
34. Let v’ be the node in V such that π(v') = u
35. if visited(v') = false then
36. Tag v’ as new
37. endif
38. else
39. for each node v' s.t  π(v') = v do
40. if visited(v') = false then
41. Tag v' as new
42. endif
43. endfor
44. endif
45. else //join or merge gateway
46. countv ++
47. if countv = 1 then //visit the gateway for the first time
48. Add sm to state graph G
49. call findEdge(sm,v)
50. m++
51. else
52. Let sm be the state corresponding to v
53. call findEdge(sm,v)
54. if inv = countv then
55. Change v’s tag to visited
56. endif
57. endif
58. Let v’ be the node in V such that π(v') = v
59. if visited(v') = false then
60. Tag v’ as new
61. endif
62. endif
63. endwhile

64. findEdge(s,v)
65. Begin
66. Let p be the node in V such that π(v) = p //p is the last visited node
67. if p is the start node s then
68. Add edge(sᵋ, s)
69. elseif p is a gateway node in (V ∩ UG) then
70. Add edge(sp, s) where sp is the state corresponding to p
71. else // p is an activity node in (V ∩ UA) then
72. Let φq be the path s.t φq

z is p //p is the last node of φq
73. Let k be the state in N such that π(φq

0) = k //k is the start event or a gateway
74. Add edge(sk, s) where sk is the state corresponding to k
75. endif
76. End
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Figure 3 indicates the state graph generated from the 
Seminar Organizing process model using the Algorithm 1.

The mapping between the transaction, action and condi-
tion with the edges of the graph is shown in Table 1.

3.4 � Mapping state graph to the input model of Spec 
Explorer

This subsection provides a brief introduction to the Spec 
Explorer tool which is used to generate test cases followed 

by a description of the mapping from state graph to the input 
model of the tool. Spec Explorer is a tool for testing object-
oriented software systems. In Spec Explorer, the behavior 
of the system is described by a model program written in 
the language Spec#, an extension of C#. A model program 
defines the state variables and the update rules of an abstract 
state machine. The tool explores the machine’s states and 
transitions with techniques similar to those of explicit state 
model checkers. This process results in a finite graph that 
is a representative subset of model states and transitions. 
Spec Explorer uses a state exploration algorithm [45] that 
is briefly explained as follows:

1.	 In a given model state (starting with the initial state) 
determine those invocations (action/parameter combina-
tions) which are enabled by their preconditions in that 
state,

2.	 Compute successor states for each invocation,
3.	 Repeat until there are no more states and invocations to 

explore.

To map the state graph to the input model of Spec 
Explorer, the input data, which is needed to choose dif-
ferent states should be passed to the tool. The mapping is 
performed automatically; each state/transition in the state 
graph is mapped to an action/transition in the Spec input 
model and if there is a condition to enable a transition, the 
condition is attached to model as a data input parameter. 
Algorithm 2 shows the mapping from a state graph to the 
input model of Spec Explorer.

Fig. 3   State graph of the Seminar Organizing process

Table 1   Mapping information table for object states

Transition/Action/Guard Correspond-
ing edge in the 
graph

Entry data A
Few participants/CancelSeminar B
Enough participants/ConfirmSeminar C
RunSeminar D
End E

[Action] void EnoughParticipants (participants) requires participants >= SufficientParticipants &&  InsertInfo = True
{ConfirmSeminar = True};
[Action] void FewParticipants (participants) requires participants < SufficientParticipants && InsertInfo = True
{CancelSeminar = True};

Fig. 4   Part of the input program for the Seminar Organizing process

var frontier = {(s, a, t) | s ∈ Sinit, (s, a, t) ∈ δ}
var included = Sinit

var δ’ =
while frontier ≠ ∧ InBounds

choose (s, a, t)∈ frontier
frontier := frontier \ {(s, a, t)}
if t ∈ included ∨ IncludeTarget(s, a, t)

δ’ := δ’ ∪ {(s, a, t)}
if t ∉ included

frontier := frontier ∪ {(t, a’, t’) | (t, a’, t’) ∈ δ}
included := included ∪ {t}

Fig. 5   Directed search in Spec Explorer
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When the model is created, we traverse all the possible 
paths to produce test scenarios. We use the DFS algorithm to 
traverse the model. The goal is to meet all states at least onc
e. In the Seminar Organizing process, two correct execution 
paths exist; one is when after the early steps, the number of 
registered participants is not sufficient and the seminar is 
canceled, and the other one is when enough number of par-
ticipants are registered and the seminar is confirmed. Here 
the main input data is the number of participants which is 
passed as a parameter. Figure 4 shows the part of the input 
program which is related to the EnoughParticipants and the 
FewParticipants actions. Here a Boolean variable is used 
for each state. As it can be seen, the EnoughParticipants 
action is performed if the number of participants, which is 
the input parameter of the action, is equal to or greater than 
the sufficient number of participants and the InsertInfo state 
is visited. This action changes the ConfirmSeminar to true. 
A similar situation exists for the FewParticipants action.

Figure 5 shows the general exploration algorithm of Spec 
Explorer [45]. It assumes two auxiliary predicates:

•	 InBounds is true if user-given bounds on the number of 
transitions, the number of states, etc., are satisfied.

•	 IncludeTarget(s, a, t) is true for those transitions (s, a, t) 
that lead to the desired target state.

By default, IncludeTarget returns true. In the algorithm, 
the variable frontier represents the transitions to be explored 

and is initially set to all those transitions which start in an 
initial state. The variable included represents those states of 
M’ whose outgoing transitions have been already added to 
the frontier, and is initially set to the initial states of M. The 
variable δ’ represents the computed transition relation of the 
sub-automaton M’. The algorithm continues exploring as 
long as the frontier is not empty and the bounds are satisfied. 
In each iteration step, it selects a transition from the frontier, 
and updates δ’, included and frontier. Upon completion of 
the algorithm, the transitions of M’ are the final value of δ’. 

Fig. 6   Part of the input graph to the Spec Explorer Tool

Algorithm2: Mapping State Graph to the input model of Spec Explorer
Input: A state graph G = (N, T, sᵋ, sᵧ)
Output: A Spec Explorer Model

1. Let V be an empty stack
2. V.push(sᵋ)
3. while V is not empty do
4. s = V.pop()
5. if s has one outgoing edge then
6. Let (s,s’) be the outgoing edge
7. Add “[Action] void s-s’ s= True {s’ = True};” to the model //s-s’ is a name for the action
8. endIf
9. if s has more than one outgoing edge then //s represents a choice gateway
10. for each outgoing edge (s,s’) where cond is its condition on a variable var do //Example: cond: var > 3
11. Add “[Action] void s-s’(var) requires cond && s = True {s’ = True};” to the model
12. endFor
13. endIf
14. if s has no outgoing edge then //s is the final state (sᵧ) and the graph is completely mapped
15. break
16. endIf
17. for each outgoing edge (s,s’) of s do
18. V.push(s’)
19. endFor
20. endWhile
21. for each variable var that is used in any condition statement cond do
22. Define var as an input parameter of the model
23. endFor
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The initial states of M’ are the initial states of M. The states 
of M’ consist of all states that are reachable from an initial 
state of M’ using the transitions of M’ [45].

Figure 6 represents a part of input model generated from 
the algorithm.

3.5 � Generating test cases

After creating the graph, the next step is generating test 
cases. The Spec Explorer tool generates different test cases 
using the conditions in the model and the domains of the 
used data. As specified in the definition of well-structured 
processes, each gateway has at most two outgoing edges 
(choice/split), therefore, for each condition in the model two 
possible paths can be created. The number of all possible 
combinations of gateway conditions is the size of the gen-
erated paths which is exponential in terms of choice/split 
gateways.

Depending on the domain of attributes which are used in 
the gateway condition, the tool may generate different test 
cases to capture all behaviors of the model.

Fig. 7   Graph model and generated test cases for different data

Table 2   University education system processes

Process #Tasks #Gateway

Student registration 14 8
Student enrollment in course 6 2
Course plan approval 16 6
Student graduation 10 4
Grades announcement 7 2
Student verification request 11 4
Course auditing 8 2
Transcript verification 12 6

Fig. 8   Path coverage based on process complexity (left side) and process size (right side)
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In the running example, we have only one condition 
which is related to the number of participants. At first 
glance, four groups of test cases can be generated: (1) hav-
ing few participants and cancel the seminar, (2) having few 
participants and confirm the seminar, (3) having enough 
participants and cancel the seminar, and (4) having enough 
participants and confirm the seminar where the first and the 
third groups are desired behaviors of the system. Since the 
only input data is the number of participants, the tool gen-
erated different test cases using different possible numbers. 
Figure 7 represents a part of the generated test cases in dif-
ferent circumstances.

4 � Results and discussion

In this section, three different evaluations are conducted. 
First, we compare the results of our method and manual 
test case generation on a software system consisting of 
eight business processes. Next, to evaluate the impact of 
process size and process complexity on the path coverage, 
some arbitrary business processes with different sizes and 
complexities, are taken into account. Finally, a qualitative 
comparison between the proposed method and some related 
work is performed.

We first consider a University education system as a case 
study. This system was developed several years ago, but we 
accessed the process models, the implementation and test-
ing steps, and test cases created by domain experts (users/
developers) at that time. The goal of this evaluation is to 
compare the precision and the recall of the test cases that 
are generated by the proposed method versus the test cases 
that are generated by users.

The system has the following processes: student registra-
tion, course enrollment, course plan approval, student grad-
uation, grades announcement, student verification request, 
course auditing and transcript verification. Table 2 shows the 
number of tasks and gateways of these processes.

We generated state graphs and test cases for these pro-
cesses. Then, based on the number of valid and invalid 
detected paths, the value of true positive (TP), false positive 
(FP) and false negative (FP) for the proposed method and 
system developers are measured. Finally, the precision and 
the recall of both methods are calculated.

The results are shown in Table 3. The number of exist-
ing paths shows the total possible paths in a process model. 
TP shows the number of valid paths that developers or the 
proposed method detect as valid paths correctly. FP shows 
the number of valid paths that are incorrectly detected as 
invalid paths, and FN shows the number of invalid paths 
that are incorrectly detected as valid paths. As it can be seen, 
the average of precision for the users (developers) and the 
proposed method are 75.75 and 94.37, respectively, which Ta
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means the proposed method increases the precision about 
24.58%. In addition, the average of recall for the user and 
the proposed method are 77.75 and 96, respectively, so the 
proposed method also increases the recall about 23.47%.

In the second set of experiments, we study the impact of 
process size and complexity on the path coverage. To meas-
ure the impact of process size (number of tasks), we choose 
10 processes and generate test cases for each of them. The 
path coverage is then computed. The results show that the 
accuracy of the method in path coverage is independent of 
process size. We then, similar to the previous experiment, 
measure the impact of process complexity (number of gate-
ways) on the path coverage. The results of these two evalu-
ations are shown in Fig. 8. Note that most of the chosen 
models and their implementations are from existing sources 
available on the Internet [46, 47].

Finally, we performed a qualitative evaluation. We select 
a number of most-cited and relevant papers to compare with 
the proposed method. Most of these papers either use UML 
diagrams, i.e., use-case, activity, or sequence diagram, to 
show the behavior of a process [26, 27, 32] or use a pro-
cess modeling language like BPEL [34]. We also choose 8 
metrics for comparison: coverage, automatic test case gen-
eration, independency and generality of the method, test 
optimization and improvement, object-oriented support, 
tool support, business process support and automatic deter-
mination of test data. Table 4 shows the results.

Four kinds of coverage are defined: statement coverage, 
branch coverage, path coverage and requirements coverage 
wherein this paper we focus on path coverage. Path coverage 
is the ratio of the extracted path from the test cases to the 
existing path in the code. Automatic test cases generation 
helps to decrease the development cost and time. The third 
factor is independence and generality of the method which 
basically shows whether the method can be used for differ-
ent modeling languages or not. Test improvement refers to 
the optimizing number of test cases. The three next factors 
show that a method supports object-oriented development, 
has a tool, and supports any of the business process mod-
eling languages or not. Finally, automatic determination of 
test data considers the correlation of conditions and paths.

5 � Conclusions and future work

Model-based testing is a useful technique to increase soft-
ware reliability and reduce costs by generating test cases 
based on behavioral models of the system. In this study, a 
method to automatically generate test cases using business 
process models is presented. Using process model helps to 
identify test cases of business areas; thus, the test cases will 
be more compatible with the business requirements and will 
capture any misunderstanding in future phases in software Ta
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development. The algorithm for the conversion of process 
models to state graphs prepares the model for data produc-
tion and by navigating the models the preconditions will be 
determined. These conditions are converted to codes. Then, 
the tool automatically generates the test cases. Using business 
workflow, optimization of test cases, preparing an automated 
method for mapping process modeling into state diagram, 
and tools support are the main characteristics of this method.

Although this method could detect errors in the domain 
of business requirements, it does not capture errors in the 
design and the implementation phases, so using this method 
alone is not enough to generate test cases. One of the limi-
tations of the proposed algorithm is that it works only for 
well-structured processes and if the input process is not well-
structured, it can’t define states correctly and it so captures 
invalid paths. To solve this issue, we can convert unstruc-
tured process to structured ones using algorithms in [48] or 
[49]. In addition, the algorithm assumes that the conditions 
attached to the outgoing paths of choice gateways are valid 
and consistent. Finally, including data could improve the 
efficiency of test cases generation.
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