
Vol.:(0123456789)1 3

Requirements Engineering (2019) 24:119–132
https://doi.org/10.1007/s00766-018-0304-3

ORIGINAL ARTICLE

Automatic test cases generation from business process models

Arezoo Yazdani Seqerloo1 · Mohammad Javad Amiri2 · Saeed Parsa3 · Mahnaz Koupaee2

Received: 14 April 2017 / Accepted: 11 July 2018 / Published online: 17 July 2018
© Springer-Verlag London Ltd., part of Springer Nature 2018

Abstract
Traditional test case generation approaches focus on design and implementation models while a large percentage of software
errors are caused by the lack of understanding in the early phases. One of the most important models in the early phases of
software development is business process model which closely resembles the real world and captures the requirements pre-
cisely. The aim of this paper is to present a model-based approach to automatically generate test cases from business process
models. We first model business processes and convert them to state graphs. Then, the graphs are traversed and transformed
to the input format of the “Spec explorer” tool that generates the test cases. Furthermore, we conduct a study to evaluate the
impact of process characterizations on the performance of the proposed method.

Keywords  Business process model · Model-based testing · Test case generation · Spec Explorer

1  Introduction

The software testing area has a wealth of techniques that can
be used in software development in order to detect software
defects [1]. Software testing methods describe how to test
software in details and introduce a process to test validity
and verifiability of software. This process starts with test
planning and continues with designing test cases, sketching
test cases, preparing for execution and evaluating the status
till the test closure [2]. Test case generation is one of the
most important tasks in software testing. Indeed, increasing
the probability of finding errors using a limited number of
test cases that are performed in a short time with minimum
effort is a desirable property [3]. A goal is to find a minimum
set of test cases that have the highest coverage and maximum
fault detection percentage to satisfy the test adequacy criteria
of the software under test and at the same time being capable
of finding errors in early phases of software development.
This paper provides a step to realize this goal.

While the code-based generation of test cases helps to
capture errors at the implementation level, analysis and
design misunderstanding and errors remain in code [4].
To solve this issue, software developers produce test cases
before generating code through model and system specifica-
tions. This strategy is known as model-based testing. Gen-
erally, model-based testing (MBT) involves extracting test
cases from a model to show the expected system behavior in
the format of a behavioral model [5]. The main activities
in test design are creating the behavioral model of the sys-
tem and determining how it relates to the original system.
Model-based testing consists of four main steps: (1) mod-
eling, (2) test generation, (3) test concretization and (4) test
execution [6, 7].

The majority of development methodologies treat require-
ments activities separately from the development activities
[8]. Generating test cases from design models and even use-
case diagrams ends in test cases that are unable to capture
errors in the requirement extraction phase. The requirements
extraction phase is the most critical phase of the software
development lifecycle (SDLC) and any wrong or missing
requirements lead to wrong or incomplete product; no matter
how good the subsequent phases are [9]. On the other hand,
creating test cases based on the requirements will maximize
the independence between the model and the system under
test [10]. Also, requirement specifications are the origin of
the information that realizes the functionality of a software

 *	 Mohammad Javad Amiri
	 amiri@cs.ucsb.edu

1	 Department of Computer Engineering, Tehran University,
Tehran, Tehran, Iran

2	 Department of Computer Science, University of California
Santa Barbara, Santa Barbara, CA, USA

3	 Department of Computer Engineering, Iran University
of Science and Technology, Tehran, Tehran, Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-018-0304-3&domain=pdf

120	 Requirements Engineering (2019) 24:119–132

1 3

[11]. The goal of this paper is to introduce a method to gen-
erate test cases that cover requirement specifications.

Organizational models show the structure and behavior
of an enterprise and are very useful in helping developers
properly understand the organizational environment and
the requirements that the system must fulfill. Therefore, a
good knowledge of the application domain is critical to be
able to succeed in requirements elicitation [12]. Business
process models are widely used in requirement engineering
area to extract requirements [13, 14]. Although requirements
engineering is the bridge between enterprise and system
domains, most of the research in this area is still solution
oriented, which does not address the real problems of the
organization. As a consequence, since the enterprise is not
correctly analyzed, the information system may not meet
expectations and business/IT alignment will not be achieved
[12]. In this paper, we study the problem of test case genera-
tion and describe a business process-driven approach that
allows generation of test cases from software requirements
to support the operations of an enterprise and assure busi-
ness/IT alignment.

A business process model is a set of related and collabo-
rative activities or tasks that produce a specific service or
product [15]. We model processes to have a comprehensive
understanding of the system, make process improvement
easy, or execute them [16]. Although some research uses
process-oriented approaches to generate test cases [17], in
these researches process models are generated in the soft-
ware design phase and do not capture the flow of activities
in organizations and businesses.

The main contribution of this paper is to propose a tech-
nique to generate test cases from requirement specifications
using business process models. To this end, execution paths
are extracted from business processes. These paths resemble
the real word and can capture requirements more precisely.
Based on this, in the proposed method, the business process
model is first generated using the BPMN 2.0 standard [18]
and transformed to a state graph. Then, behavioral scenar-
ios are extracted from the state graph, and finally using the
Spec Explorer software [19], test cases are generated from
the graph. In this model, test sequences are extracted from
business process models with the highest coverage. A main
feature of the model-based testing is the ability to generate
tests from models for different test purposes. This is usually
based upon certain metrics that measure the adequacy of
the test suites toward addressing a given test purpose [20].
The proposed method saves time and costs of generating test
cases while maintaining coverage.

This paper is organized as follows. Section 2 reviews the
related work of automatic test case generation. Section 3
describes the steps of the proposed method. In Sect. 4,
experimental evaluation is established for the proposed
method, and finally, Sect. 5 concludes the paper.

2 � Related work

Test case generation techniques can be either model based
or manual. We will briefly discuss existing methods in each
category.

Model-based methods mainly generate test cases from a
sequence, use-case, or activity diagram. Nayak and Samanta
[21] proposed an approach of synthesizing test data from
the information embedded in class and sequence diagrams
using object language constraints (OCL). In their approach,
sequence diagrams are annotated with attribute and con-
straint information derived from a class diagram and object
language constraints and then mapped onto a structured
composite graph called SCG. The test specification is then
generated from a structured composite graph in two steps.
First, a finite set of scenarios which are complete paths start-
ing from the initial node to a final node is generated from
SCG, and then the test input satisfying all the constraints
along the path is found. Since their method generates test
cases from design models, any possible errors in earlier
phases, e.g., requirement elicitation, cannot be captured.
Sarma and Mall [22] transform use-case and sequence dia-
grams to use-case diagram graph (UDG) and sequence dia-
gram graph (SDG), respectively, and then integrate these
two graphs to form a system-testing graph (STG). The
system-testing graph is then traversed to generate test sce-
narios using state-based transition path coverage criteria.
This approach finds three important faults, which usually
occur during system development: use-case initialization
faults, use-case dependency faults and operational faults.
The first two categories can be covered using UDG, whereas
the last can be covered using SDG. In [4], sequential mes-
sages and interactions between objects are also explored
using sequence and interaction overview diagrams of UML
2. In [23, 24], several coverage criteria based on use-case
diagrams are proposed. These criteria are use-case step cov-
erage, use-case branch coverage, use-case scenario coverage,
use-case boundary body coverage and use-case path cover-
age. To generate test cases from UML activity diagrams in
[25], activity diagrams are transformed to a grammar called
activity convert (AC) grammar, and then the activity convert
grammar is used to generate the test cases.

Traditional software testing methods generate test cases
manually through system analysis [26] resulted in incompe-
tence and lack of test cases integrity. These methods can be
divided into specifications-based, design-based and code-
based methods. Among design-based methods, UML state
chart [27, 28] is mainly used to generate test cases; how-
ever, faults in requirements analysis and business modeling
are not taken into account. In [29], test cases are generated
by transforming state design diagram to an expanded finite
state machine (EFSM) where the resulting graph has no

121Requirements Engineering (2019) 24:119–132	

1 3

hierarchy or synchronization. A combination of state and
sequence diagrams is used in [30] to generate test cases.
In this method, the main information is extracted from the
sequence and state diagrams. The main challenges are the
lack of automatic test cases generation and incomplete cov-
erage of all paths in the system under test. [31] also gener-
ates test cases using state and sequence diagrams. In [32],
authors take advantage of the requirements models to gen-
erate test cases using the Communication Analysis (CA).
Transformation rules are defined to facilitate the generation
of test models, and refinement rules are defined to obtain the
abstract test cases from the test model. This method lacks
the automatic generation of test cases. In [33], a combination
of states model and activities of the target system is used to
produce the state-activity diagram (SAD). This diagram is
then used to generate test cases that cover states and activi-
ties. However, the possible differences between states model
and the real requirements are not considered.

Ignoring requirement analysis in design-based methods
makes those methods unable to capture any possible errors
or misunderstanding that can occur in the analysis phase. In
[32], authors try to capture requirements manually result-
ing in incompetence and lack of integrity of test cases. In
[34], an extended control flow graph (XCFG) is proposed to
represent a BPEL process. To generate test cases, first, they
introduce an algorithm to generate sequential test paths from
the XCFG according to branch coverage criterion. Then, the
sequential test paths will be combined into concurrent test
paths based on various BPEL structures, and finally, a con-
straint solver is used to generate test data.

Our work is also closely related to business process trans-
formation methods wherein these methods process models

are transformed to either an executable code like BPEL [35]
or an analysis model like use-case diagram [36–38]. In [39]
also a mapping from business process model to states chart
is presented where for each element in process model a
translation in state chart is provided. Although the mapping
covers all elements, it suffers from lack of optimization that
makes the resulting state graph very large in terms of the
number of states.

3 � Test case generation

The proposed method generates test cases from business
process models. Since the selection and construction of a
behavioral model is a design task, it is assumed that after
understanding the target system, the development team mod-
els the system using business process models. Basically, to
create the models, workflow patterns should be used. Using
these patterns affects the coverage and the number of test
cases. In the next phase, business processes are modeled
and mapped to state graphs. In fact, through this mapping, a
simple graph is established and the complexity of business
processes is reduced. Since the finite state machines describe
the overall behavior of an object, test cases can be generated
from them. In this graph, the ultimate goal is to meet each
state and test each event at least once. Finally, in the last
step, the test cases are generated using Spec Explorer tool.
An outline of the proposed method is shown in Fig. 1. As
it can be seen, business processes are modeled and mapped
to state graphs, then test cases are generated and finally, the
behavior of the system is examined according to these test
cases and the test results shown.

Fig. 1   The proposed model for
test case generation

122	 Requirements Engineering (2019) 24:119–132

1 3

To describe the proposed method, a Seminar Organiz-
ing process is considered as a running example which is
explained as follows.

3.1 � Running example

Consider a Seminar Organizing process at a university. The
process starts with preparing the seminar description. Then,
the description will be published and the seminar will be
announced. By performing early registration and depend-
ing on the number of participants, the organizer decides to
confirm or cancel the seminar. In case of confirmation, they
prepare for the seminar and perform late registration simul-
taneously. When these two tasks are performed the seminar
can be run.

Figure 2 shows the Seminar Organizing process using
Business Process Model and Notation (BPMN 2.0) stand-
ard. Simplicity, expressiveness and high usage have been
the main advantages of this standard, compared with other
methods of business process modeling [40, 41]. Nonethe-
less, every business process modeling language that supports
basic workflow notions, e.g., different types of node and
edges, can be used in the proposed method.

3.2 � Modeling business processes

In the first step, business processes are modeled using
BPMN [18]. Each business process is a graph consisting of
a set of tasks, gateways, events and connectors [42]. In this
paper, we adopt the formal definition of a process from [43].
We focus on one type of edges corresponding to “sequence
flow” in BPMN, and three types of nodes: “event,” “activ-
ity” and “gateway.” Furthermore, we consider two classes
of start and end events. An activity represents an atomic
unit of work. Gateways are used to control the divergence
and convergence of sequence flows. There are four kinds of
frequently used gateways in BPMN: choice, merge, split and
join. Choice and merge gateways allow a flow in a process
to follow one of several alternatives (choice) or choose only

one flow from possibly several incoming edges to continue
(merge). Split and join gateways, on the other hand, forward
a flow to every outgoing edge for parallel execution (split)
or synchronize flow from all incoming edges and combine
them into one (join). Let’s assume the existence of countably
infinite, pairwise disjoint sets of UA and UG as activities and
gateways, respectively.

Definition  A business process is a tuple P = (V, s, f, E, τ)
such that

•	 V ⊆ UA ∪ UG ∪ {s, f} is a finite non-empty set of control
flow nodes where s and f are the start and final nodes
(resp.),

•	 E ⊆ (V–{f}) × (V–{s}) is a finite set of control flow edges
such that

•	 s has one outgoing edge and no incoming edges,
•	 f has one incoming edge and no outgoing edges,
•	 each node in (V ∩ UA) is an activity node with one incom-

ing and one outgoing edge,
•	 for each node in (V ∩ UG), the number of incoming edges

plus the number of the outgoing edges is at least three,
•	 τ: (V ∩ UG) → {GA, GX} is a mapping that assigns each

gateway a type being AND (Split/Join) Gateway GA and
XOR (Choice/Merge) gateway GX.

Figure 2 shows the Seminar Organizing process, where s
and f are the start and final nodes (resp.), ti’s (1 ≤ i ≤  T9) are
the activity nodes, and gi’s (1 ≤ i ≤ 4) are the gateway nodes
where τ(g1) = τ(g4) = GX and τ(g2) = τ(g3) = GA.

We define a path as a set of activities (can be empty) that
can exist between two gateways, between the start node and
a gateway, between a gateway and an end node, or between
the start node and a final node.

Definition  Given a process P = (V, s, f, E, τ), and a sequence
of nodes v0, v1, v2, …, vn, vn+1 where for each i ∈ [0…n + 1],

Fig. 2   BPMN process model for
Seminar Organizing

123Requirements Engineering (2019) 24:119–132	

1 3

vi ∈ V. A path φ is a sequence v1, v2, …, vn such that for each
i ∈ [1…n], vi is a node in (V ∩ UA), v0 is a node in (V ∩ UG)
U {s} and vn+1 is a node in (V ∩ UG) U {f}. Let φ0 and φz
denote the first node (activity) and the last node (activity) of
the path φ, respectively.

Depending on v0 and vn+1, 4 types of paths can be defined
in a process:

1.	 v0 is the start node and vn+1 is the final node,
2.	 v0 is the start node and vn+1 is a node in (V ∩ UG)
3.	 v0 is a node in (V ∩ UG) and vn+1 is the final node
4.	 Both v0 and vn+1 are nodes in (V ∩ UG).

Given a process P = (V, s, f, E, τ), node vi derives node vj,
denoted as π(vj) = vi, iff (vi, vj) ∈ E. In other words, an outgo-
ing edge of vi can be an incoming edge of vj.

The following paths are defined for the running example
(Fig. 2).

•	 Prepare Description, Publish Description, Announce
Seminar, Perform Early Registration [t1, t2, t3, t4] (type2).

•	 Confirm Seminar [t5] (type4)
•	 Cancel Seminar [t9] (type4)
•	 Seminar Preparation [t6] (type4)
•	 Perform Late Registration [t7] (type4)
•	 Run Seminar [t8] (type4).

Business process models not only have to capture busi-
ness requirements precisely but also are required to ensure
successful workflow execution. Therefore, we need to ver-
ify the correctness of business processes before the process
models are implemented [44]. One accepted notion of cor-
rectness is structuredness. A structured process consists of
m sequential blocks, B1, …, Bm. Each block Bi is either an
activity or a composite block. A composite block consists of
n parallel, conditional, or loop sub-fragments where each of
them is again either an activity or a composite block.

In order to construct a well-structured process model, we
define a set of incremental process update operations. These
update operations extend a process by replacing an activity
with a basic process block, i.e., a sequence of two activities,
choice block, parallel block, or loop block.

Definition  Let P = (V, s, f, E, τ) be a business process. δ
is an incremental update operation on P that transforms P
to P’ = (V’, s, f, E’, τ’). Assuming (u, a) and (a, v) are the
incoming and the outgoing edges of the activity a, four dif-
ferent types of update operations are defined as follows:

a) AddActivity(activity a, activity a’)

Replaces activity a with a sequence of activities a and a’
where a’ is a new activity in UA–V.

•	 V’ = V ∪ {a’},
•	 E’ = E–{(a, v)} ∪ {(a, a’), (a’, v)} and
•	 τ’ = τ.
•	 b) AddChoiceBlock(activity a, activity a’, (choice) gate-

way g1, (merge) gateway g2)

Replaces an existing activity a with a choice block contain-
ing a new choice gateway g1, a new merge gateway g2, and
two mutually exclusive activities a and a’ where a’ is a new
activity in UA–V.

•	 V’ = V ∪ {a’, g1, g2},
•	 E’ = E–{(u, a), (a, v)} ∪ {(u, g1), (g1, a), (g1, a’), (a, g2),

(a’, g2), (g2, v)},
•	 τ’(g1) = τ’(g2) = GX, and for each gateway node g in

(V ∩ UG), τ’(g) = τ(g).
•	 c) AddParallelBlock(activity a, activity a’, (split) gateway

g1, (join) gateway g2)

Replaces an existing activity a with a parallel block con-
taining a new split gateway g1, a new join gateway g2, and
two parallel activities a and a’ where a’ is a new activity in
UA–V.

•	 V’ = V ∪ {a’, g1, g2},
•	 E’ = E–{(u, a), (a, v)} ∪ {(u, g1), (g1, a), (g1, a’), (a, g2),

(a’, g2), (g2, v)},
•	 τ’(g1) = τ’(g2) = GA, and for each gateway node g in

(V ∩ UG), τ’(g) = τ(g).
•	 d) AddLoopBlock(activity a, activity a’, (merge) gateway

g1, (choice) gateway g2)

Replaces an existing activity a with a loop block containing
a new merge gateway g1, a new choice gateway g2, and two
activities a and a’ where a’ is a new activity in UA–V.

•	 V’ = V ∪ {a’, g1, g2},
•	 E’ = E–{(u, a), (a, v)} ∪ {(u, g1), (g1, a), (a, g2), (g2, a’),

(a’, g1), (g2, v)},
•	 τ’(g1) = τ’(g2) = GX, and for each gateway node g in

(V ∩ UG), τ’(g) = τ(g).

Definition  Given a business process P = (V, s, f, E, τ), P is
a well-structured business process if there is a sequence of
incremental update operations δ1, δ2, …, δn where δnδn−1,
…, δ1(P’) = P and P’ = ({s, a, f}, s, f, {(s, a), (a, f)}, τ) is an
atomic schema.

124	 Requirements Engineering (2019) 24:119–132

1 3

The running example is already well-structured.

3.3 � Creating state graph from business process
model

In this subsection, an algorithm to create the state graph
from process models is introduced. We first define state
graph which is needed later to generate test cases.

Definition  A State graph is a tuple G = (N, T, sε, sγ) such
that

•	 N is a non-empty set of nodes indicating states,
•	 T ⊆ N × N is a finite set of state transitions,
•	 sε ∈ N is the initial state, and
•	 sγ ∈ N is the final state

To create a state graph, we traverse the process model
and consider gateways and paths as states and state transi-
tions, respectively. To optimize the resulted state graph, if
a parallel block has no nested block, it (both split and join
gateways and both paths from the split to the join gateway)
is considered as one state of the graph. Also, since the split
and choice gateways have more than one incoming edge, a
counter is assigned to each gateway to count the number of
visited incoming edges. The algorithm begins with visiting
the start node and adding a state sε to the corresponding state
graph. Then, the process is traversed to visit other nodes.
Three situations can happen:

1.	 The visited node is an activity node: the status of the
node is changed to visited and traversing continues.

2.	 The visited node is an end event: the corresponding state
sγ is added to the graph and FindEdge function is called
to add the related edge. The FindEdge function finds
the related edge based on the type of an input node. It
has two inputs: a state s and a node v. If the node v is
connected to the start node, then we connect sε (initial

state) to s in the state graph; otherwise, we find the state
corresponding to the predecessor node of v and connect
that state to s.

3.	 The visited node is a gateway:

(a)	 If the type of gateway is a choice (it has only one
incoming edge), we change the status of the gateway to
visited, add a state to the state graph, and call FindEdge
function.

(b)	 If node is a split gateway and there is no other gateway
through the path between the split and the correspond-
ing join gateway, then both gateways and all nodes on
both existing paths between them are marked as visited
and a state is added to the graph; otherwise, the split
gateway is marked as visited and a state is added to the
graph. In both cases, the FindEdge function has to be
called.

(c)	 For join and merge gateways, the counter is incre-
mented and if the counter is equal to two (the num-
ber of incoming edges of each gateway), the gateway
is marked as visited. Then, the corresponding state is
added to the graph and by calling FindEdge function
the edge is added.

For example, let’s consider a loop block with merge gate-
way g1 and choice gateway g2 in a process. When the pro-
cess is traversed from the start node, we first visit the merge
gateway (in contrast to choice blocks where we first visit
choice gateways). When the merge gateway g1 is seen, a cor-
responding state and an edge from the related state are added
to the graph. Then, the algorithm proceeds to the outgoing
path to find the next gateway. There may be some gateways
on the path from g1 to g2 in the process and for all those gate-
ways, corresponding states will be added to the graph, but
finally, when the corresponding choice gateway g2 is seen

125Requirements Engineering (2019) 24:119–132	

1 3

due to the well-structuredness of the process, there must be
a path from g2 to g1.

Algorithm 1 shows the creation of state graphs from pro-
cess models.

Algorithm1: Mapping Business Process Model to Graph
Input: A well-structured Process P = (V, s, f, E, τ)
Output: A state graph G = (N, T, sᵋ, s)γ

1. Let G be the empty graph (with no nodes, no edges)
2. m = 0, s = 1
3. Let countg = 0, for each gateway node g ∈ (V ∩ UG)
4. Let s be a start event in P
5. Tag s as visited
6. Add s as sᵋ to G as the initial state
7. Let v be the node in V such that π(v) = s //v can be derived from s
8. Tag v as new
9. while there is a new node v in P do
10. //case1: v is a task node
11. if v is a node in (V ∩ UA) then
12. Change v’s tag to visited
13. Let v’ be the node in V such that π(v') = v
14. if visited(v') = false then
15. Tag v' as new
16. endif
17. //case2: v is an end event
18. elseif v is an end event in F then
19. Change v’s tag to visited
20. Add sᵧ to state graph G
21. call findEdge(sᵧ,v)
22. //case3: v is a gateway
23. elseif v is a gateway node in (V ∩ UG) then
24. if v is a split or a choice gateway then
25. Change v’s tag to visited
26. Add sm to state graph G
27. call findEdge(sm,v)
28. m++
29. if τ(v)= GA and these is a gateway node u in (V ∩ UG) s.t τ(v)= τ(u) and for each outgoing path

φo=vjvj+1…vk from v, π(u)=vk or π(u)=v (in case that path is empty) then //parallel paths have only activities
30. for each node vi (j ≤ i ≤ k) in each φo from v do
31. Change vi’s tag to visited
32. endFor
33. Change u’s tag to visited
34. Let v’ be the node in V such that π(v') = u
35. if visited(v') = false then
36. Tag v’ as new
37. endif
38. else
39. for each node v' s.t π(v') = v do
40. if visited(v') = false then
41. Tag v' as new
42. endif
43. endfor
44. endif
45. else //join or merge gateway
46. countv ++
47. if countv = 1 then //visit the gateway for the first time
48. Add sm to state graph G
49. call findEdge(sm,v)
50. m++
51. else
52. Let sm be the state corresponding to v
53. call findEdge(sm,v)
54. if inv = countv then
55. Change v’s tag to visited
56. endif
57. endif
58. Let v’ be the node in V such that π(v') = v
59. if visited(v') = false then
60. Tag v’ as new
61. endif
62. endif
63. endwhile

64. findEdge(s,v)
65. Begin
66. Let p be the node in V such that π(v) = p //p is the last visited node
67. if p is the start node s then
68. Add edge(sᵋ, s)
69. elseif p is a gateway node in (V ∩ UG) then
70. Add edge(sp, s) where sp is the state corresponding to p
71. else // p is an activity node in (V ∩ UA) then
72. Let φq be the path s.t φq

z is p //p is the last node of φq
73. Let k be the state in N such that π(φq

0) = k //k is the start event or a gateway
74. Add edge(sk, s) where sk is the state corresponding to k
75. endif
76. End

126	 Requirements Engineering (2019) 24:119–132

1 3

Figure 3 indicates the state graph generated from the
Seminar Organizing process model using the Algorithm 1.

The mapping between the transaction, action and condi-
tion with the edges of the graph is shown in Table 1.

3.4 � Mapping state graph to the input model of Spec
Explorer

This subsection provides a brief introduction to the Spec
Explorer tool which is used to generate test cases followed

by a description of the mapping from state graph to the input
model of the tool. Spec Explorer is a tool for testing object-
oriented software systems. In Spec Explorer, the behavior
of the system is described by a model program written in
the language Spec#, an extension of C#. A model program
defines the state variables and the update rules of an abstract
state machine. The tool explores the machine’s states and
transitions with techniques similar to those of explicit state
model checkers. This process results in a finite graph that
is a representative subset of model states and transitions.
Spec Explorer uses a state exploration algorithm [45] that
is briefly explained as follows:

1.	 In a given model state (starting with the initial state)
determine those invocations (action/parameter combina-
tions) which are enabled by their preconditions in that
state,

2.	 Compute successor states for each invocation,
3.	 Repeat until there are no more states and invocations to

explore.

To map the state graph to the input model of Spec
Explorer, the input data, which is needed to choose dif-
ferent states should be passed to the tool. The mapping is
performed automatically; each state/transition in the state
graph is mapped to an action/transition in the Spec input
model and if there is a condition to enable a transition, the
condition is attached to model as a data input parameter.
Algorithm 2 shows the mapping from a state graph to the
input model of Spec Explorer.

Fig. 3   State graph of the Seminar Organizing process

Table 1   Mapping information table for object states

Transition/Action/Guard Correspond-
ing edge in the
graph

Entry data A
Few participants/CancelSeminar B
Enough participants/ConfirmSeminar C
RunSeminar D
End E

[Action] void EnoughParticipants (participants) requires participants >= SufficientParticipants && InsertInfo = True
{ConfirmSeminar = True};
[Action] void FewParticipants (participants) requires participants < SufficientParticipants && InsertInfo = True
{CancelSeminar = True};

Fig. 4   Part of the input program for the Seminar Organizing process

var frontier = {(s, a, t) | s ∈ Sinit, (s, a, t) ∈ δ}
var included = Sinit

var δ’ =
while frontier ≠ ∧ InBounds

choose (s, a, t)∈ frontier
frontier := frontier \ {(s, a, t)}
if t ∈ included ∨ IncludeTarget(s, a, t)

δ’ := δ’ ∪ {(s, a, t)}
if t ∉ included

frontier := frontier ∪ {(t, a’, t’) | (t, a’, t’) ∈ δ}
included := included ∪ {t}

Fig. 5   Directed search in Spec Explorer

127Requirements Engineering (2019) 24:119–132	

1 3

When the model is created, we traverse all the possible
paths to produce test scenarios. We use the DFS algorithm to
traverse the model. The goal is to meet all states at least onc
e. In the Seminar Organizing process, two correct execution
paths exist; one is when after the early steps, the number of
registered participants is not sufficient and the seminar is
canceled, and the other one is when enough number of par-
ticipants are registered and the seminar is confirmed. Here
the main input data is the number of participants which is
passed as a parameter. Figure 4 shows the part of the input
program which is related to the EnoughParticipants and the
FewParticipants actions. Here a Boolean variable is used
for each state. As it can be seen, the EnoughParticipants
action is performed if the number of participants, which is
the input parameter of the action, is equal to or greater than
the sufficient number of participants and the InsertInfo state
is visited. This action changes the ConfirmSeminar to true.
A similar situation exists for the FewParticipants action.

Figure 5 shows the general exploration algorithm of Spec
Explorer [45]. It assumes two auxiliary predicates:

•	 InBounds is true if user-given bounds on the number of
transitions, the number of states, etc., are satisfied.

•	 IncludeTarget(s, a, t) is true for those transitions (s, a, t)
that lead to the desired target state.

By default, IncludeTarget returns true. In the algorithm,
the variable frontier represents the transitions to be explored

and is initially set to all those transitions which start in an
initial state. The variable included represents those states of
M’ whose outgoing transitions have been already added to
the frontier, and is initially set to the initial states of M. The
variable δ’ represents the computed transition relation of the
sub-automaton M’. The algorithm continues exploring as
long as the frontier is not empty and the bounds are satisfied.
In each iteration step, it selects a transition from the frontier,
and updates δ’, included and frontier. Upon completion of
the algorithm, the transitions of M’ are the final value of δ’.

Fig. 6   Part of the input graph to the Spec Explorer Tool

Algorithm2: Mapping State Graph to the input model of Spec Explorer
Input: A state graph G = (N, T, sᵋ, sᵧ)
Output: A Spec Explorer Model

1. Let V be an empty stack
2. V.push(sᵋ)
3. while V is not empty do
4. s = V.pop()
5. if s has one outgoing edge then
6. Let (s,s’) be the outgoing edge
7. Add “[Action] void s-s’ s= True {s’ = True};” to the model //s-s’ is a name for the action
8. endIf
9. if s has more than one outgoing edge then //s represents a choice gateway
10. for each outgoing edge (s,s’) where cond is its condition on a variable var do //Example: cond: var > 3
11. Add “[Action] void s-s’(var) requires cond && s = True {s’ = True};” to the model
12. endFor
13. endIf
14. if s has no outgoing edge then //s is the final state (sᵧ) and the graph is completely mapped
15. break
16. endIf
17. for each outgoing edge (s,s’) of s do
18. V.push(s’)
19. endFor
20. endWhile
21. for each variable var that is used in any condition statement cond do
22. Define var as an input parameter of the model
23. endFor

128	 Requirements Engineering (2019) 24:119–132

1 3

The initial states of M’ are the initial states of M. The states
of M’ consist of all states that are reachable from an initial
state of M’ using the transitions of M’ [45].

Figure 6 represents a part of input model generated from
the algorithm.

3.5 � Generating test cases

After creating the graph, the next step is generating test
cases. The Spec Explorer tool generates different test cases
using the conditions in the model and the domains of the
used data. As specified in the definition of well-structured
processes, each gateway has at most two outgoing edges
(choice/split), therefore, for each condition in the model two
possible paths can be created. The number of all possible
combinations of gateway conditions is the size of the gen-
erated paths which is exponential in terms of choice/split
gateways.

Depending on the domain of attributes which are used in
the gateway condition, the tool may generate different test
cases to capture all behaviors of the model.

Fig. 7   Graph model and generated test cases for different data

Table 2   University education system processes

Process #Tasks #Gateway

Student registration 14 8
Student enrollment in course 6 2
Course plan approval 16 6
Student graduation 10 4
Grades announcement 7 2
Student verification request 11 4
Course auditing 8 2
Transcript verification 12 6

Fig. 8   Path coverage based on process complexity (left side) and process size (right side)

129Requirements Engineering (2019) 24:119–132	

1 3

In the running example, we have only one condition
which is related to the number of participants. At first
glance, four groups of test cases can be generated: (1) hav-
ing few participants and cancel the seminar, (2) having few
participants and confirm the seminar, (3) having enough
participants and cancel the seminar, and (4) having enough
participants and confirm the seminar where the first and the
third groups are desired behaviors of the system. Since the
only input data is the number of participants, the tool gen-
erated different test cases using different possible numbers.
Figure 7 represents a part of the generated test cases in dif-
ferent circumstances.

4 � Results and discussion

In this section, three different evaluations are conducted.
First, we compare the results of our method and manual
test case generation on a software system consisting of
eight business processes. Next, to evaluate the impact of
process size and process complexity on the path coverage,
some arbitrary business processes with different sizes and
complexities, are taken into account. Finally, a qualitative
comparison between the proposed method and some related
work is performed.

We first consider a University education system as a case
study. This system was developed several years ago, but we
accessed the process models, the implementation and test-
ing steps, and test cases created by domain experts (users/
developers) at that time. The goal of this evaluation is to
compare the precision and the recall of the test cases that
are generated by the proposed method versus the test cases
that are generated by users.

The system has the following processes: student registra-
tion, course enrollment, course plan approval, student grad-
uation, grades announcement, student verification request,
course auditing and transcript verification. Table 2 shows the
number of tasks and gateways of these processes.

We generated state graphs and test cases for these pro-
cesses. Then, based on the number of valid and invalid
detected paths, the value of true positive (TP), false positive
(FP) and false negative (FP) for the proposed method and
system developers are measured. Finally, the precision and
the recall of both methods are calculated.

The results are shown in Table 3. The number of exist-
ing paths shows the total possible paths in a process model.
TP shows the number of valid paths that developers or the
proposed method detect as valid paths correctly. FP shows
the number of valid paths that are incorrectly detected as
invalid paths, and FN shows the number of invalid paths
that are incorrectly detected as valid paths. As it can be seen,
the average of precision for the users (developers) and the
proposed method are 75.75 and 94.37, respectively, which Ta

bl
e 

3  
T

es
t r

es
ul

ts
 o

n
un

iv
er

si
ty

 e
du

ca
tio

n
sy

ste
m

 p
ro

ce
ss

es

Pr
oc

es
s

#S
ta

te
s

#E
xi

sti
ng

 P
at

h
D

ev
el

op
er

s T
P

D
ev

el
op

-
er

s F
P

D
ev

el
op

-
er

s F
N

Th
e

m
et

ho
d

TP

Th
e

m
et

ho
d

FP

Th
e

m
et

ho
d

FN

D
ev

el
op

er
s

pr
ec

is
io

n
D

ev
el

op
er

s
re

ca
ll

Th
e

m
et

ho
d

pr
ec

is
io

n
Th

e
m

et
ho

d
re

ca
ll

St
ud

en
t r

eg
ist

ra
tio

n
10

14
10

3
4

13
0

1
0.

77
0.

71
1

0.
93

C
ou

rs
e

en
ro

llm
en

t
4

4
4

1
0

4
0

0
0.

8
1

1
1

C
ou

rs
e

pl
an

 a
pp

ro
va

l
6

7
5

1
2

6
0

1
0.

83
0.

71
1

0.
86

St
ud

en
t g

ra
du

at
io

n
6

6
4

2
2

6
1

0
0.

66
0.

66
0.

86
1

G
ra

de
s a

nn
ou

nc
em

en
t

3
2

2
0

0
2

0
0

1
1

1
1

St
ud

en
t v

er
ifi

ca
tio

n
re

qu
es

t
5

4
3

2
1

4
1

0
0.

6
0.

75
0.

8
1

C
ou

rs
e

au
di

tin
g

4
4

2
3

2
4

0
0

0.
4

0.
5

1
1

Tr
an

sc
rip

t v
er

ifi
ca

tio
n

8
9

8
0

1
8

1
1

1
0.

89
0.

89
0.

89

130	 Requirements Engineering (2019) 24:119–132

1 3

means the proposed method increases the precision about
24.58%. In addition, the average of recall for the user and
the proposed method are 77.75 and 96, respectively, so the
proposed method also increases the recall about 23.47%.

In the second set of experiments, we study the impact of
process size and complexity on the path coverage. To meas-
ure the impact of process size (number of tasks), we choose
10 processes and generate test cases for each of them. The
path coverage is then computed. The results show that the
accuracy of the method in path coverage is independent of
process size. We then, similar to the previous experiment,
measure the impact of process complexity (number of gate-
ways) on the path coverage. The results of these two evalu-
ations are shown in Fig. 8. Note that most of the chosen
models and their implementations are from existing sources
available on the Internet [46, 47].

Finally, we performed a qualitative evaluation. We select
a number of most-cited and relevant papers to compare with
the proposed method. Most of these papers either use UML
diagrams, i.e., use-case, activity, or sequence diagram, to
show the behavior of a process [26, 27, 32] or use a pro-
cess modeling language like BPEL [34]. We also choose 8
metrics for comparison: coverage, automatic test case gen-
eration, independency and generality of the method, test
optimization and improvement, object-oriented support,
tool support, business process support and automatic deter-
mination of test data. Table 4 shows the results.

Four kinds of coverage are defined: statement coverage,
branch coverage, path coverage and requirements coverage
wherein this paper we focus on path coverage. Path coverage
is the ratio of the extracted path from the test cases to the
existing path in the code. Automatic test cases generation
helps to decrease the development cost and time. The third
factor is independence and generality of the method which
basically shows whether the method can be used for differ-
ent modeling languages or not. Test improvement refers to
the optimizing number of test cases. The three next factors
show that a method supports object-oriented development,
has a tool, and supports any of the business process mod-
eling languages or not. Finally, automatic determination of
test data considers the correlation of conditions and paths.

5 � Conclusions and future work

Model-based testing is a useful technique to increase soft-
ware reliability and reduce costs by generating test cases
based on behavioral models of the system. In this study, a
method to automatically generate test cases using business
process models is presented. Using process model helps to
identify test cases of business areas; thus, the test cases will
be more compatible with the business requirements and will
capture any misunderstanding in future phases in software Ta

bl
e 

4  
E

va
lu

at
io

n
of

 th
e

pr
op

os
ed

 m
et

ho
d

Th
e

m
ar

k
✓

 in
 th

e
ta

bl
e

m
ea

ns
 th

e
su

pp
or

t o
f t

he
 m

et
ho

do
lo

gy
 o

f t
he

 d
es

ire
d

in
de

x;
 m

ar
k

×
in

di
ca

te
s n

on
-s

up
po

rt
of

 th
e

re
la

te
d

in
de

x.
 “

P”
 in

di
ca

te
s “

Pe
rfe

ct
,”

“M
”

in
di

ca
te

s “
M

ed
iu

m
”

an
d

“L
”

in
di

ca
te

s “
Lo

w
”

Fe
at

ur
es

/ C
rit

er
ia

Y
ua

n
et

 a
l.

[3
4]

A
bd

ur
az

ik

an
d

O
ffu

tt
[4

]

G
ra

nd
a[

32
]

Sw
ai

n
et

 a
l.

[2
6]

K
an

so
m

-
ke

at
 e

t a
l.

[3
1]

Sw
ai

n
et

 a
l.

[3
3]

So
ke

no
u

[3
0]

K
im

et

 a
l.

[2
9]

B
er

to
lin

o
[2

7]
 a

nd

O
ffu

tt
an

d
A

bd
ur

az
ik

[2

8]

A
bi

lo
v

an
d

G
om

ez
[3

9]
Pr

o-
po

se
d

m
et

ho
d

Te
st

co
ve

ra
ge

M
M

M
L

L
M

M
P

M
P

P
A

ut
om

at
ic

 te
st

ca
se

s g
en

er
at

io
n

✓
✓

×
✓

✓
×

×
×

✓
×

✓
In

de
pe

nd
en

ce
 a

nd
 g

en
er

al
ity

 o
f t

he
 m

et
ho

d
×

✓
✓

✓
✓

✓
✓

×
×

×
✓

Te
st

im
pr

ov
em

en
t

✓
✓

×
×

✓
✓

✓
×

×
×

✓
O

bj
ec

t-o
rie

nt
ed

 su
pp

or
t

✓
✓

✓
✓

×
✓

✓
✓

✓
✓

✓
To

ol
 su

pp
or

t
×

✓
×

✓
×

✓
×

×
✓

×
✓

B
us

in
es

s p
ro

ce
ss

 su
pp

or
t

✓
×

×
×

×
×

×
×

×
✓

✓
A

ut
om

at
ic

 d
et

er
m

in
at

io
n

of
 te

st
da

ta
✓

✓
×

×
×

×
×

×
✓

×
×

131Requirements Engineering (2019) 24:119–132	

1 3

development. The algorithm for the conversion of process
models to state graphs prepares the model for data produc-
tion and by navigating the models the preconditions will be
determined. These conditions are converted to codes. Then,
the tool automatically generates the test cases. Using business
workflow, optimization of test cases, preparing an automated
method for mapping process modeling into state diagram,
and tools support are the main characteristics of this method.

Although this method could detect errors in the domain
of business requirements, it does not capture errors in the
design and the implementation phases, so using this method
alone is not enough to generate test cases. One of the limi-
tations of the proposed algorithm is that it works only for
well-structured processes and if the input process is not well-
structured, it can’t define states correctly and it so captures
invalid paths. To solve this issue, we can convert unstruc-
tured process to structured ones using algorithms in [48] or
[49]. In addition, the algorithm assumes that the conditions
attached to the outgoing paths of choice gateways are valid
and consistent. Finally, including data could improve the
efficiency of test cases generation.

References

	 1.	 De Cleva Farto G, Endo AT (2015) Evaluating the model-based
testing approach in the context of mobile applications. Electron
Notes Theor Comput Sci 314:3–21

	 2.	 Backlund A (2010) Utilizing statistics in a model-based testing
process. Dissertation, Department of Information Technologies,
Abo Akademi University

	 3.	 Boghdady PN, Badr N, Hashem M, Tolba MF (2011) Test case
generation and test data extraction techniques. Int J Electr Comput
Sci (IJECS-IJENS) 11(03):87–94

	 4.	 Abdurazik A, Offutt J (2000) Using UML collaboration diagrams
for static checking and test generation. In: International confer-
ence on the unified modeling language, pp 383–395

	 5.	 Nam DH, Mousset EC, Levy DC (2006) Automating the testing of object
behavior: a state chart-driven approach. In: Proceedings of world acad-
emy of science, engineering and technology, Helsinki, Finland

	 6.	 Pretschner A, Philipps J (2005) 10 methodological issues in
model-based testing. In: Model-based testing of reactive systems,
pp 281–291

	 7.	 El-Far IK, Whittaker JA (2001) Model-based software testing. In:
Marciniak JJ (ed) Encyclopedia of software engineering. Wiley

	 8.	 Badreddin O, Sturm A, Lethbridge TC (2014) Requirement tracea-
bility: a model-based approach. In: IEEE 4th international model-
driven requirements engineering workshop (MoDRE), pp 87–91

	 9.	 Alshazly AA, Elfatatry AM, Abougabal MS (2014) Detect-
ing defects in software requirements specification. Alex Eng J
53(3):513–527

	10.	 Utting M, Pretschner A, Legeard B (2012) A taxonomy of model-
based testing approaches. Softw Test Verif Reliab 22(5):297–312

	11.	 Parsa S, Amiri MJ, Ebrahimifard A, Arani MK (2016) Towards a
goal-driven method for web service choreography validation. In:
2nd IEEE international conference on web research, pp 66–71

	12.	 De la Vera Gonzalez JL, & Diaz JS (2007) Business process-
driven requirements engineering: a goal-based approach. In: Pro-
ceedings of the 8th workshop on business process modeling

	13.	 Yu ES (1997) Towards modelling and reasoning support for
early-phase requirements engineering. In: Proceedings of the 3rd
IEEE international symposium on requirements engineering, pp
226–235

	14.	 Ebrahimifard A, Amiri MJ, Arani MK, Parsa S (2016) Mapping
BPMN 2.0 choreography to WS-CDL: a systematic method. J E
Technol 7(1):1–23

	15.	 Muehlen MZ, Indulska M, Kamp G (2007) Business process and
business rule modeling: a representational analysis. In: Eleventh
international IEEE EDOC workshop, pp 189–196

	16.	 Roser S, Bauer B (2005) A categorization of collaborative busi-
ness process modeling techniques. In: 7th IEEE international con-
ference on E-Commerce technology, pp 43–51

	17.	 Anand S, Burke EK, Chen TY, Clark J, Cohen MB, Grieskamp W,
Harman M, Harrold MJ, McMinn P (2013) An orchestrated survey
of methodologies for automated software test case generation. J
Syst Softw 86(8):1978–2001

	18.	 Business Process Model and Notation (BPMN), Version 2.0.
OMG Specification, Object Management Group, August 2013

	19.	 Spec Explorer tool. http://resea​rch.micro​soft.com/spece​xplor​er,
public release January 2005. Accessed 19 May 2018

	20.	 Mohalik S, Gadkari AA, Yeolekar A, Shashidhar KC, Ramesh
S (2014) Automatic test case generation from Simulink/State-
flow models using model checking. Softw Test Verif Reliab
24(2):155–180

	21.	 Nayak A, Samanta D (2010) Automatic test data synthesis using
UML sequence diagrams. J Object Technol 9(2):75–104

	22.	 Sarma M, Mall R (2007) Automatic test case generation from
UML models. In: 10th IEEE international conference on informa-
tion technology (ICIT), pp 196–201

	23.	 Winter M (1999) Quality assurance for object-oriented software,
requirements engineering, and testing wrt requirements specifica-
tion. Dissertation, University of Hagen

	24.	 Myers GJ, Corey S, Tom B (2011) The art of software testing.
Wiley, London

	25.	 Pechtanun K, Kansomkeat S (2012) Generation test case from
UML activity diagram based on AC grammar. In: IEEE interna-
tional conference on computer & information science (ICCIS),
vol 2, pp 895–899

	26.	 Swain R, Panthi V, Behera PK, Mohapatra DP (2012) Automatic
test case generation from UML state chart diagram. Int J Comput
Appl 42(7):26–36

	27.	 Bertolino A (2003) Software Testing Research and Practice.
In: Börger E, Gargantini A, Riccobene E (eds) Abstract State
Machines 2003. ASM 2003. Lecture Notes in Computer Science,
vol 2589. Springer, Berlin, Heidelberg

	28.	 Offutt J, Abdurazik A (1999) Generating Tests from UML Speci-
fications. In: France R, Rumpe B (eds) «UML»’99 — The Unified
Modeling Language. UML 1999. Lecture Notes in Computer Sci-
ence, vol 1723. Springer, Berlin, Heidelberg

	29.	 Kim YG, Hong HS, Bae DH, Cha SD (1999) Test cases generation
from UML state diagram. IEEE Proc Softw 146:187–192

	30.	 Sokenou D (2006) Generating test sequences from UML sequence
diagrams and state diagrams. GI Jahrestagung 2:236–240

	31.	 Kansomkeat S, Offutt J, Abdurazik A, Baldini A (2008) A com-
parative evaluation of tests generated from different UML dia-
grams. In: Ninth ACIS international conference on software engi-
neering, artificial intelligence, networking, and parallel/distributed
computing, SNPD’08, pp 867–872

	32.	 Granda MF (2014) An experiment design for validating a test case
generation strategy from requirements models. In: 2014 IEEE 4th
international workshop on empirical requirements engineering
(EmpiRE), pp 44–47

	33.	 Swain SK, Mohapatra DP, Mall R (2010) Test case generation
based on state and activity models. J Object Technol 9(5):1–27

http://research.microsoft.com/specexplorer

132	 Requirements Engineering (2019) 24:119–132

1 3

	34.	 Yuan Y, Li Z, Sun W (2006) A graph-search based approach to
BPEL4WS test generation. In: International conference on soft-
ware engineering advances, pp 14–22

	35.	 Hauser R, Koehler J (2004) Compiling process graphs into execut-
able code. In: International conference on generative program-
ming and component engineering (GPCE), pp 317–336

	36.	 Cruz EF, Machado RJ, Santos MY (2014) From business process
models to use case models: a systematic approach. In: Enterprise
engineering working conference, pp 167–181

	37.	 Dijkman RM, Joosten SM, Utopics OF (2002) An algorithm to
derive use case diagrams from business process models. In: Pro-
ceedings of the 6th international conference on software engineer-
ing and applications (SEA), pp 679–684

	38.	 Liew P, Kontogiannis K, Tong T (2005) A framework for business
model driven development. In: The 12th IEEE international work-
shop on software technology and engineering practice (STEP), pp
1–8

	39.	 Abilov M, Gomez JM (2014) Derivation of event-based state
machines from business processes. In: Proceedings of the inter-
national conference on new trends in information and communica-
tion technologies

	40.	 Chinosi M, Trombetta A (2012) A. BPMN: an introduction to the
standard. Comput Stand Interfaces 34(1):124–134

	41.	 Amiri MJ, Parsa S, Mohammadzade Lajevardi A (2016) Multifac-
eted service identification: process, requirement and data. Comput
Sci Inf Syst 13(2):335–358

	42.	 Amiri MJ, Koupaee M (2017) Data-driven business process simi-
larity. IET Softw 11(6):309–318

	43.	 Sun Y, Su J (2011) Computing degree of parallelism for BPMN
processes. In: International conference on service-oriented com-
puting (ICSOC), pp 1–15

	44.	 Liu R, Kumar A (2005) An analysis and taxonomy of unstructured
workflows. In: international conference on business process man-
agement (BPM), pp 268–284

	45.	 Veanes M, Campbell C, Grieskamp W, Schulte W, Tillmann N,
Nachmanson L (2008) Model-based testing of object-oriented
reactive systems with Spec Explorer. In: Hierons RM, Bowen JP,
Harman M (eds) Formal Methods and Testing. Lecture Notes in
Computer Science, vol 4949. Springer, Berlin, Heidelberg

	46.	 Activiti tool documentation. https​://githu​b.com/Activ​iti/activ​iti-
examp​les. Accessed 19 May 2018

	47.	 Camunda tool documentation. https​://camun​da.org/examp​les/.
Accessed 19 May 2018

	48.	 Eshuis R, Kumar A (2016) Converting unstructured into semi-
structured process models. Data Knowl Eng 101:43–61

	49.	 Polyvyanyy A, García-Bañuelos L, Dumas M (2010) Structuring
acyclic process models. In: international conference on business
process management (BPM), pp 276–293

https://github.com/Activiti/activiti-examples
https://github.com/Activiti/activiti-examples
https://camunda.org/examples/

	Automatic test cases generation from business process models
	Abstract
	1 Introduction
	2 Related work
	3 Test case generation
	3.1 Running example
	3.2 Modeling business processes
	3.3 Creating state graph from business process model
	3.4 Mapping state graph to the input model of Spec Explorer
	3.5 Generating test cases

	4 Results and discussion
	5 Conclusions and future work
	References

