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ABSTRACT
Permissionless blockchains (e.g., Bitcoin, Ethereum, etc) have
shown a wide success in implementing global scale peer-
to-peer cryptocurrency systems. In such blockchains, new
currency units are generated through the mining process
and are used in addition to transaction fees to incentivize
miners to maintain the blockchain. Although it is clear how
currency units are generated and transacted on, it is un-
clear how to use the infrastructure of permissionless block-
chains to manage other assets than the blockchain’s currency
units (e.g., cars, houses, etc). In this paper, we propose a
global asset management system by unifying permissioned
and permissionless blockchains. A governmental permis-
sioned blockchain authenticates the registration of end-user
assets through smart contract deployments on a permission-
less blockchain. Afterwards, end-users can transact on their
assets through smart contract function calls (e.g., sell a car,
rent a room in a house, etc). In return, end-users get paid in
currency units of the same blockchain or other blockchains
through atomic cross-chain transactions and governmental
offices receive taxes on these transactions in cryptocurrency
units.

1. INTRODUCTION
A blockchain is a distributed data structure for recording

transactions maintained by nodes without a central author-
ity [17]. Nodes in a blockchain system agree on their shared
states across a large network of untrusted participants. Ex-
isting blockchain systems can be divided into two main cat-
egories: permissionless blockchain systems, e.g., Bitcoin (with
PoW-based consensus) [41] and permissioned blockchain sys-
tems, e.g., Tendermint (with BFT-type consensus) [31].

Permissionless blockchains, which are mainly devised for
cryptocurrency assets, e.g., Bitcoin [41], are public. Any
computing node can participate in maintaining the block-
chain without obtaining a permission from a centralized
authority, hence the name permissionless. In Permission-
less blockchains, transactions are used to transfer crypto-
currency assets from one identity to another. In addition,
new currency units are generated through mining; once a
new block of transactions is added to the blockchain, the
miner of the block receives some currency units as the min-
ing reward. The amount of mining reward is specified as
part of the blockchain protocol.

Permissionless blockchains are public and computing nodes
without a priori known identities can join or leave the block-
chain network at any time. On the other hand, a permis-
sioned blockchain uses a network of a priori known and

identified computing nodes to manage the blockchain. In
a permissioned blockchain systems, every node maintains
a copy of the blockchain ledger and a consensus protocol
is used to ensure that the nodes agree on a unique or-
der in which entries are appended to the blockchain ledger.
To reach agreement among the nodes, asynchronous fault-
tolerant replication protocols have been used. Nodes in a
permissioned blockchain might crash or maliciously behave.
Depending on the failure model of nodes, crash fault-tolerant
protocols, e.g., Paxos [34], or Byzantine fault-tolerant pro-
tocols, e.g., PBFT [18], are used to achieve consensus. The
tutorial by C. Mohan [40] provides an overview and discusses
many aspects of permissioned blockchains.

The blockchain model is similar to an object-oriented pro-
gramming language (OOPL). Similar to the primitive data
types, user-defined functions, and classes in an OOPL, each
blockchain also has primitive data types (e.g., an asset, as-
set ownership, etc) and primitive functions operating on
these primitive data types (e.g., transactions that move cur-
rency units from one user identity to another). Classes and
complex functionalities are implemented in the blockchain
using smart contracts. A smart contract, as exemplified
by Ethereum [49], is a computer program that self-executes
once it is established and deployed. A smart contract can
be seen as a class in an object-oriented programming lan-
guage where assets are the objects of that class and transac-
tions update the state (ownership) of the objects. The state
transformation of a smart contract is made persistent in the
blockchain by ensuring that every state change appears as
a record in the blockchain.

While permissionless blockchains only support cryptocur-
rency assets, smart contracts are more generic and can sup-
port any type of asset. Indeed, a smart contract, like a class
in the object-oriented programming, could potentially have
different attributes and functions. Once a smart contract
is written, it can be deployed on a blockchain and different
transactions can call the functions of the smart contract to
change its attributes or even destroy the contract (using a
destructor function), making it void.

Deploying general assets (e.g., cars, houses, etc) on the
blockchain, in contrast to cryptocurrency assets, gives rise
to several challenges. First, ensuring the existence of a re-
gistered asset requires some form of authentication of the
asset. Second, the blockchain system should prevent a mali-
cious end-user from double spending the same asset through
two different smart contracts either within the same or on
different permissionless blockchains. Finally, depending on
the asset, the asset transfer should be legally allowed by the
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State law.
To address the aforementioned challenges of authentic-

ation, double spending, and legality for complex assets in
permissionless blockchains, in this paper, we propose a global
asset management system that unifies permissionless and
permissioned blockchains. In the proposed system, a govern-
mental permissioned blockchain authenticates the registra-
tion of end-user assets through smart contract deployments
on a permissionless blockchain. When an end-user requests
to register their assets, in order to prevent double spend-
ing, a governmental office checks if the asset is not already
registered as a smart contract in any permissionless block-
chain. Next, the governmental office issues an authenticated
smart contract registering the asset wherein the contract
also includes the legal laws associated with the asset and de-
ploys the smart contract on the permissionless blockchain.
Finally, the end-user will be able to trade the asset in the
permissionless blockchain while preserving the law enforce-
ment explicitly specified in the smart contract.

Registering complex assets in permissionless blockchains
extends the transaction model of the permissionless block-
chains. While permissionless blockchains support intra-chain
cryptocurrency trades and cross-chain cryptocurrency trades
(with the help of cross-chain swap protocols [26, 42]), the
proposed system is able to support any type of transactions
in either a single or in multiple chains with any kind of as-
sets.

A key objective of this paper is to demonstrate how global
assets can be managed in a blockchain system. The main
contributions of this paper are:

• a global asset management system that unifies per-
missioned and permissionless blockchains to manage
complex asset,

• an extended transaction model that supports varied
types of transactions operating on complex assets in
multiple blockchains, and finally,

• a thorough analysis of the challenges that arise in design-
ing blockchain-based asset management systems.

The rest of the paper is organized as follows. Section 2
presents the architecture and asset management of permission-
less blockchains. Section 3 explains how smart contracts
are used to extend the functionality of permissionless block-
chains. Section 4 describes the architecture and asset man-
agement of permissioned blockchain. In Section 5 permission-
less and permissioned blockchains are unified in order to
build a novel global asset management system. We discuss
the challenges that arise as a result of this unification in
Section 6. The related work is presented in Section 7 and
the paper is concluded in Section 8.

2. PERMISSIONLESS BLOCKCHAINS
Permissionless blockchains are public and therefore, com-

puting nodes, also known as miners, can join or leave the
blockchain network without obtaining a permission. Miners
maintain a copy of the blockchain ledger and process end-
user transactions. Miners and end-users use their public
keys as their identities in the blockchain system. Given
the open and public model of blockchains, these systems
are exemplified by the complete absence of the notion of
trust. That is, these blockchains must operate in spite of

a complete absence of any trusted entity in the network.
Permissionless blockchains are mainly devised for crypto-
currency assets, e.g., Bitcoin [41]. In this section we first
explain the architecture of permissionless blockchains and
then present the data and transaction models of such sys-
tems.

2.1 Architecture Overview
A permissionless blockchain system [37] (e.g., Bitcoin, Ether-

eum) typically consists of three layers: an application layer,
a consensus layer, and a storage layer, as illustrated in Fig-
ure 1.

Figure 1: Permissionless Blockchain Architecture Overview

The application layer. Transactions are initiated by
end-users in the application layer. End-users have identities,
defined by their public keys and signatures, generated using
their private keys. Digital signatures are the end-users’ way
to generate transactions. Once transactions are generated,
the users multicast their transactions to the mining nodes
in the consensus layer through a client library. Transactions
are used to transfer assets from one end-user identity to
another.

The Consensus Layer. In permissionless blockchains
consensus is established through mining. A mining node
validates the transactions it receives, puts the valid trans-
actions into a block and try to solve some cryptographic
puzzle. The industrious miner who solves the puzzle multic-
asts the block to all nodes. To make progress, when a miner
receives a block of transactions, it first validates the solution
to the puzzle and all transactions in the block, appends the
block to the blockchain, and then proceeds to mine the next
block.

The storage layer. The ledger is a tamper-proof chain
of blocks that is maintained by every mining node. The
storage layer comprises a decentralized distributed ledger
managed by an open network of nodes. Each block of the
ledger contains a set of valid transactions that transfer assets
among end-users.

Nodes in a permissionless blockchain are either end-users
or miners. While end-users have only the application layer,
the architecture of miners consist of the consensus and stor-
age layers. Note that a miner can also be an end-user, thus
has all three layers.

2.2 Asset Management
From a data point of view, assets in a permissionless block-

chains can be modeled using data types, i.e., an asset is rep-
resented by currency units and its ownership. Transactions,
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on the other hand, transfer the ownership of assets, i.e.,
move some currency units from one user identity to another
user identity.

The ownership information of assets is stored in the stor-
age layer. The owner of an asset is determined using iden-
tities that are implemented using public keys. A coin that
is linked to a user’s public key is owned by that user.

Transactions transfer the ownership of an asset from one
identity to another. A transaction is basically a digital sig-
nature. End-users, in the application layer, use their private
keys [46] to digitally sign assets linked to their identity to
transfer these assets to other identities, identified by their
public keys. These digital signatures are submitted to the
consensus layer via message passing through a client library.
It is the responsibility of the miners to validate that end-
users can transact only on their own assets. If an end-user
digitally signs an asset that is not owned by this end-user,
the resulting transaction is not valid and is rejected by the
miners. In addition, miners validate that an asset cannot
be spent twice and hence prevent double spending of assets.
Using transactions, an asset can be tracked from its regis-
tration in the blockchain, the first owner, to its latest owner
in the blockchain. Transactions are stored in the blockchain
in the storage layer.

Registration and divisibility are two other aspects of asset
management. In bitcoin and many other cryptocurrencies,
new coins are generated and registered in the blockchain
through mining. In fact, once a miner solves the puzzle,
it is allowed to generate some amount of coin as a mining
reward.

Assets can be split or merged using transactions. Each
transaction takes one or more input assets owned by one
identity and outputs one or more assets where each out-
put asset is owned by one identity. Indeed, a transaction
references previous transaction outputs as new transaction
inputs and dedicates all input coin values to new outputs.
The summation of a transaction’s input assets matches the
summation of its output assets assuming that no transaction
fees are imposed.

Figure 2: Transactions input and output in blockchain

Figure 2 shows an example of three transactions A, B,
and C in the Bitcoin blockchain. As can be seen, in trans-
action A, a user (with address addrQ) transfers 0.4 bitcoins
to another user addrX . In Transaction B, addrP splits 1.1
bitcoins to (1) 0.8 to addrR and (2) 0.3 to addrX . Finally,
in Transaction C, the outputs of transactions A and B that
are owned by addrX (0.4 bitcoins from transaction A and
0.3 bitcoins from transaction B) are merged and then split
to 0.5 to addrY and 0.2 to addrZ .

In traditional databases, end-user transactions execute ar-
bitrary updates in the storage layer as long as the semantic

and the access control rights of a transaction are validated
in the application layer. On the other hand, in blockchain
systems, this validation is explicitly enforced in the con-
sensus layer and hence end-users, in the application layer,
are allowed to transact only on the assets they own in the
storage layer. This is in contrast to the database systems
model where individual transactions in isolation and in the
absence of concurrency are assumed to be correct. Indeed,
the database concurrency control component provides the
guarantee that the interleaved execution of multiple trans-
actions will be equivalent to some serial execution. In the
blockchain context, however, the correctness of individual
user transactions cannot be assumed due to the absence of a
trust model and hence the underlying storage system checks
the validity of the user transactions.

Note that this is only feasible due to the restrictive se-
mantics of the currency-based asset model. More complex
applications on permissionless blockchain also need to deal
with the lack of assumption of the correct transaction model
that is made in traditional database systems.

3. SMART CONTRACTS
Blockchains can be viewed as analogous to object-oriented

programming languages. Consider permissionless blockchains
where each blockchain consists of primitive data types such
as an asset represented by currency units, user identities,
user accounts, etc, along with primitive functions that are
applicable on these primitive data types such as transac-
tions that move some currency units from one user identity
to another user identity. To represent a complex asset, ana-
logous to a complex data type, an end-user writes a smart
contract [15] that represents this complex asset. A smart
contract is a program written in some scripting language
(e.g., Solidity for Ethereum smart contracts [8]) that al-
lows general program executions on a blockchain’s mining
nodes. A smart contract can be thought of as a class in
an object-oriented programming language. End-users write
the specification of the member variables (the state) and the
member functions (the state transitions) of this class in the
smart contract code. For example, Alice can write a smart
contract that represents her ownership of a car. The mem-
ber variables of this smart contract could include the car
attributes (e.g., make, model, year, the VIN), the car owner
(Alice’s public key), and the sell price of the car (e.g., 10
bitcoins). The member functions could include a buy func-
tion that allows Alice to move the ownership of the car to
another end-user if this end-user pays Alice the car price
through a buy function call.

After an end-user writes the description of the smart con-
tract class, the end-user deploys the smart contract on a
blockchain through a deployment message that is sent to the
mining nodes in the consensus layer. The deployment mes-
sage includes the smart contract code. Deploying a smart
contract on the blockchain instantiates an object [21, 27] of
the smart contract class and stores this object in the block-
chain. This object has a state, a constructor that is called
when a smart contract is first deployed on the blockchain,
and a set of functions that could alter the state of this ob-
ject. The constructor initializes the object state. To alter
the state of the object, end-users call smart contract func-
tions via function call messages. End-users send function
call messages to the mining nodes accompanied by the func-
tion parameters to the blockchain mining nodes. Miners

3



execute the function on the current contract state and re-
cord any contract state transitions in their current block
in the blockchain. Therefore, a smart contract state might
span many blocks after the block where the smart contract
is first deployed. The deployment message is a special case
of a function call message that includes the smart contract
code and results in executing the constructor of this smart
contract. End-users pay a fee to the mining nodes for every
function call message, including the deployment message, to
incentivize the mining nodes to execute this function and
record the state transitions of the smart contract object in
their current block.

Every function call message, msg, includes some implicit
parameters that are passed in the message and are accessible
by the function code. These parameters include the sender
end-user public key, accessed through msg.sender, and an
optional asset value, accessed through msg.val. This op-
tional asset value allows end-users to use their assets, in cur-
rency units, in the smart contract functions. For example,
Alice might deploy a smart contract that locks 10 ethers
of hers in the contract, passed in the deployment message,
and conditionally transfers these 10 ethers to Bob if Bob
solves some puzzle that is written in the contract. Another
example is the car ownership transfer where Bob passes 10
bitcoins of his in the buy function call of Alice’s smart con-
tract in order to buy Alice’s car. Note that miners have
to verify that end-users who pass an asset value in a smart
contract function call must own this asset value and they
cannot double spend this asset value in another smart con-
tract function call or another implicit transaction.

Figure 3: Smart contract state can span multiple blocks in
the blockchain.

Figure 3 illustrates a smart contract example where the
smart contract state spans multiple blocks in the block-
chain. As shown, Alice deploys smart contract SC1 on the
Bitcoin blockchains. Along with the deployment message,
Alice passes her 0.5 bitcoins signed to be locked in SC1.
This locking moves the ownership of the 0.5 bitcoins from
Alice to SC1. SC1 has a state variable s = s0, an asset a
(0.5 BTC), and an owner Alice. SC1 has a function F1(x)
that transfers the ownership of the asset a to any caller who
provides a valid parameter x according F1’s logic. Also,
F1(x) transfers SC1 state variable s from s0 to s1. When
Bob calls F1(x) providing a valid parameter x, the mining
nodes execute this function call and record all the smart
contract state transitions in their current block. As shown,
after Bob calls F1(x), the contract’s variable s is set to s1
and the asset a, 0.5 bitcoin, is moved to Bob. Bob can
spend the transferred asset via transactions in the follow-
ing blocks. In Figure 3, the ownership of the 0.5 bitcoins is
moved from Alice to SC1 through the deployment message,
from SC1 to Bob through the F1 function call, and finally

Algorithm 1 Smart contract that represents a car as a
complex asset

class CarSmartContract {
1: String make . the make of the car

2: String model . the model of the car

3: Integer year . the manufacture year of the car

4: Double p . the price of the car

5: Address o . the public key of the owner

6: procedure Constructor(String make, String model,
Integer year, Double p)

7: this.make = make
8: this.model = model
9: this.year = year

10: this.p = p
11: this.o = msg.sender
12: end procedure
13: procedure Buy(Address curOwner)
14: requires(msg.val ≥ this.p and curOwner == this.o)
15: transfer msg.val to this.o
16: this.o = msg.sender
17: end procedure
18: procedure UpdatePrice(Double p)
19: requires(msg.sender == this.o)
20: this.p = p
21: end procedure

}

is split among Alice (0.2 BTC) and Bob (0.3 BTC) via a
Bitcoin transaction.

Algorithm 1 shows an example of a smart contract to
register a car as a complex asset. The member variable
(Lines 1 – 5) represent the attributes of the car. The con-
structor (Line 6) initializes the car object with the attrib-
ute values passed in the deployment message (e.g., make,
model, year, and price). In addition, the constructor uses
the implicit parameter msg.sender to initialize the car owner
(Line 11). The smart contract has two other functions: Buy
(Line 13) and UpdatePrice (Line 18). The Buy function
allows other end-users to buy the car asset. An end-user
who wants to buy the car sends a Buy function call mes-
sage accompanied by the implicit parameters msg.sender and
msg.val in addition to, an explicit parameter curOwner that
includes the address of the current car owner. msg.sender de-
termines the identity of the end-user who wants to buy the
car and msg.val determines the value in currency units that
the end-user wants to pay for the car. curOwner determ-
ines the current owner of the asset from the perspective of
the function call request. This is necessary to prevent con-
current Buy requests from buying the same asset. Assume
two concurrent Buy function calls that are submitted with
the same curOwner value. If one Buy request succeeds, the
owner of the asset will be altered as a result. Therefore,
the other Buy request will fail. The Buy function requires
msg.val to be greater than or equal to the car price and
curOwner to be equal to the current car owner (Line 14).
If true, msg.val is transferred to the current owner and the
ownership of the car is transferred to msg.sender. However, if
the requires instruction fails, the function execution is ter-
minated and the transfers do not take place. Finally, the
function UpdatePrice allows only the current owner of the
car to update its price.
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Although smart contracts are powerful tools to repres-
ent the attributes and the functionality of complex assets
in permissionless blockchain, registering complex assets via
smart contract deployments faces several challenges includ-
ing the authentication, double spending, and legality.

The authentication challenge. “How can end-users
authenticate the registered asset and ensure its existence?”.
For example, if Alice registers her car title in the Bitcoin
blockchain, “how could Bob who wants to buy this car au-
thenticate that this car physically exists and that Alice is
not maliciously registering a car that does not exist?”.

The double spending challenge. “How can the block-
chain system prevent a malicious end-user from register-
ing the same asset in two smart contracts within the same
permissionless blockchain or in different permissionless block-
chains?”. In the previous example, even if Bob could ma-
gically authenticate Alice’s car smart contract, ”how could
Bob ensure that this is the only smart contract that Alice
deployed to register her car in a permissionless blockchain?”.

The legality challenge. “How can end-users ensure that
this asset transfer is legally allowed by State law where this
transfer takes place?”. This challenge addresses the State
laws including the taxation law. Transferring the ownership
of a car requires the buyer to pay a transfer taxes to the
State according to the State law.

Our proposal in Section 5 addresses these challenges by
unifying both permissioned and permissionless blockchains.
This unification allows end-users to use the infrastructure
of permissionless blockchains to trade their assets without
violating State laws while preventing double spending and
trading unauthenticated assets.

4. PERMISSIONED BLOCKCHAINS
In a blockchain, nodes agree on their shared states across a

network of participants. Existing blockchain systems can be
divided into two main categories of permissionless and per-
missioned blockchains. While Permissionless blockchains
are public and any computing node can participate in main-
taining the blockchain ledger, permissioned blockchain con-
sists of a set of known and identified nodes that do not fully
trust each other.

Blockchain was originally devised for Bitcoin cryptocur-
rency [41], however, recent systems focus on its unique fea-
tures such as transparency, provenance, fault-tolerant, and
authenticity to deploy a wide range of distributed applica-
tions such as supply chain management, IoT, and healthcare
in a permissioned settings.

4.1 Architecture Overview
The architecture of a permissioned blockchain consists of

Application layer, Consensus layer, and Storage layer. The
application layer of a permissioned blockchain, similar to
permissionless blockchains, consists of end-users who sub-
mit their transactions to the blockchain through a client
library. However the consensus layer which is mainly re-
sponsible for ordering and validating the transactions dif-
fers from the consensus layer in permissionless blockchains.
In fact, since the nodes in a permissioned blockchain are
known and identified, mining can be replaced with tradi-
tional consensus protocols in order to establish a total order
on the requests [16]. Finally, the storage layer, similar to

Figure 4: Permissioned Blockchain Architecture Overview

permissionless blockchains, consists of a decentralized dis-
tributed ledger maintained by every node within the block-
chain.

The consensus layer runs a consesus protocol among the
computing nodes of the consensus layer. Consensus pro-
tocols employ State Machine Replication (SMR) technique
to replicates data, e.g. ledger, over nodes. State machine
replication is a technique for implementing a fault-tolerant
service by replicating servers [33]. In the state machine rep-
lication model replicas agree on an ordering of incoming re-
quests.

To establish consensus among the nodes in a permissioned
blockchain, asynchronous fault-tolerant protocols can be used.
Nodes in a permissioned blockchain might crash or mali-
ciously behave. In a crash failure model, nodes operate at
arbitrary speed, may fail by stopping, and may restart, how-
ever, they may not collude, lie, or otherwise, attempt to sub-
vert the protocol. Whereas, in a Byzantine failure model,
faulty nodes may exhibit arbitrary, potentially malicious,
behavior.

Crash fault-tolerant protocols guarantee safety in an asyn-
chronous network using 2f+1 nodes to overcome the sim-
ultaneous crash failure of any f nodes while in Byzantine
fault-tolerant protocols, 3f+1 nodes are usually needed to
provide the safety property in the presence of f malicious
nodes.

Permissioned blockchain mainly follow an order-execute
paradigm where a set of peers (might be all of them) valid-
ates the transactions, agrees on a total order for the trans-
actions, puts them into blocks and multicasts them to all
the nodes. Each node then validates the block, executes
the transactions using a ”smart contract”, and updates the
ledger.

4.2 Data Management
The permissioned blockchain systems are distinguished

from the permissionless blockchain systems in one critical
way: although there is in general a lack of trust among
entities, all entities or components in the system are com-
pletely identified. The identified storage nodes in the per-
missioned blockchains can come together to allow a much
more general-purpose data model then that is stipulated
in the permissionless system. Thus, Permissioned block-
chains can be used for different distributed applications. In
the same vein, since end-users of permissioned systems have
known identities, we can enforce the correct transaction com-
putation assumption from the database systems. This allows
the transaction models in permissioned system to be more
general than the transaction model in permissionless block-
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chains where each transaction mainly transfers the owner-
ship of assets, i.e., cryptocurrencies, from one identity to
another. In a permissioned blockchain depending on the
application, different types of transactions can be defined.
For example, a Supply Chain Management includes different
processes such as farming, refining, design, manufacturing,
packaging, and transportation. As a result, to support a
Supply Chain Management system, the permissioned block-
chain should be able to record all transactions within these
different processes.

To summarize, permissionless systems are completely open
and public and therefore do not have the notion of identity
and trust. In effect, these systems have to withstand mali-
cious behavior at all levels: at the level of an end-user, at the
level of a network node who is miner, as well as other nodes
that try to compromise the sanctity of the system. End-
users, consensus nodes, and storage nodes in the permis-
sioned system, on the other hand, all have known identities.
The lack of trust is primarily because of two possibilities. If
the permissioned system belongs to a single enterprise, the
consensus and storage nodes may be stored at different in-
frastructure providers. The source of maliciousness in this
setting may arise if one or more of the infrastructures are
compromised. Alternatively, the permissioned system may
be a designed to facilitate cooperation among multiple enter-
prises. The source of maliciousness in this setting may arise
due to the competition among these cooperating entities.

5. GLOBAL ASSET MANAGEMENT SYS-
TEM

This section proposes a global asset management system
that leverages permissioned blockchains to address the au-
thentication, the double spending, and the legality challenges
of using smart contract to represent complex assets in permission-
less blockchains. Governmental offices deploy their own per-
missioned blockchains. End-users request from a govern-
mental office to register their assets in a smart contract in
some permissionless blockchain. End-users pay a registra-
tion fee to the governmental office for this registration. The
governmental office checks if this asset has not been pre-
viously registered in any permissionless blockchain smart
contract. This check is necessary to ensure that end-users
cannot double spend their assets through several smart con-
tracts. If true, the governmental office issues an authentic-
ated smart contract to deploy on the permissionless block-
chain included in the registration request. The governmental
office encodes the legal laws, including the taxation law, in
the terms of the smart contract. Afterwards, the govern-
mental office deploys the smart contract on behalf of the end-
user. The smart contract, owned by the governmental office
identity, registers an asset, owned by the end-user identity,
and allows the end-user to trade the asset in the permission-
less blockchain while preserving the legal rights of the gov-
ernmental office. For example, the California DMV office
deploys a car registration permissioned blockchains. When
Alice wants to register her car in the Ethereum blockchain,
she requests a smart contract registration of her car in the
Ethereum blockchain from the DMV office. The DMV office
issues this smart contract stating that any transfer of own-
ership of this car should pay the governmental office some
tax percentage, say 10%, from the car price. Alice cannot
double spend her car as there exists only one smart contract

that represents Alice’s car in any permissionless blockchain.
Now, if Bob wants to buy Alice’s car, Bob first checks that
this smart contract is authenticated by the governmental
office identity to ensure the authenticity of the car in the
smart contract. If true, Bob can buy the car by submit-
ting a Buy function call request to the mining nodes of the
permissionless blockchain. This request is accompanied by
Bob’s currency units that he wants to pay for the car in the
implicit parameter msg.val. If the Buy function call suc-
ceeds, Alice gets paid in currency units, the governmental
office gets paid a tax in currency units, and the ownership
of the car is transferred to Bob.

This proposal simplifies the process of trading assets by
leveraging the permissionless blockchain infrastructure. Once
an asset is registered in a smart contract, trading this asset
among end-users is as simple as a permissionless blockchain
transaction. End-users are motivated to register their assets
as this registration offers them an elimination of the bureau-
cratic process needed to trade their assets. Governmental of-
fices are motivated to participate by running a permissioned
blockchain as it offers them automation and transparency.

In Section 5.1, we present the architecture overview of
the permissioned and permissionless blockchain unification
proposal. Then, we explain the transaction model of the
registered assets in permissionless blockchain in Section 5.2.
We present a car registration smart contract example in Sec-
tion 5.3. Finally, we discuss alternative asset management
models in Section 5.4.

5.1 Architecture Overview

Figure 5: Architecture overview of the permissioned and
permissionless blockchain unification proposal.

Figure 5 illustrates the architecture overview of the per-
missioned and permissionless blockchain unification proposal.
Governmental offices run their trusted asset registration sys-
tems. These trusted asset registration systems could be as
simple as a database management systems. Governmental
offices run permissioned blockchains with a set of trusted
governmental officials, called validators. Such governmental
officials might fail, e.g., the identity of a governmental offi-
cial gets stolen. Depending on the failure model of the val-
idators, they run a crash fault-tolerant, e.g., Paxos [34] or a
Byzantine fault-tolerant, e.g., PBFT [18] consensus protocol
to agree on the registered assets.

An end-user sends an asset registration request to the
permssioned blockchain validators. Validators run a con-
sensus protocol among themselves to ensure that this asset
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is not previously registered. Once the consensus is achieved,
each validator executes the request using some predeter-
mined smart contract. The smart contract generates an-
other smart contract representing the registered asset. To
ensure deterministic execution of transactions, as mentioned
in Section 3, smart contracts are written in scripting lan-
guages like Solidity.

Validators then add the asset registration record in their
permissioned blockchain. In addition, they authenticate the
deployment of the resulted smart contract in a permission-
less blockchain. This smart contract is owned by a multi-
signature address of the validators. In addition, the asset in
the smart contract is owned by the end-user identity. Once
the smart contract is deployed on the permissionless block-
chain, end-users can trade assets through smart contract
function calls.

As shown in Figure 5, different governmental offices can
use the same permissionless blockchain to deploy their as-
set registration smart contracts on. Also, a governmental
office can use multiple permissionless blockchains to deploy
their smart contracts on. For example, both car and house
registration offices can use the Ethereum blockchain to re-
gister cars and houses. Also, the car registration office can
register some cars in the Ethereum blockchain while regis-
tering other cars in the Bitcoin blockchain. Once assets
are registered in a permissionless blockchains, end-users can
transact over these assets as explained next in Section 5.2.

5.2 Transaction Model
Registering complex assets in permissionless blockchains

extends the transaction model of these blockchain. We di-
vide the supported transactions into four categories as de-
scribed below.

Currency units transactions. These transactions are
the primitive built-in supported transactions that allow end-
users to transfer the ownership of currency units among
end-user identities. In addition, these transactions allow
end-user to split and merge currency units as explained in
Section 2.

Complex asset to currency units, of the same block-
chain, transactions. These transactions allow end-users
to trade complex assets for currency units of the same block-
chain where the complex asset is registered. These trans-
actions are allowed through smart contract function calls.
Smart contract classes of complex assets include the trad-
ing functionalities of these complex assets. For example, an
end-user who wants to buy a complex asset calls the Buy
function of the smart contract of this complex asset. This
Buy function call is accompanied with end-user’s currency
units. The Buy function transfers the currency units to the
current owner of the complex asset and transfers the own-
ership of the complex asset to the Buy function caller.

Complex asset to currency units, of another block-
chain, transactions. These transactions allow end-users
to trade complex assets for currency units of a different
blockchain from the one where the complex asset is registered.
These transactions are enabled by atomic cross-chain swap
protocols [26,42,51]. Also, these protocols require the smart
contracts of complex assets to support the functionality of
atomic cross-chain transactions. For example, an atomic
cross-chain transaction could allow Alice to sell her car, re-
gistered in the Bitcoin blockchain, to Bob who owns ether

Algorithm 2 Authenticated smart contract that represents
a car as a complex asset

class CarSmartContract {
1: String make . the make of the car

2: String model . the model of the car

3: Integer year . the manufacture year of the car

4: Double p . the price of the car (currency units)

5: Address o . the public key of the car owner

6: Address co . the contract owner represented by a

multisignature address of the validators

7: Double tp . the sales tax percentage

8: procedure Constructor(String make, String model,
Integer year, Double p, Double tp, Address o)

9: this.make = make
10: this.model = model
11: this.year = year
12: this.p = p
13: this.o = o
14: this.tp = tp
15: this.co = msg.sender
16: end procedure
17: procedure Buy(Address curOwner)
18: requires(msg.val ≥ this.p·(1+ this.tp

100
) and curOwner

== this.o)
19: transfer msg.val · (1− this.tp

100
) to this.o

20: transfer msg.val · this.tp
100

to this.co
21: this.o = msg.sender
22: end procedure
23: procedure UpdatePrice(Double p)
24: requires(msg.sender == this.o)
25: this.p = p
26: end procedure
27: procedure UpdateContractOwner(Address co)
28: requires(validate-multisig(msg.sender, this.co))
29: this.co = co
30: end procedure
31: procedure DestroyContract
32: requires(validate-multisig(msg.sender, this.co))
33: destruct-contract()
34: end procedure

}

currency units in the Ethereum blockchain. An atomic cross-
chain commitment protocol must guarantee that either both
the transfer of Alice’s car to Bob in the Bitcoin blockchain
and the transfer of Bob’s ether to Alice in the Ethereum
blockchain take place or none of these two transfers takes
place.

Complex asset to complex asset transactions. These
transactions allow end-users to swap complex assets within
the same permissionless blockchain or across permissionless
blockchains. For example, Alice might want to exchange her
car, registered in the Bitcoin blockchain, with Bob’s boat,
registered in the Ethereum blockchain. These transactions
use atomic cross-chain swap protocols and require the smart
contracts of complex assets to support the functionality of
atomic cross-chain transactions.

5.3 Car Smart Contract Example
This section presents an authenticated smart contract ex-

ample that represents a car as a complex asset. This ex-
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ample illustrates the necessary updates to the smart con-
tract presented in Algorithm 1 in order to ensure the authen-
ticity and the legality of the car registration in a permission-
less blockchain. These updates are reflected in Algorithm 2.

The member variable (Lines 1 – 7) represent the attributes
of the car. As shown, the smart contract itself is owned by
the validators multi-signature address (Line 6). In addition,
the car itself, as a complex asset example, is owned by an
end-user (Line 5).

The constructor (Line 8) initializes the car object with
the attribute values passed in the deployment message (e.g.,
make, model, year, price, tax percentage, and the owner’s
public key). In addition, the constructor uses the implicit
parameter msg.sender to initialize the smart contract owner
(Line 15).

The smart contract has two functions to manipulate the
car asset: Buy (Line 17) and UpdatePrice (Line 23). In ad-
dition, the smart contract has two functions to manipulate
the smart contract itself: UpdateContractOwner (Line 27)
and DestroyContract (Line 31).

The Buy function is slightly different from the Buy func-
tion of the smart contract in Algorithm 1. The main dif-
ference is that the validators of the permissioned blockchain
embed the taxation law in the code of the Buy function.
When a Buy function call is received by the permissionless
blockchain mining nodes, they verify that value of the cur-
rency units sent in msg.val is greater than or equal to the
sum of the car price and the sales tax value of this car. If
true, the car price is sent to the current car owner, the tax
value is sent to the contract owner (the validators’ multi-
signature address), and the ownership of the car is trans-
ferred to msg.sender. The UpdatePrice function is the same
as the UpdatePrice function in Algorithm 1.

The UpdateContractOwner function allows the validators
to change the ownership of the contract to another multi-
signature address. This function is necessary to alter the
contract ownership in case a validator’s identity is stolen.
Validators replace the current multi-signature address that
includes a stolen identity by a newly generated multi-signature
address that excludes the stolen identity. The DestroyCon-
tract function allows the validators to destroy the smart con-
tract object.

5.4 Alternative Asset Management Model
The proposed global asset management system leverages

a permissioned blockchain only in the registration process of
complex assets in a permissionless blockchain. Once an asset
is registered, the permissionless blockchain has the only re-
cord of the current ownership of the asset in the asset’s smart
contract object. In addition, the permissionless blockchain
is the only marketplace where this asset is traded. Of course,
the asset can be traded for other assets and currency units
in other permissionless blockchain through atomic swaps.
However, the asset object indefinitely remains in the same
permissionless blockchain from its registration time until the
asset’s smart contract object is explicitly destroyed.

An alternative model can unify permissioned and permission-
less blockchains as follows. A permissioned blockchain main-
tains the ownership record of an asset. If the asset owner
wants to trade it for some assets or currency units of some
permissionless blockchain, the owner requests to register
this asset in a trading smart contract in the permission-
less blockchain. The permissionless blockchain only acts as

the marketplace to trade assets. After registering the asset,
end-users can complete the trade through single-chain or
cross-chain transactions. Once the trade is completed, the
ownership is updated in the permissioned blockchain and
the trading smart contract object is destroyed. This model
separates the ownership storing platform, the permissioned
blockchain, from the trading platform, the permissionless
blockchain.

6. CHALLENGES
Our proposal of unifying permissioned and permission-

less blockchains to create a global asset management system
faces many challenges. First, the scalability of the global as-
set management system is bounded by the scalability of the
underlying permissionless blockchain. Current permission-
less blockchains are not scalable (e.g., Bitcoin blockchain
processes 3∼7 transactions per second [37]). As a result,
the scalability of the global asset management system could
be limited. We address the scalability challenge in Sec-
tion 6.1. The second challenge is validator identity theft.
If the identity of some validators of the permissioned block-
chain are stolen, the stolen identities can be used to destroy
currently deployed smart contracts in addition to authentic-
ating smart contracts of assets that do not exist. The prob-
lem of validator identity theft is addressed in Section 6.2. Fi-
nally, we address the asset registration flexibility challenge.
Our current model allows a complex asset to be registered
in only one permissionless blockchain at a time. We discuss
open research challenges that arise from allowing a complex
asset to be concurrently registered and marketed at several
permissionless blockchains in Section 6.3.

6.1 The Scalability Challenge

The global asset management system requires the gov-
ernmental offices to register assets in permissionless block-
chains through smart contract deployment. Registered as-
sets are traded through smart contract function calls that
result in transactions in the underlying permissionless block-
chain. Although, the scalability, represented by the number
of executed transactions per second (TPS), of every indi-
vidual permissionless blockchain is limited, the global asset
management system can scale. Each governmental office can
use multiple permissionless blockchains to register different
end-user assets. Therefore, the scalability of the asset man-
agement system is not bounded by the scalability of an in-
dividual permissionless blockchain. Instead, the TPS of the
asset management system can scale up to the aggregated
TPS of all the permissionless blockchains used in registering
the assets. For example, if the Bitcoin blockchain executes
up to 7 TPS and the Ethereum blockchain executes up to
25 TPS, an asset management system that register assets in
both Bitcoin and Ethereun blockchains can scale up to 32
TPS. Using additional permissionless networks to register
assets increases the overall TPS of the asset management
system.

Other permissionless blockchain scaling techniques can be
used to scale the global asset management system. One tech-
nique is sharding [14]. A permissionless blockchain is par-
titioned into multiple shards and each shard is maintained
by some mining nodes. Transactions that span one shard
are handled by the mining nodes of this shard. Transac-
tions that span multiple shards are handled by the mining
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nodes of these multiple shards and coordinated by an atomic
swap protocol [7, 26, 42, 51]. Another technique to scale
permissionless blockchains is off-chain transactions. Light-
ning networks [45] can be used to execute complex assets to
currency transactions. The question of how to ensure the
correctness and tolerate maliciousness in off-chain complex
assets to currency transactions remains an open research
question.

6.2 Validator Identity Theft Challenge

An important challenge of unifying permissioned block-
chains and permissionless blockchains is trust. Permission-
less blockchains by design are trust-free and they only as-
sume that some percentage of the computing power (51%
for Bitcoin) or of the stake owners are honest and correct.
On the other hand, permissioned blockchains depend on a
known set of trusted identities, the validators. If the valid-
ator failure model include byzantine failures, typically the
number of validators is set to 3f + 1 where f is the num-
ber of validators that can maliciously fail. For example, a
permissioned blockchain with four validators can tolerate a
malicious failure of one validator. Trusting the validators
of the permissioned blockchain is necessary to trust the au-
thentication of smart contract that represent complex assets
in the permissionless blockchain. However, the identity theft
of more than f validators could result in authenticating the
registration of non existing assets and destroying the smart
contract objects of existing assets.

Figure 6: Permissioned blockchains use validators key rota-
tion to limit the damage that results from validator identity
theft.

To address this challenge, the standard technique of key
rotation [29, 38] can be used to limit the damage that res-
ults from validator identity theft. As shown in Figure 6,
the permissioned network divides the timeline into epochs.
For every epoch, a fresh set of validator identities is used
to authenticate the smart contracts that register assets in
the permissionless blockchain during this epoch. A stolen
validator identity set can maliciously register non existing
assets only during one epoch. If a validator identity theft is
detected within an epoch, the permissioned blockchain can
immediately reset the epoch invalidating the stolen validator
identity. The question of how to solve the trust problem
while achieving authenticity of asset registration remains an
open research question.

6.3 Asset Registration Flexibility Challenge

The proposed global asset management system requires
to limit the number of permissionless blockchain where an

asset is registered to one at a time. This requirement is
necessary to prevent the double spending of the one asset
on different blockchains. An asset can be registered on
one permissionless blockchain and if the current asset owner
wants to change the registration blockchain, an owner has
to request a contract cancellation from the validators of the
permissioned blockchain. After the contract is cancelled, the
owner needs to request the registration of the asset in an-
other permissionless blockchain. Asset owners might want
to market their assets on many permissionless blockchains
at a time. If this flexibility is allowed, a protocol is required
to ensure that once the asset is traded in a smart contract
on one blockchain, other smart contracts on other block-
chains must be atomically invalidated. This protocol can be
thought of as a variation of atomic cross-chain swaps. The
design of such protocol and the details of its correctness re-
main open research questions.

7. RELATED WORK
Bitcoin [41] is considered the first successful global scale

peer-to-peer cryptocurrency. The Nakamoto consensus pro-
tocol used in Bitcoin allows participants to transact with
each other without the need for a trusted third party, such
as a banks or a credit card company. The ledger that records
all the transaction history in traditional trusted banks is re-
placed by a distributed ledger stored in all the participants in
Bitcoin, thus eliminating the need for trusted third parties.
Many of the recent works on permissionless blockchains are
focused on enhancing one aspect of Bitcoin – the perform-
ance limitation. BitcoinNG [23] separates the blocks in the
chain into key-blocks and micro-blocks. Key-blocks are cre-
ated by solving the proof-of-work challenge and the miner
who solved the puzzle becomes the leader producing many
micro-blocks consisting of transactions. The leader is re-
placed when another miner mines the next key-block. Thus,
by increasing the frequency of micro-blocks produced by a
leader, BitcoinNG improves the throughput of Bitcoin. But
empowering a single leader to produce micro-blocks entails
considerable risks. ByzCoin [30] identifies the benefits of
separating the blocks into key and micro blocks, as well as
the issues with a single leader. ByzCoin replaces a single
leader with a dynamically changing group of trustees. Trust-
ees execute PBFT [18] to decide on the next micro-block
and use Collective Signing (CoSi) [47] to collectively sign
the chosen block. Elastico [36] is another blockchain solu-
tion aiming to increase the performance of Bitcoin. The key
idea proposed in Elastico is to split all the servers in the
system into smaller sized groups called committees. Every
committee is then assigned with a disjoint set of transac-
tions and the committee members verify those transactions.
Each committee executes classical PBFT in order to agree
on the set of verified transactions. These transactions are
then sent to a final committee which is in-charge of aggreg-
ating all the transactions produced by different committees
into one block and then to broadcast the final block. Thus
by allowing different committees to process different shard of
transactions, Elastico increases the throughput of Bitcoin.

Although the above discussed solutions provide various
strategies to increase the performance on Bitcoin, most of
the solutions assume a cryptocurrency application. Even if
they can be easily extended to include smart contracts, they
would still lack in managing global assets. The high churn
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of participants in a permissionless blockchain network poses
impediments is regulating laws associated with global assets.

While Permissionless blockchains are public and anyone
can participate without a specific identity, in permissioned
blockchains nodes are known and identified. In this paper,
permissioned blockchains are used to register global assets
and deploy them on permissionless blockchains. Most exist-
ing permissioned blockchains follow the order-execute archi-
tecture where nodes agree on the order of incoming requests
and then execute the requests in the same order. Permis-
sioned blockchains differ mainly in their consensus protocols.
Tendermint [31] is different from the original PBFT in two
ways, first, only a subset of nodes, called validators, parti-
cipate in the consensus protocol and second, the leader is
changed after the construction of every block (leader rota-
tion). Quorum [19] is an enterprise-focused version of Ether-
eum [49] developed by JP Morgan. Quorum introduces a
consensus protocol based on Raft [43]: a well-known crash
fault-tolerant protocol. Chain Core [1], Multichain [25], Hy-
perledger Iroha [4], and Corda [2] are some other prominent
permissioned blockchains that follow order-execute architec-
ture and use varients of Byzantine fault-tolerant protocols.

Fabric [10] introduces the execute-order-validate architec-
ture and leverages parallelism by executing the transactions
of different applications simultaneously. Modular design,
pluggable fault-tolerant protocol, policy-based endorsement,
and non-deterministic execution are some of the main ad-
vantages of Fabric. However, it performs poorly on work-
loads with high-contention, i.e., many conflicting transac-
tions in a block. To support conflicting transactions, Parb-
lockchain [9] introduces the order-(parallel)execute architec-
ture where the orderer nodes generate a dependency graph in
the ordering phase and transactions are executed in parallel
following the generated dependency graph in the execution
phase.

Users on the same or different blockchains should be able
to initiate transactions in order to exchange assets. Our
proposal supports four types of transactions: transactions
in currency units, transactions between complex asset and
currency units in the same blockchain, transactions between
complex asset and currency units in different blockchains,
and transactions between two complex assets. Different
techniques have been presented to support intra- and cross-
chain asset trades. Atomic cross-chain swaps [26] are used
for trading assets on two unrelated blockchains. Atomic
swaps use hash-lock and time-lock mechanisms to either per-
form all or none of a cryptographically linked set of transac-
tions. Interledger protocols (ILPV [48]) which are presented
by the World Wide Web Consortium (W3C) use a general-
ization of atomic swaps and enable secure transfers between
two blockchain ledgers using escrow transactions. since the
redemption of an escrow transaction needs fulfillment of all
the terms of an agreement, the transfer is atomic. Lightning
network [39] [45] also generalizes atomic swap to transfer
assets between two different clients via a network of micro-
payment channels. Blocknet [20], BTC [13], Xclaim [52],
POA Bridge [5] (designed specifically for Ethereum), Wan-
chain [6], and Fusion [3] are some other blockchain systems
that allow users to transfer assets between two chains.

Hyperledger also addresses atomic cross-chain swap between
permissioned blockchains that are deployed on different chan-
nels by either assuming the existence of a trusted channel

among the participants or using an atomic commit pro-
tocol [11] [10].

Using sidechain is proposed in [12] to transfer assets from a
main blockchain to the sidechain(s) and execute some trans-
actions in the sidechain(s) in order to reduce confirmation
time and transaction cost, and support more functional-
ity. Liquid [22], Plasma [44], Sidechains [24], and RSK [35]
are some other blockchain systems that use sidechains. In
Polkadot [50] and Cosmos [32] also assets can be exchanged
using a main chain and a set of (side) blockchains. Both
Polkadot and Cosmos rely on byzantine consensus protocol
in both sender and receiver sides.

To support global assets in blockchains, using tokens which
are backed by external assets, called asset-backed tokens, is
proposed [28]. Tokenization is the process of representing
the ownership of real world assets digitally on a blockchain.
While the main purpose of tokenization is to use tokens
as assets (investment instrument) and split it into smaller
pieces, in this paper we mainly focus on how to authenticate
an asset as being legitimate so that it can be transacted in
a marketplace (i.e., transfer of ownership). In addition, the
tokenization of the assets on the blockchain is being done
by a known entity (highly centralized) whereas in our pro-
posal the centralized entity is replaced by a governmental
permissioned blockchain which first, puts the responsibility
of forcing the law on the government, and second, ensures
that the centralized entities do not monopolize the tokeniz-
ation of assets on the blockchain.

8. CONCLUSION
In this paper, we propose a global asset management sys-

tem that leverages both permissioned and permissionless
blockchains. Governmental offices maintain trusted permis-
sioned blockchains. Permissioned blockchains authenticate
the registration of end-user assets in permissionless block-
chains through smart contracts. In addition, permissioned
blockchains prevent the double spending of assets by en-
suring that every asset can be registered in only one au-
thenticated smart contract in one permissionless blockchain.
Finally, the permissioned blockchain ensure the legality of
trading the assets by encoding the laws (e.g., taxation law)
in the smart contract code. Permissionless blockchains are
marketplaces to trade the registered assets. Registered as-
sets can be traded for currency units or other assets on
the same permissionless blockchain or on other permission-
less blockchain. This extended transaction model is enabled
through single-chain and cross-chain transactions.

9. REFERENCES
[1] Chain. http://chain.com.

[2] Corda. https://github.com/corda/corda.

[3] Fusion whitepaper: An inclusive cryptofinance
platform based on blockchain.
https://docs.wixstatic.com/ugd/
76b9ac be5c61ff0e3048b3a21456223d542687.pdf.

[4] Hyperledger iroha.
https://github.com/hyperledger/iroha.

[5] Poa bridge.
https://github.com/poanetwork/token-bridge.

[6] Wanchain: Building super financial markets for the
new digital economy.

10



https://www.wanchain.org/files/Wanchain-
Whitepaper-EN-version.pdf.

[7] Atomic cross-chain trading. https://en.bitcoin.it/
wiki/Atomic cross-chain trading, 2018.

[8] Solidity — solidity 0.5.5 documentation.
https://solidity.readthedocs.io/en/v0.5.5/,
2018.

[9] M. J. Amiri, D. Agrawal, and A. E. Abbadi.
Parblockchain: Leveraging transaction parallelism in
permissioned blockchain systems. In 2019 IEEE 39th
International Conference on Distributed Computing
Systems (ICDCS). IEEE, 2019.

[10] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin,
K. Christidis, A. De Caro, D. Enyeart, C. Ferris,
G. Laventman, Y. Manevich, et al. Hyperledger fabric:
a distributed operating system for permissioned
blockchains. In Proceedings of the Thirteenth EuroSys
Conference, page 30. ACM, 2018.

[11] E. Androulaki, C. Cachin, A. De Caro, and
E. Kokoris-Kogias. Channels: Horizontal scaling and
confidentiality on permissioned blockchains. In
European Symposium on Research in Computer
Security, pages 111–131. Springer, 2018.

[12] A. Back, M. Corallo, L. Dashjr, M. Friedenbach,
G. Maxwell, A. Miller, A. Poelstra, J. Timón, and
P. Wuille. Enabling blockchain innovations with
pegged sidechains. 2014.

[13] V. Buterin. Chain interoperability. R3 Research
Paper, 2016.

[14] V. Buterin. On sharding blockchains. https:
//github.com/ethereum/wiki/wiki/Sharding-FAQs,
2018.

[15] V. Buterin et al. A next-generation smart contract and
decentralized application platform. white paper, 2014.

[16] C. Cachin. Architecture of the hyperledger blockchain
fabric. In Workshop on Distributed Cryptocurrencies
and Consensus Ledgers, volume 310, 2016.

[17] C. Cachin and M. Vukolić. Blockchain consensus
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