
Permissioned Blockchains:
Properties, Techniques and Applications

Mohammad Javad Amiri
University of Pennsylvania
mjamiri@seas.upenn.edu

Divyakant Agrawal
University of California Santa Barbara

agrawal@cs.ucsb.edu

Amr El Abbadi
University of California Santa Barbara

amr@cs.ucsb.edu

ABSTRACT
The unique features of blockchains such as immutability, trans-
parency, provenance, and authenticity have been used by many
large-scale data management systems to deploy a wide range of dis-
tributed applications including supply chain management, health-
care, and crowdworking in permissioned settings. Unlike permis-
sionless settings, e.g., Bitcoin, where the network is public, and
anyone can participate without a specific identity, a permissioned
blockchain system consists of a set of known, identified nodes
that might not fully trust each other. While the characteristics of
permissioned blockchains are appealing to a wide range of large-
scale data management systems, these systems, have to satisfy four
main requirements: confidentiality, verifiability, performance, and
scalability. Various approaches have been developed in industry
and academia to satisfy these requirements with varying assump-
tions and costs. The focus of this tutorial is on presenting many of
these techniques while highlighting the trade-offs among them. We
demonstrate the practicality of such techniques in real-life by pre-
senting three different applications, i.e., supply chain management,
large-scale databases, and multi-platform crowdworking environ-
ments, and show how those techniques can be utilized to meet the
requirements of such applications.
ACM Reference Format:
Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2021.
Permissioned Blockchains: Properties, Techniques and Applications. In
Proceedings of the 2021 International Conference on Management of Data
(SIGMOD ’21), June 20–25, 2021, Virtual Event, China. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3448016.3457539

1 INTRODUCTION
A blockchain is a distributed data structure for recording transac-
tions maintained by several nodes without a central authority [18].
In a blockchain system, nodes agree on their shared states across a
large network of untrusted participants. Blockchain was originally
devised for Bitcoin cryptocurrency [47], however, recent systems
focus on its unique features such as transparency, provenance, fault
tolerance, and authenticity to support a wide range of distributed
applications. Bitcoin and other cryptocurrencies are permissionless
blockchain systems. In a permissionless blockchain, the network is
public, and anyone can participate without a specific identity. Many
other distributed applications, such as supply chain management

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGMOD ’21, June 20–25, 2021, Virtual Event, China
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8343-1/21/06.
https://doi.org/10.1145/3448016.3457539

and healthcare, are deployed on permissioned blockchain systems
consisting of a set of known, identified nodes that still might not
fully trust each other. The focus of this tutorial is on permissioned
blockchain systems that support distributed applications across
collaborative enterprises. These collaborative enterprises, however,
do not necessarily trust each other. Hence, we address four different
challenges regarding the confidentiality, verifiability, performance,
and scalability requirements of distributed applications to make
permissioned blockchain systems practical in real-life settings.

Confidentiality of data is required in many collaborative dis-
tributed applications, e.g., supply chain management, where mul-
tiple enterprises collaborate following Service Level Agreements
(SLAs) to provide different services. To deploy distributed applica-
tions across different collaborative enterprises, a blockchain system
needs to support the internal transactions of each enterprise as well
as cross-enterprise transactions that represent the collaboration
between enterprises. While the data accessed by cross-enterprise
transactions should be visible to all enterprises, the internal data of
each enterprise, which are accessed by internal transactions, might
be confidential.

Besides confidentiality, in many cross-enterprise systems, e.g.,
crowdworking applications, participants need to verify transactions
that are initiated by other enterprises to ensure the satisfaction
of some predefined global constraints on the entire system. For
example, the total work hours of a worker per week may not exceed
40 hours to follow Fair Labor Standards Act1 (FLSA). Hence, if a
worker works for multiple crowdworking platforms, e.g., a driver
who works for both Uber and Lyft, verifying such global constraints
requires access to data owned by other enterprises. Thus, the system
needs to support verifiability while preserving the confidentiality
of transactions.

In addition to confidentiality and verifiability, distributed ap-
plications, e.g., financial applications, require high performance
in terms of throughput and latency, e.g., while the Visa payment
service handles thousands of transactions per second, naive imple-
mentations of permissioned blockchains handle only hundreds of
transactions per second. In general, “order” and “execution” are
the two main phases of processing transactions in permissioned
blockchains. Permissioned blockchains need to parallelize the pro-
cessing of different transactions in the order or execution phase to
improve the overall performance of the system.

Finally, scalability is one of the main obstacles to business adop-
tion of blockchain systems. To support a distributed application, e.g.,
a large-scale database, a blockchain system should be able to scale
efficiently by adding more nodes to the system. Partitioning the
data into multiple shards that are maintained by different subsets of
nodes is a proven approach to enhance the scalability of databases

1https://www.dol.gov/agencies/whd/flsa

Tutorial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2813

https://doi.org/10.1145/3448016.3457539
https://doi.org/10.1145/3448016.3457539
https://www.dol.gov/agencies/whd/flsa

[23]. In such an approach, the performance of the database scales
linearly with the number of nodes. While database systems use
the sharding technique to improve the scalability of databases [23]
in a network of crash-only nodes, the technique cannot easily be
utilized by blockchain systems due to the possible untrusted nature
of the nodes in the network.

In this tutorial, our goal is to present to the database commu-
nity an in-depth understanding of state-of-the-art solutions for
designing efficient permissioned blockchain systems. We start by
discussing several large-scale data management applications that
motivate the rising demand for permissioned blockchains as an
infrastructure. We then provide a detailed description of the per-
missioned blockchain model and its basic cryptographic and dis-
tributed system components. Given the diverse needs of different
applications, we describe in detail various techniques underlying
the design of existing permissioned blockchain systems that ad-
dress the fundamental challenges of confidentiality, verifiability,
performance and scalability. Each section of the tutorial will end
with a discussion of the trade-offs between the various techniques
presented and the challenges practical systems face for supporting
large-scale data.

2 TUTORIAL OUTLINE
Confidentiality, verifiability, performance, and scalability are the
main requirements of large-scale data management applications
that need to be achieved by permissioned blockchain systems.While
confidentiality and verifiability are needed in cross-enterprise ap-
plications such as supply chain management and crowdworking
(to preserve the confidentiality of enterprise data and to verify the
transactions initiated by other enterprises while preserving the con-
fidentiality of their data), performance and scalability are required
in both single- and cross-enterprise applications.

In this section, we first present several practical large-scale data
management applications to motivate permissioned blockchains.
We next introduce permissioned blockchains and present different
techniques proposed by permissioned blockchain systems to meet
the requirements of large-scale data management applications.

2.1 Applications
We now briefly discuss several large-scale data management appli-
cations to motivate permissioned blockchains.

2.1.1 Supply Chain Management

Lack of trust between different parties is one of the most important
problems in supply chain management. To tackle such an issue, a
permissioned blockchain can be used tomonitor the execution of the
collaborative process and check conformance between the execution
and SLAs. The utilized blockchain system needs to support both
internal and cross-enterprise transactions where in contrast to the
cross-enterprise transactions which are visible by all participants,
the internal transactions of each enterprise are confidential, e.g., the
internal transactions of the Manufacturer demonstrate its internal
process for producing a product which the Manufacturer might
intend to keep as a secret. Finally, the blockchain system has to
address the performance aspect as well.

2.1.2 Large-Scale Databases

Sharding techniques are extensively used in distributed databases
such as Google’s Spanner [23] and Facebook’s Tao [17] to address
the scalability issue. Such systems mainly assume a crash failure
model and rely on a trusted coordinator to process cross-shard
transactions. In the presence of untrusted infrastructure, i.e., Byzan-
tine nodes, a blockchain system can be used to achieve scalability
while tolerating malicious failures. Scalability techniques can also
be integrated with confidentiality techniques if the confidentiality
of data shards is required.

2.1.3 Multi-Platform Crowdworking

Crowdworking empowers open collaboration over the Internet. A
crowdworking system includes platforms, requesters, and workers
where requesters submit their tasks and workers send their con-
tributions for a particular task to the platforms. A crowdworking
system might need to perform thousands of transactions per sec-
ond, thus, has to be high performance. In addition, a multi-platform
crowdworking system should scale appropriately with the increas-
ing number of platforms, workers, and requesters. Moreover, the
system has to provide verifiability of transactions against the pre-
defined global constraints. For example, the total work hours of
a worker, who might work for multiple crowdworking platforms,
per week may not exceed 40 hours to follow Fair Labor Standards
Act2 (FLSA) or in California, California Proposition 223 imposes
its own set of regulations on minimal hours worked for health
benefits, e.g., if a driver works at least 25 hours per week, compa-
nies (i.e., platforms) are required to provide healthcare subsidies. In
summary, a multi-platform crowdworking system requires all four
confidentiality, verifiability, performance, and scalability properties.

2.2 Permissioned Blockchain
Blockchain systems are global scale peer-to-peer systems that in-
tegrate many techniques and protocols from cryptography, dis-
tributed systems, and databases. In a blockchain system, nodes
agree on their shared states across a large network of possibly un-
trusted participants. Bitcoin [47] and other cryptocurrencies are
permissionless blockchain systems. Permissionless blockchain sys-
tems are public where computing nodes without a priori known
identities can join or leave the blockchain network at any time. On
the other hand, a permissioned blockchain system uses a network
of a priori known and identified nodes to manage the blockchain.
The main underlying data structure in blockchain systems is the
blockchain ledger, an append-only fully replicated structure that is
shared among all participants and guarantees a consistent view of
all user transactions by all participants in the system. Each block in
the blockchain ledger includes a batch of transactions and the total
order of transaction blocks in the blockchain ledger is captured by
chaining blocks together, i.e., each block includes the cryptographic
hash of the previous block. Figure 1 illustrates an example of a
permissioned blockchain system consisting of five nodes where
each node maintains a copy of the blockchain ledger.

2https://www.dol.gov/agencies/whd/flsa
3https://ballotpedia.org/California_Proposition_22,_App-Based_Drivers_as_Contractors_and_
Labor_Policies_Initiative_(2020)

Tutorial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2814

https://www.dol.gov/agencies/whd/flsa
https://ballotpedia.org/California_Proposition_22,_App-Based_Drivers_as_Contractors_and_Labor_Policies_Initiative_(2020)
https://ballotpedia.org/California_Proposition_22,_App-Based_Drivers_as_Contractors_and_Labor_Policies_Initiative_(2020)

Figure 1: A Permissioned Blockchain System
The Blockchain Architecture consists of a set of nodes in an

asynchronous large distributed system. Nodes in the system might
crash, i.e., when a node fails it stops processing completely, or may
behave maliciously, i.e., when a node fails it may act arbitrarily,
often referred to as the Byzantine failure model. To ensure con-
sistency among the data replicated on different nodes, blockchain
systems use the State Machine Replication (SMR) algorithm [39],
where nodes agree on an ordering of incoming transactions, to
ensure the copies of the distributed ledger are identical. SMR regu-
lates the deterministic execution of client transactions on different
nodes such that every non-faulty node executes every transaction
in the same order [53][39]. In a permissioned blockchain system,
nodes establish consensus on this unique order in which transac-
tions are appended to the blockchain ledger using asynchronous
fault-tolerant protocols, e.g., Paxos [40] or PBFT [19].

2.3 Techniques
Over the past few years permissioned blockchain systems have
proposed various techniques to address the four main requirements
of large-scale data management systems. In this section, we discuss
these techniques in detail and present the systems that utilize these
techniques to address the four main requirements: confidentiality,
verifiability, performance, and scalability.

2.3.1 Confidentiality

Confidentiality of data is required in many collaborative distributed
applications, e.g., supply chain management, where multiple enter-
prises collaborate following Service Level Agreements (SLAs) to
provide different services. To deploy distributed applications across
different collaborative enterprises, a blockchain system needs to
support the internal transactions of each enterprise as well as cross-
enterprise transactions that represent the collaboration between en-
terprises. While the data accessed by cross-enterprise transactions
should be visible to all enterprises, the internal data of each enter-
prise, which are accessed by internal transactions, might be confi-
dential. In particular, in collaborative distributed applications, each
enterprise can maintain its own independent disjoint blockchain
and use techniques such as atomic cross-chain transactions [34][62]
or Interledger protocol [58] to support cross-enterprise collabora-
tion. Such techniques are often costly, complex, and mainly de-
signed for permissionless blockchains. Techniques that support
collaborative enterprises on a single blockchain, on the other hand,
either do not support internal transactions of enterprises resulting
in data integration issues or suffer from confidentiality issues since

the entire ledger is visible to all enterprises, e.g., single-channel
Fabric [15].

To achieve confidentiality, cryptographic and view-based (i.e.,
sharding-based) techniques have been proposed. In cryptographic
techniques, the data is encrypted or hashed, hence, irrelevant par-
ties cannot access the data. Alternatively, view-based techniques
have been used to achieve confidentiality where each party (i.e., an
enterprise or a group of enterprises) maintains only its own view of
data (including records that are accessible to the party), hence, there
is no need to use cryptographic techniques. We present Caper [8],
multi-channel Hyperledger Fabric [16], and private data collections
[6] (used within each channel of Hyperledger Fabric).
View-based approaches. We start by discussing view-based ap-
proaches. In Caper [8] each enterprisemaintains two types of private
and public data and the system supports both internal and cross-
enterprise transactions where internal transactions are executed by
a single enterprise, while cross-enterprise transactions are executed
by all enterprises. In Caper, each enterprise orders and executes its
internal transactions locally while cross-enterprise transactions are
public and visible to every enterprise. In addition, the blockchain
ledger of Caper is a directed acyclic graph that includes the internal
transactions of every enterprise and all cross-enterprise transac-
tions. Nonetheless, for the sake of confidentiality, the blockchain
ledger is not maintained by any node. In fact, each enterprise main-
tains its own local view of the ledger including its internal and all
cross-enterprise transactions. Since ordering cross-enterprise trans-
actions requires global agreement among all enterprises, Caper
introduces different consensus protocols to globally order cross-
enterprise transactions.

Hyperledger Fabric [15][16] introduces channels to preserve con-
fidentiality. Amulti-channel Hyperledger Fabric consists ofmultiple
channels where each channel has its own set of enterprises. Within
a channel, each enterprise has its own set of executor (i.e., endorser)
nodes where the transactions of the enterprise are executed by
its endorser nodes. As a result, the enterprise logic which is im-
plemented in its smart contracts is private from other enterprises.
Enterprises within a channel, however, share the same blockchain
ledger and blockchain state (i.e., datastore), hence, any transaction
in a channel will be replicated on the ledger of all channel members
(i.e., enterprises). Different channels, on the other hand, are com-
pletely separated and access neither the blockchain ledger nor the
blockchain state of other channels. Different channels still might
share the same set of orderer nodes. Orderers establish consensus
on the order of transactions of a channel. Since orderers are able to
access the transaction data, they should be trusted by all channel
members. It should also be noted that an enterprise might be a
member of different channels, e.g., a manufacturer that is involved
in different supply chain management scenarios. Moreover, process-
ing a (public) transaction among two channels requires a trusted
channel among the participants or an atomic commit protocol.
Cryptographic techniques. Cryptographic techniques can be
used when in a cross-enterprise application, a subset of enterprises
wants to make confidential transactions and keep the transaction
data private from other enterprises. In particular, in Hyperledger
fabric, if a subset of enterprises on a channel needs to keep data
confidential from other enterprises on the same channel, they have
the option to create a new channel comprising just the enterprises

Tutorial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2815

who need access to the data. Creating separate channels, however,
results in additional administrative overhead and data integrity
(between public and private data) issues. Hyperledger Fabric [15]
proposes private data collections [6] to manage confidential data that
two or more enterprises on a single channel want to keep private
from other enterprises on the same channel. Private data collec-
tions use hashing which is a cryptographic technique. By defining
a private data collection, a subset of enterprises on a channel stores
their confidential data in a private database replicated on each au-
thorized peer. A hash of the private data, is still appended to the
blockchain ledgers of every peer on the channel. The hash serves as
evidence of the transaction and is used for state validation. Using
the hash, other enterprises still able to check read-write conflicts
during the validation phase. An enterprise might be involved in
different private data collections where for each of them a private
database is replicated on its peers.
Discussion. In summary, view-based techniques are costly in man-
aging views, e.g., configuring channels in Hyperledger Fabric. Fur-
thermore, processing public transactions requires establishing con-
sensus among all involved views (e.g., enterprises, channels). Caper
in comparison to Hyperledger Fabric preserves confidentiality (both
logic and data) at the enterprise level. Cryptographic techniques,
on the other hand, while they reduce the cost of managing views,
result in the overhead of maintaining data in the blockchain ledger
and blockchain state of irrelevant enterprises.

2.3.2 Verifiability

In many cross-enterprise systems, enterprises need to verify trans-
actions that are initiated by other enterprises to ensure the satisfac-
tion of global constraints in a privacy-preserving manner. This may
arise in a crowdworking environment where multiple platforms
that do not trust each other need to collectively enforce global
regulations, e.g., a worker can work at most 40 hours per week.
The blockchain system, therefore, needs to employ verifiability
techniques while preserving the privacy of participants. Verifia-
bility is also needed in cryptocurrencies with enhanced privacy,
e.g., Zcash [7][35], where transaction data is confidential and nodes
need to verify the transaction without knowing the sender, receiver
or transaction amount.

To achieve verifiability cryptographic techniques (zero-knowledge
proofs [26]) have been proposed. In cryptography, a zero-knowledge
proof is a method by which one party (the prover) can prove to
another party (the verifier) that they know a value 𝑥 , without con-
veying any information apart from the fact that they know the
value 𝑥 . Verifiability can also be achieved using token-based tech-
niques where a centralized entity generates verifiable tokens based
on global constraints and distributes them to the corresponding
participants. We present Quorum [20] and Separ [12] and discuss
how verifiability has been addressed in these two systems.
Cryptographic techniques. Quorum [20] as an Ethereum-based
[3] permissioned blockchain introduces two consensus protocols:
a crash fault-tolerant protocol based on Raft [49] and a Byzantine
fault-tolerant protocol called Istanbul BFT [5][50]. Quorum sup-
ports public and private transactions where both public and private
transactions are ordered using the same consensus protocol. Quo-
rum uses the zero-knowledge proof technique to ensure verifiability
of private transactions. Zero-knowledge proofs enable the transfer

of digital assets on a distributed ledger without revealing any in-
formation about the sender, recipient, or quantity of assets while
ensuring that: sender is authorized to transfer ownership of the
assets, assets have not been spent previously (double-spend), and
transactions inputs equal to its outputs (mass conservation). Zero-
knowledge proofs have also been used in crowdworking platforms,
e.g., ZebraLancer [41], ZKCrowd [64], and Prio [24] to provide
verifiability in a single-platform context.
Token-based techniques. Separ [12] is amulti-platform blockchain-
based crowdworking system that uses a token-based technique to
ensure verifiability. In Separ, a centralized trusted authority models
global regulations using anonymous tokens and distributes them
to participants. For example, if a global constraint declares that the
total work hours of a worker per week must not exceed 40 hours to
follow FLSA, the authority assigns 40 tokens to each worker where
a worker can consume its tokens whenever the worker contributes
to a task. Separ consisting of a privacy-preserving token-based sys-
tem on top of a blockchain ledger shared across platforms where
the global state of the system is managed among crowdworking
platforms using distributed consensus protocols.
Discussion. In summary, cryptographic techniques are truly decen-
tralized, hence, there is no need for a trusted entity. Zero-knowledge
proofs, however, have considerable overhead [15]. Using such tech-
niques especially in an environment where most transactions might
be local, is not beneficial due to its overhead. Token-based tech-
niques, on the other hand, require a centralized authority to gener-
ate tokens. The centralized authority must be trusted by all partici-
pants. There is, however, no need to replicate all transactions on
every node resulting in improved performance.

2.3.3 Performance

Many large-scale data management applications require high per-
formance in terms of throughput and latency, e.g., financial applica-
tions. Permissioned blockchain systems process transactions using
either an optimistic or pessimistic approach. These approaches offer
trade-offs in performance depending on the degree and frequency
of contention and conflict among transactions. In the optimistic
approach, nodes execute transactions without running a consensus
protocol to definitively establish an ordering whereas in the pes-
simistic approach transactions are first ordered and then executed.
From an architectural point of view, three main architectures have
been proposed for permissioned blockchain systems. The order-
execute (OX) and the order-parallel execute (OXII) architectures
follow the pessimistic approach while the execute-order-validate
(XOV) architecture follows the optimistic approach. We show how
Tendermint [38], ParBlocckhain [10], Hyperledger Fabric [15], Fast
Fabric [28], Fabric++ [54], FabricSharp [52], and XOX Fabric [27]
address the performance challenge of permissioned blockchain
systems.
Pessimistic approaches. In order-execute permissioned blockchains,
a set of nodes (i.e. orderers) establishes agreement on a unique or-
der of the incoming transactions using fault-tolerant protocols.
Depending on the failure model of nodes, a Byzantine , e.g., PBFT
[19], Hotstuff [61], a crash, e.g., Paxos [40], Raft [49], or even a hy-
brid, e.g., SeeMoRe [14], UpRight [22], fault-tolerant protocol can
be used. Orderer nodes then generate and multicast blocks to other
nodes (i.e., executors). Executor nodes execute the transactions of

Tutorial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2816

a block sequentially in the same order, append transactions to the
blockchain ledger, and update the blockchain state (i.e., datastore).
The order-execute architecture is widely used in different permis-
sioned blockchain systems such as Tendermint [38], Quorum [20],
Multichain [29], Chain Core [1], Hyperledger Iroha [4], and Corda
[2]. In particular, Tendermint [38] uses a PBFT-based consensus
protocol which differs from the original PBFT in several ways. First,
only a subset of nodes, called validators, participates in the consen-
sus protocol where to become a validator, nodes need to lock their
coins. Second, Tendermint uses the leader rotation technique and
switches the leader after each round (i.e., each attempt to construct
a block) in a round-robin manner. Third, Tendermint implements a
Proof-of-Stake consensus mechanism. In fact, in Tendermint, val-
idators do not have the same "weight" in the consensus protocol,
and the voting power of a validator corresponds to the number
of its bounded coins. As a result, one-third or two-thirds of the
validators are defined based on the proportions of the total voting
power not the number of validators.

The order-parallel execute (OXII) architecture, similar to order-
execute architecture, follows the pessimistic approach. In OXII
architecture, a disjoint set of nodes (orderers) establishes agreement
on the order of incoming transactions and constructs blocks. Once
a block is constructed, orderer nodes generate a dependency graph
for the transactions within a block. A dependency graph gives
a partial order based on the conflicts between transactions and
enables the parallel execution of non-conflicting transactions. The
transactions are then executed by executor nodes following the
generated dependency graph. ParBlockchain [10] follows the OXII
architecture and is able to support multi-enterprise systems. In a
multi-enterprise system, each enterprise has its own set of executor
nodes where the transactions of each enterprise are executed by
the corresponding executor nodes.
Optimistic approaches. Finally, Hyperledger Fabric [15] presents
the optimistic XOV architecture (which was first introduced by Eve
[36] in the context of Byzantine fault-tolerant SMR) by switching
the order of the execution and order phases. In Fabric, transactions
of different enterprises are first executed in parallel by executor
nodes (i.e., endorsers) of each enterprise. Transactions are then or-
dered by a consensus protocol (currently a Raft-based [49] protocol)
and multicast to all endorser nodes. Endorsers then validate the
transactions and append them to the ledger.

While Fabric improves performance by executing transactions in
parallel and supports non-deterministic execution of transactions,
in the presence of any contention, i.e., conflicting transactions, in
the workload (which is common in distributed applications), it has
to disregard the effects of conflicting transactions which negatively
impacts the performance of the blockchain. This happens because
Fabric executes transactions in the first step and validates them
in the last step, hence, if there is any read-write dependencies
between transactions of the same block, it is not detected until the
last step. Different techniques have been proposed to improve the
performance of Fabric while still following its XOV architecture
[27][28][51][52][54][55][56][57][60].

FastFabric [28] uses different data structures and caching tech-
niques, and parallelizes the transaction validation pipeline to in-
crease Fabric’s throughput for conflict-free transaction workloads.
Fabric++ [54] employs concurrency control techniques from databases

to early abort transactions or reorder them after the order phase to
reconcile the potential conflicts. FabricSharp [52] goes one step fur-
ther and presents an algorithm to early filter out transactions that
can never be reordered and also presents a reordering technique
that eliminates unnecessary aborts (resulting from strong serializ-
ability guarantees of Fabric++ while Fabric requires serializability
guarantees). Finally, XOX Fabric [27] model consists of a pre-order
and a post-order execution step where the post-order execution is
added after the validation step to re-execute transactions that are
invalidated due to read-write conflicts.
Discussion. In summary, the OX architecture suffers from low
performance due to the sequential execution of all transactions
whereas, both OXII and XOV architectures are able to execute
transactions in parallel. OXII also supports contentious workloads
by detecting conflicting transactions during the order phase and
generating dependency graphs while XOV validates read-write
conflicts last resulting in poor performance. XOV, on the other hand,
supports non-deterministic execution of transactions by executing
transactions first and detecting any inconsistencies early on, while
in OXII, transactions are executed in the last step, hence, if the
results are inconsistent, aborting transactions would be costly.

2.3.4 Scalability

Scalability is one of the main obstacles to business adoption of
blockchain systems, especially in financial and large-scale database
systems. Permissioned blockchain systems mainly use clustering
to improve scalability. In clustering approaches, e.g., Blockplane
[48], nodes are partitioned into fault-tolerant clusters where each
cluster processes (or at least orders) a disjoint set of transactions.
Permissioned blockchain systems use single-ledger or sharded-ledger
techniques to enhance scalability. In the single-ledger technique, the
entire ledger is replicated on all clusters and all nodes execute every
transaction. In the sharded-ledger technique, on the other hand, the
ledger is partitioned into multiple shards that are maintained by
different clusters. Sharded-ledger permissioned blockchain systems
process two types of intra-shard and cross-shard transactions. Cross-
shard transactions can be processed either in a centralized manner
using the coordinator-based approach or in a decentralized manner
using the flattened approach. We discuss ResilientDB [31][32][33],
AHL [25], SharPer [11], Saguaro [13], and Multi-channel Fabric
[16] in detail.
Single-ledger approaches. ResilientDB [32] uses a topological-
aware clustering approach and partitions the network into local
fault-tolerant clusters to minimize the cost of global communica-
tion. All clusters, however, replicate the entire ledger on every node
and, at every round, each cluster locally establishes consensus on a
single transaction and then multicasts the locally-replicated trans-
action to other clusters. All clusters then, execute all transactions
of that round in a predetermined order. Since all transactions are
executed by all clusters there is no concept of intra- and cross-shard
transactions in ResilientDB.
Sharded-ledger Approaches. AHL [25] uses the sharding tech-
nique to enhance scalability. In AHL, similar to permissionless
blockchains Elastico [42], OmniLedger [37], and Rapidchain [63],
nodes are randomly assigned to clusters (called committees). To en-
sure safety with a high probability, each committee must include at
least 80 nodes (instead of ∼600 nodes in OmniLedger). To decrease

Tutorial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2817

the number of required nodes within each committee, AHL em-
ploys trusted hardware (the technique presented in [21][59]) that
restricts the malicious behavior of a node. Using the trusted hard-
ware, a malicious node cannot multicast inconsistent message, e.g.,
messages with inconsistent sequence numbers to different nodes,
AHL processes cross-shard transactions in a centralized approach
by relying on an extra set of nodes (called a reference committee)
to play the coordinator role. The reference committee processes
cross-shard transactions of the involved clusters using the classic
two-phase commit (2PC) and two-phase locking (2PL) protocols.

SharPer [11][9] is another sharded permissioned blockchain sys-
tem where the system consists of a set of fault-tolerant clusters
each maintains a shard of the blockchain ledger. SharPer, in con-
trast to AHL, provides deterministic safety guarantees either by
considering pre-determined fault-tolerant clusters or by assuming
that the number of nodes is much larger than the number of fail-
ures. SharPer processes cross-shard transactions in a decentralized
manner among the involved clusters (without requiring a reference
committee) using decentralized flattened consensus protocols.

In Saguaro [13] nodes are organized in a hierarchical structure
following the wide area network infrastructure from edge devices
to edge, fog, and cloud servers where nodes at each level are further
clustered into fault-tolerant clusters. At the lower level, Saguaro
similar to SharPer, maintains a shard of the blockchain ledger on
each cluster. Saguaro, however, benefits from the hierarchical struc-
ture of the network in the processing of cross-shard transactions.
For each cross-shard transaction, the internal cluster with the mini-
mum total distance from the involved clusters, i.e., the lowest com-
mon ancestor of all involved clusters, is chosen as the coordinator
resulting in lower latency.

Finally, while in multi-channel Fabric [15][16], channels are
mainly introduced to enhance confidentiality, they can be used to
shard the system and data as well. A channel is in fact a shard of the
full system that is autonomously managed by a (logically) separate
set of nodes but is still aware of the bigger system it belongs to [16].
Using channels, Fabric processes intra-shard transactions efficiently
using a fault-tolerant protocol. Cross-shard transactions in multi-
channel Fabric are processed in a centralized manner and require
either the existence of a trusted channel among the participants to
play the coordinator role or an atomic commit protocol [16].
Discussion. Sharded-ledger approaches mainly differ in how they
process cross-shard transactions. Centralized processing of cross-
shard transactions is simpler and closer to the traditional two-phase
commit, i.e., instead of a single coordinator node, a coordinator clus-
ter is needed to tolerate Byzantine failure, however, a large number
of intra- and cross-cluster communication phases is needed. On
the other hand, the decentralized approach does not require an
extra set of nodes, processes transactions in less number of phases
among the involved clusters, and is able to process cross-shard
transactions with non-overlapping clusters in parallel. However, if
the involved clusters are distant, establishing cross-shard consensus
among involved clusters that needs multiple rounds of message
passing results in high latency. Single-ledger approaches, e.g., Re-
silientDB, on the other hand, do not suffer from the latency of
processing cross-shard transactions by replicating the entire data
on every cluster. However, exchanging messages between all clus-
ters for every single transaction still results in high latency.

3 TUTORIAL INFORMATION
This is a three hours tutorial targeting researchers, designers,
and practitioners interested in permissioned blockchains and their
applications in large-scale data management systems. The target
audience with basic background about blockchain and distributed
systems should benefit the most from this tutorial. For the general
audience and newcomers, the tutorial explains the design space of
permissioned blockchains in large-scale data management systems.

This tutorial differs from previous tutorials on the same topic
in database conferences. The tutorial presented by Maiyya et al. at
VLDB 2018 [43] was mainly on permissionless blockchains, cov-
ered Bitcoin, the details of PoW consensus and several Bitcoin
alternatives to improve the throughput of Bitcoin. The tutorial then
presented solutions such as atomic swap and lightning networks to
solve the challenges stemming from the rise of multiple blockchain
systems. The next version of that tutorial, presented at SIGMOD
2019 [44], partially covered permissioned blockchains where several
systems such as Hyperledger Fabric, ParBlockhain and Caper, were
simply presented as examples of permissioned blockchains. In this
tutorial, however, more than 20 permissioned blockchains and their
underlying techniques to satisfy the requirement of large-scale data
management systems is presented and different trade-offs between
the various techniques are discussed. This tutorial also differs from
C. Mohan’s tutorial at VLDB 2017 [45] and ICDE 2018 [46] where
he explicitly states that the scope of his tutorial "is general in na-
ture without getting into the nitty gritty of, e.g., cryptographic
algorithms or the distributed consensus protocols". Finally, this tu-
torial is different from the tutorial presented by Gupta et al. [30] at
VLDB 2020 where the focus of that tutorial was on exploring high
throughput consensus protocols for permissioned blockchains.

4 BIOGRAPHICAL SKETCHES
Mohammad JavadAmiri is a Postdoctoral Researcher in the Com-
puter and Information Science department at the University of
Pennsylvania. He received his Ph.D. from the University of Cal-
ifornia at Santa Barbara in 2020. His research mostly lies at the
intersection of Data Management and Distributed Systems. The
focus of his current research is on managing large-scale data in
cloud infrastructures and blockchains.
Divyakant Agrawal is a Professor of Computer Science at the
University of California at Santa Barbara. His current interests are
in the area of scalable data management and data analysis in cloud
computing environments, security and privacy of data in the cloud,
scalable analytics over big data, and Blockchain. Prof. Agrawal is
an ACM Distinguished Scientist (2010), an ACM Fellow (2012), an
IEEE Fellow (2012), and an AAAS Fellow (2016).
Amr El Abbadi is a Professor of Computer Science at the Univer-
sity of California, Santa Barbara. Prof. El Abbadi is an ACM Fellow,
AAAS Fellow, and IEEE Fellow. He was Chair of the Computer
Science Department at UCSB from 2007 to 2011. He has served as a
journal editor for several database journals and has been Program
Chair for multiple database and distributed systems conferences.
He has published over 400 articles in databases and distributed
systems and has supervised over 40 Ph.D. students.
ACKNOWLEDGMENTS
This work is funded by NSF grants CNS-1703560 and CNS-1815733.

Tutorial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2818

REFERENCES
[1] [n.d.]. Chain. http://chain.com.
[2] [n.d.]. Corda. https://github.com/corda/corda.
[3] [n.d.]. Ethereum blockchain app platform. https://www.ethereum.org. 2017.
[4] [n.d.]. Hyperledger Iroha. https://github.com/hyperledger/iroha.
[5] [n.d.]. Istanbul byzantine fault tolerant consensus protocol. https://github.com/

ethereum/EIPs/issues/650.
[6] [n.d.]. Private Data Collections: A High-Level Overview.

https://www.hyperledger.org/blog/2018/10/23/private-data-collections-a-
high-level-overview.

[7] [n.d.]. Zcash. https://z.cash/.
[8] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2019. CAPER:

a cross-application permissioned blockchain. Proceedings of the VLDB Endowment
12, 11 (2019), 1385–1398.

[9] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2019. On
Sharding Permissioned Blockchains. In Int. Conf. on Blockchain. IEEE, 282–285.

[10] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2019. Par-
Blockchain: Leveraging Transaction Parallelism in Permissioned Blockchain
Systems. In Int. Conf. on Distributed Computing Systems (ICDCS). IEEE, 1337–
1347.

[11] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2021. SharPer:
Sharding Permissioned Blockchains Over Network Clusters. In SIGMOD Int. Conf.
on Management of Data. ACM.

[12] Mohammad Javad Amiri, Joris Duguépéroux, Tristan Allard, Divyakant Agrawal,
and Amr El Abbadi. 2021. Separ: Towards Regulating Future of Work Multi-
Platform Crowdworking Environments with Privacy Guarantees. In Proceedings
of The Web Conference.

[13] Mohammad Javad Amiri, Ziliang Lai, Liana Patel, Boon Thau Loo, Eric Loo, and
Wenchao Zhou. 2021. Saguaro: Efficient Processing of Transactions in Wide
Area Networks using a Hierarchical Permissioned Blockchain. arXiv preprint
arXiv:2101.08819 (2021).

[14] Mohammad Javad Amiri, Sujaya Maiyya, Divyakant Agrawal, and Amr El Abbadi.
2020. SeeMoRe: A Fault-Tolerant Protocol for Hybrid Cloud Environments. In
Int. Conf. on Data Engineering (ICDE). IEEE, 1345–1356.

[15] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, et al. 2018.
Hyperledger Fabric: a distributed operating system for permissioned blockchains.
In European Conf. on Computer Systems (EuroSys). ACM, 30.

[16] Elli Androulaki, Christian Cachin, Angelo De Caro, and Eleftherios Kokoris-
Kogias. 2018. Channels: Horizontal scaling and confidentiality on permissioned
blockchains. In European Symposium on Research in Computer Security (ESORICS).
Springer, 111–131.

[17] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov,
Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, et al. 2013.
TAO: Facebook’s Distributed Data Store for the Social Graph. In Annual Technical
Conf. (ATC). USENIX Association, 49–60.

[18] Christian Cachin and Marko Vukolić. 2017. Blockchain Consensus Protocols in
the Wild. In Int. Symposium on Distributed Computing (DISC). 1–16.

[19] Miguel Castro, Barbara Liskov, et al. 1999. Practical Byzantine fault tolerance.
In Symposium on Operating systems design and implementation (OSDI), Vol. 99.
USENIX Association, 173–186.

[20] JP Morgan Chase. 2016. Quorum white paper.
[21] Byung-Gon Chun, Petros Maniatis, Scott Shenker, and John Kubiatowicz. 2007.

Attested append-only memory: Making adversaries stick to their word. In Oper-
ating Systems Review (OSR), Vol. 41-6. ACM SIGOPS, 189–204.

[22] Allen Clement, Manos Kapritsos, Sangmin Lee, Yang Wang, Lorenzo Alvisi,
Mike Dahlin, and Taylor Riche. 2009. Upright cluster services. In Symposium on
Operating systems principles (SOSP). ACM, 277–290.

[23] James CCorbett, JeffreyDean,Michael Epstein, Andrew Fikes, et al. 2013. Spanner:
Google’s globally distributed database. Transactions on Computer Systems (TOCS)
31, 3 (2013), 8.

[24] Henry Corrigan-Gibbs and Dan Boneh. 2017. Prio: Private, robust, and scalable
computation of aggregate statistics. In 14th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 17). 259–282.

[25] Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, Ee-Chien Chang, Qian Lin,
and Beng Chin Ooi. 2019. Towards Scaling Blockchain Systems via Sharding. In
SIGMOD Int. Conf. on Management of Data. ACM.

[26] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. 1989. The knowledge
complexity of interactive proof systems. SIAM Journal on computing 18, 1 (1989),
186–208.

[27] Christian Gorenflo, Lukasz Golab, and Srinivasan Keshav. 2020. XOX Fabric:
A hybrid approach to transaction execution. In Int. Conf. on Blockchain and
Cryptocurrency (ICBC). IEEE, 1–9.

[28] Christian Gorenflo, Stephen Lee, Lukasz Golab, and Srinivasan Keshav. 2019.
Fastfabric: Scaling hyperledger fabric to 20,000 transactions per second. In Int.
Conf. on Blockchain and Cryptocurrency (ICBC). IEEE, 455–463.

[29] Gideon Greenspan. 2015. MultiChain private blockchain-White paper. URl:
http://www. multichain. com/download/MultiChain-White-Paper. pdf (2015).

[30] Suyash Gupta, Jelle Hellings, Sajjad Rahnama, and Mohammad Sadoghi. 2020.
Building high throughput permissioned blockchain fabrics: challenges and op-
portunities. Proceedings of the VLDB Endowment 13, 12 (2020), 3441–3444.

[31] Suyash Gupta, Jelle Hellings, and Mohammad Sadoghi. 2021. RCC: Resilient
Concurrent Consensus for High-Throughput Secure Transaction Processing. In
Int. Conf. on Data Engineering (ICDE). IEEE.

[32] Suyash Gupta, Sajjad Rahnama, Jelle Hellings, and Mohammad Sadoghi. 2020.
ResilientDB: Global Scale Resilient Blockchain Fabric. Proceedings of the VLDB
Endowment 13, 6 (2020), 868–883.

[33] Suyash Gupta, Sajjad Rahnama, and Mohammad Sadoghi. 2020. Permissioned
Blockchain Through the Looking Glass: Architectural and Implementation
Lessons Learned. In Int. Conf. on Distributed Computing Systems (ICDCS). IEEE.

[34] Maurice Herlihy. 2018. Atomic cross-chain swaps. In Symposium on Principles of
Distributed Computing (PODC). ACM, 245–254.

[35] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. 2016. Zcash
protocol specification. GitHub: San Francisco, CA, USA (2016).

[36] Manos Kapritsos, Yang Wang, Vivien Quema, Allen Clement, Lorenzo Alvisi,
Mike Dahlin, et al. 2012. All about Eve: Execute-Verify Replication for Multi-Core
Servers.. In Symposium on Operating systems design and implementation (OSDI),
Vol. 12. USENIX Association, 237–250.

[37] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa
Syta, and Bryan Ford. 2018. Omniledger: A secure, scale-out, decentralized ledger
via sharding. In Symposium on Security and Privacy (SP). IEEE, 583–598.

[38] Jae Kwon. 2014. Tendermint: Consensus without mining. Draft v. 0.6, fall (2014).
[39] Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed

system. Commun. ACM 21, 7 (1978), 558–565.
[40] Leslie Lamport et al. 2001. Paxos made simple. ACM Sigact News 32, 4 (2001),

18–25.
[41] Yuan Lu, Qiang Tang, and Guiling Wang. 2018. Zebralancer: Private and anony-

mous crowdsourcing system atop open blockchain. In Int. Conf. on Distributed
Computing Systems (ICDCS). IEEE, 853–865.

[42] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert,
and Prateek Saxena. 2016. A secure sharding protocol for open blockchains. In
SIGSAC Conf. on Computer and Communications Security (CCS). ACM, 17–30.

[43] Sujaya Maiyya, Victor Zakhary, Divyakant Agrawal, and Amr El Abbadi. 2018.
Database and distributed computing fundamentals for scalable, fault-tolerant,
and consistent maintenance of blockchains. Proceedings of the VLDB Endowment
11, 12 (2018), 2098–2101.

[44] Sujaya Maiyya, Victor Zakhary, Mohammad Javad Amiri, Divyakant Agrawal,
and Amr El Abbadi. 2019. Database and distributed computing foundations of
blockchains. In SIGMOD Int. Conf. on Management of Data. ACM, 2036–2041.

[45] C Mohan. 2017. Tutorial: blockchains and databases. PVLDB 10, 12 (2017),
2000–2001.

[46] C Mohan. 2018. Blockchains and databases: A new era in distributed computing.
In 2018 IEEE 34th International Conference on Data Engineering (ICDE). IEEE,
1739–1740.

[47] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).
[48] Faisal Nawab and Mohammad Sadoghi. 2019. Blockplane: A global-scale byzan-

tizing middleware. In 2019 IEEE 35th International Conference on Data Engineering
(ICDE). IEEE, 124–135.

[49] Diego Ongaro and John K Ousterhout. 2014. In search of an understandable
consensus algorithm. In Annual Technical Conf. (ATC). USENIX Association,
305–319.

[50] PegaSys. [n.d.]. Scaling Consensus for Enterprise: Explaining the IBFT Algo-
rithm. https://media.consensys.net/scaling-consensus-for-enterprise-explaining-
the-ibft-algorithm-ba86182ea668.

[51] Ravi Kiran Raman, Roman Vaculin, Michael Hind, Sekou L Remy, Eleftheria K Pis-
sadaki, Nelson Kibichii Bore, Roozbeh Daneshvar, Biplav Srivastava, and Kush R
Varshney. 2018. Trusted Multi-Party Computation and Verifiable Simulations: A
Scalable Blockchain Approach. arXiv preprint arXiv:1809.08438 (2018).

[52] Pingcheng Ruan, Dumitrel Loghin, Quang-Trung Ta, Meihui Zhang, Gang Chen,
and Beng Chin Ooi. 2020. A Transactional Perspective on Execute-order-validate
Blockchains. In SIGMOD Int. Conf. on Management of Data. ACM, 543–557.

[53] Fred B Schneider. 1990. Implementing fault-tolerant services using the state
machine approach: A tutorial. Computing Surveys (CSUR) 22, 4 (1990), 299–319.

[54] Ankur Sharma, Felix Martin Schuhknecht, Divya Agrawal, and Jens Dittrich.
2019. Blurring the lines between blockchains and database systems: the case of
hyperledger fabric. In SIGMOD Int. Conf. on Management of Data. ACM, 105–122.

[55] Joao Sousa, Alysson Bessani, and Marko Vukolic. 2018. A byzantine fault-tolerant
ordering service for the hyperledger fabric blockchain platform. In Int. Conf. on
Dependable Systems and Networks (DSN). IEEE, 51–58.

[56] Parth Thakkar and Senthil Nathan. 2020. Scaling hyperledger fabric using
pipelined execution and sparse peers. arXiv preprint arXiv:2003.05113 (2020).

[57] Parth Thakkar, Senthil Nathan, and Balaji Viswanathan. 2018. Performance
benchmarking and optimizing hyperledger fabric blockchain platform. In 2018
IEEE 26th International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS). IEEE, 264–276.

[58] Stefan Thomas and Evan Schwartz. 2015. A protocol for interledger payments.
URL https://interledger.org/interledger.pdf (2015).

Tutorial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2819

https://github.com/ethereum/EIPs/issues/650
https://github.com/ethereum/EIPs/issues/650
https://z.cash/
https://media.consensys.net/scaling-consensus-for-enterprise-explaining-the-ibft-algorithm-ba86182ea668
https://media.consensys.net/scaling-consensus-for-enterprise-explaining-the-ibft-algorithm-ba86182ea668

[59] Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, Lau Cheuk
Lung, and Paulo Verissimo. 2013. Efficient byzantine fault-tolerance. Transactions
on Computers 62, 1 (2013), 16–30.

[60] Lu Xu, Wei Chen, Zhixu Li, Jiajie Xu, An Liu, and Lei Zhao. 2020. Locking
Mechanism for Concurrency Conflicts on Hyperledger Fabric. In International
Conference on Web Information Systems Engineering. Springer, 32–47.

[61] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abra-
ham. 2019. HotStuff: BFT consensus with linearity and responsiveness. In Sym-
posium on Principles of Distributed Computing (PODC). ACM, 347–356.

[62] Victor Zakhary, Divyakant Agrawal, and Amr El Abbadi. 2020. Atomic com-
mitment across blockchains. Proceedings of the VLDB Endowment 13, 9 (2020),
1319–1331.

[63] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. 2018. RapidChain:
Scaling blockchain via full sharding. In SIGSAC Conf. on Computer and Commu-
nications Security. ACM, 931–948.

[64] Saide Zhu, Zhipeng Cai, Huafu Hu, Yingshu Li, and Wei Li. 2019. zkCrowd: a
hybrid blockchain-based crowdsourcing platform. Transactions on Industrial
Informatics (2019).

Tutorial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2820

	Abstract
	1 Introduction
	2 Tutorial Outline
	2.1 Applications
	2.2 Permissioned Blockchain
	2.3 Techniques

	3 Tutorial Information
	4 BIOGRAPHICAL SKETCHES
	Acknowledgments
	References

