
Rashnu: Data-Dependent Order-Fairness
Mohammad Javad Amiri, Heena Nagda, Shubhendra Pal Singhal, Boon Thau Loo

∗

University of Pennsylvania

{mjamiri,hnagda,Shubhpal,boonloo}@seas.upenn.edu

Abstract
Distributed data management systems use state Machine Replic-

ation (SMR) to provide fault tolerance. The SMR algorithm enables

Byzantine fault-tolerant (BFT) protocols to guarantee safety and

liveness despite the malicious failure of nodes. However, SMR does

not prevent the adversarial manipulation of the order of the trans-

actions, where the order assigned by a malicious leader differs from

the order in that transactions are received from clients. While order-
fairness has been recently studied in a few protocols, such protocols

rely on synchronized clocks, suffer from liveness issues, or incur

significant performance overhead. This paper presents Rashnu, a
high-performance fair ordering protocol. Rashnu is motivated by

the fact that fair ordering among two transactions is needed when

both transactions access a shared resource. Based on this observa-

tion, we define the notion of data-dependent order fairness where
replicas capture only the order of data-dependent transactions and

the leader uses these orders to propose a dependency graph that

represents fair ordering among transactions. Replicas then execute

transactions using the dependency graph resulting in the parallel ex-

ecution of independent transactions. We implemented a prototype

of Rashnu on top of HotStuff, where our experimental evaluation

reveals the efficiency of Rashnu compared to the state-of-the-art

order-fairness protocol and its low overhead compared to HotStuff.

1 Introduction
Distributed data management systems rely on consensus pro-

tocols to provide robustness and high availability [12, 16, 19, 28,

33, 49, 70]. Consensus protocols use the State Machine Replication

(SMR) algorithm [61, 76] to ensure that all honest replicas execute

transactions in the same order (safety), and all correct transactions

are eventually executed (liveness). Existing consensus protocols

typically include a designated leader replica that receives transac-

tions from clients, assigns an order (e.g., a sequence number) to

each transaction, which represents the position of the transaction

in the final log, and initiates agreement on the order of transac-

tion among all replicas. A malicious leader, however, can control

transactions’ inclusion and final ordering without violating safety

or liveness. Existing BFT protocols do not prevent the adversarial

manipulation of the actual ordering of transactions.

Adversaries manipulation of transactions order has been studied

in the domain of decentralized finance (DeFi) [13, 31, 37, 47, 56,

74, 85] where miners can make profit by including, excluding, or

reordering transactions within blocks, known as blockchain ex-

tractable value (BEV) [31]. As an example, consider an exchange

transaction to buy a particular asset. A malicious leader can per-

form a front-running sandwich attack by placing the transaction

between two buy and sell transactions to manipulate asset prices.

The attacker buys assets for a lower price to let the victim buys

at a higher value and then sells them again, typically at a higher

∗
The first and the second authors contributed equally.

price afterwards. Such adversarial manipulations of transactions in

the Ethereum network resulted in extracting more than USD 6M in

revenue from unsophisticated users [31]. Other than profitability,

the execution order of transactions might determine the validity

of a transaction typically when multiple transactions access lim-

ited assets, e.g., two money transfers from the same account when

the account balance is not sufficient to perform both, or a ticket

booking scenario where the number of available tickets is limited.

Different techniques, such as censorship resistance, random

leader election, and threshold encryption, have been proposed to

prevent the manipulation of transaction ordering. Censorship res-

istance [69] only ensures that correct transactions are eventually

ordered, i.e., not censored. However, reordering transactions, e.g.,

sandwich attacks, is still possible. Similarly, reputation-based sys-

tems [9, 30, 58, 63] only detect unfair censorship. The random

leader (committee) election or in general participation equity, on

the other hand, provides opportunities for every replica to pro-

pose and commit its transactions, e.g., by becoming a proposer

[4, 9, 32, 43, 44, 50, 54, 63, 67, 73, 80]. However, a malicious pro-

poser can still order transactions unfairly in its turn. Finally, using

threshold encryption [9, 21, 69, 79], transactions are encrypted, and

their content is revealed once their order is fixed. This technique

suffers from metadata leakage as well as collusion attacks between

clients and the leader, where the leader becomes aware of a client

transaction before ordering it and manipulates its order [52, 53, 59].

Recently, the notion of order-fairness is presented to address

the manipulation of transaction ordering [22, 52, 53, 59, 60, 84].

Intuitively, order-fairness ensures that if a sufficiently large number

of replicas (known as 𝛾-fraction) receive a transaction 𝑡1 before

another transaction 𝑡2, then 𝑡1 must be ordered before 𝑡2 [53]. To

support order-fairness, clients broadcast their transactions to all

replicas. In each round, every replica locally orders transactions it

has received according to their received times and sends it to the

to the designated leader of that particular round. The leader then

constructs a fair-ordered proposal from the received blocks and

initiates consensus on the transaction block.

While the notion of order-fairness has been presented in sev-

eral recent studies, i.e., Wendy [59, 60], Pompe [84], Aequitas [53],

Themis [52] and Quick-order-fairness [22], these protocols suffer

from serious limitations. First, both Wendy [59, 60] and Pompe

[84] rely on synchronized clocks between replicas, making these

protocols impractical in asynchronous networks. Pompe [84] also

determines fair order using the median of timestamps assigned

by replicas, which faulty replicas can easily manipulate. Second,

Aequitas [53], and Quick-order-fairness [22] only guarantee weak

liveness and transactions might need to wait an arbitrarily long

time before getting committed [52]. Finally, Themis [52], which

bootstraps from HotStuff [82], is the only fair ordering protocol

implementation with no synchronized clocks assumption. Themis,

1

however, suffers from significant performance overhead, making it

impractical in real-world applications.

One main reason behind the poor performance of order-fairness

protocols is the time required to generate a fair order among all re-
ceived transactions. In an asynchronous network, different replicas

receive transactions in different orders, and transactions might be

arbitrarily delayed. Byzantine replicas might also send maliciously

manipulated local ordering to the leader. Moreover, collecting the

local ordering of different replicas might lead to cycles in the final

order even when all replicas are honest, as demonstrated by the

Condorcet paradox. Therefore, it becomes time-consuming for the

leader to check the order of each pair of transactions in every local

ordering and achieve a fair order among all transactions.

Fair ordering of transactions is essential when transactions ac-

cess the same data objects and manipulating the order gives an

unfair advantage to some transactions. However, the execution

order of transactions with no data dependency does not impact the

execution results. This is crucial, especially since the contention

level of workloads in many practical applications is typically low.

Based on this observation, a key insight for our work is that while

order-fairness ensures fair ordering among all transactions, a more

practical notion of order-fairness can limit the fair ordering only to

data-dependent transactions.

In this paper, we present the notion of data-dependent order-
fairness to ensure that if a large number of replicas receive data-

dependent transactions in a particular order, the order is preserved

in the execution. Using the notion of data-dependent order-fairness,

we present a high-performance fair ordering protocol, Rashnu1.
In Rashnu, each replica, instead of simply collecting a list of

received transactions, constructs a dependency graph in the form

of a directed acyclic graph (DAG). The dependency graph captures

data dependencies between transactions according to their received

order. Upon finishing a round (specified by a threshold, e.g., time

window, number of transactions, or both), the replica sends the

dependency graph to the leader. The leader then collects the local

ordering of different replicas and constructs a fair-ordered proposal

from the local order of transactions in received blocks.

To extract a fair-order, the leader needs to consider all data

dependencies between transactions in all local dependency graphs.

This is challenging because replicas might receive transactions in

different orders or even receive different sets of transactions, e.g.,

due to the asynchronous nature of the network. Once the fair order

is extracted, the leader initiates consensus on the transaction block

by sending a proposal. The proposal includes transactions, their

fair order, and a proof, e.g., all received blocks, to show that the

proposed order is fair. Since the fair ordering of transactions is

performed before the initiation of consensus, Rashnu can bootstrap

from any leader-based protocol.

Proposing data-dependent order-fairness, Rashnu, on one hand,

reduces the leader latency by capturing the order of only data-

dependent transactions and, on the other hand, enables replicas to

execute data-independent transactions in parallel. Rashnu further

resolves Condorcet cycles and chained Condorcet cycles using the

batch-order-fairness [53] and the deferred ordering [52] techniques,

respectively.

1
Rashnu is the Avestan language name of the Zoroastrian deity of justice.

Rashnu can be implemented on top of any leader-based con-

sensus protocol. To be able to compare with the state-of-the-art

order-fairness protocol, i.e., Themis [52], we implemented Rashnu

on HotStuff [82] (used by Themis) as the underlying BFT protocol.

The code will be publicly available to be used in future research.

Overall, this paper makes three main contributions.

• The notion of data-dependent order-fairness is defined as

providing fair ordering only among data-dependent trans-

actions.

• We design Rashnu, a high-performance fair-ordering pro-

tocol that decouples ordering from consensus and leverages

graph-based techniques to achieve order-fairness among

data-dependent transactions.

• We implement a prototype of Rashnu bootstrapped from

HotStuff [82]. Our evaluation results demonstrate the ability

of Rashnu to provide significant throughput improvement

compared to Themis.

2 Background
A Byzantine fault-tolerant (BFT) protocol is a key component

of distributed data management systems with non-trustworthy

infrastructures such as permissioned blockchains [1, 2, 8, 25, 77],

permissionless blockchains [20, 57, 58, 64, 83], distributed file sys-

tems [5, 23, 26], locking service [27], firewalls [15, 41, 42, 75, 78, 81],

certificate authority systems [87], SCADA systems [10, 55, 71, 86],

key-value datastores [14, 34, 45, 48, 75], and key management [66].

A BFT protocol runs on a network consisting of a set of replicas

that may exhibit arbitrary, potentially malicious, behavior. BFT pro-

tocols use the State Machine Replication (SMR) algorithm [61, 76]

to ensure that honest replicas execute client requests in the same

order despite the concurrent failure of 𝑓 Byzantine replicas. SMR

BFT protocols must provide safety and liveness.

A recent line of work, e.g., Wendy [59, 60], Aequitas [53], Pompe

[84], Themis [52] and Quick order-fairness [22] have proposed to

add order-fairness as the third property that SMR BFT protocols

need to guarantee. Order-fairness properly aims to ensure that the

transactions are committed in the same order as they arrived at

the network. The order-fairness property is parameterized by an

order-fairness parameter 𝛾 representing the fraction of replicas that

receive transactions in a particular order.Wendy [59, 60] and Pompe

[84] requires replicas to access synchronized local clocks. Pompe

further determines the fair order by relying on timestamps assigned

by replicas, which can be manipulated by malicious replicas. As a

result, we mainly focus on Aequitas [53], Themis [52] and Quick

order-fairness [22], which do not consider synchrony assumptions,

making them more suitable for asynchronous networks.

Validity requirement. While order-fairness is proposed as a new

property for SMR BFT protocols, it has a strong connection to

the validity requirement of Byzantine agreement [62]. Specifically,

validity states that if all honest replicas propose the same value 𝑣 ,

then replicas must agree on value 𝑣 . In the context of fair ordering,

value 𝑣 can be interpreted as the order of two different transactions

𝑡1 and 𝑡2. Hence, the validity property can be redefined as if all

honest replicas propose transaction 𝑡1 before transaction 𝑡2, then

𝑡1 must be ordered before 𝑡2 in the final order. This validity notion,

however, requires all honest replicas to propose the same order,

leaving the decision value open even if one correct replica proposes

2

Figure 1: A Condorcet cycle

something different. The differential validity notion addresses this

point by replacing "all" with "sufficiently many" in the validity

definition [40].

Receive-Order-fairness. In a fair-ordering protocol, different rep-

licas need to individually order transactions locally and send their

local order to the leader. Each replica can order transactions based

on (1) the timestamp assigned by clients, (2) the propagation time

(that can be estimated by measuring network latency), and (3) the

received time. Since clients might maliciously assign timestamps to

their transactions, replicas cannot rely on the assigned timestamps

(unless each client is equipped with trusted hardware). The propaga-

tion time also cannot be captured precisely as the network is asyn-

chronous and transactions might be arbitrarily delayed. As a result,

existing protocols [22, 52, 53] rely on the transactions receive time

and use the notion of receive-order-fairness. The notion of (strong)

receive-order-fairness specifies that if𝛾 fraction of replicas receive a

transaction 𝑡1 before another transaction 𝑡2, then all honest replicas

must order 𝑡1 (strictly) before 𝑡2.

Condorcet cycles. In an asynchronous network, replicas might

receive transactions in different orders. Hence, as demonstrated

by the Condorcet paradox, defining a fair order among all transac-

tions becomes impossible, even if all replicas are honest. Condorcet

paradox states that even if the local order of all individual replicas

is transitive, there might be situations that lead to non-transitive

collective voting preferences. Figure 1 demonstrates the Condorcet

paradox with four transactions between four replicas. As can be

seen, a majority (3 out of 4) of replicas received 𝑡1 before 𝑡2 (replicas

𝑟1, 𝑟3 and 𝑟4). Similarly 𝑡2 is received before 𝑡3 by a majority of rep-

licas (𝑟1, 𝑟2 and 𝑟4) and 𝑡3 is received before 𝑡4 by replicas 𝑟1, 𝑟2 and

𝑟3. However, 𝑡4 is also received by replicas 𝑟2, 𝑟3 and 𝑟4 before 𝑡1.

The collection of these ordering results in a cyclic global ordering

as generated by the leader (the leader is one of the replicas).

To deal with Condorcet cycles, batch-order-fairness is presented

[53] where transactions involved in a Condorcet cycle are delivered

concurrently within the same batch. Specifically, given two trans-

actions 𝑡1 and 𝑡2 where 𝑡1 has been received by sufficiently many

replicas before 𝑡2; while strong order-fairness requires the leader

to send 𝑡1 to replicas before 𝑡2, batch-order-fairness relaxes this

requirement by saying 𝑡1 should be delivered no later than (before

or at the same time as) 𝑡2. Batch-order-fairness does not specify

the order among the transactions within a batch and respects a fair

order up to this limit. However, many applications still require a

total order among all transactions for transaction execution. To do

so, a deterministic total ordering for transactions in the same cycle,

e.g., alphabetical [53], can be used.

Weak liveness. Batch order-fairness circumvents the Condorcet

impossibility results. However, it achieves only weak liveness. This

is because Condorcet cycles, as noted by Aequitas [53] and shown

by Themis [52], might chain together, and extend arbitrarily. In

this case, using batch order-fairness, the leader waits for a chain to

be completed before sending the batch to replicas. Hence, liveness

might be violated as transactions need to wait for a long time.

The weak liveness issue of batch order-fairness can be addressed

by delivering transactions within the same cycle contiguously in a

set of successive blocks (instead of a single block) [52]. Using this

technique, a part of the current cycle can be output later without

violating order-fairness as long as no transaction from a later cycle

comes before it. This deferred ordering technique [52] enables the
leader to propose a partial (incomplete) ordering for some trans-

actions within the block and defer their total ordering to the next

consecutive blocks. The total ordering for deferred transactions

does not depend on the chaining of Condorcet cycles. As a result,

(standard) liveness can be achieved.

3 Rashnu Model
Rashnu deploys on a set of 𝑛 known nodes (replicas) where at

most 𝑓 of them might be Byzantine (malicious). In the Byzantine

failure model, faulty replicas may exhibit arbitrary, potentially ma-

licious, behavior. In an asynchronous system, where replicas can

fail, no consensus solutions guarantee both safety and liveness (FLP

result) [39]. As a result, Rashnu assumes the partially synchronous

communication model to circumvent the FLP impossibility. In a par-

tial synchrony model, an unknown global stabilization time (GST)

exists, after which messages between honest replicas are received

within some unknown bound Δ. A strong adversary can coordinate

malicious replicas and delay communication to compromise service.

However, the adversary is computationally bounded and cannot

subvert standard cryptographic assumptions. Replicas are connec-

ted with point-to-point bi-directional communication channels, and

each client can communicate with any replica. Network links are

pairwise authenticated, which guarantees that a malicious replica

cannot forge a message from an honest replica. For communication

between replicas, we assume the presence of standard digital signa-

tures and public-key infrastructure (PKI). A collision-resistant hash

function 𝐷 (.) is also used to map a message𝑚 to a constant-sized

digest 𝐷 (𝑚).
Byzantine fault-tolerant protocols, e.g., PBFT [24], require 3𝑓 +

1 replicas to guarantee safety with 𝑓 malicious replicas [17, 18,

29, 36, 62]. However, fair ordering of transactions requires the

number of replicas 𝑛 to be larger. The order-fairness is further

parameterized by an order-fairness parameter 𝛾 representing the

fraction of replicas that receive transactions in a particular order.

Rashnu, similar to other (partially synchronous) order-fairness

protocols [52, 53], requires𝑛 to be larger than
4𝑓

2𝛾−1 .

Lemma 3.1. Given a network consisting of 𝑛 replicas from which

at most 𝑓 are malicious. The fair ordering of transactions is possible

only when 𝑛 >
4𝑓

2𝛾−1 where 𝛾 is the fraction of replicas that receive

transactions in a particular order.

Proof. (Using quorum size) In a network consisting of 𝑛 rep-

licas, since 𝑓 replicas might be faulty, the protocol can rely on a

quorum of 𝑛 − 𝑓 different replicas to generate the final order. These

𝑛 − 𝑓 replicas, however, might include 𝑓 malicious replicas, i.e., 𝑓

replicas not participating are slow honest replicas. As a result, only

𝑛 − 2𝑓 replicas within the quorum are guaranteed to be honest. To

realize order-fairness if 𝛾𝑛 replicas receive transactions in a particu-

lar order, the final ordering must reflect that order. Since only 𝑛−2𝑓
3

replicas are guaranteed to be honest, the output of order-fairness

must be the same as 𝛾𝑛 even with 𝛾𝑛 − 2𝑓 replicas broadcasting

a particular order. On the other hand, to ensure that only one of

the two different orders 𝑡1 ≺ 𝑡2 or 𝑡2 ≺ 𝑡1 is captured between two

transactions 𝑡1 and 𝑡2, a majority of replicas must agree with the

order, i.e., 𝛾𝑛 − 2𝑓 > 𝑛
2
. As a result 𝑛 >

4𝑓
2𝛾−1 . □

Proof. (Using 𝛿-differential validity) The 𝛿-differential valid-
ity [40] can also be used to prove the number of required replicas

in a fair ordering protocol. Let 𝑐 (𝑣) denote the number of honest

replicas that propose value 𝑣 . 𝛿-differential validity states that if

an honest replica decides 𝑣 , then every other value 𝑣 ′ proposed
by another honest replica satisfies 𝑐 (𝑣 ′) ≤ 𝑐 (𝑣) − 𝛿 . Based on this

definition, a BFT protocol satisfies 𝛿-differential validity if and only

if it never decides a value 𝑣 ′ with 𝑐 (𝑣 ′) < 𝑐 (𝑣) − 𝛿 where 𝑣 is the

value proposed most often by honest replicas. In an asynchronous

network, 𝛿-differential consensus is achievable only if 𝛿 ≥ 2𝑓 (i.e.,

𝑐 (𝑣 ′) < 𝑐 (𝑣) − 2𝑓) [40].
In the context of fair ordering protocols, the value 𝑣 is interpreted

as the order of two different transactions 𝑡1 and 𝑡2. As stated before,

the output of fair ordering must be the same even if 𝛾𝑛−2𝑓 replicas
broadcast the order. As a result, (1 − 𝛾)𝑛 < (𝛾𝑛 − 2𝑓) − 2𝑓 where

(1 − 𝛾)𝑛 is the maximum number of replicas that might propose

another order. Hence, 𝑛 >
4𝑓

2𝛾−1 . □

The order-fairness parameter𝛾 represents the fraction of replicas

that receive transactions in a particular order. The range of possible

values for the order-fairness parameter 𝛾 can be calculated based

on the total number of replicas 𝑛.

Lemma 3.2. Order-fairness parameter 𝛾 is between
1

2
+ 2𝑓𝑛 and 1.

Proof. In Rashnu, Since 𝑛 >
4𝑓

2𝛾−1 , 𝛾 ≥
1

2
+ 2𝑓

𝑛 . On the other

hand, 𝛾 = 1 is the case where all replicas receive transactions in the

same order. As a result,
1

2
+ 2𝑓

𝑛 < 𝛾 ≤ 1. □

In an asynchronous network, replicas might receive transactions

in different orders. Even if all replicas are honest, defining a fair

order among all transactions is impossible, as demonstrated by

the Condorcet paradox. Condorcet paradox states that even if the

local order of all individual replicas is transitive, there might be

situations that lead to non-transitive collective voting preferences.

In an asynchronous network, as explained in Section 2, defining

a fair order among all transactions might be impossible due to

the presence of Condorcet cycles. Rashnu leverages the batching

technique [53] to deal with Condorcet cycles where all transactions

involved in a Condorcet cycle are batched and delivered at the same

time. However, batch-order-fairness might lead to weak liveness

issues where Condorcet cycles are chained together. To address

the weak liveness issue resulting from chained Condorcet cycles,

Rashnu uses the order deferring technique [52] where transactions

of the same cycle are proposed contiguously in successive blocks.

The order of executing transactions matters when transactions

compete with each other on the same resources and manipulating

the order gives an unfair advantage to some transactions. As a

result, our notion of order-fairness limits the fair ordering to data-

dependent transactions. Each transaction performs a sequence of

reads and writes, each accessing a single record. Rashnu assumes a

Figure 2: The local views of different replicas

priori knowledge of transactions’ read- and write-set, where the

read-set and write-set of transactions are pre-declared or can be

obtained from the transactions via static analysis, e.g., all records in-

volved in a transaction, are accessed by their primary keys. Note that

even if that assumption does not hold, the system can employ specu-

lative execution techniques [38] to obtain the read-set and write-set

of each transaction. Given a transaction 𝑡 , we use 𝑅(𝑡) and𝑊 (𝑡) to
denote the read-set and write-set of transaction 𝑡 respectively. Intu-

itively, two transactions 𝑡1 and 𝑡2 are data-dependent if they access

the same data object and one performs a write operation on the data

object. More precisely, two transactions 𝑡1 and 𝑡2 are data-dependent
if (𝑅(𝑡1) ∩𝑊 (𝑡2)) ∪ (𝑊 (𝑡1) ∩ 𝑅(𝑡2)) ∪ (𝑊 (𝑡1) ∩𝑊 (𝑡2)) ≠ ∅.

Definition: (Data-dependent order-fairness). Given two data-

dependent transactions 𝑡1 and 𝑡2. If 𝛾-fraction of replicas receive 𝑡1
before 𝑡2, no honest replica outputs 𝑡2 before 𝑡1.

Rashnu, similar to all other fair ordering protocols [22, 52, 53, 59,

60, 84], processes transactions in rounds where each replica collects

transactions received from clients and sends a block of transactions

to the leader at the end of each round. Note that replicas might

not receive the same set of transactions in each round due to the

asynchronous nature of the network.

Figure 2 presents a simple example with a quorum of size 4

(assuming 𝑓 = 1, 𝑛 is 4𝑓 + 1 = 5 and the quorum size 𝑛 − 𝑓 = 4). In

a round, four transactions 𝑡1 to 𝑡4 are sent by clients where replicas

receive different subsets of the transactions in various orders due

to the asynchronous nature of the network. For example, replica

𝑟3 receives 𝑡2, 𝑡3 and 𝑡4 and since there is no data dependency

between these three transactions, the dependency graph has no

edges. However, replica 𝑟4 receives 𝑡1, 𝑡2 and 𝑡3 (in this order: 𝑡1 ≺
𝑡2 ≺ 𝑡3) where 𝑡2 and 𝑡3 write on 𝐴 and 𝐵, both are written by 𝑡1.

4 Fair Transaction Ordering
Rashnu is a fair ordering protocol that decouples ordering from

consensus to ensure a fair order of client requests. In Rashnu, clients

broadcast their transactions to all replicas. Each replica collects a

batch of transactions, constructs a local dependency graph for trans-

actions based on their received order, and sends the dependency

graph to the leader. The leader then collects all local dependency

graphs and generates a global dependency graph that captures fair

order among transactions. If the order of two data-dependent trans-

actions can not be determined by the leader, e.g., they are received

by an insufficient number of replicas, the leader defers the order to

the next blocks.

Figure 3 presents an overview of Rashnu in a simple example.

We use this example throughout this section. The example includes

four replicas 𝑟1 to 𝑟4 (assuming 𝑓 = 1, 𝑛 becomes 4𝑓 + 1 = 5

and there are 𝑛 − 𝑓 = 4 replicas in the quorum) where one of

them is the leader and presents two consecutive rounds of the

4

Figure 3: Local and global ordering in Rashnu

protocol. A set of transactions 𝑡1 to 𝑡12 are received from clients in

these two rounds where each transaction accesses a subset of data

objects A, B, and C, as shown in the figure (for simplicity, all data

accesses are assumed to bewrite). This example includes many data

dependencies among transactions to capture different corner cases.

in real-world scenarios, however, a high percentage of transactions

are typically data-independent.

This section demonstrates how different replicas construct their

local ordering and how the leader orders transactions in a fair yet

efficient manner. We then discuss the execution of transactions and

the correctness of Rashnu.

4.1 Local Ordering
In the local ordering phase, each replica generates a dependency

graph for client requests that the replica has received and their

order is not determined yet. In each round 𝑖 , a replica deals with

three types of transactions.

• First, old transactions that have been received by the replica

in a round 𝑗 (𝑗 < 𝑖); however, they have not been proposed

by a leader (in any round 𝑗 to 𝑖 − 1) yet. This happens when
an insufficient number of replicas receive a transaction in

a round. Hence, the leader does not propose it until more

replicas receive it (probably, in a later round).

• Second, new transactions that are received by the replica

in the current round 𝑖; however, the leader has already

proposed them in an earlier round. This is because, due

to the asynchronous nature of the network, transactions

might be delayed, and a replica receives a transaction that

has already been received by other replicas, and its order is

possibly determined in an earlier round.

• Third, new transactions that are received by the replica in

the current round 𝑖 , and have not been proposed by a leader

in any earlier round.

As shown in Algorithm 1, each replica 𝑟 initiates an empty graph

𝐺𝑟 = (𝑇𝑟 , 𝐸𝑟) at the beginning of each round 𝑖 . The replica first

adds all its old transactions (first type) to graph 𝐺𝑟 (lines 2-3). The

replica adds an edge (𝑡 ′, 𝑡) to the graph 𝐺𝑟 for each transaction 𝑡

if the replica has received 𝑡 ′ before 𝑡 (i.e., 𝑡 ′ ≺ 𝑡) and 𝑡 and 𝑡 ′ are
data-dependent (lines 4-6). transactions 𝑡 and 𝑡 ′ might have been

received by the replica in different rounds. Note that if the underly-

ing consensus protocol relies on a stable leader, e.g., PBFT [24], the

leader can keep track of the first type of transactions. In this way,

replicas do not need to wait for the previous round leader’s proposal

before sending their local order in the current round. Upon receiv-

ing a valid signed request message𝑚 = ⟨REQUEST, 𝑡, 𝜏𝑐 , 𝑐⟩𝜎𝑐 from an

authorized client 𝑐 with timestamp 𝜏𝑐 to execute transaction 𝑡 , the

replica checks whether the transaction has already been proposed

by the leader in an earlier round (second type). Otherwise (third

type), the replica adds vertex 𝑡 and all its dependencies with existing

vertices to the graph 𝐺𝑟 (lines 9-13).

If transaction 𝑡 is already been proposed in an earlier round

(second type), its order might not have been determined yet. When

the leader finalizes the global order of transactions (as explained

in Section 4.2), if the number of received orders between two data-

dependent transactions 𝑡1 and 𝑡2 is insufficient, the leader can not

determine the order and adds a pair (𝑡1, 𝑡2) to a set of missing
pairs (undirected edges) E. This set is then used by replicas in the

next round to specify the order of missing pairs and complete the

previous proposals.

5

Algorithm 1 Local ordering on replica 𝑟

Input: (1) a set of incoming transactions in round 𝑖 ,

(2) the set of missing pairs (i.e., undirected edges) E
1: Initiate an empty graph𝐺𝑟 = (𝑇𝑟 , 𝐸𝑟)
2: for every transaction 𝑡 that is received in an earlier round but has not been

proposed by a leader do ⊲ First type

3: Add transaction (vertex) 𝑡 to𝑇𝑟
4: for every vertex 𝑡 ′ ∈ 𝑇𝑟 do
5: if 𝑡 and 𝑡 ′ are data-dependent then
6: Add (𝑡 ′, 𝑡) to 𝐸𝑟
7: while round 𝑖 has not been finished do
8: for every incoming transaction 𝑡 received from clients do
9: if 𝑡 is not proposed in an earlier round then ⊲ Third type

10: Add a vertex 𝑡 to𝐺𝑟

11: for every vertex 𝑡 ′ ∈ 𝑇𝑟 do
12: if 𝑡 ′ and 𝑡 are data-dependent then
13: Add (𝑡 ′, 𝑡) to 𝐸𝑟
14: else if 𝑡 is a vertex in an earlier proposal then ⊲ Second type

15: for every pair (𝑡 ′, 𝑡) ∈ E do
16: if 𝑡 ′ is already received then
17: Add (𝑡 ′, 𝑡) to𝑈𝑟

18: Send ⟨⟨LOCAL-ORDER, 𝑖,𝐺𝑟 ,𝑈𝑟 ⟩𝜎𝑟 ,𝑇 ⟩ to the leader

When a replica receives a transaction 𝑡 that was proposed in an

earlier round, the replica checks the set of missing pairs (undirected

edges) E sent by the leader of the previous round to see if 𝑡 is part of

any missing pairs. For any pair (𝑡 ′, 𝑡) ∈ E, if the replica has already
received 𝑡 ′, the replica adds (𝑡 ′, 𝑡) to the set of updated local ordering
𝑈𝑟 to specify the order between 𝑡

′
and 𝑡 . Updated ordering includes

a set of edges between transactions of proposals that have been

received in previous rounds. Such ordering dependencies enable the

leader to finalize previous proposals by adding the missing edges.

At the end of round 𝑖 , each replica 𝑟 sends a signed local-ordermes-

sage ⟨⟨LOCAL-ORDER, 𝑖,𝐺𝑟 ,𝑈𝑟 ⟩𝜎𝑟 ,𝑇 ⟩ including the dependency graph

𝐺𝑟 and the set of updated local ordering𝑈𝑟 to the leader. The set of

received requests𝑇 is piggybacked (not included) to keep local-order
messages small. This is important because local-order messages are

used by the leader in the global ordering phase to prove that this

set of requests has been received.

Figure 3 presents the local ordering phase of Rashnu on different

replicas in two rounds. Data objects accessed (written) by each

transaction are shown in the bottom of the figure. For example, in

round 1, replica 𝑟2 receives transactions in this order: 𝑡1 ≺ 𝑡5 ≺
𝑡2 ≺ 𝑡3 ≺ 𝑡6 and generates local dependency graph 𝐺𝑟2 by adding

edges between data-dependent transactions, e.g., (𝑡1, 𝑡2) as both
write on data object A. As shown, replicas receive different sets of
transactions in each round and need to deal with different cases.

For instance, replica 𝑟3 receives transaction 𝑡9 in round 1. However,

since it has not been proposed by the leader, replica 𝑟3 includes

𝑡9 in its graph of round 2 (first type). Similarly, while replica 𝑟1
receives transaction 𝑡5 in round 2, the replica does not send 𝑡5 to

the leader because it has already been proposed by the leader of

round 1 (second type). The set of updated local ordering𝑈𝑟 is empty

in both rounds for all replicas. This is because in round 1, there is

no prior proposal to be updated and the proposal of round 1 has no

missing edges (E = ∅) to be updated in round 2.

4.2 Global Ordering
In the global ordering phase, the leader replica receives the local-
ordermessages from different replicas and generates the final order-

ing of transactions. Since 𝑓 replicas might be faulty and not send

Algorithm 2 Global ordering on leader replica 𝜋

Input: (1) 𝑛 − 𝑓 local-order messages received from different replicas,

(2) list of missing edges E
1: for every transaction 𝑡 in some local-order messages do
2: if 𝑡 appears in at least 𝑛 − 2𝑓 local-order messages then
3: Label 𝑡 as fixed
4: else if 𝑡 appears in at least 𝑛 (1 − 𝛾) + 𝑓 + 1 local-order messages then
5: Label 𝑡 as pending
▷ Step 1: global dependency graph generation

6: Initiate an empty graph𝐺 = (𝑉 , 𝐸)
7: Initiate updated global ordering dependency list 𝐿𝑔 = ∅
8: for every fixed or pending transaction 𝑡 do
9: add a vertex 𝑡 to𝐺

10: for each pair of vertices 𝑡1 and 𝑡2 do
11: if 𝑤 (𝑡1, 𝑡2) > 𝑤 (𝑡2, 𝑡1) & 𝑤 (𝑡1, 𝑡2) ≥ 𝑛 (1 − 𝛾) + 𝑓 + 1 then
12: Add (𝑡1, 𝑡2) to 𝐸
13: else if 𝑤 (𝑡2, 𝑡1)>𝑤 (𝑡1, 𝑡2) & 𝑤 (𝑡2, 𝑡1) ≥𝑛 (1 − 𝛾) + 𝑓 + 1 then
14: Add (𝑡2, 𝑡1) to 𝐸
▷ Step 2: condensation graph generation

15: 𝐺𝐶 = (𝑉𝐶 , 𝐸𝐶) ←[Condensation(𝐺)

▷ Step 3: graph pruning

16: for every pending vertex 𝑢 do
17: if there is no fixed vertex 𝑣 such that (𝑢, 𝑣) ∈ 𝐸𝐶 then
18: Remove 𝑢 from𝑉𝐶

19: Remove all edges involving 𝑢 from 𝐸𝐶

20: for every pair of data-dependent transactions 𝑡1 and 𝑡2 with no edges do
21: if 𝑡1 and 𝑡2 are in two different vertices of𝑉𝐶 then
22: Add (𝑡1, 𝑡2) to E
▷ Step 4: DAG transitive reduction generation

23: 𝐺𝑇 = (𝑉𝑇 , 𝐸𝑇) ←[TransitiveReduction(𝐺𝐶
)

▷ Step 5: updating previous proposals

24: for each pair of transactions 𝑡1 and 𝑡2 in any𝑈𝑖 do
25: if 𝑤 (𝑡1, 𝑡2) > 𝑤 (𝑡2, 𝑡1) & 𝑤 (𝑡1, 𝑡2) > 𝑛 (1 − 𝛾) + 𝑓 + 1 then
26: Add (𝑡1, 𝑡2) to𝑈𝑔

27: else if 𝑤 (𝑡2, 𝑡1)>𝑤 (𝑡1, 𝑡2) & 𝑤 (𝑡2, 𝑡1)>𝑛 (1 − 𝛾)+𝑓 +1 then
28: Add (𝑡2, 𝑡1) to𝑈𝑔

▷ Step 6: global order proposal

29: Send ⟨GLOBAL-ORDER,𝐺𝑇 , E, L,𝑈𝑔, L𝑢 ⟩𝜎𝜋 to all replicas

their local-ordermessages, the leader collects a quorum of 𝑛− 𝑓 local-
order messages from different replicas (including itself) to generate

the global order. Algorithm 2 demonstrates global ordering on the

leader.

We define two types of transactions: fixed and pending. Trans-
action 𝑡 is fixed if it appears in at least 𝑛 − 2𝑓 local-order messages,

whereas 𝑡 is pending if at least 𝑛(1−𝛾) + 𝑓 + 1 (and less than 𝑛− 2𝑓)
local-ordermessages include 𝑡 . A fixed transaction has been received

by sufficiently many replicas to be included in the final order. Spe-

cifically, since at most 𝑓 local-order messages in the quorum might

have been received from faulty replicas, the leader counts on only

𝑛 − 2𝑓 messages and if 𝑛 − 2𝑓 different replicas receive a transac-

tion, the transaction is ordered safely. On the other hand, pending
transactions are not received by enough replicas yet to finalize

an order. However, an edge from a pending to a fixed transaction

might occur. As a result, we keep such pending transactions in the

leader proposal enabling the leader to propose more transactions.

We show that this does not violate the order-fairness (Definition 3).

In Figure 3, since 𝛾 = 1, 𝑓 = 1 (and 𝑛 = 5), a transaction 𝑡 is fixed if

it appears in 3 or 4 local orderings, e.g., transactions 𝑡2, 𝑡3, and 𝑡4
in round 1, while transaction 𝑡 is pending if only 2 local orderings

include 𝑡 , e.g., transactions 𝑡1 and 𝑡6 in round 1.

We also define a weight function 𝑤 : 𝐸 ↦→ [0, 𝑛 − 𝑓] to denote

the number of local dependency graphs that include a particular

edge. Given a set L of 𝑛 − 𝑓 local dependency graphs and two

transactions (vertices) 𝑡1 and 𝑡2 in round 𝑖 ,𝑤 (𝑡1, 𝑡2) represents the

6

number of graphs that include an edge from 𝑡1 to 𝑡2. Note that for

any pair of data-independent transactions 𝑡1 and 𝑡2,𝑤 (𝑡1, 𝑡2) = 0.

In Figure 3 and in round 1,𝑤 (𝑡3, 𝑡4) = 3 while𝑤 (𝑡3, 𝑡9) = 1.

Step 1: global dependency graph generation. Upon receiving

a quorum of 𝑛 − 𝑓 local-order messages from different replicas in

round 𝑖 , the leader initiates an empty graph 𝐺 = (𝑉 , 𝐸) and adds

all fixed and pending transactions to its vertex set, as presented in

Algorithm 2, lines 6-9. For each pair of data-dependent transactions

𝑡1 and 𝑡2 in 𝑉 , the leader calculates both 𝑤 (𝑡1, 𝑡2) and 𝑤 (𝑡2, 𝑡1). If
the maximum of 𝑤 (𝑡1, 𝑡2) and 𝑤 (𝑡2, 𝑡1) is equal or greater than
𝑛(1 − 𝛾) + 𝑓 + 1, then the corresponding edge will be added to the

graph 𝐺 (lines 10-14).

The goal of this step is to include asmany transactions as possible

while making sure that the exclusion of any transaction from the

proposal does not violate fairness (Definition 3). In particular, the

order-fairness definition states that if 𝛾 fraction of replicas receives

transaction 𝑡1 before transaction 𝑡2, then 𝑡2 is not ordered before 𝑡1.

When at least 𝑛(1 − 𝛾) + 𝑓 + 1 replicas propose a particular order
𝑡1 ≺ 𝑡2 for two transactions 𝑡1 and 𝑡2, at most, 𝑛𝛾 − 2𝑓 − 1 replicas
(from the set of 𝑛− 𝑓 replicas) can propose the reverse order 𝑡2 ≺ 𝑡1,

i.e., (𝑛 − 𝑓) − (𝑛(1 − 𝛾) + 𝑓 + 1) = 𝑛𝛾 − 2𝑓 − 1. This number of

replicas is, nevertheless, still lower than the 𝛾 fraction of (honest)

replicas (as discussed in lemma 3.1, only 𝑛 − 2𝑓 replicas within the

quorum of 𝑛 − 𝑓 replicas are guaranteed to be honest). As a result,

if 𝑛(1 − 𝛾) + 𝑓 + 1 replicas propose an order 𝑡1 ≺ 𝑡2, the order can

be safely chosen and the order-fairness will not be violated even if

all remaining replicas propose the reverse order 𝑡2 ≺ 𝑡1.

Specifically, when 𝛾 = 1, based on the order-fairness definition,

if all honest replicas (i.e., at least 𝑛 − 2𝑓 within a quorum of 𝑛 −
𝑓) receive transaction 𝑡1 before 𝑡2, then 𝑡2 should not be ordered

before 𝑡1. As a result, if the protocol observes that 𝑓 + 1 replicas
have received transaction 𝑡1 before transaction 𝑡2, it can safely

order 𝑡1 before 𝑡2. This is because it becomes impossible for 𝑛 − 2𝑓
honest replicas within a quorum of 𝑛 − 𝑓 to receive 𝑡1 and 𝑡2 in the

reverse order (i.e., 𝑡2 ≺ 𝑡1), hence, order-fairness can not be violated.

Moreover, if neither of two possible orders satisfies order-fairness,

i.e., some (> 𝑓) received 𝑡1 ≺ 𝑡2 while others (> 𝑓) received 𝑡2 ≺ 𝑡1,

the protocol is free to choose one of the orders. As a result, deciding

based on 𝑓 + 1 local ordering does not violate order-fairness. In this

case, the protocol chooses the order with the higher weight.

Continuing with the example of Figure 3, in round 1 the leader

adds fixed transactions 𝑡2, 𝑡3, 𝑡4, 𝑡5 and pending transactions 𝑡1 and
𝑡6 to the graph while transaction 𝑡9 is not added as it is received by

only one replica. The leader adds an edge between two transactions

if the edge appears in at least 𝑛(1 − 𝛾) + 𝑓 + 1 = 2 local graphs, e.g.,

edge (𝑡2, 𝑡4) is not added because it appears only in 𝐺𝑟1 .

Note thatmalicious replicasmight add invalid edges, e.g., between

independent transactions, to their graph. However, the leader can

detect such edges. Even if the leader does not validate edges, since

at most 𝑓 replicas are Byzantine, no invalid edges will be added

to the final graph. Similarly, if the leader is malicious and adds

incorrect edges, its malicious behavior can be easily detected by

replicas as the leader must send the 𝑛− 𝑓 local ordering the replicas.

Step 2: condensation graph generation. The graph generated

by the leader, as demonstrated by the Condorcet paradox, might

contain cycles. Rashnu deals with cycles using the batch order-

ing technique [52, 53] where transactions involved in a cycle are

delivered to replicas simultaneously and within a batch. To determ-

ine the order of transactions, the final graph must be acyclic. To

generate an acyclic graph from a cyclic graph, Rashnu uses the

graph condensation technique. Given a graph 𝐺 , to generate the

condensation graph 𝐺𝐶
of 𝐺 , Rashnu first identifies the strongly

connected components of 𝐺 . Each strongly connected component

intuitively represents either a single vertex (transaction) or a cycle

in graph 𝐺 . More formally, a strongly connected component 𝐶 is

a maximal subset of vertices such that any two vertices of this

subset are reachable from each other. The condensation of graph𝐺

is graph 𝐺𝐶 = (𝑉𝐶 , 𝐸𝐶) where each vertex 𝐶 ∈ 𝑉𝐶
corresponds to

a strongly connected component of graph 𝐺 , and there is an edge

(𝐶𝑖 ,𝐶 𝑗) ∈ 𝐸𝐶 if and only if there are two vertices𝑢 ∈ 𝐶𝑖 and 𝑣 ∈ 𝐶 𝑗

such that (𝑢, 𝑣) ∈ 𝐸. A vertex 𝐶 in 𝐺𝐶
is fixed if it includes at least

one fixed transaction. Otherwise, 𝐶 is pending.
As shown in Figure 3, transactions 𝑡2, 𝑡3 and 𝑡4 construct a cycle

in graph𝐺 of round 1. As a result, the condensation graph𝐺𝐶
of𝐺

consists of four vertices (strongly connected components): single-

transaction vertices 𝑡1, 𝑡5, and 𝑡6 and a vertex 𝐶1 consisting of 𝑡2,

𝑡3 and 𝑡4. The resulting graph 𝐺𝐶
is acyclic.

Step 3: graph pruning. Once the condensation graph is generated,

the next step is to remove pending transactions that have no out-

going path to a fixed transaction. These transactions are removed

because they have not been received by a sufficient number of rep-

licas and they do not incorporate in determining the order of a fixed
transaction, i.e., we initially add them to the graph because there

might be a path from a pending transaction to a fixed transaction,

helping in determining the order. Given two data-dependent trans-

actions 𝑡1 and 𝑡2 where 𝑡1 is fixed, 𝑡2 is pending, and (𝑡1, 𝑡2) ∈ 𝐸𝐶 .
Since at least 𝑛(1 − 𝛾) + 1 honest replicas have received 𝑡1 before
𝑡2, removing pending transaction 𝑡2 does not violate fairness.

In Figure 3, transactions 𝑡1 and 𝑡6 are pending in round 1. How-

ever, since 𝑡1 has outgoing paths to fixed vertex 𝐶1, we keep it in

the graph; while 𝑡6 is removed from the graph. Removing 𝑡6 enables

the next proposer to propose the order of 𝑡6 freely when 𝑡6 appears

in a sufficient number of local graphs.

Finally, for every pair of data-dependent transactions 𝑡1 and 𝑡2
with no edges in between, if 𝑡1 and 𝑡2 are not in the same vertex

of 𝐺𝐶
(i.e., they are not part of the same cycle), the leader adds

a pair (𝑡1, 𝑡2) to the set of missing edges E. Maintaining missing

edges is necessary because determining the order of a missing edge

might result in a new or extended cycle. Hence, a transaction should

not be executed until the order of all its predecessor transactions

in the graph is determined. We do not maintain missing edges

between transactions involved in a cycle, because such edges do not

contribute in ordering transactions (i.e., the involving transactions

already constructed a cycle). In Figure 3, while round 1 has no

missing edges, the edge between 𝑡7 and 𝑡10 is missing in round 2.

Step 4: DAG transitive reduction generation. The generated
graph includes all determined orders between different transactions.

As an optimization, the graph can be simplified by removing the

transitive edges. The transitive reduction of a directed graph is

another directed graph that has the same reachability relation with

7

Algorithm 3 Order finalization on replica 𝑟

Input: a global-order message received from the leader

▷ Step 1: Global order validation

1: Upon receiving ⟨GLOBAL-ORDER,𝐺𝑇 , E, L,𝑈𝑔, L𝑢 ⟩𝜎𝜋
2: Validate𝐺𝑇

, E and𝑈𝑔 using L and L𝑢
▷ Step 2: Establishing consensus

3: HotStuff(GLOBAL-ORDER)
▷ Step 3: Transaction execution

4: for every edge (𝑡1, 𝑡2) in𝑈𝑔 where 𝑡1, 𝑡2 ∈ Block 𝐵𝑖 do
5: Add (𝑡1, 𝑡2) to 𝐵𝑖 .𝐺

𝑇

6: for every vertex 𝑣 in 𝐵𝑖 .𝐺
𝑇 do

7: if 𝐵𝑖−1 is marked as completed, all predecessors of 𝑣 in 𝐵𝑖 .𝐺
𝑇
are executed

and there is no missing edge in E involving 𝑣 then
8: if 𝑣 is a single transaction then
9: Execute transaction 𝑣

10: else ⊲ 𝑣 contains a Condorcet cycle

11: Let be 𝑣1, 𝑣2, ...𝑣𝑛 be a Hamiltonian cycle of 𝑣

12: Execute transactions in the specified order

13: if All transactions of Block 𝐵𝑖 .𝐺
𝑇
are executed then

14: Mark block 𝐵𝑖 as completed

the same vertices and as few edges as possible. A transitive reduc-

tion of a graph 𝐺𝐶 = (𝑉𝐶 , 𝐸𝐶) is graph 𝐺𝑇 = (𝑉𝑇 , 𝐸𝑇) where (1)
𝑉𝐶 = 𝑉𝑇

(the same set of vertices) and (2) for each pair of vertices

𝑣 and 𝑢 in 𝐺𝑇
, there is a path from 𝑢 to 𝑣 in 𝐺𝑇

if and only if there

is a path from 𝑢 to 𝑣 in 𝐺𝐶
[6]. Since the input graph 𝐺𝐶

is finite

and acyclic, its transitive reduction𝐺𝑇
is unique and is a sub-graph

of 𝐺𝐶
(i.e., the minimum equivalent graph).

In Figure 3 and in round 2, graph 𝐺𝑇
has four fewer edges com-

pared to graph𝐺𝐶
. For instance, (𝑡6, 𝑡9) is removed as 𝑡9 is reachable

from 𝑡6 through 𝑡8.

Step 5: updating previous proposals. The leader also needs to
update the previous proposals by adding the missing edges between

data-dependent transactions. As explained earlier, each replica 𝑟

sends a set of updated local ordering dependencies𝑈𝑟 to the leader

in its local-ordermessage. When the current leader receives an order-

ing dependency, i.e., an edge, between two data-dependent transac-

tions 𝑡1 and 𝑡2 by at least 𝑛(1−𝛾) + 𝑓 + 1 replicas on some previous

proposal, the leader adds an edge to its updated global ordering

dependencies list 𝑈𝑔 . If the leader receives both (𝑡1, 𝑡2) and (𝑡2, 𝑡1),
each from at least 𝑛(1−𝛾) + 𝑓 +1 replicas, the edge with the highest

weight will be added to the list 𝑈𝑔 . The leader also removes the

edge from the list of missing edges E.
Step 6: global order proposal. Once the graph is generated, the

leader 𝜋 multicasts a ⟨GLOBAL-ORDER,𝐺𝑇 , E,L,𝑈𝑔,L𝑢⟩𝜎𝜋 message to

all replicas. The global-ordermessage includes the dependency graph

𝐺𝑇
, the set of missing edges E, the set L of 𝑛 − 𝑓 local dependency

graphs received from different replicas, the updated global ordering

dependencies list𝑈𝑔 , and the set L𝑢 of 𝑛− 𝑓 updated local ordering

dependencies received from different replicas. The set L and L𝑢
are included to enable replicas to verify the dependency graph and

the lists constructed by the leader.

4.3 Order Finalization
The order finalization is performed by all replicas to finalize the

order proposed by the leader and execute transactions. As shown

in Algorithm 3, order finalization consists of three main steps. First,

replicas validate the proposed order. Second, all replicas establish

agreement on the proposed order using a BFT protocol, and finally,

replicas execute transactions following the proposed order.

Figure 4: HotStuff protocol

Step 1: global order validation. Upon receiving a global-order
message from the leader, each replica first validates the generated

graph𝐺𝑇
, the list of missing edges E and the list of updated global

ordering dependencies𝑈𝑔 (Algorithm 3, lines 1-2). To validate graph

𝐺𝑇
, the replica ensures that fixed and pending transactions are

labeled correctly, and edges are added only if the order is proposed

by a sufficient number of replicas. Similarly, the replicas validate

both E and 𝑈𝑔 lists by checking the missing edges of the current

and previous proposals.

Step 2: establishing agreement. Once the global-order message

is validated, replicas establish agreement on the proposed order

using the utilized consensus protocol. The current deployment of

Rashnu uses HotStuff [82] as the underlying BFT protocol, enabling

us to compare Rashnu with the existing order-fairness protocol,

i.e., Themis [52]. HotStuff is a leader-based BFT protocol with two

main properties. First, it provides linear communication complexity

(rather than quadratic as in most BFT protocols, e.g., PBFT). Spe-

cifically, each all-to-all communication phase of PBFT is replaced

with two linear phases in HotStuff; one from the replicas to the

leader and one from the leader to the replicas. Second, HotStuff uses

the leader rotation technique, where the leader is replaced after

every single proposal in a predetermined manner (round-robin).

This is in contrast to most existing protocols that rely on a stable

leader, and the leader is changed only when it is suspected to be

faulty. HotStuff, as shown in Figure 4, processes each request in

four phases of communication: prepare, pre-commit, commit and
decide. It should be noted that Rashnu can be easily integrated with

any other leader-based BFT protocols, e.g., PBFT [24] or SBFT [46].

Step 3: transaction execution. Once the consensus is achieved,
each replica updates the previous proposals by adding edges from

𝑈𝑔 . Replicas start executing transactions of a block once all prede-

cessor blocks are executed, i.e., marked as completed. A block 𝐵𝑖 is

marked as completed if its dependency graph 𝐵𝑖 .𝐺𝑇
has no missing

edges, and all its transactions have been executed. In Rashnu, rep-

licas follow the edges in the final dependency graph in executing

transactions and are able to execute data-independent transactions

of a block in parallel. Each vertex of a block is a strongly connected

component consisting of either a single transaction or a set of trans-

actions that construct a cycle. For each vertex that is a cycle, first,

a Hamiltonian cycle is identified. A Hamiltonian cycle is a cycle

that visits each vertex exactly once. If the graph includes more than

one Hamiltonian cycle, all replicas deterministically use one, e.g.,

based on transaction ids, and execute transactions of the cycle in

that order (algorithm 3, lines 6-12).

8

Figure 5: Cross-block data dependency

4.4 Performance Optimizations
We briefly discuss two optimizations that can be used by Rashnu

to improve performance.

Cross-block parallel execution. While Rashnu executes data-

independent transactions within a block in parallel, replicas still

execute transactions block by block. Specifically, each replica waits

for block 𝐵𝑖 to be marked as completed before executing any trans-

actions of 𝐵𝑖+1. This technique simplifies the execution process

because the leader constructs a dependency graph for each block

independently and there is no need to capture data dependencies

across consecutive blocks. However, this might result in unneces-

sary latency for two main reasons. First, data-independent transac-

tions can be executed in parallel. Hence, when transactions of a cur-

rent block are being executed, there is no need for data-independent

transactions of a successor block to wait. Second, when some edges

are missing, no transactions from any successor blocks can be ex-

ecuted, even if the transaction order of a successor block does not

depend on the missing edges. To address this issue, Rashnu can

capture data dependencies across blocks. While the overhead of

capturing data dependencies across blocks might be high in con-

tentious workloads, it results in a significant performance gain in

workloads with low to moderate contention.

Figure 5 demonstrates three consecutive blocks and their depend-

ency graphs. Let’s assume that E = {(𝑡1, 𝑡2)}, i.e., the edge between
transaction 𝑡1 and 𝑡2 is missing. In the basic execution model, 𝑡3 and

𝑡4 can be executed, however, all transactions of blocks 𝐵2 and 𝐵3
wait for block 𝐵1 to be marked as completed before being executed.

In the optimized model, Rashnu captures dependencies within and

across transaction blocks. Figure 5 shows cross-block dependencies

(dashed green lines). For example, transaction 𝑡9 can be executed as

soon as transaction 𝑡3 is executed. Once a transaction is executed,

it is removed from the cross-block dependency graph.

Transaction dissemination. In determining the order of two valid

transactions 𝑡1 and 𝑡2, Rashnu considers the set of replicas [that

broadcast both 𝑡1 and 𝑡2. This might result in unspecified ordering

between transactions, especially when replicas receive different

sets of transactions within a round, due to the asynchronous nature

of the network. The unspecified orders need to be captured in the

following blocks and when replicas receive the missing transactions.

To reduce the number of such deferred orderings, Rashnu can as-

sume that all honest replicas eventually broadcast every transaction.

This means that an honest replica that has received only one of the

two transactions will also receive the other transaction later. This

is a reasonable assumption because a replica that has received only

the first transaction should eventually include the second transac-

tion to be able to establish fair order. It also corresponds to how

atomic broadcast is used in practice [22].

4.5 Correctness Argument
In this section, we briefly discuss the order-fairness, safety, and

liveness of Rashnu. Some arguments are inspired by the correctness

arguments of Themis [52].

Lemma 4.1. If transaction 𝑡 appears in 𝑛−2𝑓 local-ordermessages

(i.e., fixed transaction), 𝑡 is proposed by a leader.

Proof. The leader includes all fixed and pending transactions
in its graph 𝐺 and only the graph pruning step removes pending
vertices (with no outgoing path to a fixed vertex) from the condens-

ation graph. Since a vertex in the condensation graph is pending if

it does not contain any fixed transactions, fixed transactions will al-

ways be proposed by the leader. Note that, the leader needs to send

all local orderings to replicas (as a proof of correct construction

of𝐺), hence, if it maliciously excludes a fixed transaction, replicas

detect that and do not accept the proposal. □

Lemma 4.2. Given two data-dependent transactions 𝑡1 and 𝑡2 in

a leader proposal. The proposal includes either (𝑡1, 𝑡2) or (𝑡2, 𝑡1).

Proof. Rashnu assumes a partial synchrony model where at

least 𝑛 − 2𝑓 replicas in the quorum (eventually) have sent both

transactions to the leader. Since 𝑛 − 2𝑓 > 2(𝑛(1 − 𝛾) + 𝑓), at least
𝑤 (𝑡1, 𝑡2) or𝑤 (𝑡2, 𝑡1) is equal or greater than𝑛(1−𝛾)+ 𝑓 +1. Since the
leader adds only one edge (the edge with higher weight) even when

both𝑤 (𝑡1, 𝑡2) are𝑤 (𝑡2, 𝑡1) are equal or greater than 𝑛(1−𝛾) + 𝑓 + 1,
the final graph includes either (𝑡1, 𝑡2) or (𝑡2, 𝑡1) but not both. □

Lemma 4.3. The graph 𝐺𝑇
proposed by the leader is acyclic.

Proof. While graph𝐺 might contain (Condorcet) cycles, each

cycle is part of a vertex (i.e., strongly connected component) in the

condensation graph 𝐺𝐶
. Since graph pruning and transitive reduc-

tion generation steps do not introduce any new edges, the final

graph is still acyclic. Note that, for transactions within a strongly

connected component, replicas deterministically identify a Hamilto-

nian cycle and order transactions. □

Lemma 4.4. Given two order-dependent transactions 𝑡1 and 𝑡2
received in round 𝑖 where 𝑡1 is fixed. If the leader proposal includes
only 𝑡1 then there are at least 𝑛(1 −𝛾) + 1 honest replicas that have
received 𝑡1 before 𝑡2.

Proof. If transaction 𝑡2 was a fixed transaction, the leader pro-

posal must include it. Hence, 𝑡2 is not fixed. If 𝑡2 is not a pending
transaction, it has been received by at most 𝑛(1 − 𝛾) + 𝑓 replicas.

Since 𝑡1 is fixed, it appears in 𝑛 − 2𝑓 local-order messages. As a

result, 𝑝 = (𝑛 − 2𝑓) − (𝑛(1 − 𝛾) + 𝑓) = 𝛾𝑛 − 3𝑓 replicas ordered

𝑡1 before 𝑡2. 𝑛 >
4𝑓

2𝛾−1 , hence, 𝑝 > 𝑛(1 − 𝛾) + 𝑓 , from which at

most 𝑓 replicas might be faulty. Hence, at least 𝑛(1 − 𝛾) + 1 honest
replicas received 𝑡1 before 𝑡2. If 𝑡2 is a pending transaction, since

it is not included in the leader proposal, there is no path from 𝑡2
to any fixed transactions that includes 𝑡1. As a result, either (1)

𝑤 (𝑡2, 𝑡1) ≤ 𝑛(1−𝛾) + 𝑓 or (2) 𝑛(1−𝛾) + 𝑓 +1 ≤ 𝑤 (𝑡2, 𝑡1) ≤ 𝑤 (𝑡1, 𝑡2).
The second case implies that at least 𝑛(1 − 𝛾) + 1 honest replicas
received 𝑡1 before 𝑡2. In the first case, since 𝑡1 is fixed,𝑤 (𝑡1, 𝑡2) ≥
(𝑛−2𝑓)− (𝑛(1−𝛾) + 𝑓) = 𝛾𝑛−3𝑓 > 𝑛(1−𝛾) + 𝑓 since 𝑛 >

4𝑓
2𝛾−1 . □

9

2550 100 200 400

4

8

12

16

Batch size

T
h
r
o
u
g
h
p
u
t
[
k
t
r
a
n
s
/
s
e
c
]

HotStuff-R HotStuff-W Themis-R Themis-W Rashnu-R Rashnu-W

2550 100 200 400

300

600

900

1,200

1,500

Batch size

L
a
t
e
n
c
y
[
m
s
]

Figure 6: Impact of batch size

Lemma 4.5. Given two order-dependent transactions 𝑡1 and 𝑡2,

if the leader proposal includes only 𝑡1 (and 𝑡2 was not in an earlier

proposal) and 𝑡2 is received before 𝑡1 by 𝛾𝑛 replicas, 𝑡1 and 2 are in

the same Condorcet cycle.

Proof. Since 𝑡1 is included in the proposal, it is either fixed or

pending. If 𝑡1 is a fixed transaction, there are at least 𝑛(1 − 𝛾) + 1
honest replicas that have received 𝑡1 before 𝑡2 (lemma 4.4); which

contradict the condition (i.e., 𝑡2 is received before 𝑡1 by 𝛾𝑛 replicas).

Hence, 𝑡1 is pending. Since 𝑡1 is pending there is a path 𝑡1, 𝑡𝑎, 𝑡𝑏 , ..., 𝑡𝑘
from 𝑡1 to some fixed transaction 𝑡𝑘 in the leader proposal. Since

𝑡𝑘 is a fixed transaction, based on lemma 4.4, there are at least

𝑛(1 − 𝛾) + 1 honest replicas that have received 𝑡𝑘 before 𝑡2. Since

𝑡2 is received before 𝑡1 by 𝛾𝑛 replicas, 𝑡1, 𝑡𝑎, 𝑡𝑏 , ..., 𝑡𝑘 , 𝑡2 construct a

Condorcet cycle. □

Theorem 4.6. Rashnu guarantees data-dependent order-fairness.

Proof. Given two data-dependent transactions 𝑡1 and 𝑡2 where

𝛾𝑛 replicas receive 𝑡1 before 𝑡2. Four cases can happen in the final

ordering. First, 𝑡1 and 𝑡2 are proposed in the same block and in

different vertices of the graph 𝐺𝑇
. Second, 𝑡1 and 𝑡2 are proposed

in the same block and in the same vertex of the graph 𝐺𝑇
. Third,

𝑡2 is proposed in a later block than 𝑡1 (lemma 4.4), and Fourth, 𝑡1
is proposed in a later block than 𝑡2 (lemma 4.5). Hence, Rashnu

guarantees data-dependent order-fairness. □

Theorem 4.7. Rashnu guarantees safety.

Proof. The safety of Rashnu is a direct consequence of the

safety of HotStuff [82], as Rashnu does not modify any phases of

the underlying agreement protocol. □

Theorem 4.8. Rashnu guarantees liveness.

Proof. Rashnu considers a partial synchrony model where a

correct client transaction 𝑡 will be (eventually) received by all rep-

licas. As a result, 𝑡 will appear in at least 𝑛 − 2𝑓 local-ordermessages

(either in the same round or different rounds), becomes a fixed trans-
action, and is proposed by a leader. The execution of 𝑡 only depends

on missing edges between previously proposed order-dependent

transactions and as soon as such edges are added (i.e., correspond-

ing transactions appear in 𝑛 − 2𝑓 local-order messages), 𝑡 can be

executed. However, the order of transaction 𝑡 does not depend on

any transaction that has not been proposed. Hence, in contrast to

some other fair ordering protocols like Aequitas [53], Condorcet

cycles can not be chained and violate liveness. □

0.01 0.5 0.99

0

2

4

6

8

10

12

Zipfian skewness

T
h
r
o
u
g
h
p
u
t
[
k
t
r
a
n
s
/
s
e
c
]

HotStuff-R HotStuff-W Themis-R Themis-W Rashnu-R Rashnu-W

0.01 0.5 0.99

0

10

20

30

Zipfian skewness

L
a
t
e
n
c
y
[
m
s
]

Figure 7: Impact of workload contention

5 Experimental Evaluation
Our evaluation has two main goals. First, measuring the over-

head of supporting order-fairness in Rashnu compared to its (unfair)

underlying BFT protocol; HotStuff [82]. Second, Comparing the per-

formance of Rashnu and the state-of-the-art order-fairness protocol;

Themis [52]. To this end, we analyze the impact of the following

parameters on the performance of HotStuff, Rashnu, and Themis:

(1) The transaction batch size (Section 5.1),

(2) the degrees of contention (Section 5.2),

(3) the network size (Section 5.3),

(4) the order-fairness parameter (Section 5.4), and

(5) the geo-distribution of replicas (Section 5.5),

Our Rashnu implementation is bootstrapped from the HotStuff

protocol [82]. We use the author’s open-source libhotstuff codebase

[3] and implemented Rashnu on top of that. We mainly change the

HotStuff codebase by enabling the leader to generate a fair order

and the replicas to send their local order to the leader and validate

the proposed order. Other phases of the HotStuff protocol remain

untouched. Since execution routine is unchanged, all transactions

are executed sequentially. We have also implemented Themis on

top of HotStuff in the same way as Rashnu to enable a fair compar-

ison. We perform our experimental evaluation under the SmallBank
benchmark. We initially populate the system with 10000 records

and run each protocol under read-heavy (𝑃𝑤 = 0.05) and write-

heavy (𝑃𝑤 = 0.95) workloads, e.g., Rashnu-R is Rashnu under the

read-heavy, and Rashnu-W is Rashnu under the write-heavy work-

load. To determine the accounts accessed by each transaction, a

Zipfian distribution is followed, which can be configured in terms

of skewness, e.g., 𝑠 = 0 corresponds to a uniform distribution.

We run our experiments on a set of c6220 bare-metal machines

on CloudLab [35], each with two Xeon E5-2650v2 processors (8

cores each, 2.6Ghz), 64GB RAM and two 1TB SATA 3.5” 7.2K rpm

hard drives. These machines are connected by two networks, each

with one interface: (1) a 1 Gbps Ethernet control network; (2) a 10

Gbps Ethernet commodity fabric.We report latency and throughput.

The results reflect end-to-end measurements from the clients.

5.1 Performance with Different Batch Sizes
In the first set of experiments, we measure the impact of transaction

batch size on the performance of different protocols. In this set of

experiments, the number of replicas is assumed to be 5 (4𝑓 + 1
where 𝑓 = 1), the order-fairness parameter 𝛾 = 1, and the account

selection follows a uniform distribution. Figure 6 depicts the res-

ults for all three protocols. The solid and dashed lines are used

for read-heavy and write-heavy workloads, respectively. When

10

20 40 60 80 100

3

6

9

12

Number of replicas

T
h
r
o
u
g
h
p
u
t
[
k
t
r
a
n
s
/
s
e
c
]

HotStuff Themis Rashnu-R Rashnu-W

20 40 60 80 100

100

200

300

400

Number of replicas

L
a
t
e
n
c
y
[
m
s
]

Figure 8: Impact of the network size

blocks are small (block size = 25), Rashnu provides fairness with

zero overhead, i.e., Rashnu processes 9775 tps while HotStuff pro-

cesses 9700 tps, both with 10 ms latency. This is because the cost

of generating small dependency graphs is insignificant compared

to running consensus among replicas. Increasing the block size,

however, results in a gap between HotStuff and Rashnu due to the

overhead of fair transaction ordering; generating local dependency

graphs, constructing the global dependency graph, and validating

the final order. Nevertheless, with block size = 50, Rashnu incurs

only 15% throughput overhead; while with the same setting, Themis

suffers from 45% throughput overhead. Further increasing the block

size makes the gap between HotStuff and Rashnu larger. This is

expected because Rashnu must construct larger local and global

graphs, requiring checking more and more dependencies. However,

compared to Themis, Rashnu shows 233% higher throughput and

74% lower latency with block size 400, demonstrating an efficient

order-fairness protocol. The type of workload has negligible im-

pact on the performance of HotStuff and Themis, as expected. The

performance of Rashnu, however, is reduced by 7% to 10% in write-

heavy workloads with different block sizes, compared to read-heavy

ones. This is because, with more write operations, Rashnu needs to

capture more data dependencies

5.2 Varying the Degree of Contention
In the next set of experiments, we study the impact of the workload

contention by changing the Zipfian skewness of the smallbank
benchmark from 𝑠 = 0.01 (uniform distribution) to 𝑠 = 0.5 and

𝑠 = 0.99 (contentious workload). In this set of experiments, the

batch size is 100, 𝑛 = 5, and 𝛾 = 1. As shown in Figure 7, the

performance of HotStuff and Themis are not affected by increasing

the workload skewness due to the fact that they do not construct

dependency graphs. Rashnu, however, shows ∼ 10% higher latency

(in both read-heavy and write-heavy workloads) and 2% and 10%

throughput reduction in read-heavy and write-heavy workloads

when we increase the Zipfian skewness from 𝑠 = 0.01 to 𝑠 = 0.99.

Overall, Rashnu incurs 22% throughput reduction and 27% higher

latency by going from a uniform read-heavy workload to a skewed

write-heavy workload. This, in fact, is the overhead of constructing

local and global dependency graphs by replicas and the leader. Note

that, even with 𝑠 = 0.99 and 𝑃𝑤 = 0.95, Rashnu demonstrates 34%

higher throughput and 31% lower latency compared to Themis.

5.3 Performance with Different Network Size
In the third set of experiments, we measure the performance of

Rashnu in networks with different sizes, i.e., 5, 21, 41, 61, 81, and 101.

1 0.9 0.75 0.6 0.55

0

2

4

6

8

10

12

order-fairness parameter

T
h
r
o
u
g
h
p
u
t
[
k
t
r
a
n
s
/
s
e
c
]

Themis Rashnu-R Rashnu-W

1 0.9 0.75 0.6 0.55

0

50

100

150

order-fairness parameter

L
a
t
e
n
c
y
[
m
s
]

Figure 9: Impact of the order-fairness parameter

We consider request batches of size 100, 𝛾 = 1, and uniform account

selection. Since the type of workloads (i.e., read-heavy and write-

heavy), does not have a significant impact on the performance

of HotStuff and Themis, we only report the results of the read-

heavy workload (𝑃𝑤 = 0.05) for those two protocols. As depicted

in Figure 8, increasing the number of replicas significantly reduces

the performance of all three protocols. This is expected because

establishing consensus among a large set of replicas is expensive

due to the high communication cost. Interestingly, with more than

20 replicas, Rashnu demonstrates almost the same performance as

HotStuff; providing order-fairness for free. This is because the cost

of consensus in HotStuff becomes much higher than the overhead

of fair ordering by Rashnu in a large network. This also shows that

the low performance of Rashnu in large networks is caused by the

HotStuff consensus routine and if Rashnu is bootstrapped from a

high-performance protocol, it can produce better results.

5.4 Varying the Order-fairness Parameter
We next run Themis and Rashnu under different values of the order-

fairness parameter 𝛾 . Since the network size is a function of the

order-fairness parameter (i.e., 𝑛 =
4𝑓

2𝛾−1 + 1), reducing 𝛾 requires a

larger 𝑛. Specifically, with 𝑓 = 1, we evaluate protocols with 𝛾 = 1

(𝑛 = 5), 𝛾 = 0.9 (𝑛 = 6), 𝛾 = 0.75 (𝑛 = 9), 𝛾 = 0.6 (𝑛 = 21), and

𝛾 = 0.55 (𝑛 = 41). In all experiments, the batch size is 100, and the

account selection is uniform. The results for Rashnu-R, Rashnu-W,

and Themis are shown in Figure 9. Similar to Figure 8, increasing

the number of replicas (resulting from reducing 𝛾) decreases the

overall performance. Since the cost of communication between

replicas dominates the fair ordering overhead, the gap between

Rashnu and Themis becomes smaller by increasing the number of

replicas; while Rashnu-R demonstrates 75% higher throughput than

Themis with 𝛾 = 1 (𝑛 = 5), it shows only 19% higher throughput

with 𝛾 = 0.55 (𝑛 = 41).

5.5 Performance in a Geo-distributed Setting
In the last set of experiments, we measure the performance of pro-

tocols in an emulated geo-distributed setup. We repeat the first set

of experiments (Section 5.1) with an extra 50 ms latency (injected

by Linux netem) for communication between any two replicas. The

results can be seen in Figure 10. As expected, the throughput of all

three protocols decreases once network latency is added. Interest-

ingly, Rashnu and Themis reach their pick performance on larger

block sizes, compared to the local setting (Figure 6). Specifically,

while Rashnu demonstrated its best throughput with block size 50

11

50100 200 400 800

1,000

2,000

3,000

Batch size

T
h
r
o
u
g
h
p
u
t
[
t
r
a
n
s
/
s
e
c
]

HotStuff-R HotStuff-W Themis-R Themis-W Rashnu-R Rashnu-W

50100 200 400 800

2,000

4,000

6,000

Batch size

L
a
t
e
n
c
y
[
m
s
]

Figure 10: Impact of batch size in a distributed setting

in the local setting, it shows its highest throughput with a block

size of 400 in the distributed setting. Similarly, Themis shows its

best throughput on the block size of 200. This demonstrates a trade-

off between communication latency and fair ordering. With large

latency, the cost of communication becomes higher than the over-

head of fair ordering, hence, large block sizes are beneficial. While

with low communication latency, the overhead of fair ordering is

much higher, thus smaller blocks give better performance. While

with a block size of 400, Rashnu incurs 45% throughput reduction

compared to HotStuff, its throughput is still 2.5 times the through-

put of Themis. In this setting, Rashnu processes transactions with

61% lower latency compared to Themis.

6 Related Work
Order-fairness has been recently studied by a few protocols,

e.g., Wendy [59, 60], Pompe [84], Aequitas [53], Themis [52] and

Quick order fairness [22]. BothWendy and Pompe rely on synchron-

ized clocks between replicas, making these protocols impractical

in asynchronous networks. In Wendy, all replicas have access to

synchronized local clocks and if all honest replicas receive transac-

tion 𝑡1 before 𝑡2, then 𝑡1 is delivered before 𝑡2. Pompe, on the other

hand, uses a pre-ordering phase and determines the fair order using

timestamps assigned by replicas in the pre-ordering phase. Spe-

cifically, Pompe orders transaction using their median timestamp.

The median timestamp, however, can easily be manipulated by a

malicious node that assigns a big timestamp. Moreover, Pompe is

vulnerable to censorship [52]. Furthermore, both notions of timed

order fairness, used in Wendy, and ordering linearizability, used in

Pompe, are strictly weaker than order-fairness studied in Aequitas

[53] and Themis [52], as stated in [51]. Aequitas [53] presents the

notion of batch-order fairness where all transactions involved in a

cycle are delivered to replicas in the same batch. While Aequitas

circumvents the Condorcet paradox, it suffers from a liveness issue

when Condorcet cycles chain together and extend for an arbitrarily

long time. A subsequent study extends the Aequitas approach to

permissionless settings [51]. Quick-order-fairness [22] leverages

batch-order fairness and also introduces the notion of differential

order fairness, inspired by the differential validity notion of con-

sensus. Differential order fairness states that when the number of

honest replicas that sends a transaction 𝑡1 before a transaction 𝑡2
is at least 2𝑓 + 𝑘 more than the number of replicas that send a

transaction 𝑡2 before a transaction 𝑡1 for some order-fairness para-

meter 𝑘 ≥ 0, the protocol must not deliver 𝑡2 before 𝑡1. However,

similar to Aequitas, Quick-order-fairness suffers from liveness is-

sues. Moreover, Aequitas and Quick-order-fairness have not been

validated by any system implementation. Themis [52], as the only

fair ordering protocol implementation with no synchronized clocks

assumption, extends Aequitas by addressing its weak liveness issue.

Themis introduces the notion of deferred ordering where the actual

order of transactions might be deferred to a later proposal, enabling

the leader to propose a block without waiting. However, Themis

suffers from significant performance overhead, as shown in Sec-

tion 5, resulting from its complex fair ordering routine. Compared

to these protocols, Rashnu addressed both Condorcet cycles and

weak liveness and demonstrates high performance.

The fair ordering of transactions has been partially addressed

in a few BFT protocols. In Aardvark [27], the leader is monitored

to ensure that it does not initiate two new requests from the same

client before initiating an old request of another client. Similarly,

in PBFT [23], replicas keep the requests in a FIFO queue and only

stop the view-change timer when the first request in their queue

is executed. Prime [7] also introduces a pre-ordering phase where

replicas order the received requests locally and share their own

ordering with each other. In Hashgraph [11], all replicas construct

a hashgraph to capture all send and receive events. These protocols,

however, do not address challenges like Condorcet cycles.

Fairness has also been used in the domain of consensus with

different definition. In permissionless blockchains, e.g., Proof-of-

Work, fairness is used to ensure that the mining rewards obtained

by different miners are proportional to their relative computational

power [4, 63, 65, 68, 72]. Similarly, fairness has been defined as

providing opportunities for every replica to propose and commit

its requests using fair leader election or fair committee election

[4, 9, 43, 54, 63, 73, 80]. However, a malicious leader can still order

transactions unfairly in its turn. As discussed in Section 1, using

censorship resistance techniques [69] to ensure that correct transac-

tions are eventually ordered, reputation-based systems [9, 30, 58, 63]

to detect unfair censorship, and threshold encryption [9, 21, 69, 79]

to hide transactions content in the ordering phase have also been

studied to prevent the manipulation of transaction ordering. How-

ever, such techniques partially provide order-fairness and are vul-

nerable to different attacks, e.g., sandwich attack (transaction re-

ordering) in censorship resistance techniques and reputation-based

systems or collusion attacks (between clients and the leader) when

threshold encryption is used.

7 Conclusion

This paper defines the notion of data-dependent order-fairness

to support order-fairness only among data-dependent transactions.

We presented a high-performance fair-ordering protocol, Rashnu,

that leverages graph-based techniques to achieve order-fairness

among data-dependent transactions. Rashnu further utilizes batch

ordering and deferred ordering techniques to deal with Condorcet

cycles and liveness issues. We implemented a prototype of Rashnu

on top of HotStuff and open-sourced its code. Our evaluation demon-

strates the efficiency of Rashnu in different scenarios. First, with

small batch sizes or in large networks, the overhead of order-

fairness in Rashnu is negligible, i.e., Rashnu performs similarly to

its underlying consensus protocol HotStuff. Second, Rashnu shows

significant performance improvement compared to Themis in differ-

ent settings, especially in small networks, 27% to 233% throughput

improvement on 5 replicas and with varying batch sizes.

12

References
[1] [n.d.]. Corda. https://github.com/corda/corda.

[2] [n.d.]. Hyperledger Iroha. https://github.com/hyperledger/iroha.

[3] 2018. libhotstuff: A general-purpose BFT state machine replication library with

modularity and simplicity. https://github.com/hot-stuff/libhotstuff.

[4] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Alexander Spiegel-

man. 2017. Solida: A Blockchain Protocol Based on Reconfigurable Byzantine

Consensus. In 21st Int. Conf. on Principles of Distributed Systems (OPODIS). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.

[5] Atul Adya, William J Bolosky, Miguel Castro, Gerald Cermak, Ronnie Chaiken,

John R Douceur, Jon Howell, Jacob R Lorch, Marvin Theimer, and Roger P

Wattenhofer. 2002. {FARSITE}: Federated, Available, and Reliable Storage for

an Incompletely Trusted Environment. In 5th Symposium on Operating Systems
Design and Implementation (OSDI 02).

[6] Alfred V. Aho, Michael R Garey, and Jeffrey D. Ullman. 1972. The transitive

reduction of a directed graph. SIAM J. Comput. 1, 2 (1972), 131–137.
[7] Yair Amir, Brian Coan, Jonathan Kirsch, and John Lane. 2011. Prime: Byzantine

replication under attack. Transactions on Dependable and Secure Computing 8, 4

(2011), 564–577.

[8] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, et al. 2018.

Hyperledger Fabric: a distributed operating system for permissioned blockchains.

In European Conf. on Computer Systems (EuroSys). ACM, 30:1–30:15.

[9] Avi Asayag, Gad Cohen, Ido Grayevsky, Maya Leshkowitz, Ori Rottenstreich,

Ronen Tamari, and David Yakira. 2018. A fair consensus protocol for transaction

ordering. In Int. Conf. on Network Protocols (ICNP). IEEE, 55–65.
[10] Amy Babay, John Schultz, Thomas Tantillo, Samuel Beckley, Eamon Jordan,

Kevin Ruddell, Kevin Jordan, and Yair Amir. 2019. Deploying intrusion-tolerant

SCADA for the power grid. In Int. Conf. on Dependable Systems and Networks
(DSN). IEEE, 328–335.

[11] Leemon Baird. 2016. The swirlds hashgraph consensus algorithm: Fair, fast,

byzantine fault tolerance. Swirlds Tech Reports SWIRLDS-TR-2016-01, Tech. Rep
(2016).

[12] Jason Baker, Chris Bond, James C Corbett, JJ Furman, Andrey Khorlin, James

Larson, Jean-Michel Leon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh.

2011. Megastore: Providing scalable, highly available storage for interactive

services. In Conf. on Innovative Data Systems Research (CIDR).
[13] Carsten Baum, James Hsin-yu Chiang, Bernardo David, Tore Kasper Frederiksen,

and Lorenzo Gentile. 2021. Sok: Mitigation of front-running in decentralized

finance. Cryptology ePrint Archive (2021).
[14] Alysson Bessani, Miguel Correia, Bruno Quaresma, Fernando André, and Paulo

Sousa. 2013. DepSky: dependable and secure storage in a cloud-of-clouds. Trans-
actions on Storage (TOS) 9, 4 (2013), 12.

[15] Alysson Neves Bessani, Paulo Sousa, Miguel Correia, Nuno Ferreira Neves, and

Paulo Verissimo. 2008. The CRUTIAL way of critical infrastructure protection.

IEEE Security & Privacy 6, 6 (2008), 44–51.

[16] Kenneth P Birman, Thomas A Joseph, Thomas Raeuchle, and Amr El Abbadi. 1985.

Implementing fault-tolerant distributed objects. Trans. on Software Engineering
6 (1985), 502–508.

[17] Gabriel Bracha. 1984. An asynchronous [(n-1)/3]-resilient consensus protocol.

In Symposium on Principles of distributed computing. 154–162.
[18] Gabriel Bracha and Sam Toueg. 1985. Asynchronous consensus and broadcast

protocols. Journal of the ACM (JACM) 32, 4 (1985), 824–840.
[19] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov,

Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, et al. 2013.

TAO: Facebook’s Distributed Data Store for the Social Graph. In Annual Technical
Conf. (ATC). USENIX Association, 49–60.

[20] Richard Gendal Brown, James Carlyle, Ian Grigg, and Mike Hearn. 2016. Corda:

an introduction. R3 CEV, August 1, 15 (2016), 14.
[21] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. 2001. Secure

and efficient asynchronous broadcast protocols. In Annual Int. Cryptology Conf.
Springer, 524–541.

[22] Christian Cachin, Jovana Mićić, and Nathalie Steinhauer. 2022. Quick Order

Fairness. In Int. Conf. on Financial Cryptography and Data Security (FC). Springer,
1–18.

[23] Miguel Castro and Barbara Liskov. 2002. Practical Byzantine fault tolerance

and proactive recovery. Transactions on Computer Systems (TOCS) 20, 4 (2002),
398–461.

[24] Miguel Castro, Barbara Liskov, et al. 1999. Practical Byzantine fault tolerance.

In Symposium on Operating systems design and implementation (OSDI), Vol. 99.
USENIX Association, 173–186.

[25] JP Morgan Chase. 2016. Quorum white paper.

[26] Allen Clement, Manos Kapritsos, Sangmin Lee, Yang Wang, Lorenzo Alvisi,

Mike Dahlin, and Taylor Riche. 2009. Upright cluster services. In Symposium on
Operating systems principles (SOSP). ACM, 277–290.

[27] Allen Clement, Edmund L Wong, Lorenzo Alvisi, Michael Dahlin, and Mirco

Marchetti. 2009. Making Byzantine Fault Tolerant Systems Tolerate Byzantine

Faults.. In Symposium on Networked Systems Design and Implementation (NSDI),
Vol. 9. USENIX Association, 153–168.

[28] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, et al. 2013. Span-

ner: Google’s globally distributed database. Transactions on Computer Systems
(TOCS) 31, 3 (2013), 8.

[29] Miguel Correia, Nuno Ferreira Neves, and Paulo Veríssimo. 2006. From consensus

to atomic broadcast: Time-free Byzantine-resistant protocols without signatures.

Comput. J. 49, 1 (2006), 82–96.
[30] Tyler Crain, Christopher Natoli, and Vincent Gramoli. 2021. Red Belly: a secure,

fair and scalable open blockchain. In Symposium on Security and Privacy (S&P’21).
IEEE.

[31] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov,

Lorenz Breidenbach, and Ari Juels. 2020. Flash boys 2.0: Frontrunning in decent-

ralized exchanges, miner extractable value, and consensus instability. In 2020
IEEE Symposium on Security and Privacy (SP). IEEE, 910–927.

[32] George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander

Spiegelman. 2022. Narwhal and Tusk: a DAG-based mempool and efficient

BFT consensus. In European Conference on Computer Systems (EuroSys). 34–50.
[33] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,

Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,

and Werner Vogels. 2007. Dynamo: amazon’s highly available key-value store.

In Operating Systems Review (OSR), Vol. 41. ACM SIGOPS, 205–220.

[34] Dan Dobre, Ghassan Karame, Wenting Li, Matthias Majuntke, Neeraj Suri, and

Marko Vukolić. 2013. PoWerStore: Proofs of writing for efficient and robust

storage. In Proceedings of the 2013 ACM SIGSAC conference on Computer & com-
munications security. 285–298.

[35] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon

Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, et al.

2019. The Design and Operation of {CloudLab}. In 2019 USENIX annual technical
conference (USENIX ATC 19). 1–14.

[36] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus in the

presence of partial synchrony. Journal of the ACM (JACM) 35, 2 (1988), 288–323.
[37] Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy Clark. 2019. Sok: Trans-

parent dishonesty: front-running attacks on blockchain. In International Confer-
ence on Financial Cryptography and Data Security. Springer, 170–189.

[38] Jose M Faleiro, Daniel J Abadi, and Joseph MHellerstein. 2017. High performance

transactions via early write visibility. Proc. of the VLDB Endowment 10, 5 (2017),
613–624.

[39] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. 1985. Impossibility

of distributed consensus with one faulty process. Journal of the ACM (JACM) 32,
2 (1985), 374–382.

[40] Matthias Fitzi and Juan A Garay. 2003. Efficient player-optimal protocols for

strong and differential consensus. In Symposium on Principles of distributed
computing (PODC). 211–220.

[41] Miguel Garcia, Nuno Neves, and Alysson Bessani. 2013. An intrusion-tolerant

firewall design for protecting SIEM systems. In 2013 43rd Annual IEEE/IFIP Con-
ference on Dependable Systems and Networks Workshop (DSN-W). IEEE, 1–7.

[42] Miguel Garcia, Nuno Neves, and Alysson Bessani. 2016. SieveQ: A layered bft

protection system for critical services. IEEE Transactions on Dependable and
Secure Computing 15, 3 (2016), 511–525.

[43] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-

dovich. 2017. Algorand: Scaling byzantine agreements for cryptocurrencies. In

Proceedings of the 26th symposium on operating systems principles. 51–68.
[44] Neil Giridharan, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander

Spiegelman. 2022. Bullshark: Dag bft protocols made practical. arXiv preprint
arXiv:2201.05677 (2022).

[45] Garth R Goodson, Jay J Wylie, Gregory R Ganger, and Michael K Reiter. 2004.

Efficient Byzantine-tolerant erasure-coded storage. In International Conference
on Dependable Systems and Networks, 2004. IEEE, 135–144.

[46] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas,

Michael K Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. 2019.

SBFT: a Scalable Decentralized Trust Infrastructure for Blockchains. In Int. Conf.
on Dependable Systems and Networks (DSN). IEEE/IFIP, 568–580.

[47] Lioba Heimbach and Roger Wattenhofer. 2022. SoK: Preventing Transaction

Reordering Manipulations in Decentralized Finance. In Conf. on Advances in
Financial Technologies (AFT). ACM, 1–14.

[48] James Hendricks, Gregory R Ganger, and Michael K Reiter. 2007. Low-overhead

byzantine fault-tolerant storage. ACM SIGOPS Operating Systems Review 41, 6

(2007), 73–86.

[49] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alexander

Rasin, Stanley Zdonik, Evan PC Jones, Samuel Madden, Michael Stonebraker,

Yang Zhang, et al. 2008. H-store: a high-performance, distributed main memory

transaction processing system. Proc. of the VLDB Endowment 1, 2 (2008), 1496–
1499.

[50] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman.

2021. All you need is dag. In Symposium on Principles of Distributed Computing
(PODC). ACM, 165–175.

[51] Mahimna Kelkar, Soubhik Deb, and Sreeram Kannan. 2022. Order-fair consensus

in the permissionless setting. In ASIA Public-Key Cryptography Workshop. ACM,

3–14.

13

[52] Mahimna Kelkar, Soubhik Deb, Sishan Long, Ari Juels, and Sreeram Kannan.

2022. Themis: Fast, Strong Order-Fairness in Byzantine Consensus. The Science
of Blockchain Conf. (SBC) (2022).

[53] MahimnaKelkar, Fan Zhang, StevenGoldfeder, andAri Juels. 2020. Order-fairness

for byzantine consensus. In Annual Int. Cryptology Conf. Springer, 451–480.
[54] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2017.

Ouroboros: A provably secure proof-of-stake blockchain protocol. In Annual Int.
Cryptology Conf. Springer, 357–388.

[55] Jonathan Kirsch, Stuart Goose, Yair Amir, Dong Wei, and Paul Skare. 2013.

Survivable SCADA via intrusion-tolerant replication. IEEE Transactions on Smart
Grid 5, 1 (2013), 60–70.

[56] Ariah Klages-Mundt and Andreea Minca. 2019. (In) stability for the blockchain:

Deleveraging spirals and stablecoin attacks. arXiv preprint arXiv:1906.02152
(2019).

[57] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus

Gasser, and Bryan Ford. 2016. Enhancing bitcoin security and performance

with strong consistency via collective signing. In Security Symposium. USENIX

Association, 279–296.

[58] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa

Syta, and Bryan Ford. 2018. Omniledger: A secure, scale-out, decentralized ledger

via sharding. In Symposium on Security and Privacy (SP). IEEE, 583–598.
[59] Klaus Kursawe. 2020. Wendy, the good little fairness widget: Achieving order

fairness for blockchains. In Conf. on Advances in Financial Technologies (AFT).
ACM, 25–36.

[60] Klaus Kursawe. 2021. Wendy Grows Up: More Order Fairness. In Int. Conf. on
Financial Cryptography and Data Security (FC). Springer, 191–196.

[61] Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed

system. Commun. ACM 21, 7 (1978), 558–565.

[62] Leslie Lamport, Robert Shostak, andMarshall Pease. 1982. The Byzantine generals

problem. Transactions on Programming Languages and Systems (TOPLAS) 4, 3
(1982), 382–401.

[63] Kfir Lev-Ari, Alexander Spiegelman, Idit Keidar, and Dahlia Malkhi. 2019.

FairLedger: A Fair Blockchain Protocol for Financial Institutions. In 23rd Int. Conf.
on Principles of Distributed Systems (OPODIS). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik.

[64] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert,

and Prateek Saxena. 2016. A secure sharding protocol for open blockchains. In

SIGSAC Conf. on Computer and Communications Security (CCS). ACM, 17–30.

[65] Loi Luu, Yaron Velner, Jason Teutsch, and Prateek Saxena. 2017. SmartPool:

Practical Decentralized Pooled Mining. In USENIX Security Symposium. USENIX,

1409–1426.

[66] Dahlia Malkhi and Michael K Reiter. 1998. Secure and scalable replication in

Phalanx. In Proceedings Seventeenth IEEE Symposium on Reliable Distributed
Systems (Cat. No. 98CB36281). IEEE, 51–58.

[67] Dahlia Malkhi and Pawel Szalachowski. 2022. Maximal Extractable Value (MEV)

Protection on a DAG. arXiv preprint arXiv:2208.00940 (2022).
[68] Andrew Miller, Ahmed Kosba, Jonathan Katz, and Elaine Shi. 2015. Nonout-

sourceable scratch-off puzzles to discourage bitcoin mining coalitions. In ACM
SIGSAC Conf. on Computer and Communications Security (CCS). ACM SIGSAC,

680–691.

[69] AndrewMiller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. 2016. The honey

badger of BFT protocols. In ACM SIGSAC Conf. on Computer and Communications
Security (CCS). 31–42.

[70] Louise E Moser, Peter M Melliar-Smith, Priya Narasimhan, Lauren A Tewksbury,

and Vana Kalogeraki. 1999. The Eternal system: An architecture for enterprise

applications. In Int. Enterprise Distributed Object Computing Conf. (EDOC). IEEE,
214–222.

[71] André Nogueira, Miguel Garcia, Alysson Bessani, and Nuno Neves. 2018. On the

challenges of building a BFT SCADA. In Int. Conf. on Dependable Systems and
Networks (DSN). IEEE, 163–170.

[72] Rafael Pass and Elaine Shi. 2017. Fruitchains: A fair blockchain. In symposium
on Principles Of Distributed Computing (PODC). ACM, 315–324.

[73] Rafael Pass and Elaine Shi. 2017. Hybrid Consensus: Efficient Consensus in the

Permissionless Model. In 31 Int. Symposium on Distributed Computing. 6.
[74] Kaihua Qin, Liyi Zhou, and Arthur Gervais. 2022. Quantifying blockchain

extractable value: How dark is the forest?. In Symposium on Security and Privacy
(SP). IEEE, 198–214.

[75] Tom Roeder and Fred B Schneider. 2010. Proactive obfuscation. ACM Transactions
on Computer Systems (TOCS) 28, 2 (2010), 1–54.

[76] Fred B Schneider. 1990. Implementing fault-tolerant services using the state

machine approach: A tutorial. Computing Surveys (CSUR) 22, 4 (1990), 299–319.
[77] Ankur Sharma, Felix Martin Schuhknecht, Divya Agrawal, and Jens Dittrich.

2019. Blurring the lines between blockchains and database systems: the case of

hyperledger fabric. In SIGMOD Int. Conf. on Management of Data. ACM, 105–122.

[78] Paulo Sousa, Alysson Neves Bessani, Miguel Correia, Nuno Ferreira Neves,

and Paulo Verissimo. 2009. Highly available intrusion-tolerant services with

proactive-reactive recovery. IEEE Transactions on Parallel and Distributed Systems
21, 4 (2009), 452–465.

[79] Chrysoula Stathakopoulou, Signe Rüsch, Marcus Brandenburger, and Marko

Vukolić. 2021. Adding Fairness to Order: Preventing Front-Running Attacks in

BFT Protocols using TEEs. In Int Symp on Reliable Distributed Systems (SRDS).
IEEE, 34–45.

[80] David Yakira, Avi Asayag, Gad Cohen, Ido Grayevsky, Maya Leshkowitz, Ori

Rottenstreich, and Ronen Tamari. 2021. Helix: A Fair Blockchain Consensus

Protocol Resistant to Ordering Manipulation. IEEE Transactions on Network and
Service Management 18, 2 (2021), 1584–1597.

[81] Jian Yin, Jean-Philippe Martin, Arun Venkataramani, Lorenzo Alvisi, and Mike

Dahlin. 2003. Separating agreement from execution for byzantine fault tolerant

services. Operating Systems Review (OSR) 37, 5 (2003), 253–267.
[82] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Ab-

raham. 2019. HotStuff: BFT consensus with linearity and responsiveness. In

Symposium on Principles of Distributed Computing (PODC). ACM, 347–356.

[83] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. 2018. RapidChain:

Scaling blockchain via full sharding. In SIGSAC Conf. on Computer and Commu-
nications Security. ACM, 931–948.

[84] Yunhao Zhang, Srinath Setty, Qi Chen, Lidong Zhou, and Lorenzo Alvisi. 2020.

Byzantine ordered consensuswithout Byzantine oligarchy. InUSENIX Symposium
on Operating Systems Design and Implementation (OSDI). 633–649.

[85] Liyi Zhou, Kaihua Qin, Christof Ferreira Torres, Duc V Le, and Arthur Ger-

vais. 2021. High-frequency trading on decentralized on-chain exchanges. In

Symposium on Security and Privacy (SP). IEEE, 428–445.
[86] Lidong Zhou, Fred Schneider, Robbert VanRenesse, and Zygmunt Haas. 2002.

Secure distributed on-line certification authority. US Patent App. 10/001,588.

[87] Lidong Zhou, Fred B Schneider, and Robbert Van Renesse. 2002. COCA: A secure

distributed online certification authority. ACM Transactions on Computer Systems
(TOCS) 20, 4 (2002), 329–368.

14

	Abstract
	1 Introduction
	2 Background
	3 Rashnu Model
	4 Fair Transaction Ordering
	4.1 Local Ordering
	4.2 Global Ordering
	4.3 Order Finalization
	4.4 Performance Optimizations
	4.5 Correctness Argument

	5 Experimental Evaluation
	5.1 Performance with Different Batch Sizes
	5.2 Varying the Degree of Contention
	5.3 Performance with Different Network Size
	5.4 Varying the Order-fairness Parameter
	5.5 Performance in a Geo-distributed Setting

	6 Related Work
	7 Conclusion
	References

