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Abstract

Large-Scale Data Management Using

Permissioned Blockchains

by

Mohammad Javad Amiri

The unique features of blockchain such as transparency, provenance, and authenticity

are used by many large-scale data management systems to deploy a wide range of distrib-

uted applications including supply chain management, healthcare, and crowdsourcing in

a permissioned setting. Unlike permissionless settings, e.g., Bitcoin, where the network is

public, and anyone can participate without a specific identity, a permissioned blockchain

consists of a set of known, identified nodes that might not fully trust each other. While

the characteristics of permissioned blockchains are appealing to a wide range of large-scale

data management systems, these systems, have to deal with five important challenges:

confidentiality, verifiability, performance, scalability, and fault tolerance. Confidentiality

of data is required in many collaborative large-scale data management applications where

collaboration between enterprises, e.g., cross-enterprise transactions, should be visible to

all enterprises, however, the internal data of each enterprise, e.g, internal transactions,

might be confidential. Besides confidentiality, in many multi-enterprise systems, e.g.,

crowdworking environments, participants need to verify transactions that are initiated

by other enterprises to ensure some predefined global constraints on the entire system.

Thus, the system needs to support verifiability while preserving the confidentiality of

transactions. Verifiability will gain in importance as crowdworking applications increase

in popularity, and the need for regulation will arise. Large-scale data management ap-

plications also require high performance in terms of throughput and latency. Scalability
ix



is one of the main obstacles to business adoption of blockchain systems. To support a

large-scale data management application, a blockchain system should be able to scale

efficiently by adding more resources to the system. Finally, large-scale data management

systems must provide fault tolerance. Fault-tolerant protocols are the main building

block of large-scale data management systems. However, in spite of years of intensive re-

search, existing fault-tolerant protocols, do not adequately address hybrid environments

consisting of trusted and untrusted servers which are widely used by enterprises. In this

dissertation, we propose several techniques and develop different systems to address all

five main challenges of large-scale data management using permissioned blockchains. We

have developed systems, called CAPER, SEPAR, ParBlockchain, SharPer, and SeeMoRe

to deal with the confidentiality, verifiability, performance, scalability, and fault tolerance

requirements of large-scale data management respectively.

x
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Chapter 1

Introduction

Bitcoin [22] as the first successful global scale peer-to-peer cryptocurrency, allows fin-

ancial transactions to be transacted among participants without the need for a trusted

third party, e.g., banks, credit card companies, or PayPal. Bitcoin eliminates the need

for such a trusted third party by replacing it with a distributed data structure (i.e.,

ledger) that is fully replicated among all participants in the cryptocurrency system [13].

This distributed data structure for recording transactions, which is maintained by sev-

eral nodes without a central authority, is referred to blockchain [23]. In a blockchain

system, nodes agree on their shared states across a large network of possibly untrusted

participants. While blockchain was originally devised for Bitcoin cryptocurrency [22],

recently, large-scale data management systems have focused on the features of block-

chains such as transparency, provenance, and authenticity to support a wide range of

applications. Bitcoin and other cryptocurrencies are permissionless blockchains. In a

permissionless blockchain, the network is public, and anyone can participate without a

specific identity. Many other distributed applications, such as supply chain management

and healthcare, are deployed on permissioned blockchains consisting of a set of known,

identified nodes that still might not fully trust each other. Large-scale data manage-

1



Introduction Chapter 1

ment systems deal with five main challenges, confidentiality, verifiability, performance,

scalability, and fault tolerance that need to be supported by permissioned blockchain

systems.

Confidentiality. Confidentiality of data is required in many collaborative distributed

applications, e.g., supply chain management, where multiple enterprises collaborate with

each other following Service Level Agreements (SLAs) to provide different services. To

deploy distributed applications across different collaborating enterprises, a blockchain

system needs to support the internal transactions of each enterprise as well as cross-

enterprise transactions that represent the collaboration between enterprises. While the

data accessed by cross-enterprise transactions should be visible to all enterprises, the

internal data of each enterprise, which are accessed by internal transactions, might be

confidential. In particular, in collaborative distributed applications where a set of en-

terprises collaborate with each other, each enterprise can maintain its own independent

disjoint blockchain and use techniques such as atomic cross-chain transactions [24] [25]

and Interledger protocol [26] to support cross-enterprise collaboration. Such techniques

are often costly, complex, and mainly designed for permissionless blockchains. Techniques

that support collaborating applications on a single blockchain, on the other hand, either

do not support internal transactions of enterprises (results in data integration issues), or

suffer from confidentiality issues since the entire ledger is visible to all enterprises, e.g.,

single-channel Fabric [27], or require a trusted channel among enterprises, e.g., multi-

channel Fabric [28]. While cryptographic techniques can be used to achieve confidenti-

ality, the considerable overhead of such techniques makes them impractical [27]. Hyper-

ledger Fabric [27] ensures the confidentiality of data using Private Data Collections [29].

Private Data Collections manage confidential data that two or more enterprises on a

single channel want to keep private from other enterprises on that channel. However, the

2



Introduction Chapter 1

blockchain ledger is still maintained by the nodes of every enterprise within a channel.

To address this problem, we present a permissioned blockchain system, Caper [7]. In

Caper, transactions are either internal, which are maintained by a single enterprise, or

cross-enterprise, which are maintained by all enterprises. Each enterprise also maintains

two types of private and public data. Caper supports both internal and cross-enterprise

transactions of collaborating distributed applications. In Caper, each enterprise orders

and executes its internal transactions locally while cross-enterprise transactions are pub-

lic and visible to every node. In addition, the blockchain ledger of Caper is a directed

acyclic graph that includes the internal transactions of every enterprise and all cross-

enterprise transactions. Nonetheless, for the sake of confidentiality, the blockchain ledger

is not maintained by any node. In fact, each enterprise maintains its own local view of the

ledger including its internal and all cross-enterprise transactions. Since ordering cross-

enterprise transactions requires global agreement among all enterprises, Caper introduces

different consensus protocols to globally order cross-enterprise transactions.

Verifiability. Besides confidentiality, in many cross-enterprise systems, e.g., crowd-

sourcing applications, participants need to verify transactions that are initiated by other

enterprises to ensure some predefined global constraints on the entire system. Thus, the

system needs to support verifiability while preserving the confidentiality of transactions.

Zero-knowledge proof is used to provide verifiability in ZebraLancer [30] (in the context

of crowdsourcing) and Quorum [31]. In cryptography, a zero-knowledge proof is a method

by which one party (the prover) can prove to another party (the verifier) that they know

a value x, without conveying any information apart from the fact that they know the

value x. While the zero-knowledge proof technique satisfies the verifiability property in

Quorum and ZebraLancer, first, zero-knowledge proof has a considerable overhead [27],

and second, replicating all transactions on every enterprise is costly especially since all

3
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transactions need to be to verified.

The confidentiality technique of CAPER [7] cannot also support all the requirements

of such systems, especially since internal transactions might need to be verified as well.

For instance, crowdworking platforms need to integrate within society and in particular

to interface with legal and social institutions. Global regulations must be enforced, such

as minimal and maximal work hours that participants can spend on crowdworking plat-

forms. crowdworking platforms are also naturally distributed and need to collaborate

with each other to process complex tasks, resulting in the rise of multi-platform crowd-

working systems. Moreover, while collaborating to enforce global regulations requires

the transparent sharing of information about the tasks, the system needs to preserve

the privacy (confidentiality) of all participants. In this thesis, we present SEPAR [1],

a blockchain-based multi-platform crowdworking system that enforces global constraints

on distributed independent entities. In SEPAR, Privacy is ensured using lightweight and

anonymous tokens, while transparency is achieved using a permissioned blockchain shared

across multiple platforms. To support fault tolerance and collaboration among platforms,

SEPAR provides a suite of distributed consensus protocols.

Performance. In addition to confidentiality and verifiability, distributed applications,

e.g., financial application, require high performance in terms of throughput and latency,

e.g., while the Visa payment service is able to handle more than 10000 transactions per

second, Multichain [32] can handle at most 200 transactions per second. The order-

execute architecture is widely used in different permissioned blockchains such as Tender-

mint [33], Quorum [31], and Multichain [32]. In order-execute permissioned blockchains,

a set of nodes (might be all of them) agrees on a total order for the transactions using

Byzantine, e.g., PBFT [21], crash, e.g., Paxos [20], or hybrid, e.g., SeeMoRe [4], fault-

tolerant protocols, generates blocks and multicasts them to all the nodes. Each node then
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executes the transactions sequentially in the same order and updates its own copy of the

ledger. The order-execute architecture, however, suffers from performance issues because

of the sequential execution of transactions on all nodes. Hyperledger Fabric [27], presents

XOV architecture by switching the order of the execution and ordering phases. In Hyper-

ledger Fabric, transactions of different enterprises are first executed in parallel and then

ordered using a pluggable consensus protocol. While Fabric improves performance by ex-

ecuting transactions in parallel and supports non-deterministic execution of transactions,

in the presence of any contention, i.e., conflicting transactions, in the workload (which is

common in distributed applications), it has to disregard the effects of conflicting transac-

tions which negatively impacts the performance of the blockchain. To address this issue,

we present ParBlockchain [8]. ParBlockchain introduces the OXII architecture to support

contentious workloads. In ParBlockchain, a disjoint set of nodes (orderers) establishes

agreement on the order of the transactions of different enterprises, constructs the blocks

of transactions, and generates a dependency graph for the transactions within a block.

A dependency graph gives a partial order based on the conflicts between transactions

and enables the parallel execution of non-conflicting transactions. The transactions are

then executed following the generated dependency graph. While ParBlockchain supports

contentious workloads, any non-deterministic execution of transactions will decrease its

performance.

Scalability. Scalability is one of the main obstacles to business adoption of blockchain

systems. To support a large-scale data management system, a blockchain system should

be able to scale efficiently by adding more resources to the system. The scalability

of blockchain systems has been addressed in several studies using different on-chain,

e.g., increasing the block size, and off-chain, e.g., Lightning Networks [34], techniques.

Partitioning the data into multiple shards that are maintained by different subsets of
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nodes is a proven approach to enhance the scalability of databases [35]. In such an

approach, the performance of the database scales linearly with the number of nodes.

While database systems use the sharding technique to improve the scalability of databases

[35] in a network of crash-only nodes, the technique cannot easily be utilized by blockchain

systems due to the existence of malicious nodes in the network. In this thesis, we present

SharPer [2] [10], a permissioned blockchain system that improves scalability by clustering

(partitioning) the nodes and assigning different data shards to different clusters where

each data shard is replicated on the nodes of a cluster. SharPer supports both intra-

shard and cross-shard transactions and processes intra-shard transactions of different

clusters as well as cross-shard transactions with non-overlapping clusters simultaneously.

In SharPer, the blockchain ledger is formed as a directed acyclic graph where each cluster

maintains only a view of the ledger. SharPer also incorporates a flattened protocol to

establish consensus among clusters on the order of cross-shard transactions.

Fault Tolerance. Finally, large-scale data management systems must provide fault tol-

erance. Fault-tolerant protocols are the main building block of permissioned blockchain

systems and have been extensively used in the distributed database infrastructure of

large enterprises such as Google’s Spanner [35], Amazon’s Dynamo [36], and Facebook’s

Tao [37]. However, and in spite of years of intensive research, existing fault-tolerant

protocols do not adequately address hybrid environments consisting of trusted and un-

trusted clusters, e.g., clouds, which are widely used by enterprises. On one hand, the

existing Byzantine fault-tolerant protocols [21] [38] [39] [40] [41] [42] [43] do not distin-

guish between crash and malicious failures, and consider all failures as malicious, thus

incurring a higher cost in terms of performance. On the other hand, the hybrid proto-

cols [44] [45] that have been designed to tolerate both crash and malicious failures, make

no assumption on where the crash or malicious failures may occur. As a result, using

6
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Figure 1.1: Five main challenges and the proposed permissioned blockchain systems

these protocols in a hybrid environment, where all machines in the private environment

are known to be trusted while machines in the public environment could be comprom-

ised and hence malicious, results in an unnecessary performance overhead. we consider

a trusted (i.e., private) environments consisting of non-malicious nodes (crash-only fail-

ures) and an untrusted (i.e., public) environments with possible malicious failures. We

introduce SeeMoRe [4]1, a hybrid State Machine Replication protocol that uses the know-

ledge of where crash and malicious failures may occur in a trusted/untrusted environment

to improve overall performance. SeeMoRe has three different modes that can be used

depending on the trusted environment load and the communication latency between

the untrusted and trusted environments. SeeMoRe can dynamically transition from one

mode to another.

The key contribution of this dissertation is to show how permissioned blockchains can

be used to address the main challenges of large-scale data management systems. This

dissertation aims to provide an understanding of the fundamental challenges of large-

scale data management and the techniques that will help in building efficient large-scale
1SeeMoRe is derived from Seemorq, a benevolent, mythical bird in Persian mythology which appears

as a peacock with the head of a dog and the claws of a lion. Seemorq in Persian literature also refers to
a group of birds who flew together to achieve a common goal.
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data management systems. We demonstrate the practicality of the techniques in real-life

applications and develop different systems to implement these techniques. Figure 1.1

shows the five main challenges of large-scale data management and the proposed systems

to address these challenges.

The rest of the dissertation is organized as follows. Chapter 2 introduces the prelim-

inary concepts of data management and blockchains. Then, the dissertation addresses

the five challenges of large-scale data management systems, confidentiality, verifiability,

performance, scalability, and fault tolerance in chapters 3, 4, 5, 6, and 7 respectively.

Chapter 8 presents the related literature on large-scale data management systems and

blockchains, and finally, Chapter 9 summarizes the dissertation and discusses future dir-

ection in large-scale data management and blockchains.
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Chapter 2

Preliminaries

Recent large-scale data management systems have focused on the unique features of

blockchain such as immutability, transparency, provenance, and authenticity to support

a wide range of distributed applications. In this chapter, we introduce blockchain, an

infrastructure for blockchain systems, and show how consensus works in such systems.

2.1 Blockchain

Bitcoin [22] is an example of a global scale peer-to-peer cryptocurrency that integrates

many techniques and protocols from cryptography, distributed systems, and databases.

In a blockchain, nodes agree on their shared states across a large network of possibly un-

trusted participants. Bitcoin and other cryptocurrencies use permissionless blockchains.

Permissionless blockchains are public and computing nodes without a priori known iden-

tities can join or leave the blockchain network at any time. On the other hand, a per-

missioned blockchain uses a network of a priori known and identified computing nodes

to manage the blockchain. The main underlying data structure in blockchain systems is

the blockchain ledger, a scalable fully replicated structure that is shared among all parti-
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cipants and guarantees a consistent view of all user transactions by all participants in the

system. The blockchain ledger is an append-only data structure recording transactions

in the form of a hash chain where each block contains a batch of transactions (could be

a single transaction).

2.1.1 Transaction Model

Two main transaction models are used in blockchain systems: UTXO (Unspent Trans-

action Output) and Account-based. In the UTXOmodel, which is adopted by Bitcoin [22]

and many other cryptocurrencies, each transaction spends output from prior transactions

and generates new outputs that can be spent by transactions in the future. For each

transaction in the UTXO model, three conditions need to be satisfied: first, the sum of

the inputs must be equal or greater than the sum of the outputs, second, every input

must be valid and not yet spent, and third, every input requires a valid signature of its

owner. UTXO provides a higher level of privacy by allowing users to use new addresses

for each transaction.

The Account-based model, which is adopted by Ethereum [46], is similar to the record

keeping in a bank. The bank tracks how much money each account has, and when users

want to spend money, the bank makes sure that they have enough balance in their

account before approving the transaction. The account-based model is more efficient

since the system only needs to validate that the account has enough balance to pay for

the transaction.

2.1.2 Smart Contract

The blockchain model is similar to an object-oriented programming language (OOPL).

Similar to the primitive data types, user-defined functions, and classes in an OOPL, each
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blockchain also has primitive data types (e.g., an asset, asset ownership, etc) and prim-

itive functions operating on these primitive data types (e.g., transactions that move

currency units from one user identity to another). Classes and complex functionalities

are implemented in the blockchain using smart contracts. A smart contract, as exem-

plified by Ethereum [47], is a computer program that self-executes once it is established

and deployed. A smart contract can be seen as a class in an object-oriented program-

ming language where assets are the objects of that class and transactions update the

state (ownership) of the objects. The state transformation of a smart contract is made

persistent in the blockchain by ensuring that every state change appears as a record in

the blockchain. Smart contracts have the advantages of supporting real-time updates,

accurate execution, and little human intervention. Smart contracts can be written in dif-

ferent languages such as Solidity and Vyper. A smart contract can also handle automatic

conditional payments from escrow. When a payment function is triggered, the smart

contract automatically checks the defined conditions, and transfers the money according

to the defined rules [48].

While permissionless blockchains only support cryptocurrency assets, smart contracts

are more generic and can support any type of asset. Indeed, a smart contract, like a

class in the object-oriented programming, could potentially have different attributes and

functions. Once a smart contract is written, it can be deployed on a blockchain and

different transactions can call the functions of the smart contract to change its attributes

or even destroy the contract (using a destructor function), making it void [12].

2.2 Infrastructure

The Blockchain Architecture consists of a set of nodes in an asynchronous distrib-

uted system. Nodes in the system might crash (follow a crash failure model) or behave
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maliciously (follow a Byzantine failure model). In a crash failure model, nodes operate

at arbitrary speed, may fail by stopping, and may restart, however they may not collude,

lie, or otherwise attempt to subvert the protocol. Whereas, in a Byzantine failure model,

faulty nodes may exhibit arbitrary, potentially malicious, behavior.

Nodes are connected by point-to-point bi-directional communication channels. Net-

work channels are pairwise authenticated, which guarantees that a malicious node cannot

forge a message from a correct node, i.e., if node i receives a message m in the incoming

link from node j, then node j must have sent message m to i beforehand.

Furthermore, messages may contain public-key signatures and message digests [21].

A message digest is a numeric representation of the contents of a message produced by

collision-resistant hash functions. Message digests are used to protect the integrity of

a message and detect changes and alterations to any part of the message. We denote

a message m signed by replica r as 〈m〉σr and the digest of a message m by D(m).

For signature verification, we assume that all machines have access to the public keys

of all other machines. We assume that a strong adversary can coordinate malicious

nodes and delay communication to compromise the replicated service. However, the

adversary cannot subvert standard cryptographic assumptions about collision-resistant

hashes, encryption, and signatures, e.g., the adversary cannot produce a valid signature

of a non-faulty node.

2.3 Consensus

A fundamental problem in distributed computing and multi-agent systems is to

achieve overall system reliability in the presence of a number of faulty processes. This

requires consensus among a number of processes (or agents) for a single data value.

Some of the processes (agents) may fail or be unreliable in other ways, so consensus
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protocols must be fault tolerant or resilient. Synchronous distributed systems assume

known bounds on message delays and process speeds [49]. In synchronous systems, all

communication proceeds in rounds. In one round, a process may send all the messages it

requires, while receiving all messages from other processes. In this manner, no message

from one round may influence any messages sent within the same round. On the other

hand, in asynchronous distributed systems, there are no bounds on the amount of time a

node might take to complete its work and then respond with a message [49]. In such sys-

tems, there is no global clock nor consistent clock rate, each node processes independently

of others, and coordination is achieved via events such as message arrival [5].

In a permissioned blockchain system, nodes establish consensus on a unique or-

der in which entries are appended to the blockchain ledger using asynchronous fault-

tolerant protocols. Fault-tolerant protocols use the State Machine Replication (SMR)

algorithm [50] where nodes agree on an ordering of incoming requests. SMR regulates

the deterministic execution of client requests on multiple copies of a server, called replicas,

such that every non-faulty replica must execute every request in the same order [51] [50].

The SMR algorithm has to satisfy four main properties [52]: (1) Agreement: every correct

node must agree on the same value, (2) Validity (integrity): if a correct node commits

a value, then the value must have been proposed by some correct node, (3) Consistency

(total order): all correct nodes commit the same value in the same order, and (4) Termin-

ation: eventually every node commits some value. The first three properties are known

as safety and the termination property is known as liveness. As shown by Fischer et

al. [53], in an asynchronous system, where nodes can fail, consensus has no solution that

is both safe and live. Based on that impossibility result, in most fault-tolerant protocols,

safety is ensured in an asynchronous network that can drop, delay, corrupt, duplicate, or

reorder messages. However, a synchrony assumption, i.e., a finite but possibly unknown

bound on message delivery time is needed to ensure liveness.
13
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Figure 2.1: Normal case operation in (a) Paxos [20] and (b) PBFT [21]

Crash fault-tolerant protocols, e.g., Paxos [20], guarantee safety in an asynchronous

network using 2f+1 nodes to overcome the simultaneous crash failure of any f nodes

while in Byzantine fault-tolerant protocols, e.g., PBFT [54], 3f+1 nodes are needed to

provide safety in the presence of f malicious nodes [55].

We now briefly introduce Paxos [20] and PBFT [21] as two well-known crash and

Byzantine fault-tolerant protocols.

In Paxos [20], which guarantees safety in an asynchronous network using 2f+1 nodes,

upon receiving a request from a client, the primary (assuming it is already elected)

initiates a consensus protocol among the agents of the enterprises by multicasting an

accept message including the transaction. Once an agent receives an accept message, it

sends an accepted message to the primary. The primary waits for f accepted messages

from different agents (plus itself becomes f + 1), multicasts a commit message to all

the agents, and sends a reply to the client. Upon receiving a commit message from

the primary, each agent executes the transaction. Figure 2.1(a) shows the normal case

operation of Paxos protocol.

In the presence of malicious nodes, PBFT [21] can be used. In PBFT, which guaran-

tees safety in an asynchronous network using 3f+1 nodes, during a normal case execution,

a client sends a request to a (primary) replica, and the primary broadcasts a pre-prepare

message to all replicas. Once a replica receives a valid pre-prepare message, it broadcasts a

prepare message to all other replicas. Upon collecting 2f valid matching prepare messages
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(including its own message) that are also matched to the pre-prepare message sent by the

primary, each replica broadcasts a commit message. In this stage, each replica knows that

all non-faulty replicas agree on the contents of the message sent by the primary. Once

a replica receives 2f + 1 valid matching commit messages (including its own message), it

executes the request and sends the response back to the client. Finally, the client waits

for f+1 valid matching responses from different replicas to make sure at least one correct

replica executed its request. PBFT also has a view change routine that provides liveness

by allowing the system to make progress when the primary fails. Figure 2.1(b) shows the

normal case operation of PBFT protocol.
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Chapter 3

CAPER: On Confidentiality of

Permissioned Blockchains

3.1 Introduction

Confidentiality of data is required in many collaborative distributed applications,

e.g., supply chain management, where multiple enterprises collaborate following Service

Level Agreements (SLAs), which are agreed upon by all involved enterprises, to provide

different services. SLAs can be written as self executing computer programs, called smart

contracts [46]. The collaboration is realized by means of cross-enterprise transactions

that are visible to every enterprise. During the execution of cross-enterprise transactions,

agreement on the shared state of the collaborating enterprises is needed without trusting

a central authority or any particular participant. While cross-enterprise collaborations

and the involved data are visible to every enterprise, the internal data of each enterprise,

i.e., the enterprise logic, internal transactions, and their data, might be confidential.

Hence, it is desirable to restrict access to such data. Although cryptographic techniques

can be used to achieve confidentiality, the high overhead of such techniques makes them

16



CAPER: On Confidentiality of Permissioned Blockchains Chapter 3

impractical [27].

The unique features of blockchain such as transparency, provenance, fault tolerance,

and authenticity are used by many systems to deploy a wide range of large-scale data

management applications such as supply chain management [56] and healthcare [57] in

a permissioned setting. Existing permissioned blockchains, however mostly suffer from

confidentiality issues since a single blockchain ledger with all transactions is maintained

at every node. While Hyperledger Fabric [27] addresses the confidentiality leaks by

restricting access to the blockchain state (using private data collections) and smart con-

tracts. which include the enterprise logic, the blockchain ledger is still maintained by

every node. To provide confidentiality, different enterprises could have independent dis-

joint blockchains. However, to support collaboration between enterprises on distinct

blockchains, techniques such as atomic cross-chain transaction [24] [25] and Interledger

protocol [26] are needed to exchange (transfer) assets or information between the block-

chains (Interoperability). Such techniques are often costly, complex, and mainly designed

for permissionless blockchains. Techniques that support collaborating enterprises on a

single blockchain either do not support internal transactions of enterprises [48] (results

in data integration issues), or suffer from confidentiality issues since the entire ledger

is visible to all enterprises, e.g., single-channel Fabric [27], or require a trusted channel

among participants, e.g., multi-channel Fabric [28].

In this chapter, we present CAPER: a permissioned blockchain system that supports

both internal and cross-enterprise transactions of collaborating distributed enterprises.

In CAPER, each enterprise orders and executes its internal transactions locally while

cross-enterprise transactions are public and visible to every enterprise. In addition, the

blockchain ledger of CAPER is a directed acyclic graph that includes the internal trans-

actions of every enterprise and all cross-enterprise transactions. Nonetheless, for the

sake of confidentiality, the blockchain ledger is not maintained by any node. In fact,
17
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each enterprise maintains its own local view of the ledger including its internal and all

cross-enterprise transactions. Since ordering cross-enterprise transactions requires global

agreement among all enterprises, CAPER introduces different consensus protocols to

globally order cross-enterprise transactions.

Lack of trust is an important problem in collaboration between enterprises. Lack of

trust has two main origins: first, a physical node (server) might fail, thus behave mali-

ciously, and second, an enterprise could behave maliciously in the communication with

other enterprises for its benefits. To address both types of behavior, CAPER distin-

guishes between trust at the node level and trust at the enterprise level, e.g., while the

nodes of an enterprise might behave non-maliciously within the enterprise, the enterprise

(as a collection of nodes) might still behave maliciously in communication with other

enterprises.

A key objective of this chapter is to demonstrate how internal and cross-enterprise

transactions of a set of collaborating distributed enterprises which do not trust each other

can be processed efficiently by a blockchain system while both confidentiality of internal

transactions and transparency of cross-enterprise transactions are met. The contributions

of this chapter are three-fold:

• Introducing Blockchain views where each enterprise maintains only its own view of

the ledger including its internal and all cross-enterprise transactions.

• CAPER, a permissioned blockchain that supports collaborating distributed enter-

prises. CAPER supports both internal and cross-enterprise transactions.

• Three different consensus protocols for globally ordering cross-enterprise transac-

tions among enterprises with different local consensus protocols.

The rest of this chapter is organized as follows. Section 3.2 briefly describes the

limitations of current blockchain systems and motivates the problem. The CAPER model
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and architecture are introduced in Section 3.3 and Section 3.4. Section 3.5 and Section 3.6

present consensus in CAPER. Section 3.7 presents a performance evaluation of CAPER,

and Section 3.8 concludes the chapter.

3.2 Background and Motivation

In this section, we discuss the confidentiality limitations of permissioned blockchains

and provide a motivating example to explain the limitations.

3.2.1 Confidentiality Limitations of Permissioned Blockchain

Data confidentiality is required in many permissioned blockchains. A blockchain

might need to restrict access to smart contracts (which include the logic of enterprises),

blockchain ledger, and transaction data. While cryptographic techniques can be used

to achieve confidentiality, the considerable overhead of such techniques makes them im-

practical [27]. Hyperledger Fabric [27] ensures the confidentiality of data using Private

Data Collections [29]. Private Data Collections manage confidential data that two or

more enterprises on a single channel want to keep private from other enterprises on that

channel. The confidentiality of smart contracts in Fabric is also ensured by storing the

smart contracts of different enterprises on different sets of nodes, called endorsers. The

endorsers of an enterprise are responsible for executing the transactions of the enterprise

independent of the other enterprises. However, the blockchain ledger is still maintained

by the agents of every enterprise within a channel. Enterprises need to collaborate with

each other to provide different services. Distributed applications are often designed and

implemented in different blockchain systems, each of which processes and stores data inde-

pendently [58]. In this case, cross-enterprise collaboration could be performed as atomic

cross-chain transactions [24] [25] or using the Interledger protocol [26] where two enter-
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Figure 3.1: A supply chain scenario

prises (parties) exchange (transfer) assets or information across their blockchains. Atomic

cross-chain transactions are also addressed between permissioned blockchains (channels)

in Fabric by either assuming the existence of a trusted channel among the participants

or using an atomic commit protocol [28]. In general, supporting cross-enterprise transac-

tions is an expensive and challenging task. Nonetheless, for collaborating enterprises in

a single permissioned blockchain, since the participants of cross-enterprise transactions

are known beforehand and the transactions follow service level agreements, we might be

able to find a solution that preserves both confidentiality and performance.

3.2.2 A Motivating Example: Supply Chain

We now consider collaborative workflows as a use-case to illustrate the aforementioned

limitations. In a collaborative workflow, different parties need to communicate across

enterprises to provide services. However, the lack of trust between parties is problematic.

Figure 3.1 shows a Supply Chain scenario (reported in [48]). The workflow involves

five participants (enterprises): Supplier, Manufacturer, Bulk Buyer, Carrier, and Middle-

man where each of the participants might have multiple trusted or untrusted nodes that

perform different internal tasks (transactions). For example, the production process in

the Manufacturer involves Financial, Marketing, and Purchasing departments and in-

cludes different internal tasks such as assembly, painting, drying, testing, and packaging.
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Participants also need to communicate with each other to provide different services. The

Bulk Buyer communicates with the Manufacturer to place an order, the Manufacturer

places an order for materials via a Middleman, the Middleman forwards the order to a

Supplier and arranges transportation by a Carrier. Once the materials are acquired, the

Supplier informs the Carrier and the Carrier picks them up and delivers them to the

Manufacturer. As soon as the goods become available, the Manufacturer delivers them

to the Bulk Buyer. These collaborations are defined in service level agreements which

are agreed upon by all participants.

Now the Manufacturer might receive the materials later than agreed upon or might

receive something different from what they agreed on. In this case, the Supplier might

argue that this is exactly what was ordered by the Middleman while the Middleman would

blame the Supplier. The situation is complicated for the Carrier since the Manufacturer

might refuse to accept the delivery. The Carrier is now eligible for compensation from

either the Supplier or the Middleman depending on who is responsible for the fault.

To tackle such an issue, permissioned blockchain systems can be used among all the

different participants to ensure agreement on the shared state of the collaborating parties

without trusting a central authority or any particular participant [48]. The blockchain

basically monitors the execution of the collaborative process and checks conformance

between the process execution and SLAs. Any blockchain-based solution has to address

the following concerns.

First, the blockchain system should support both cross-enterprise and internal trans-

actions. For example, in the Supply Chain scenario, in addition to cross-enterprise trans-

actions, the Manufacturer might want to use the blockchain for its internal transactions,

e.g., calculating materials demand or testing the product, to benefit from the the unique

features of blockchain. Second, in contrast to the cross-enterprise transactions which are

public and can be accessed by all participants, the internal transactions of each enterprise
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and their data should only be accessed by the nodes of the enterprise to preserve confid-

entiality, e.g., the internal transactions of the Manufacturer show its internal process for

producing a product which the Manufacturer might intend to keep as a secret. Third,

the solution has to address the performance aspect as well.

One possible solution is to implement all enterprises within a single blockchain where

all the transactions are maintained in a single blockchain ledger which is replicated among

all the nodes in the blockchain. This solution handles the cross-enterprise transactions

efficiently because every node accesses all the data. However, since the ledger is replicated

among all the nodes and every transaction is visible to all enterprises, the confidentiality

of data is not preserved.

Another solution is to implement each enterprise on a separate blockchain. In that

way, participants can perform their internal transactions in parallel resulting in higher

performance and since their data is maintained on different blockchains, the confidenti-

ality of data is preserved. To perform communication between different enterprises, one

approach is to use atomic cross-chain operation, which, as discussed earlier, is expens-

ive. An alternative approach is to use a new blockchain to maintain public transactions.

However, since public transactions use data which is provided by internal transactions,

e.g., to place an order, the Manufacturer needs to calculate demand internally, and these

two types of transactions are stored in different blockchains, data integration becomes an

expensive and challenging task.

In this chapter, we present a new approach that not only addresses the performance

and confidentiality issues, but also handles cross-enterprise transactions efficiently.
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Figure 3.2: (a): A blockchain ledger, (b)-(e): Different views of the blockchain

3.3 The CAPER Model

In this section, the CAPER model is introduced. We first present distributed ap-

plications and the blockchain ledger, and then show how the distributed applications are

deployed in the blockchain.

3.3.1 Distributed Applications

CAPER is a blockchain system designed to support distributed applications consisting

of a set of collaborating enterprises which might not trust each other. Each enterprise

maintains two sets of private and public records. The private records of an enterprise

are accessible only to the enterprise whereas the public records are replicated on all

enterprises.

CAPER supports internal and cross-enterprise transactions. Internal transactions are

performed within an enterprise following the logic of the enterprise, e.g., in the Supply

Chain scenario, the Manufacturer calculates materials demand internally. Internal trans-

actions of an enterprise can read and write its private records, however they can only read

(and not write) the public records. cross-enterprise (public) transactions, on the other
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hand, involve multiple enterprises and are visible to all enterprises, e.g., the Manufac-

turer places an order for materials via a Middleman. cross-enterprise transactions follow

the service level agreements (SLAs) between the involved enterprises. SLAs present the

flow of communication between the enterprises and indicate different aspects of the ser-

vices, e.g., quality, availability, and responsibilities, that should be provided by different

enterprises. For example, in the Supply Chain scenario, the Carrier is responsible for

delivering requested materials to the Manufacturer in two business days from the date

it is informed by the Supplier. Public records can only be updated via cross-enterprise

transactions.

3.3.2 Blockchain Ledger

The blockchain ledger in CAPER consists of both internal transactions of all enter-

prises and all cross-enterprise transactions in the system where each block consists of a

single transaction. To support both types of transactions, we generalize the notion of a

blockchain ledger from a linear chain to a directed acyclic graph (DAG) where nodes of

the graph are transactions and edges enforce the order of transactions.

Within an enterprise, since transactions have access to the same datastore, a total

order between the transactions that are initiated by the enterprise is enforced to ensure

consistency. To present the total order of transactions in the blockchain ledger, transac-

tions are chained together, i.e., each transaction includes the cryptographic hash of the

previous transaction. In addition, since cross-enterprise transactions update data which

is replicated on all the enterprises, to ensure consistency, cross-enterprise transactions are

totally ordered as well. Furthermore, internal transactions of enterprises might use data

that is provided by cross-enterprise transactions, e.g., the Manufacturer calculates ma-

terials demand based on the place-order cross-enterprise transaction of the Bulk Buyer.
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To show such data dependencies, an internal transaction includes the cryptographic hash

of a cross-enterprise transaction in the ledger.

In summary, the blockchain ledger has three properties: (1) There is a total order

between all transactions (internal as well as cross-enterprise) that are initiated by an

enterprise, (2) There is a total order between cross-enterprise transactions, and (3) An

internal transaction of an enterprise might include the cryptographic hash of a cross-

enterprise transaction (that is initiated by another enterprise).

In addition to internal and cross-enterprise transactions, a unique initialization trans-

action (block), called genesis transaction, is considered for the blockchain. Function H(.)

also denotes the cryptographic hash function. For simplicity, to show that transaction t

includes H(t′) (i.e. t is ordered immediately after t′ as explained in properties 1 and 2 or

has data dependency to t′ as explained in property 3) we include an edge from t to t′ in

the DAG representation of the blockchain ledger.

Fig. 3.2(a) shows a CAPER blockchain ledger consisting of four enterprises α1, α2,

α3, and α4. In this figure, λ is the genesis transaction. Internal and cross-enterprise

transactions of each enterprise are also specified. For example, t11, t13, t14, and t15 are

the internal transactions of enterprise α1, and t12,1, t23,2, and t34,3 are the cross-enterprise

transactions initiated by α1, α2, and α3 respectively. Note that each cross-enterprise

transaction is labeled with ti,j where i indicates the order of the transaction among the

transactions that are initiated by its initiator enterprise and j presents the order of the

transaction among all cross-enterprise transactions. As can be seen, transactions (both

internal and cross-enterprise) that are initiated by an enterprise are chained together

(property 1), e.g. t31, t32, t33, t34,3, and t35. In addition, cross-enterprise transactions are

chained together (property 2), i.e., t12,1, t23,2, and t34,3. Finally, an internal transaction

might include the hash of a cross-enterprise transaction that shows the data dependency

of the internal transaction to the cross-enterprise transaction (property 3), e.g., internal
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transactions t22 of α2 has edge to cross-enterprise transaction t12,1.

Note that, since an edge from transaction t to transaction t′ indicates that t occurs

after t′ (t includes the hash of t′, thus t′ has to be appended to the ledger earlier), it is

easy to show that the resulting graph is acyclic.

In contrast to the cross-enterprise transactions that are visible to and maintained

by all enterprises, the internal transactions of an enterprise present confidential data

about the enterprise, e.g., its business logic. For example, in the Supply Chain scenario,

the internal transactions of the Manufacturer show its internal process for producing

a product which the Manufacturer might intend to keep as a secret. The presented

blockchain ledger, however, is at odds with confidentiality because every enterprise has

access to every transaction. For the sake of confidentiality, we want to prohibit an

enterprise from observing the internal transactions of other enterprises. To achieve this,

in CAPER, the entire blockchain ledger is not maintained by any enterprise. In fact, each

enterprise only maintains its own view of the blockchain ledger that includes its internal

transactions and all the cross-enterprise transactions. The blockchain ledger is indeed

the union of all these physical views.

Fig. 3.2(b)-(e) show the views of the blockchain ledger for enterprises α1, α2, α3, and

α4 respectively where each enterprise maintains only the part of the ledger consisting of

its internal and all the cross-enterprise transactions.

3.3.3 Application Deployment on a Blockchain

Each enterprise in CAPER, in addition to the datastore and its view of the blockchain

ledger, maintains a “private smart contract” to implement the enterprise logic, and a

“public smart contract” to implement the logic of cross-enterprise transactions.

Each enterprise in CAPER has its own private smart contract which includes the logic
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of the internal transactions. In addition, a public smart contract is written to include the

logic of cross-enterprise transactions which is determined by the service level agreements

between the enterprises. As discussed in Section 3.2, to execute a collaborative process,

participants agree on SLAs which are then written in the public smart contracts. The

public smart contract runs on every enterprise to check if the cross-enterprise transactions

are conforming to the SLAs, and enforce the conditions defined in the cross-enterprise

transactions. In contrast to most existing blockchains where every smart contract runs

on all nodes, which is at odds with confidentiality, in CAPER, each private smart con-

tract runs only on its enterprise. To support cross-enterprise transactions, however, the

public smart contract runs on every enterprise. Furthermore, both private and public

smart contracts can be written in domain-specific languages, e.g., Solidity, to ensure the

deterministic execution of transactions.

In the Supply Chain scenario in Figure 3.1, each of the five involving enterprises,

i.e., Supplier, Manufacturer, Bulk Buyer, Carrier, and Middleman, executes its internal

transactions following the enterprise logic, which is implemented in its private smart

contract. Once a cross-enterprise transaction is requested, e.g., the Bulk Buyer places an

order with the Manufacturer, every enterprise executes and appends the transaction to its

view of the ledger. To execute the cross-enterprise transactions, the public smart contract

is used which includes the SLAs (that are agreed upon by all enterprises). Hence, if the

requested transaction does not conform to the SLAs, it will be detected. For each cross-

enterprise transaction the SLA defines several conditions to check. SLA also includes

actions for non-conforming transactions, e.g., if the Carrier delivers the materials later

than agreed upon, it will be penalized as specified in the SLA or if the delivered materials

are something different from what they agreed on, the transaction will be aborted.
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3.4 The CAPER Architecture

CAPER consists of a set of nodes in an asynchronous distributed system where each

enterprise runs on a (non-empty) disjoint subset of nodes called the agents of the en-

terprise. We use N and A to denote the set of nodes and enterprises. In addition, Nα

indicates the set of agents of enterprise α ∈ A where for each pair of enterprises α1 and

α2 in A, Nα1 ∩Nα2 = ∅.

Nodes in CAPER might crash, behave maliciously, or be reliable. In addition, we

assume that enterprises do not trust each other, thus we model enterprise failures as

Byzantine failures. In fact, we define two levels of behavior in the system. First, at the

node level, each agent might be a crash-only, a Byzantine, or a reliable node. In a crash

failure model, nodes operate at arbitrary speed, may fail by stopping, and may restart.

Whereas, in a Byzantine failure model, faulty nodes may exhibit arbitrary, potentially

malicious, behavior. A reliable node, on the other hand, never fails. Second, at the

enterprise level, an enterprise (as a group of agents) might behave maliciously. Note that

these two levels of behavior are independent of each other. Thus, even if the agents of

an enterprise are crash-only nodes, the enterprise might still behave maliciously.

Ordering the transactions within each enterprise needs consensus among the agents

of the enterprise. To establish consensus among the agents of an enterprise, Paxos [20]

and PBFT [21] can be used. To establish consensus for cross-enterprise transactions,

since enterprises may not trust each other, a Byzantine fault-tolerant protocol among

enterprises is needed. To provide both safety and liveness for consensus at the enterprise

level, we assume that at most b |A|−1
3 c enterprises might be malicious. As a result, to

commit a cross-enterprise transaction, by a similar argument as in PBFT [21], at least

two-thirds (b2|A|
3 c + 1) of the enterprises including the initiator enterprise of each cross-

enterprise transaction must agree on the order of the transaction. We need agreement
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from agents of the initiator enterprise to ensure that the cross-enterprise transaction

is consistent with the internal transactions of the initiator enterprise. The conformance

between a cross-enterprise transaction and the SLAs is checked by every enterprise during

the execution of the transaction, thus, if the initiator enterprise initiates a transaction

that does not conform to the SLAs, it will be detected by other enterprises during the

execution.

3.5 Local Consensus

In this section, we show how internal transactions are ordered and executed in

CAPER. CAPER employs local consensus within an enterprise to order transactions

where the agents of an enterprise, independent of other nodes in the network, agree on

the order of transactions.

The local consensus protocols in CAPER are pluggable. Depending on the failure

model of nodes (agents), the enterprise can use a crash fault-tolerant protocol, e.g.,

Paxos [20], or a Byzantine fault-tolerant protocol, e.g., PBFT [54], as the local consensus

protocol. The enterprise might not even use a consensus protocol and rely on a single

non-faulty reliable node to order the transactions. The number of required agents is also

determined by the protocol and the maximum number of simultaneous failures in the

network.

The local consensus protocol to order the internal transactions of an enterprise is

initiated by one of the agents, called the primary. The normal case operation for CAPER

to execute an internal transaction proceeds as follows. A client c requests an internal

transaction tx for an enterprise by sending a message 〈REQUEST, tx, τc, c〉σc to the agent p

of the enterprise it believes to be the primary. Here, τc is the client’s timestamp and the

entire message is signed with signature σc. The timestamps of clients are used to totally
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order the requests of each client and to ensure exactly-once semantics for the execution

of client requests.

When the primary p receives a request from a client, it first checks the signature to

ensure it is valid, and then initiates a local consensus algorithm by multicasting a message,

e.g., accept message in Paxos or pre-prepare message in PBFT, including the requested

transaction to other agents. To provide a total order between transactions, the primary

also includes H(t) in the message where H(.) denotes the cryptographic hash function

and t is the previous transaction that is ordered by the enterprise. If the transaction has

a data dependency to a cross-enterprise transaction (as discussed in Section 3.3.2), the

primary includes the cryptographic hash of the cross-enterprise transaction as well.

The agents then establish agreement on a total order of transactions using the util-

ized consensus protocol, execute the transaction, and append it to the blockchain ledger.

Finally, either the primary or every agent node (depending on the local consensus pro-

tocol) sends a reply message 〈REPLY, τc, u〉σo to client c where tsc is the timestamp of the

corresponding request and u is the execution result.

3.6 Global Consensus

In this section, we show how cross-enterprise transactions are ordered and executed

in CAPER using global consensus among enterprises. We introduce three ordering ap-

proaches for achieving global consensus in CAPER.

Ordering transactions using a disjoint set of nodes was introduced by Hyperledger [27]

to enhance the scalability of the system and to add flexibility for implementing the

consensus protocol, i.e., different protocols can be used to establish consensus. Similarly,

in the first approach of CAPER, a disjoint set of nodes, called orderers, which are not

the agents of any enterprise, are used to globally order cross-enterprise transactions. The
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global consensus protocol among orderers is pluggable and depending on the specifications

of the system, a crash, a Byzantine, or any other fault-tolerant protocol can be used.

In the absence of such orderer nodes, and in the second approach, CAPER relies on

the enterprises to order cross-enterprise transactions in a hierarchical way. To distinguish

between trust at the node level and trust at the enterprise level, agreement is established

in two levels: a local level among the agents of each enterprise, and a global level among

the enterprises of the system.

Although the second approach does not require a set of orderers to order transac-

tions, the hierarchical nature of the algorithm, which needs local consensus within each

enterprise for each step of global ordering, makes the protocol expensive. In the third ap-

proach, similar to the second approach, the agents of all enterprises order cross-enterprise

transactions, however, agreement is established in one level.

In all three approaches, when agreement is achieved, the agents execute the transac-

tion and append it to their local views of the ledger. Note that if the transaction does not

follow the service level agreements, which are implemented in the public smart contract,

it will be detected during the execution of the transaction (as discussed in Section 3.3.3).

3.6.1 Global Consensus using a Separate Set of Orderers

Using a separate set of nodes to order transactions adds flexibility to the system by

allowing the global consensus implementation to be tailored to the trust assumption of

a particular deployment. In addition, since the orderers are decoupled from the agents

that execute transactions and maintain the blockchain ledger, using orderers enhances

the scalability of the system.

In the first approach, CAPER orders the cross-enterprise transactions using a dis-

joint set of orderers O where for each enterprise α in A, O ∩ Nα = ∅. As discussed

31



CAPER: On Confidentiality of Permissioned Blockchains Chapter 3

Algorithm 1 Global Consensus using Orderers
1: init():
2: r := node_id
3: O := the set of orderer nodes
4: p := the primary agent of the initiator enterprise
5: o := the primary agent of the orderers

6: upon receiving m=〈REQUEST, tx, τc, c〉σc and (r == p):
7: if m is valid then
8: initiate local consensus
9: if agreement is achieved then
10: send 〈〈ORDER, hL, d, r〉σr ,m〉 to o {either primary or every agent r of the initiator enterprise}

11: upon receiving valid 〈〈ORDER, hL, d, r〉σr ,m〉 from the sufficient number of agents and node is the primary orderer o
12: initiate a global consensus among orderers O
13: if agreement is achieved then
14: multicast 〈SYNC, hL, hG, d, o〉σo ,m〉 {o or every orderer }

15: upon receiving 〈SYNC, hL, hG, d, o〉σo ,m〉 from the primary orderer (or a sufficient number of orderers)
16: execute and append the transaction to the ledger

earlier, a cross-enterprise transaction is ordered locally among the transactions that are

initiated by the initiator enterprise and globally among all cross-enterprise transactions,

thus both local and global orderings are needed. Since orderers are not involved in the

local consensus and enterprise agents do not participate in the global consensus, these

two orderings are separated from each other. As a result, cross-enterprise transactions

are first, similar to the internal transactions, ordered locally within each enterprise using

the enterprise consensus protocol and then ordered globally among all cross-enterprise

transactions using orderers. Note that the cross-enterprise transactions are ordered first

locally and then globally to prevent the case where the agents of the initiator enterprise

do not agree on the local order of a transaction that has already been ordered globally.

Once orderers agree on the global order of the transaction, they multicast the transac-

tion to all the enterprises, thus, every agent of every enterprise executes and appends the

transaction to its ledger.

The normal case operation of global consensus using orderers to execute a cross-

enterprise transaction is presented in Algorithm 1. Although not explicitly mentioned,

every sent and received message is logged by the nodes. As indicated in lines 1-5 of
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Figure 3.3: Global consensus using a set of orderers

the algorithm, nodes p and o are the primary agent of the initiator enterprise and the

primary orderer respectively and O is the set of orderers.

As shown in lines 6-10 of the algorithm, when primary agent p receives a valid request

〈REQUEST, tx, τc, c〉σc from an authorized client c (with timestamp τc) to execute a cross-

enterprise transaction tx, it initiates the local consensus protocol to establish agreement

on the order of the cross-enterprise transaction among all transactions that are initiated

by the enterprise. Once agreement is achieved, depending on the local consensus protocol,

either the primary or every agent r of the initiator enterprise sends a signed order message

〈〈ORDER, hL, d, r〉σr ,m〉 including the client’s request message m to the primary orderer

node where d is m’s digest and hL = H(t) where t is the previous transaction that is

ordered by the enterprise. Note that hL is included in the order messages to let orderers

know that the agents of the enterprise agree on the local order of the transaction.

When the order message is sent to the primary orderer, the primary of the enterprise

waits for the corresponding reply (sync) message from the orderers before initiating any

other transactions. In addition, when local agreement is established, nodes wait for global

agreement before appending the transaction to the blockchain ledger.

As shown in lines 11-14, once primary orderer o receives a sufficient number (determ-
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ined by the local consensus protocol of the initiator enterprise, i.e., 1 for crash fault-

tolerant and f + 1 for Byzantine fault-tolerant) of valid matching order messages (with

valid signature, matching hL, and matching message digest), primary orderer o initiates

the (global) consensus protocol by multicasting the transaction to other orderers to es-

tablish a total order on cross-enterprise transactions. Once the orderers reach agreement

on the order of the transaction, depending on the global consensus protocol, either the

primary or every orderer node o multicasts a sync message 〈SYNC, hL, hG, d, o〉σo ,m〉 to all

the agent of every enterprise where d is the digest of m, hL is copied from order message

of the initiator enterprise, and hG = H(t) such that t is the previous cross-enterprise

transaction.

Upon receiving a sync message, the agents of each enterprise log the message. Once an

agent receives a sufficient number of matching sync messages (determined by the utilized

global consensus protocol), the agent executes the transaction and appends the transac-

tion to its blockchain ledger (as can be seen in lines 15 and 16). Note that the agents

of the initiator enterprise consider both hL and hG hashes to append the transaction to

the ledger while the agents of the other enterprises only consider the hash of the previ-

ous cross-enterprise transaction (hG). Finally, depending on the utilized local consensus

protocol, either the primary or every agent node r of the initiator enterprise sends a

reply message 〈REPLY, τc, u〉σr to client c where tsc is the timestamp of the corresponding

request and u is the result of executing the request.

The flow of cross-enterprise transactions using a set of orderers in a blockchain con-

sisting of four enterprises α1, α2, α3, and α4 can be seen in Figure 3.3. Here enterprise

α1 initiates the cross-enterprise transaction. In addition, o1, o2, and o3 are the orderer

nodes. Upon receiving a cross-enterprise transaction from a client, the primary node

n1 of α1 validates the transaction and similar to internal transactions, initiates a local

consensus algorithm to order the transaction within the enterprise. Once the transac-
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tion is internally ordered, an order message is sent to the primary orderer node. The

orderers use a global consensus protocol, e.g., a crash fault-tolerant protocol with f = 1

in Figure 3.3, to agree on the global order of the transaction and then since here the

orderers are crash-only nodes, the primary orderer (node o1) multicasts sync messages

including the transaction to every agent of every enterprise. Each agent then validates

the transaction, executes the transaction, and appends it to the ledger.

Safety and Liveness. Since the global ordering protocol is pluggable, its safety and

liveness are implied due to Paxos [20] and PBFT [21]. The order of cross-enterprise

transactions on different enterprises is unique because cross-enterprise transactions are

ordered sequentially by orderers and the agents of every enterprise follows the order that is

provided by orderers. Note that if the agents of an enterprise do not follow the provided

order, the enterprise might not be able to initiate cross-enterprise transactions in the

future (since the initiated transactions might not conform to SLAs). To ensure a total

order between transactions that are initiated by the same enterprise, once the primary

of an enterprise sends a cross-enterprise transaction to be ordered by the orderers, the

primary stops initiating any other transactions and waits for the reply from the orderers.

3.6.2 Hierarchical Global Consensus

While using a separate set of orderer nodes makes the agreement routine simple and

modular, it comes with an extra cost of adding orderers to the system. In the absence of

such orderer nodes, reaching consensus on the order of the cross-enterprise transactions

needs the participation of all enterprises. To distinguish between trust at the node level

and trust at the enterprise level, CAPER uses an asynchronous Byzantine fault-tolerant

protocol for the global consensus where for each cross-enterprise transaction and in each

phase of the global consensus, every enterprise runs its local consensus protocol between
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Algorithm 2 Hierarchical Global Consensus
1: init():
2: r := node_id
3: α := the enterprise that initiates the consensus
4: P := the set of primary agents of all enterprises
5: p := the primary of α

6: upon receiving transaction m and (r == p)
7: if m is valid then
8: multicast 〈〈PROPOSE, hL, hG, d〉σp ,m〉 to P

9: if (r == p) OR (upon receiving 〈〈PROPOSE, hL, hG, d〉σp ,m〉 from initiator primary p and r ∈ P )
10: initiate local consensus
11: if agreement is achieved then
12: multicast 〈ACCEPT, hL, hG, d, r〉σr to P {r or all agents}

13: upon receiving matching 〈ACCEPT, hL, hG, d, q〉σq from two-thirds of the enterprises including α and r ∈ P
14: initiate a local consensus
15: if agreement is achieved then
16: multicast 〈COMMIT, hL, hG, d, r〉σr {either r or all agents}

17: upon receiving matching 〈COMMIT, hL, hG, d, r〉σr from two-thirds of the enterprises including α
18: execute and append the transaction to the ledger

its agents to internally decide on the enterprise vote in that phase.

In addition, since the agents of the initiator enterprise participate in the global con-

sensus, in contrast to the first approach, the local and global orderings are merged to-

gether. However for each step of the global ordering the protocol ensures that the initi-

ator enterprise agrees with the ordering. Hence the transaction is ordered correctly with

respect to the transactions that are initiated by the initiator enterprise.

Furthermore, in each step of the global ordering and within each enterprise, once

agreement is established, depending on the utilized local consensus protocol, either the

primary, e.g., in Paxos, or every agent, e.g., in PBFT, sends the vote to other enterprises.

For example, if the local consensus protocol is Paxos, only the primary sends the vote

while in PBFT, every agent sends the vote. Indeed, if an enterprise uses a crash fault-

tolerant protocol, the primary reply is counted as the enterprise vote by other enterprises

whereas if an enterprise uses a Byzantine fault-tolerant protocol, other enterprises wait

for f + 1 matching replies from the agents of the enterprise to count it as the enterprise

vote. It is needed because in a crash fault-tolerant protocol, the primary is non-malicious,
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Figure 3.4: Hierarchical global consensus

whereas in a Byzantine fault-tolerant f nodes (including primary) might be malicious,

thus other enterprises wait for f + 1 matching replies to ensure it is valid.

Algorithm 2 presents the hierarchical global consensus. Same as before, every sent

and received message is logged by the agents. As presented in lines 1-5 of the algorithm,

P is the set of primary agents of all enterprises and p is the primary agent of the initiator

enterprise α.

Once the primary agent p of the initiator enterprise receives a valid cross-enterprise

transaction, as indicated in lines 6-8, it multicasts a signed 〈〈PROPOSE, hL, hG, d〉σp ,m〉

message to the primary agents of every enterprise where d is the digest of m, hL = H(t)

such that t is the previous transaction that is initiated by the enterprise, and hG = H(t′)

such that t′ is the previous cross-enterprise transaction. Note that hash hL is only used

by the agents of the initiator enterprise to ensure that the new transaction is ordered

correctly with respect to the transactions that are initiated by the enterprise. The agents

of the other enterprises ignore hL and do not include it in their future messages.

As can be seen in lines 9-12, upon receiving a propose message from an enterprise,

the primary agent of every enterprise checks the signature, hash hG, and message di-
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gest to ensure the message is valid. Then, every primary agent (including the primary

of the initiator enterprise) internally initiates the local consensus protocol to establish

agreement on the order of the requested transaction. If agreement is achieved, depending

on the utilized local consensus protocol, either the primary or every agent multicasts an

accept message to the primary agents of all other enterprises. Note that local consensus is

needed to ensures that non-faulty agents agree with the received propose message. Hence,

if agreement achieved, they just log the messages and do not append the transaction to

their copies of the ledger.

As shown in lines 13-16, each enterprise waits for valid accept messages from two-thirds

of the enterprises including the initiator enterprise which are matched with the accept

message that is sent by the enterprise. Note that a valid accept message from initiator

enterprise is needed to ensure that the transaction is consistent with the transactions that

are initiated by that enterprise. Upon receiving a sufficient number of accept messages,

the primary agent of each enterprise initiates the local consensus protocol to establish

agreement on the received accept messages. Once agreement is achieved, the enterprise

(either the primary or every agent) multicasts a commit message to every agent of all

other enterprises.

The propose and accept phases of the global consensus, similar to pre-prepare and

prepare phases of PBFT [21], guarantee that non-malicious enterprises agree on a total

order for the transactions. Indeed, they ensure that no fork happens in the blockchain,

i.e., it is not possible to have two different transactions with the same hash hG. This is

true because at least two-thirds (b2|A|
3 c + 1) of the enterprises agreed with the order of

each transactions, thus any two quorums of enterprises intersect in at least b |A|−1
3 c + 1

enterprises. Since at most b |A|−1
3 c enterprises might be malicious, there is at least one

non-malicious enterprise in the intersection of any two quorums.

Finally, in lines 17 and 18, similar to the previous phase, if an enterprise receives
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Algorithm 3 One-Level Global Consensus
1: init():
2: r := node_id
3: α := the enterprise that initiates the consensus
4: p := the primary agent of α

5: upon receiving transaction m and (r == p)
6: if m is valid then
7: broadcast 〈〈PROPOSE, hL, hG, d〉σp ,m〉 to every agents

8: upon receiving 〈〈PROPOSE, hL, hG, d〉σp ,m〉 from primary p
9: if the message is valid then
10: broadcast 〈ACCEPT, hL, hG, d, r〉σr

11: upon receiving matching 〈ACCEPT, hL, hG, d, r〉σr from local-majority of two-thirds of the enterprises including α
12: if the message is valid then
13: broadcast 〈COMMIT, hL, hG, d, r〉σr

14: upon receiving matching 〈COMMIT, hL, hG, d, r〉σr from local-majority of two-thirds of the enterprises including α
15: execute and append the transaction to the ledger

matching commit messages from two-thirds of the enterprises including the initiator one

that match the enterprise’s commitmessage, its agents execute the transaction and append

it to their ledgers.

Figure 3.4 shows the hierarchical consensus with four enterprises (similar to Fig-

ure 3.3) where enterprises α1 and α3 use a crash fault-tolerant (CFT) protocol and enter-

prise α2 uses a Byzantine-fault-tolerant (BFT) protocol as their local consensus protocol.

Here, the primary of enterprise α1 initiates the consensus.

As an optimization, for a system with a high percentage of cross-enterprise transac-

tions and to prevent the initiation of concurrent cross-enterprise transactions, the primary

node of one of the enterprises can be designated as a super primary where every enter-

prise sends its cross-enterprise transaction to the super primary and the super primary

initiates the protocol.

Safety and Liveness. In the hierarchical consensus, as discussed earlier, since at least

b2|A|
3 c+1 of the enterprises must agree with the order of a transaction and at most b |A|−1

3 c

enterprises might be malicious, safety is ensured. Indeed, if two or more concurrent

transactions are initiated, at most one of them collects the required number of messages
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Figure 3.5: One-level global consensus

(two-thirds of the enterprises) , i.e., it is not possible for more than one of them to be

ordered with the same hash hG. If none of the concurrent transactions collects enough

votes, all initiator enterprises try to send their transactions again. In such a situation and

to ensure liveness, CAPER assigns a timer to each transaction and delays the transactions

to prevent concurrent re-initiation of the transactions.

3.6.3 One-Level Global Consensus

While hierarchical consensus eliminates the need for having an extra set of orderer

nodes and also distinguishes between trust at the node level and trust at the enterprise

level, it requires an expensive two-level consensus protocol where each step of the global

consensus needs the entire local consensus protocol to be run within each enterprise. In

this section, we introduce a one-level global consensus protocol where for each cross-

enterprise transaction, the agents of all enterprises participate to achieve consensus on

the order of the transaction.

Since the number of agents of each enterprise depends on the utilized consensus
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protocol within the enterprise, the required number of matching replies to ensure that

the majority of agents of an enterprise agree on the order of the transaction is different

from enterprise to enterprise. Therefore, we define local-majority as the required number

of matching messages from the agents of an enterprise. If the agents of an enterprise are

crash-only nodes, local-majority for the enterprise is equal to f +1 (from the total 2f +1

agents), and if the agents of an enterprise might behave maliciously, local-majority for

the enterprise is equal to 2f + 1 (from the total 3f + 1 agents). For an enterprise that

has only a single reliable agent, local-majority is one.

Algorithm 3 presents the one-level global consensus. Variable p indicates the primary

agent of the initiator enterprise α. As shown in lines 5-7, the primary of the initiator

enterprise broadcasts a signed propose message including the transaction, the hash of the

previous transaction that is initiated by the enterprise (hL), and the hash of the previous

cross-enterprise transaction (hG) to the agents of every enterprise. Same as before, hL is

only used by the agents of the initiator enterprise.

Once an agent receives a propose message, it checks the signature, message digest, and

hash hG to ensure the message is valid. If the agent belongs to the initiator enterprise,

it also checks hash hL. Once the message is validated, the agent broadcasts an accept

message to every agent of every enterprise, as indicated in lines 8-10.

As presented in lines 11-13, upon receiving valid accept messages from the local-

majority of two-thirds of the enterprises including the initiator enterprise that match the

accept message which is sent by the agent, each agent broadcasts a commit message to

every agent of every enterprise. The propose and accept phases of the algorithm, similar to

pre-prepare and prepare phases of PBFT [21], guarantee that non-faulty agents agree

on a order for the transactions.

Finally, as shown in lines 14 and 15, once an agent receives valid commit messages

from local-majority of two-thirds of the enterprises including the initiator enterprise that
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matches its commit message, the agent considers the transaction as committed, thus,

executes the transaction and appends the transaction to the ledger.

Figure 3.5 shows the one-level consensus in CAPER for four enterprises with different

failure modes.

Safety and Liveness. To ensure safety in one-level consensus, in each of the accept and

commit phases, matching messages from the local majority of two-thirds of the enterprise

is required. Local majority of each enterprise is needed to ensure that any two quorums

intersect in at least one non-faulty node within the enterprise and two-thirds of the

enterprises is needed to ensure that any two quorums intersect in at least one non-

malicious enterprise (since at most b |A|−1
3 c enterprises might be malicious). Thus, similar

to the hierarchical ordering, even if two or more concurrent transactions are initiated,

at most one of them collects required number of matching accept and commit messages.

To ensure liveness, similar to the hierarchical consensus, CAPER assigns timers to delay

concurrent transactions and also as an optimization uses a super primary for systems

with a high percentage of cross-enterprise transactions.

3.7 Experimental Evaluations

In this section, we conduct several experiments to evaluate CAPER. As explained

earlier, CAPER supports distributed applications consisting of a set of collaborating

enterprises where each enterprise maintains its data in a datastore consisting of private

and public records. The private records of the datastore, which are replicated across

the agents of enterprise, include the data of internal transactions. The public records,

on the other hand, are replicated across every agent of every enterprise and include the

data of cross-enterprise transactions. For the purpose of this evaluation, enterprises are

implemented as simple accounting applications where clients can initiate transactions to
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transfer assets from one or more of their accounts to other accounts.

In addition to CAPER, we also implemented a permissioned blockchain system spe-

cifically designed in the execute-order-validate architecture introduced by Fabric [27]

where the transactions (internal as well as cross-enterprise) of different enterprises are

executed by the agents (endorsers) of their enterprises in parallel, ordered by a separate

set of orderers, and then validated by every agent of every enterprise. Each block also

consists of a single transaction (as in [59]). Note that in the case of Fabric, all internal

as well as cross-enterprise transactions are ordered by orderers and all the enterprises

maintain the same blockchain ledger (i.e., the confidentiality of data is not preserved).

The experiments are conducted on the Amazon EC2 platform. Each VM is Compute

Optimized c4.2xlarge instance with 8 vCPUs and 15GB RAM, Intel Xeon E5-2666 v3

processor clocked at 3.50 GHz. In each experiment, we increase the total number of

transactions per second from 100 to 100000 (by increasing the number of clients running

on a single VM) and measure the end-to-end throughput (x-axis) and latency (y-axis) of

the system. The load is equally distributed among the enterprises.

When reporting throughput measurements, we use an increasing number of clients

running on a single VM, until the end-to-end throughput is saturated, and state the

throughput just below saturation. Throughput numbers are reported as the average

measured during the steady state of an experiment.

3.7.1 Workloads with Cross-Enterprise transactions

In the first set of experiments, we measure the performance of CAPER for workloads

with different percentage of cross-enterprise transactions, i.e., 0%, 20%, 80%, and 100%.

We consider four enterprises where each enterprise has three agents and uses a Paxos

protocol with f = 1 to establish consensus on its internal transactions. To process
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Figure 3.6: Performance with different percentage of cross-application transactions

cross-enterprise transactions we implement all three approaches, using a set of orderers

(we refer to this approach as orderers), hierarchical, and one-level, which are explained

in Section 3.6. Orderers are implemented using a typical Kafka orderer setup with 3

ZooKeeper nodes, 4 Kafka brokers and 3 orderers (similar to the ordering service of

Fabric [27]). The results are shown in Figure 3.6(a)-(d).

When all transactions are internal (Figure 3.6(a)), each enterprise processes its trans-

actions independent of other enterprises. In such a situation, CAPER is able to process

upto 36000 transactions (9000 transactions per enterprise) with very low latency (∼10

ms). Here, since there is no dependency between the transactions of different enterprises

and the blockchain views of enterprises are constructed in parallel, the throughput of

the entire system increases linearly by increasing the number of enterprises. With the

same latency as CAPER (∼10 ms), Fabric processes 3000 transactions. Fabric is able

to process upto 7000 transactions in total with 40 ms latency, however, the end-to-end

throughput is saturated beyond 7000 transactions. In Fabric, adding more enterprises

only increases the number of parallel execution threads and since every transaction of all

enterprises is ordered by the same set of orderers, the performance of Fabric is not sig-

nificantly improved. Note that since all transactions are internal, if Fabric uses different

channels for different enterprises, it can linearly scale as the number of enterprises in-

creases. However, even with that improvement, CAPER still provides higher throughput
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(∼29% higher in its peak throughput).

In the second set of experiments, the workload is changed to include 20% cross-

enterprise transactions which are equally initiated by different enterprises. As can be

seen in Figure 3.6(b), when CAPER is not heavily loaded, the one-level consensus ap-

proach has better performance since it involves less number of communication phases.

As can be seen, the one-level approach processes ∼16000 transactions with 90 ms latency

whereas the hierarchical and orderers approaches have latencies of 220 and 150 ms latency

respectively in order to process the same number of transactions.

Once CAPER becomes heavily loaded, cross-enterprise transactions might be initiated

in parallel. As a result, the latency of the hierarchical and one-level approaches are

dramatically increased (as discussed in Section 3.6). With 400 ms latency, using orderers,

CAPER is able to process 30000 transactions whereas the one-level and hierarchical

approaches process 18000 and 19000 transactions (resp.).

The performance of Fabric, however, is not affected by increasing the percentage

of cross-enterprise transactions (since all transactions are ordered by the same set of

orderers) and Fabric still processes upto 7000 transactions in total with 40 ms latency.

Increasing the percentage of cross-enterprise transactions to 80% (Figure 3.6(c)) de-

creases the performance of all three approaches. In this case, using orderers, CAPER

is able to process ∼10000 transaction with sub-second latency whereas the hierarchical

and one-level approaches process upto 6000 transactions with the same latency. This is

expected because in the hierarchical and one-level approaches when the system is heavily

loaded, different nodes receive concurrent transactions in different orders.

When all transactions are cross-enterprise, the one-level consensus can only process

∼4000 transactions per second with 800 ms latency whereas using the orderers, CAPER

is able to process ∼9000 transactions with the same latency. Fabric, same as before, is

able to process upto 7000 transactions in total with 40 ms latency which is better than
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both hierarchical and one-level approaches.

As mentioned before, since Fabric orders all internal as well as cross-enterprise trans-

actions by the same set of orderers, the performance of Fabric is not affected by increasing

the percentage of cross-enterprise transactions. As a result, in workloads with 80% and

100% cross-enterprise transactions, Fabric performs better than all other approaches in

terms of latency. In fact, for cross-enterprise transactions and to achieve consensus,

CAPER uses either multiple rounds of consensus (in the orderers and hierarchical ap-

proaches) or a Byzantine fault-tolerant protocol with a large number of participants (in

the one-level approach). This is in contrast to Fabric that relies on a single crash fault-

tolerant protocol (with only three nodes) to order the transactions which results in a

lower latency. However, Fabric does not ensure confidentiality of data in this settings.

Note that even with 100% cross-enterprise transactions, the throughput of CAPER

using the orderers approach is slightly higher than Fabric (9% higher in its peak through-

put) because the throughput of Fabric is affected by conflicting transactions, i.e., trans-

actions that access the same records, due to its execute-order-validate architecture [8] (in

the experiments, ∼10% of the transactions are conflicting).

3.7.2 Performance with Multiple Enterprises

In the next set of experiments, we measure the performance of CAPER in two deploy-

ments with 4 and 8 enterprises where each enterprise has three agents and uses a Paxos

protocol with f = 1 to establish consensus on its internal transactions. For each deploy-

ment, we consider workloads with 90% internal and 10% cross-enterprise transactions

(the typical settings in partitioned databases [60] [61]).

For the deployment with four enterprises (Figure 3.7(a)), the performance of CAPER

is close to the scenario in Figure 3.6(b) where in the workloads with less than ∼20000
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Figure 3.7: Performance with 4 and 8 enterprises

transactions per second, the one-level consensus has better performance and beyond that,

using orderers is more beneficial. Increasing the number of enterprises (Figure 3.7(b)),

however, results in higher latency for the same throughput in both one-level and hierarch-

ical consensus due to the increasing number of nodes which increases the chance of conflict

between concurrent transactions. Note that since 90% of the transactions are internal,

increasing the number of enterprises improves the overall throughput of CAPER near-

linearly (using orderers, CAPER processes upto ∼32000 and ∼59000 transactions per

second with four and eight enterprises (respectively) with 30 ms latency). As mentioned

earlier, in Fabric, increasing the number of enterprises does not significantly improve the

performance.

3.7.3 Different Failure Models Performances

Finally, in the last set of experiments, we change the failure model of nodes (agents as

well as orderers in the first approach of global consensus). We assume a deployment with

four enterprises and a workload with 90% internal and 10% cross-enterprise transactions.

Since the crash-only nodes are considered in the previous experiments, in this set of

experiments, we only consider reliable and Byzantine nodes.

In the first settings, all nodes are reliable, thus each enterprise has a single agent, i.e.,

the internal transactions need no consensus and get committed as soon as received by the
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Figure 3.8: Performance with different failure models

agents. In addition, in the first approach of global consensus, cross-enterprise transactions

are ordered using a single reliable orderer. Note that since each enterprise has only a

single agent, the hierarchical and one-level consensus protocols become identical and they

both become similar to PBFT. The only difference is that here every agent can initiate

a cross-enterprise transaction whereas in PBFT only the primary can.

The results are shown in Figure 3.8(a). By relying on an orderer node, CAPER orders

cross-enterprise transactions in only two phases: order and sync, thus the system is able

to process more than 60000 transactions per second with very low latency (∼ 5 ms).

It should be mention that although reliable nodes show a significant performance, the

assumption is that they never fail which seems to be unrealistic.

In the second settings, nodes are Byzantine. As a result, each enterprise relies on

four agents (f = 1) to order internal transactions. Similarly, there are four orderers

to order cross-enterprise transactions in the first approach of global consensus and in

Fabric. The results can be seen in Figure 3.8(b) where, as expected, the performance of

the system reduces in comparison to crash-only and reliable nodes due to the increasing

number of nodes, messages, and communications phases (recall than Byzantine fault-

tolerant protocols establish consensus in three phases with a quadratic number of message

exchanges). It is noteworthy to mention that even when all agents and orderers follow the

Byzantine failure model, CAPER is still able to process more than 20000 (using orderers,
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∼ 28000) transactions per second with 250 ms latency.

Note that different enterprises and also the set of orderers might have different failure

models, thus, many possible combinations can be considered (53 combinations when the

system has only four enterprises). Here, we only measured the settings where every node

(agent as well as orderer) follows the same failure model.

3.8 Summary

In this chapter, we proposed CAPER, a permissioned blockchain system that supports

both internal and cross-enterprise transactions of collaborating enterprises. CAPER tar-

gets both performance and confidentiality aspects of blockchain systems. To achieve

better performance, CAPER orders and executes internal transactions of different enter-

prises simultaneously. In addition, to achieve confidentiality, the blockchain ledger is not

maintained by any node and each enterprise maintains its own local view of the ledger

including its internal and all cross-enterprise transactions. CAPER also distinguishes

between trust at the node level and trust at the enterprise level and allows an enterprise

to behave maliciously for its benefit while its nodes are non-malicious. Furthermore,

CAPER introduces three consensus protocols to globally order cross-enterprise transac-

tions: using a separate set of orderers, hierarchical consensus, and one-level consensus.

Our experiments show that for lightly loaded enterprises one-level consensus shows bet-

ter performance whereas using a set of orderers is more beneficial for heavily loaded

enterprises. In the absence of extra resources for orderers, the hierarchical approach

can provide better performance in heavily loaded enterprises. CAPER is able to pro-

cess around 10000 transactions per second per enterprise in workloads with a reasonable

percentage (10%) of cross-enterprise transactions.
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Chapter 4

SEPAR: On Verifiability of

Permissioned Blockchains

4.1 Introduction

The rise of the platform economy [62, 63] is reshaping work all around the world.

Crowdsourcing platforms dedicated to work (also called crowdworking platforms [64])

are online intermediaries between requesters and workers, where requesters propose tasks

while workers propose skills and time. By providing requesters (resp. workers) 24/7

access to a worldwide workforce (resp. worlwide task market), crowdworking platforms

have grown in numbers, diversity, and adoption1. Today, crowdworkers come from coun-

tries spread all over the world, and work on several, possibly competing, platforms [64].

The use of crowdworking platforms is expected to continue growing [65], and in fact they

are envisioned as key technological components of the future of work [66].
1See for example : Amazon Mechanical Turk (https://www.mturk.com/), Wirk (https://www.

wirk.io/), or Appen (https://appen.com/) for micro-tasks, Uber (https://www.uber.com/) or Lyft
(https://www.lyft.com/) for rides, TaskRabbit (https://www.taskrabbit.com/) for home maintain-
ance, Kicklox (https://www.kicklox.com/) for collaborative engineering.
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Crowdworking platforms, however, challenge national boundaries, weaken the formal

relationships between workers and requesters, and are often not considered legal as em-

ployers. Guaranteeing the compliance of crowdworking platforms with national or re-

gional labour laws is hard2 [65] despite the stringent need for regulating work. For

example, the preamble of the 1919 constitution of the International Labour Organiza-

tion [67], written in the ruins of World War I, states that: “Whereas universal and lasting

peace can be established only if it is based upon social justice; (. . . ) an improvement of

those conditions is urgently required; as, for example, by the regulation of the hours of

work, including the establishment of a maximum working day and week, the regulation of

the labour supply (. . . )”. The global regulation of the work hours represents the minimal

and maximal number of hours that participants, i.e., worker, requester, and platform,

can spend on crowdworking platforms. While legal tools are currently being investig-

ated, e.g., a Universal Labour Guarantee [65], there is a stringent need for technical tools

allowing official institutions to enforce regulations.

Most current crowdworking platforms are independent of each other. However, the

emergence of more complex tasks and novel requirements for both workers and requesters,

on one hand, and the enforcement of legal regulations, on the other hand, highlights the

need for collaboration between crowdworking platforms, thus resulting in multi-platform

crowdworking systems. For example, many drivers work for both Uber and Lyft con-

currently3, while requesters may also request multiple drivers from both Uber and Lyft

concurrently. The observation holds also for microtask platforms [64], where a common

combination among workers is Amazon Mechanical Turk and Prolific, or for on-demand

services4. Participants in a crowdworking task may also behave maliciously or act as
2See, e.g., the Otey V Crowdflower class action against a famous microtask platform for "substand-

ard wages and oppressive working hours" (https://casetext.com/case/otey-v-crowdflower-1).
3For example, ridesharapps.com provides tutorials to help drivers manage apps to optimize their

earnings https://rideshareapps.com/drive-for-uber-and-lyft-at-the-same-time/.
4See, e.g., https://tinyurl.com/nytgigmult.
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adversaries for their benefits, e.g., violate the privacy of participants or the regulations.

Therefore, to check the enforcement of legal regulations in a multi-platform crowdwork-

ing environment, we need to reconcile transparency with privacy. Indeed, while enforcing

limits on the hours of work over several crowdworking platforms requires the transpar-

ent sharing of information about the crowdworking tasks performed by each platform,

without any privacy protectionmeasures, this may lead to out-of-control disclosures about

the participants. Transparent and privacy-preserving collaboration between multiple

platforms might also be needed to address complex cross-platform tasks. If a requester

submits a task with a specified number of requested solutions to multiple platforms, the

involved platforms need to collaborate with each other in order to assign workers and

provide the specified number of solutions. As a result, a multi-platform system needs to

establish consensus between platforms to enable them either to enforce legal regulations

or to process cross-platform tasks.

In this chapter, we present SEPAR, a technical solution to the problem of imposing

global constraints on distributed independent entities in the context of multi-platform

crowdworking systems. The problem is non-trivial because of the complexity of the

conjunction of the required properties:

1. Expressibility: The constraints need to be expressed in a simple and non-ambiguous

manner.

2. Transparent and Privacy-preserving Constraint Enforcement: Crowdwork-

ing platforms need to share information about the tasks performed without jeop-

ardizing the privacy of participants in order to allow both the enforcement of the

global constraints and the collaborative processing of cross-platform tasks.

3. Distributed Collaboration: Crowdworking platforms are naturally distributed

and need to collaborate through distributed consensus algorithms.

SEPAR proposes a privacy-preserving token-based system where global constraints
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are modeled using lightweight and anonymous tokens distributed to workers, platforms,

and requesters. Our system formally guarantees that global constraints are satisfied by

construction and limits the information shared among platforms and participants to the

minimum necessary for performing the tasks against adversarial participants acting as

covert adversaries. We extend our token-based system to allow participants to prove to

external entities (e.g., social security agencies) their involvement in crowdworking tasks.

The resulting proofs are called certificates. To provide transparency across multiple

platforms, SEPAR proposes a blockchain-based distributed ledger shared across platforms.

Nonetheless, for the sake of privacy and to improve performance, the blockchain ledger

is not maintained by any single platform and each platform maintains only a view of

the ledger. We then design a suite of distributed consensus algorithms across platforms

for coping with the concurrency issues inherent to a multi-platform context and formally

prove their correctness. Salient features of SEPAR include the simplicity of its building

blocks (e.g., usual asymmetric encryption scheme) and its compatibility with today’s

platforms (e.g., it does not jeopardize their privacy requirements about requesters and

workers for enforcing the regulation).

In a nutshell, the contributions of this chapter are as follows:

1. A privacy model stating formally the privacy requirements of a multi-platform

regulated crowdworking system based on the well-known simulatability paradigm,

2. A simple language for expressing global constraints, e.g., limits on the number of

work hours, and mapping them to SQL constraints to ensure semantic clarity,

3. SEPAR, a privacy-preserving transparent multi-platform crowdworking system that

enforces a given set of constraints. (1) Privacy is ensured using lightweight and

anonymous tokens, while (2) transparency is achieved using a blockchain shared

across platforms. The token-based system is extended to allow participants to prove

to external entities their involvement in crowdworking tasks.
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4. A suite of distributed consensus protocols for coping with the concurrency issues

inherent to a multi-platform context, and

5. A formal security analysis and thorough experimental evaluation.

The chapter is organized as follows. Section 4.2 defines the problem that SEPAR

addresses. The language for expressing constraints is expressed in Section 4.3. The

token-based system for enforcing constraints and the extended system for certificates are

designed in Section 4.4. The blockchain ledger and consensus protocols are presented

in Section 4.5. Section 4.6 details our thorough experimental evaluation, and finally,

Section 4.7 concludes the chapter.

4.2 Problem Formulation

In this section, we provide a motivating example to illustrates the challenges of crowd-

working systems and then formulate the problem. Next, We explain the security model.

4.2.1 Motivating Example

Multi-platform crowdworking systems face two main privacy preserving challenges:

enforcing multi-platform regulations and supporting cross-platform tasks. We consider

constraining the number of work hours in a ridesharing use-case to illustrate the challenge

of enforcing privacy preserving multi-platform regulations. In ridesharing scenarios, a set

of workers (i.e., drivers) gives rides to a set of requesters (i.e., travelers) through a set of

platforms, e.g., Uber, Lyft, Curb, and Juno, where each driver (resp. traveler) registers

to one or more platforms. Regulations on the hours of work often specify minimal and

maximal number of work hours that can be performed by the participants. For instance,

(1) the total work hours of a driver per week may not exceed 40 hours to follow the
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Fair Labor Standards Act5 (FLSA), (2) a driver has to work at least 5 hours per week

to be eligible for insurance coverage, and (3) the total work hours of all drivers on a

platform should be at least 1000 hours per week to enable the platform to fill for a

tax refund. A multi-platform crowdworking system needs to express and enforce such

regulations while preserving the privacy of participants. Indeed, the system needs to

(1) provide a technical tool to enable official institutions expressing the regulations, (2)

support transparent sharing of information about the crowdworking tasks performed by

each platform to enable them checking the enforcement of regulations, and (3) preserve

the privacy of participants.

Supporting complex cross-platform tasks that may need multiple contributions from

possibly different platforms raises the second set of challenges. For instance, a requester

who has registered with Amazon Mechanical Turk, Appen and other microtask platforms

might need hundreds or thousands of contributions at the same time. The requester

would like to accept these contributions from workers regardless of the platforms the

microtasks are performed on. Since workers from different platforms might want to

perform these contributions, the system needs to establish consensus among the various

microtask platforms to assign workers and provide the specified number of solutions

without revealing any private information about the workers to competing platforms.

4.2.2 Crowdworking Environment

Participants

Today’s realistic crowdworking environments consist of a set of workersW interacting

with a set of requesters R through a set of competing platforms P . We call participants

the workers, platforms, and requesters of a crowdworking environment. Each worker
5https://www.dol.gov/agencies/whd/flsa
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Figure 4.1: A crowdworking infrastructure

w ∈ W (1) registers to one or more platforms Pw ⊂ P according to her preferences

and, through the latter, (2) accesses the set of tasks available on Pw, (3) submits each

contribution to the platform p ∈ Pw she elects, and (4) obtains a reward for her work.

On the other side, each requester r ∈ R similarly (1) registers to one or more platforms

Pr ⊂ P , (2) issues a submission which contains her tasks Tr to one or more platforms

p ∈ Pr, (3) receives the contributions of each worker w registered to Pr ∩ Pw having

elected a task t ∈ Tr, and (4) launches the distribution of rewards. Platforms are thus in

charge of facilitating the intermediation between workers and requesters. A crowdworking

process π connects three parties – a worker w, a platform p, and a requester r – with

each other and aims to solve a task t ∈ Tr through p, and consists in the steps (2) to (4)

above. Figure 4.1 shows a crowdworking infrastructure with four platforms, four workers

and four requesters.

In this work, we do not focus on the description of tasks and contributions and

consequently model both as arbitrary bitstrings {0, 1}∗ and make no assumption on the
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distribution of rewards to workers6.

Finally, workers, requesters, and platforms are all equipped with the cryptographic

material required by SEPAR: a pair of usual public/private asymetric keys (e.g., RSA)

and a pair of public/private asymetric group keys (e.g., [68]) where the union of all workers

forms a group (in the sense of group signatures), similar to the union of all requesters,

and to the union of all platforms. Participants acquire them when joining SEPAR (see

Section 4.4 for more information).

Interactions with Institutions

Crowdworking environments do not exist in a vacuum but rather are integrated within

society as a whole. The participants need in particular to interact with legal institutions

(in order to enforce the local labor laws) and with social institutions (in order to enable

local social rights). We capture these interactions through less-than constraints and

greater-than certificates.

Constraints. A set of constraints embodies the labor policy that applies to a given

crowdworking environment. Essentially, a constraint expresses a limit on the actions

that can be performed by the participants of the crowdworking environment, e.g., the

total working hours of a worker per week must not exceed 40 hours across all platforms.

Constraints must be expressed in an intuitive language that is both expressive enough

to adapt to a variety of real-world policies and at the same time restrictive enough to

guarantee the efficiency of their enforcement.

Certificates. A certificate is a piece of information that participants can provide to

third parties to prove that they took part in a given crowdworking process. Contrary

to constraints, they are not a priori specification: they are made available during the
6A task embeds all the information necessary to be performed by a worker (e.g., the precise descrip-

tion of the work that must be performed, a reward policy for distributing the reward among contributors,
the expected number of contributions).
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process to the participants involved and can be provided by participants to other parties

on demand after the process. Certificates are well suited to real-world situations such

as conforming to legal obligations, suing other parties in court in case of abuse, or legit-

imizing applications to grants or tax refund depending on local legislation, e.g., a driver

has to work at least 5 hours per week to be eligible for insurance coverage or the total

work hours of all drivers on a platform should be at least 1000 hours per week to enable

the platform to fill for a tax refund.

Distribution of Platforms

We do not make any assumptions on the inner working of platforms, especially on

their inner implementation of crowdworking processes (e.g., task assignment algorithm,

workers contributions delivery). However, we stress that our approach is compatible with

distributed infrastructures, supported by one or more data centers, following today’s fault

tolerance and performance standards. In particular, we assume each platform consists of

a set of nodes in an asynchronous distributed network. Nodes are connected by point-

to-point bi-directional communication channels. To guarantee data consistency, a total

order among the transactions of each platform is needed. To establish a total order, asyn-

chronous consensus protocols can be used where nodes agree on an ordering of incoming

requests using the state machine replication algorithm [50]. Each node has a distributed

persistent transparent datastore where transactions are committed to the datastore. In

this chapter and due to the unique features of blockchains such as transparency, proven-

ance, and fault tolerance, the datastore is implemented using a blockchain. In particular

and for a crowdworking system, the transparency of blockchains can be used to check in-

tegrity constraints, provenance enables the system to trace how data is transformed, fault

tolerance helps to enhance reliability and availability, and finally, authenticity guarantees

that signatures and transactions are valid.
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A crowdworking environment processes internal, i.e., submitted to a single platform,

and cross-platform, i.e., submitted to more than one platform, tasks. Processing a task

(either internal or cross-platform) requires agreement from the nodes of the involved

platforms. To establish agreement among the nodes, we introduce local and cross-platform

consensus protocols. In addition, we enable all platforms checking the satisfaction of

constraints by establishing consensus among every node of all platforms. To do so, a

global consensus protocol is introduced.

4.2.3 Security Model

We consider that any participant in a crowdworking environment may act as a covert

adversary [69] that aims at inferring anything that can be inferred from the execution

sequence and that is able to deviate from the protocol if no other participant detects it.

Adversarial participants may additionally collude.

The privacy definition that we adopt requires that no participant obtains or infers any

information about a crowdworking process beyond what is strictly needed for accomplish-

ing its local crowdworking processes and for the distributed enforcement of constraints.

This requirement is formalized in [1] by defining the set of secrets and by using the well-

known simulatability model often used by secure multi-party computation algorithms.

4.3 Expressing Global Regulations

We express global regulations using constraints and certificates. A constraint demon-

strates a limit on the actions that can be performed by the participants of the crowdwork-

ing environment and a certificate is a piece of information that participants can provide

to third parties to prove that they took part in a given crowdworking process. In this

Section, we express both constraints and certificates.
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4.3.1 Expressing Constraints

Syntax. We define a constraint c as being essentially (1) a triple (w, p, r) that associates

a worker w, a platform p, and a requester r, and (2) a threshold θ (an integer) that defines

the upper bound of c7. Intuitively, a constraint ((w, p, r), θ) states that there must not be

more than θ actions between the worker w, the platform p, and the requester r (see below

for the detailed semantics). We also allow two wildcards to be written in any position of

a triple: ∗ and ∀. First, the ∗ wildcard allows to ignore one or more elements of a triple8.

For example (∗, p, r) means that the constraint applies to the couple (p, r). A triple may

contain up to three ∗ wildcards. An element of a triple that is not a ∗ wildcard is called

a specified participant of the constraint. Second, the ∀ wildcard factorizes the writing of

triples because it allows to express a constraint that must hold for all participants in the

same group of participants9. For example, (∀, p, r) represents the following set of triples:

{(w, p, r)}, ∀w ∈ W . We denote C the complete set of constraints.

Semantics. We give now a precise definition of the semantics of our constraints by

illustrating how they translate to SQL constraints. Let assume that there exists a table

of actions A that records all actions performed between any triple of worker, platform,

requester. The attributes of A are WORKER, PLATFORM, REQUESTER. For simplicity, we

consider a constraint c without any wildcard, i.e., c ← ((w, p, r), θ). The semantics of c

is the same as the following SQL query :

ALTER TABLE A ADD CONSTRAINT c CHECK (

NOT EXISTS (

SELECT * FROM A

WHERE WORKER=w AND PLATFORM=p AND REQUESTER=r
7Extending constraints with, e.g., labels for defining categories of actions (e.g., working time) or

validity periods (e.g., "one week", "one month"), is straightforward.
8Intuitively, the ∗ wildcard means "whatever".
9Intuitively, the ∀ wildcard means "for each".
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GROUP BY WORKER, PLATFORM, REQUESTER

HAVING COUNT(*) ≥ θ

) );

The presence of a ∗ wildcard in the triple simply leads to removing the corresponding

attributes in the WHERE and GROUP BY clauses. The presence of a ∀ wildcard leads to

expanding it to the set containing all the elements that it represents (e.g., all workers

if the ∀ wildcard is at the first position in the triple) and to generate the cartesian

product between the resulting set and the elements at the two other positions of the

triple (that may be ∀ wildcards as well). Finally, the semantics of a set of constraints is

the conjunction of the constraints contained in the set.

Example. the weekly FLSA limit on the total work hours per worker can easily be

expressed as cFLSA ← ((∀, ∗, ∗), 40).

4.3.2 Expressing Requests for Certificates

Syntax and Semantics. Certificates allow a participant called prover (e.g., worker) to

prove to an external entity called verifier (e.g., social security agency) that a minimal

number of hours have been spent on crowdworking platforms (e.g., for applying to insur-

ance coverage). Requests for certificates (e.g., from social security agencies) are expressed

using the same syntax as the constraints with the following two differences. First, the θ

threshold does not represent an upper bound on actions that cannot be exceeded, but a

lower bound on actions that have to be proved.

And second, there must always be at least one specified participant in a request

for certificates, i.e., typically the prover. This syntax allows verifiers to follow minimal

disclosure principles by requesting from the prover exactly the information needed about

the crowdworking processes performed. There is no need to request the identities of the

61



SEPAR: On Verifiability of Permissioned Blockchains Chapter 4

participants with whom the prover collaborated. Additionally, it is trivial to connect

multiple requests for certificates through conjunctions and disjunctions if needed.

Examples. A social security institution can request each worker w applying for insurance

coverage to prove that she worked in total more than 5 hours: r1 ← ((w, ∗, ∗), 5) is

both necessary and sufficient. Similarly, the request r2 ← ((∗, p, ∗), 1000) allows a tax

institution to ask for each platform p applying for a tax refund to prove that the total

work hours of all its workers is at least 1000 hours.

4.4 Enforcing Global Regulations

In this section, we develop our conception of constraints and certificates, how they

are built, and how to use them. The correctness and the privacy guarantees of our

construction is proved in [1].

4.4.1 Implementing a Token-Based System

In this section, we show how constraints and certificates, which are expressed in

Section 4.3, can be enforced and produced respectively. Inspired by e-cash systems, we

enforce constraints and produce certificates by managing two budgets per participant

while preserving both the privacy of participants and the correctness of budgets. Our

proposal makes use of a centralized authority, called the registration authority (RA for

short). RA registers the participants to the crowdworking environment, sends them the

required cryptographic material, receives the set of constraints, and manages the budgets.

The required cryptographic material includes a pair of public/private asymetric keys

(e.g., RSA) and a pair of public/private asymmetric group keys (e.g., [68]) for which the

registration authority is the group manager, while the set of constraints may be expressed

by the regulators through a dedicated interface. A group signature scheme is a signature
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scheme for groups that respects three main properties, as defined first in [70]: (1) only

members of the group can sign messages, (2) the receiver of the signature can verify that

it is a valid signature of that group, but cannot discover which member of the group made

it, and (3) in case of dispute later on, the signature can be "opened" (with or without

the help of the group members) to reveal the identity of the signer. A common way to

enforce the third property is to rely on a group manager, that can add new members

to the group, or revoke the anonymity of a signature. Instances of such schemes are

proposed in [70], but also in [68, 71]. In this chapter, we use the protocol proposed

in [68], and denote GroupSign(keypriv,p, g,m) the group signature of participant p (with

her private key) of group g, for the message m. The notation Sign(keypriv,p,m) may

also be used to refer to a simple asymmetric signature of the message m by user p (e.g.,

RSA). We instantiate the budgets based on labeled, single-use, anonymous tokens and

use a persistent transparent datastore to guarantee their correct and validated spending

by participants. The persistent datastore is implemented using a blockchains. To process

crowdworking tasks, our token-based system is defined by five functions: GENERATE for

initializing the budgets and refilling them, SPEND for spending portions of the budgets,

PROVE for providing certificates to a third party, CHECK for checking whether a given

spending is allowed or not, and ALERT for reporting dubious spending.

The GENERATE Function

The registration authority uses the GENERATE function to initialize the budgets, i.e.,

constraint and certificate tokens of all participants (i.e., workers, platforms, requesters)

and refill them periodically10 according to the set of constraints C to enforce.

Constraint tokens. For each constraint c ← ((w, p, r), θ), the registration authority
10The refreshment rates of budgets is easily computed from the validity periods of constraints (see

Section 4.3).
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generates θ tokens and sends a copy of each token to each specified participant of c. A

token consists of a public and a private component. The public component is a pair made

of a number used only once (referred to as a nonce below) generated by the registration

authority and a signature of the nonce produced by the registration authority11. The

public component will be used later (upon completion of the corresponding task) by

other platforms to check the validity of tokens. The private component is an index

allowing the participants involved in a crowdworking process to select the correct set of

tokens given the other specified participants involved in the process. We implement this

private component as a list containing the public keys of the specified participants (in the

corresponding constraint)12. Let tk† be a constraint token, tk†pub be its public component,

tk†priv be its private component, N be a nonce, and pubs the list of public keys. The

constraint token is thus the couple (tk†pub, tk
†
priv) where tk

†
pub = (N,Sign(keypriv,RA, (N)))

and tk†priv = pubs.

Certificate Tokens. Certificate tokens are generated initially by the registration au-

thority for all participants. For each crowdworking process, a single certificate token is

linked to a fully specified triplet of participants (w, p, r). The number of certificate tokens

produced is decided initially, but their quantity is not as easy to decide as for constraint

tokens since it is not capped by a θ threshold. For simplicity, we assume that there is

at least one constraint in the system, and the smallest threshold for all constraints is

θmin. Then, θmin is a sufficient upper bound of the number of crowdworking processes

in which any given triplet of participants is involved. It is therefore enough to produce

θmin×|W|× |P|× |R| certificate tokens. In practice, the number of tokens produced can
11Extending tokens with labels and/or timestamps for supporting the validity periods of constraints

is straightforward.
12The use of a public key generated by the registration authority is important here because (1) it

can be shared among participants without disclosing their identities, i.e., it is a pseudonym, (2) the
corresponding private key can be used by participants for mutual authentication in order to guarantee
the correctness of the index and consequently of the choice of tokens.
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be drastically reduced in a straightforward manner by letting participants declare to RA

the subset of participants they may work with (e.g., selecting a subset of platforms, or

domains of interest).

As stated above, a certificate token always relates to a fully specified triplet (w, p, r)

and to its owner o (i.e., one of the participants in the triplet). Similar to a constraint

token, it consists of a public and a private component. The public component con-

sists of a nonce as well as the signature of the nonce produced by the registration

authority. The private component, on the other hand, is a triplet in which each ele-

ment certifies (i.e., signs) the association between the owner o and another specified

participant. More formally, let tk∗ be a certificate token, tk∗pub be its public part,

tk∗priv be its private part, N be a nonce, o be the identity of the participant owner

of the token, and (w, p, r) be the related triplet. The certificate token is thus the pair

(tk∗pub, tk∗priv) where tk∗pub = (N,Sign(keypriv,RA, (N))) and tk∗priv = (Sign(keypriv,RA,

(N, o, w)), Sign(keypriv,RA, (N, o, p)), Sign(keypriv,RA, (N, o, r))).

The SPEND Function

Requesters create and send their tasks to a platform and the platform submits the

tasks in either its own datastore (for local tasks) or all involved platforms (for cross-

platform tasks). Once the task is published, the workers can indicate their intent to

perform the task by sending a contribution intent to their platforms. If a contribution

is still needed for the task, the SPEND function is performed as follow. First, for a given

constraint c ∈ C, the platform requests the public component of a constraint token

corresponding to c from the initiator (one of the specified participants in constraint

c). For certificates, the platform is the initiator. The platform includes the task, an

identifier for the contribution (e.g., a nonce generated by the platform), and a signature

of the identifier concatenated to the task in its request message. Therefore, workers and
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requesters will be able to prove that they were asked for tokens, even if the platform

fails. The initiator then chooses a token to spend and sends it to the platform. Once

the platform receives the required token, it sends the public component of the constraint

token to all the specified participants. For certificates, the platform sends the public part

of the certificate tokens to all participants of the process. The platform also requires them

to send back two signatures: (1) the group signature of the token (which will be later

verified by all platforms, together with the token, when it is shared with all platforms),

and (2) the group signature of the pair consisting of a token and a task. Note that the

second signature while it does not reveal the task by itself, can be used by participants

to verify that tokens are used on the task they are intended to be used on. Again, this

demand is associated with the task and the identifier of the contribution, and is signed

by the platform.

Finally, for each task, a transaction consisting of all spent constraint tokens from each

specified participant (all spent certificate tokens from every participant in the case of cer-

tificates) is committed to the datastore of all platforms. For each token, the transaction

includes first, the public component of each token, second, the group signature of the

public component of each token (i.e., for a constraint token tk†: GroupSign(keypriv,part,

Group, tk†pub)), and third, the group signature of the public part of each token to-

gether with the associated task t (i.e., for a constraint token tk†: GroupSign(keypriv,part,

Group, (t, tk†pub))).

The PROVE function

The PROVE function is used by participants to provide certificates to a third party. The

use of certificate tokens is relatively straightforward. During the crowdworking processes,

participants store the private components of certificate tokens which will be used later

to deliver certificates on demand. A participant indeed initiates the PROVE function by
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sending the related subpart(s) of the private component of the corresponding tokens to

the verifier. As an example, for a ((w, ∗, ∗), 5) request for certificates, the worker w sends

the subparts containing w from the private parts of all 5 certificate tokens. The verifier,

first, checks the signature of the registration authority to verify that the participant was

involved in the task, and then, checks the nonce stored in the datastore to ensure that

the token has been shared and validated by all platforms.

The CHECK and ALERT Functions

The CHECK and ALERT functions are used to detect and report either the malicious

behavior of participants resulting in an invalid consumption of tokens or the failure of

a platform. The complete set of verifications protects against (1) the forgery of tokens

(verification of the signatures), (2) the replay of tokens (verification of the absence of

double-spending), (3) the relay of tokens (verification of the absence of usurpation), and

(4) the illegitimate invalidation of tokens (timeout against malicious platform failures).

The first two verifications are straightforward and performed during the global consensus

(when all platforms can access tokens and signatures). We explain the last two verifica-

tions.

Usurpation. When a token is appended to the datastore of all platforms, anyone

(whether involved in the corresponding crowdworking process or not) can CHECK its

nonce. If a participant detects a nonce that was received from the registration authority

but not spent13, she ALERTs the registration authority. The registration authority will

de-anonymize the group-signature of the corresponding participant (e.g., the worker’s

group signature if the alert comes from a worker), and checks whether it has been signed

by the same participant that sent the token. Similarly, if a participant detects that a
13For example, a platform p can collude with a worker w1 to spend a token dedicated to a (w2, p, ∗)

constraints.
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token has not been spent on the right task, she ALERTs the registration authority. After

an alert, the registration authority has to act either against the target participant of the

alert (true positive) or against the participant originating the alert (false positive). The

possible actions (e.g., ban the participant) depend on the context.

Platform failure. If a platform fails after it requested tokens or signatures and does

not recover (e.g., tokens are not appended to the datastore), the tokens revealed to the

platform are lost: they cannot be used in any other crowdworking process because they

are not anonymous anymore (i.e., the platform knows the association between them and

the corresponding participants), and they are not spent either. In that case, workers

or requesters send an ALERT to the registration authority including (1) the identifier of

the platform, (2) the identifier of the task, and (3) all the requests received from the

platform. The registration authority then checks whether the number of requests sent by

the platform for the given task matches the corresponding number of messages committed

in the datastore. If there are more requests, the registration authority sets a timeout

(e.g., to let unfinished transactions end or the platform recover from a failure). When

the timeout is over, the registration authority can act against the platform.

4.4.2 Task Processing Sequence

In summary, five main phases exist during the processing of a crowdworking task are:

(1) initialization, (2) publication, (3) assertion, (4) verification, and (5) execution.

Initialization. The registration authority provides all parties with their keys and tokens.

Publication. Requesters create and send their tasks to platforms. If a requester wants

to publish its task on more that one platform (i.e., a cross-platform task), the involved

platforms collaborate with each other to create a common instance of the task. The

involved platforms then publish the tasks on their datastores through submission transac-
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tions and inform their workers in their preferred manner for accessing tasks.

Assertion. After a worker has retrieved a task, the worker sends a contribution intent

message to the platform without revealing the actual contribution. The platform then

updates the number of required contributions for the task and publishes the contribu-

tion intent in its datastore through a claim transaction. For cross-platform tasks, the

platform informs other involved platforms about the received contribution intent, so that

all involved platforms agree with the number (and order) of the received contribution

intents (i.e., claim transactions). If the desired number of contribution for the task has

been achieved, the process is aborted. Note that while the requester does not choose

the workers, it is possible to enforce a selection with a priori criteria, passed through

the platform. Another straight-forward enhancement would be to add a communication

step, by forwarding the contribution intent, together with the worker’s identity to the re-

quester, and letting her approve of it or not. This communication, however, requires the

disclosure of the worker’s identity to requesters even before a contribution is accepted.

Verification. Once the contribution intent has been accepted by the platform(s), the

platform asks the corresponding requester and worker to send the required tokens and

signatures, through the SPEND function, developed in Section 4.4.1. Upon receiving all

tokens and signatures, the platform shares them with all platforms and the tokens and

their signatures are published to the datastores through verification transactions. From

this point, anyone can check the validity of requirements with the CHECK function (and

ALERT if required), as developed in Section 4.4.1.

Execution. Once all parties have checked the validity of the task, its tokens and group

signatures, the actual contribution can be given to the requester and reward to the worker

through the platform.

A sequence chart of this protocol is provided in Figure 4.2. The privacy of SEPAR

against covert adversaries is shown in [1].
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Figure 4.2: Sequence chart of SEPAR
(references to specified participants include all participants for certificate tokens)

4.5 Coping with Distribution

SEPAR is a multi-platform crowdworking system where multiple globally distributed

platforms collaborate with each other to process crowdworking tasks. To realize such

distributed collaborations and due to the unique features of permissioned blockchains

such as transparency and provenance, which are needed by crowdworking applications,

SEPAR is deployed on a permissioned blockchain to implement the persistent datastore.

In this section, we first present the distributed blockchain ledger of SEPAR and then,

show how SEPAR establishes consensus on the order of transactions within and across

different platforms.

4.5.1 Blockchain Ledger

The blockchain ledger in SEPAR includes all submission, claim, and verification trans-

actions of all internal as well as cross-platform tasks. To ensure data consistency, an

ordering among transactions in which a platform is involved is needed. The total or-
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Figure 4.3: (a): A blockchain ledger, (b)-(e): Different views of the blockchain

der of transactions in the blockchain ledger is captured by chaining the transactions

(blocks) together, i.e. each transaction block includes a sequence number or the cryp-

tographic hash of the previous transaction block. Since SEPAR supports both internal

and cross-platform tasks and more than one platform are involved in each cross-platform

transaction, similar to CAPER, the ledger is formed as a directed acyclic graph (DAG)

where the nodes of the graph are transaction blocks (each block includes a single trans-

action) and edges enforce the order among transaction blocks. In addition to submission,

claim, and verification transactions, a unique initialization transaction (block), called the

genesis transaction is also included in the ledger.

Fig. 4.3(a) shows a blockchain ledger created in the SEPAR model for a blockchain

infrastructure consisting of four platforms p1, p2, p3, and p4. In this figure, λ is the genesis

block of the blockchain, ti’s are submission transactions, ticj is the j-th claim transaction
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of task ti, and tiv is the verification transaction of task ti. In Fig. 4.3(a), t10, t20, t30,

and t40 are internal submission transactions of different platforms. In SEPAR, as can be

seen, the internal transactions of different platforms can be appended to the ledger in

parallel. t10c1, t10c2, ..., and t40c2 are the corresponding claim transactions. As shown,

t10 requires 3 contributions (thus 3 claim transactions) whereas each of t20, t30, and t40

needs two contributions. t10v, t20v, t30v, and t40v are also the verification transactions.

t11,21 is a cross-platform submission among platforms p1 and p2. Similarly, t31,41 is a cross-

platform submission among platforms p3 and p4. Here, t11,21 needs a single contribution

and t31,41 requires two contributions. Note that the claim transactions of a cross-platform

task might be initiated by different platforms and as mentioned earlier, the order of these

claim transactions is important (to recognize the n first claims). Finally, t22,32,42 is a cross-

platform task among platforms p2, p3, and p4 that is processed in parallel to the internal

task t12 of platform p1.

The introduced blockchain ledger includes all transactions of internal as well as cross-

platform tasks initiated by all platforms. However, due to the data privacy requirement,

each platform must access only a subset of these transactions, i.e., the transactions

in which the platform is involved. One way to achieve data privacy is to encrypt all

transactions using cryptographic techniques and keep an identical blockchain ledger on

every platform. However, the considerable overhead of such techniques results in low

performance [27], and in addition, each platform will store many transactions that are not

relevant to the platform. As a result and for the sake of performance, in SEPAR, similar

to CAPER, the entire blockchain ledger is not maintained by any platform and each

platform only maintains its own view of the blockchain ledger including (1) all submission

and claim transactions of its internal tasks, (2) all submission and claim transactions of the

cross-platform tasks that the platform is involved in them, and (3) verification transactions

of all tasks. Note that verification transactions are replicated on every platform to enable
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all platforms to check the satisfaction of constraints. The blockchain ledger is indeed the

union of all these physical views.

Fig. 4.3(b)-(e) show the views of the blockchain ledger for platforms p1, p2, p3, and

p4 respectively. As can be seen, each platform pi maintains only submission and claim

transactions of all internal tasks as well as cross-platform tasks that pi is involved in

them and verification transactions of all tasks. For example and as shown in Fig. 4.3(b),

platform p1 maintains all transactions of its two internal tasks t10 and t12. These are

either submission transactions, i.e., t10 and t12, or claim transactions, i.e., t10c1, t10c2,

t10c3, t12c1, t12c2, or verification transactions, i.e., t10v, t12v. Platform p1 also maintains

cross-platform transactions that p1 is involved in, i.e., t11,21, t11,21c1, and t11,21v. Finally,

p1 maintains the verification transactions of all other tasks within the system, i.e. t20v,

t30v, t40v, t31,41v, and t22,32,42v. Note that, since there is no data dependency between the

verification transactions of the tasks that a platform is not involved in and the transactions

of the tasks that a platform is involved in, the verification transactions might be appended

to the ledgers in different orders, e.g., t20v (of platform p2) and t40v (of platform p4) are

appended to the ledger of platforms p1 and p3 in two different orders.

4.5.2 Consensus in SEPAR

In SEPAR, each platform consists of a (disjoint) set of nodes (i.e., replicas) where

the platform replicates its own view of the blockchain ledger on those nodes to achieve

fault tolerance where depending on the failure model of nodes, asynchronous crash or

Byzantine fault-tolerant protocols can be used. Figure 4.4 shows the crowdworking in-

frastructure of Figure 4.4 where each platform consists of 4 replicas (assuming Byzantine

failure model and f = 1) and replicas use a blockchain to store data.

Completion of a crowdworking task, as discussed earlier, requires a single submission,
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Figure 4.4: SEPAR infrastructure

one or more claim, and a verification transaction. For an internal task of a platform,

submission and claim transactions are replicated only on the nodes of the platform, hence,

local consensus among nodes of the platform on the order of the transaction is needed. For

a cross-platform task, on the other hand, submission and claim transactions are replicated

on every node of all (and only) involved platforms. As a result, cross-platform consensus

among the nodes of all involved platforms is needed. Finally, verification transactions will

be appended to the blockchain of all platforms, therefore, all nodes of every platform

participate in a global consensus protocol. In this section, we show how local, cross-

platform, and global consensus are established in the presence of crash-only or Byzantine

nodes.

Local Consensus

Processing a submission or a claim transaction of an internal task requires local con-

sensus where nodes of a single platform, independent of other platforms, establish agree-

ment on the order of the transaction. The local consensus protocol in SEPAR is pluggable
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and depending on the failure model of nodes, i.e., crash-only or Byzantine, a platform uses

a crash fault-tolerant protocol, e.g., Paxos [20], or a Byzantine fault-tolerant protocol,

e.g., PBFT [54].

The local consensus protocol is initiated by a pre-elected node of the platform, called

the primary. When the primary p receives a valid internal transaction (either submission

or claim), it initiates a local consensus algorithm by multicasting a message, e.g., accept

message in Paxos or pre-prepare message in PBFT, including the requested transaction

to other nodes of the platform. To provide a total order among transactions, the primary

also assigns a sequence number to the request. Instead of a sequence number, the primary

can also include the cryptographic hash of the previous transaction block in the message.

If the transaction is a claim transaction, the primary includes the cryptographic hash of

the corresponding submission transaction and any previously received claim transactions

for that particular task (if any). The nodes of the platform then establish agreement

on a total order of transactions using the utilized consensus protocol and append the

transaction to the blockchain ledger.

Cross-Platform Consensus

Submission and claim transactions of a cross-platform task must be appended to the

blockchains of all involved platforms in the same order to ensure data consistency. To

process such transactions, therefore, consensus among the nodes of all (and only) involved

platforms is needed. SEPAR addresses the lack of trust in the collaboration between plat-

forms, by using an asynchronous Byzantine fault-tolerant protocol to establish consensus

on the order of cross-platform transactions. Since the number of nodes of each platform

depends on the utilized consensus protocol within the platform (i.e. crash fault-tolerant

protocols require 2f+1 whereas Byzantine fault-tolerant protocols require 3f+1 nodes),

the required number of matching replies from each platform, i.e., the quorum size, to en-
75



SEPAR: On Verifiability of Permissioned Blockchains Chapter 4

Algorithm 4 Cross-Platform Consensus
1: init():
2: r := node_id
3: pi := the platform that initiates the consensus
4: π(p) := the primary node of cluster p
5: P := the set of involved platforms
6: π(P ) := the primary nodes of clusters in P

7: upon receiving valid transaction m and (r == π(pi))
8: multicast 〈〈PREPARE,hi,d〉σπ(pi) ,m〉 to π(P )
9: multicast 〈〈PROPOSE, hi, d〉σπ(pi) ,m〉 to all nodes of pi

10: upon receiving valid µ= 〈〈PREPARE,hi,d〉σπ(pi) ,m〉 and r==π(pj)
11: if r is not involved in any uncommitted request m′ where m and m′ intersect in some other platform pk
12: multicast 〈〈PROPOSE, hj , d, r〉σπ(pj) , µ〉 to all nodes of pj
13: multicast 〈ACCEPT, hi, hj , d, r〉σπ(pj) to P

14: upon receiving valid 〈〈PROPOSE, hi, d〉σπ(pi) ,m〉 and r ∈ pi
15: multicast 〈ACCEPT, hi, d, r〉σr to P

16: upon receiving valid 〈〈PROPOSE, hj , d, r〉σπ(pj) , µ〉 and r ∈ pj
17: multicast 〈ACCEPT, hi, hj , d, r〉σr to P

18: upon receiving valid matching 〈ACCEPT, hi, hj , d, r〉σr from local-majority of every platform pj in P
19: multicast 〈COMMIT, hi, hj , ..., hk, d, r〉σr to P

20: upon receiving valid 〈COMMIT, hi, hj , ..., hk, d, r〉σr from local-majority of every platform in P
21: append the transaction block to the ledger

sure the safety of protocol depends on the failure model of nodes of the platform. We

define local-majority as the required number of matching replies from the nodes of a

platform. For a platform with crash-only nodes, local-majority is f + 1 (from the total

2f + 1 nodes), whereas for a platform with Byzantine nodes, local-majority is 2f + 1

(from the total 3f + 1 nodes).

SEPAR processes cross-platform transactions in four phases: prepare, propose, accept,

and commit. Upon receiving a cross-platform (submission or claim) transaction, the (pre-

elected) primary node of the (recipient) platform initiates the consensus protocol by

multicasting a prepare message to the primary node of all involved platforms. Each

primary node then assigns a sequence number to the request and multicasts a propose

message to every node of its platform. During the accept and commit phases, all nodes of

every involved platform communicate to each other to reach agreement on the order of

the cross-platform transaction.
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Algorithm 4 presents the normal case of cross-platform consensus in SEPAR. Al-

though not explicitly mentioned, every sent and received message is logged by nodes.

As shown in lines 1-6 of the algorithm, pi is the platform that initiates the transaction,

π(p) represents the primary node of platform p, P is the set of involved platforms in the

transaction where π(P ) represents their current primary nodes (one node per platform).

Once the primary π(pi) of the initiator platform pi receives a valid submission or claim

transaction, as presented in lines 7-8, the primary node assigns sequence number hi to the

request and multicasts a signed prepare message 〈〈PREPARE, hi, d〉σπ(pi)
,m〉 to the primary

nodes of all involved platforms where m is the received message (either submission or

claim) and d = D(m) is the digest of m. The sequence number hi represents the correct

order of the transaction block in the initiator platform pi. If the transaction is a claim

transaction, the primary includes the cryptographic hash of the corresponding submission

transaction as well. As shown in line 9, the primary node also multicasts a signed propose

message 〈〈PROPOSE, hi, d〉σπ(pi)
,m〉 to the nodes of its platform where d = D(m) is the

digest of m.

As indicated in lines 10-12, once the primary node of some platform pj receives a

prepare message µ from the primary node of the initiator platform, it first validates the

message. If node r is currently waiting for a commit message of some cross-platform

transaction m′ where the involved platforms of the two requests m and m′ intersect,

the node does not process the new transaction m before the earlier transaction m′ gets

committed. This ensures that requests are committed in the same order on different

platforms. Otherwise, it assigns sequence number hj to the message and multicasts a

signed propose message 〈〈PROPOSE, hj, d〉σπ(pj) , µ〉 to the nodes of its platform. The primary

node π(pj) also piggybacks the prepare message µ to its propose message to enable the

node to access the request and validate the propose message. The primary node π(pj),
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as presented in line 13, multicasts a signed accept message 〈ACCEPT, hi, hj, d〉σπ(pj) to every

node of all involved platforms.

Upon receiving a propose message Once a node r of an involved platform pj receives a

propose message, as indicated in lines 8-10, it validates the signature and message digest

(if the node belongs to the initiator platform (i = j), it also checks hi to be valid (within

a certain range)) since a malicious primary might multicast a request with an invalid

sequence number. In addition, if the node is currently involved in an uncommitted cross-

platform request m′ where the involved platforms of two requests m and m′ overlap in

some other platform, the node does not process the new request m before the earlier

request m′ is processed. This is needed to ensure requests are committed in the same

order on different platforms. The node then multicasts a signed accept message including

the corresponding sequence number hj (that represents the order of m in platform pj),

and the digest d = D(m) to every node of all involved platforms.

As presented in lines 18-19, each node waits for valid matching accept messages from

a local majority (i.e., either f + 1 or 2f + 1 depending on the failure model) of every

involved platform with hi and d that matches the propose message which was sent by

primary π(pi). We define the predicate accepted-localpj(m,hi, hj, r) to be true if and only

if node r has received the request m, a propose for m with sequence number hi from the

initiator platform pi and accept messages from a local majority of an involved platform pj

that match the propose message. The predicate accepted(m,h, r) where h = [hi, hj, ..., hk]

is then defined to be true on node r if and only if accepted-localpj is true for every involved

platform pj in cross-platform request m. The order of sequence numbers in the predicate

is an ascending order determined by their platform ids. The propose and accept phases

of the algorithm basically guarantee that non-faulty nodes agree on a total order for the

transactions. When accepted(m,h, v, r) becomes true, node r multicasts a signed commit

message 〈COMMIT, h, d, r〉σr to all nodes of every involved platforms.
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Figure 4.5: Cross-platform transactions with (a) crash-only and (b) Byzantine nodes

Finally, as shown in lines 20-21, node r waits for valid matching commit messages from

a local majority of every involved platform that matches its commit message. The predic-

ate committed-localpj(m,h, r) is defined to be true on node r if and only if accepted(m,h, r)

is true and node r has accepted valid matching commit messages from a local majority of

platform pj that match the propose message for cross-platform transaction m. The pre-

dicate committed(m,h, v, r) is then defined to be true on node r if and only if committed-

localpj is true for every involved platform pj in cross-platform transaction m. The com-

mitted predicate indeed shows that at least f + 1 nodes of each involved platform have

multicast valid commit messages. When the committed predicate becomes true, the node

considers the transaction as committed. If all transactions with lower sequence numbers

than hj have already been committed, the node appends a transaction block including

the transaction as well as the corresponding commit message to its copy of the ledger.

Figure 4.5 shows the normal case operation for SEPAR to execute two concurrent

cross-platform transactions in the presence of (a) crash-only and (b) Byzantine nodes

where each transaction accesses two disjoint platforms. The network consists of four

platforms where each platform includes either three or four nodes (f = 1).

In addition to the normal case operation, SEPAR has to deal with two other scenarios.

First, when the primary node fails. Second, when nodes have not received a quorum of

matching accept messages from the local-majority of every involved platform due to con-
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Algorithm 5 Global Consensus
1: init():
2: r := node_id
3: pi := the platform that initiates the consensus
4: π(p) := the primary node of cluster p

5: upon receiving valid transaction m and (r == π(pi))
6: multicast 〈〈PREPARE,hi,d〉σπ(pi) ,m〉 to the primary node of every cluster
7: multicast 〈〈PROPOSE, hi, d〉σπ(pi) ,m〉 to all nodes of pi

8: upon receiving valid µ= 〈〈PREPARE,hi,d〉σπ(pi) ,m〉 and r==π(pj)
9: if r is not involved in any uncommitted request m′ where m and m′ intersect in some other platform pk
10: multicast 〈〈PROPOSE, hj , d, r〉σπ(pj) , µ〉 to all nodes of pj
11: multicast 〈ACCEPT, hi, hj , d, r〉σπ(pj) to all nodes

12: upon receiving valid 〈〈PROPOSE, hi, d〉σπ(pi) ,m〉 and r ∈ pi
13: multicast 〈ACCEPT, hi, d, r〉σr to all nodes

14: upon receiving valid 〈〈PROPOSE, hj , d, r〉σπ(pj) , µ〉 and r ∈ pj
15: multicast 〈ACCEPT, hi, hj , d, r〉σr to all nodes

16: upon receiving valid matching 〈ACCEPT, hi, hj , d, r〉σr from local-majority of two-thirds of platforms
17: multicast 〈COMMIT, hi, hj , ..., hk, d, r〉σr to all nodes

18: upon receiving valid 〈COMMIT, hi, hj , ..., hk, d, r〉σr from local-majority of two-thirds of platforms
19: append the transaction block to the ledger

flicting accept messages. Indeed, the primary nodes of different platforms might multicast

their propose messages in parallel, hence, different overlapping platforms might receive

the messages in different order. Furthermore, nodes might assign inconsistent sequence

numbers since they have not necessarily received the latest propose message from the

primary of their own platform. We use the similar techniques as SharPer to address

these two situations (will be explained in Sections 6.3 and 6.4).

Global Consensus

The verification transactions include group signatures and all tokens that are consumed

by different participants to perform a particular task. In SEPAR and in order to enable

all platforms to check constraints, verification transactions are appended to the block-

chains of all platforms. To do so, a Byzantine fault-tolerant protocol is run among all

nodes of every platform where the protocol needs agreement from the local majority of the

nodes of two-thirds of the platforms. The local majority, similar to cross-platform con-
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sensus, is defined based on the utilized consensus protocol within each platform. However,

there are two main differences between cross-platform consensus and global consensus.

First, in cross-platform consensus only the involved platforms participate, whereas, in

global consensus, every platform verifies transactions by checking the group signatures

and consumed tokens. Second, cross-platform consensus requires agreement from every

platform, whereas, in global consensus, agreement from only two-thirds of platforms is

needed. In fact, in cross-platform consensus, there might be some dependency between

cross-platform transactions and internal ones, thus, to ensure data consistency, every

involved platform must agree on the order of the cross-platform transaction. However,

in global consensus, the goal is to verify the correctness of the transaction and as soon

as two-thirds of platforms verify that (assuming at most one-third of platforms might

behave maliciously), the transaction can be appended to the blockchain ledger.

Algorithm 5 shows the normal case of global consensus in SEPAR where a Byzantine

protocol is run among all nodes of every platform (in contrast to cross-platform consensus

where only the involved platforms participate). The protocol, similar to cross-platform

consensus, process a transaction in four phases of prepare (lines 5-6), propose (lines 7-10),

accept (lines 11-15), and commit (lines 16-19), however, each node waits for matching

accept and commit messages from the local majority of only two-thirds of the platforms

(as shown in lines 16 and 18).

Figure 4.6 presents the normal case operation of global consensus in SEPAR. Here

all platforms include crash-only nodes where f = 1 and the network consists of four

platforms.

Similar to cross-consensus, global consensus also addresses primary failure and con-

flicting transactions in a similar way as SharPer (the details will be explained in Sec-

tions 6.3 and 6.4).

81



SEPAR: On Verifiability of Permissioned Blockchains Chapter 4

Figure 4.6: Global consensus in SEPAR

Correctness Arguments

A consensus protocol, as mentioned before, has to satisfy four main properties [52]: (1)

agreement: every correct node must agree on the same value (Lemma 4.5.1), (2) Validity

(integrity): if a correct node commits a value, then the value must have been proposed by

some correct node (Lemma 4.5.2), (3) Consistency (total order): all correct nodes commit

the same value in the same order (Lemma 4.5.3), and (4) termination: eventually every

node commits some value (Lemma 4.5.4). The first three properties are known as safety

and the termination property is known as liveness. In an asynchronous system, where

nodes can fail, as shown by Fischer et al. [53], consensus has no solution that is both safe

and live. Therefore, SEPAR guarantees safety in an asynchronous network, however,

similar to most fault-tolerant protocols, deals with termination (liveness) only during

periods of synchrony using timers.

Lemma 4.5.1 (Agreement) If node r commits request m with sequence number h, no

other correct node commits request m′ (m 6= m′) with the same sequence number h.

Proof: The propose and accept phases of both cross-platform and global consensus

protocols guarantee that correct nodes agree on a total order of requests. Indeed, if

the accepted(m,h, r) predicate where h = [hi, hj, ..., hk] is true, then accepted(m′, h, q)
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is false for any non-faulty node q (including r = q) and any m′ such that m 6= m′.

This is true because (m,h, r) implies that accepted-localpj(m,hi, hj, r) is true for each

involved platform pj and a local majority (f + 1 crash-only or 2f + 1 Byzantine node) of

platform pj have sent accept (or propose) messages for requestm with sequence number hj.

As a result, for accepted(m′, h, q) to be true, at least one non-faulty nodes needs to have

sent two conflicting accept messages with the same sequence number but different message

digest. This condition guarantees that first, a malicious primary cannot violate the safety

and second, at most one of the concurrent conflicting transactions, i.e., transactions that

overlap in at least one platform, can collect the required number of messages from each

overlapping platform.

Lemma 4.5.2 (Validity) If a correct node r commits m, then m must have been pro-

posed by some correct node π.

Proof: In the presence of crash-only nodes, validity is ensured since crash-only nodes

do not send fictitious messages. In the presence of Byzantine nodes, however, validity is

guaranteed mainly based on standard cryptographic assumptions about collision-resistant

hashes, encryption, and signatures which the adversary cannot subvert them. Since the

request as well as all messages are signed and either the request or its digest is included

in each message (to prevent changes and alterations to any part of the message), and in

each step 2f + 1 matching messages (from each Byzantine platform) are required, if a

request is committed, the same request must have been proposed earlier.

Lemma 4.5.3 (Consistency) Let Pµ denote the set of involved platforms for a request

µ. For any two committed requests m and m′ and any two nodes r1 and r2 such that

r1 ∈ pi, r2 ∈ pj, and {pi, pj} ∈ Pm ∩ Pm′ , if m is committed before m′ in r1, then m is

committed before m′ in r2.
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Proof: once a node r1 of some platform pi receives a propose message for some trans-

action m, in both cross-platform and global consensuses, if the node is involved in some

other uncommitted transaction m′ where m and m′ overlap, node r1 does not send an

accept message for transactionm beforem′ gets committed. In this way, since committing

request m requires accept messages from a local majority of every (involved) platform,

m cannot be committed until m′ is committed. As a result the order of committing

messages is the same in all involved platforms.

It should be noted that in such a case we might face a deadlock where different plat-

forms might need to re-initiate their transactions after some predefined time. To prevent

any further deadlock, SEPAR defines different waiting times for different platforms.

Lemma 4.5.4 (Termination) A request m issued by a correct client eventually com-

pletes.

Proof: SEPAR deals with termination (liveness) only during periods of synchrony

using timers. To do so, three scenarios need to be addressed. If the primary is non-

faulty and accept messages are non-conflicting, following the normal case operation of

the protocol, request m completes. If the primary is non-faulty, but accept messages are

conflicting, the request will be re-initiated. Finally, SEPAR includes a routine to handle

primary failures. SEPAR, as explained before, Handles conflicting messages and primary

failures in a similar way as SharPer [2] (will be explained in Sections 6.3 and 6.4).

4.6 Experimental Evaluations

In this section, we conduct several experiments to evaluate SEPAR. We have imple-

mented a blockchain-based multi-platform crowdworking system. For the purpose of this

evaluation, and as explained earlier, we do not focus on the description of tasks and
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Figure 4.7: Token generation performance

contributions (both are modeled as arbitrary bitstrings). In addition, certificate tokens,

as explained earlier, are very similar to ((w, p, r), θ) tokens except for the private part

that has no significant impact on the performance and the number of interaction phases

which is even less than constraint tokens. Therefore, we only focus on constraint tokens

in the experiments. To implement group signatures, we use the protocol proposed in [68].

The experiments were conducted on the Amazon EC2 platform. Each VM is c4.2xlarge

instance with 8 vCPUs and 15GB RAM, Intel Xeon E5-2666 v3 processor clocked at

3.50 GHz. When reporting throughput measurements, we use an increasing number of

tasks submitted by requesters running on a single VM, until the end-to-end throughput

is saturated, and state the throughput and latency just below saturation.

4.6.1 Token Generation

In the first set of experiments, we measure the performance of token generation in

SEPAR for different types of constraints. We consider constraints with a single specified

participant (e.g., ((w, ∗, ∗), θ)), two specified participants (e.g., ((∗, p, r), θ)), and three

specified participants (e.g., ((w, p, r), θ)). As shown in Figure 4.7(a), SEPAR is able to

generate tokens in linear time. SEPAR generates each token in 0.7ms, hence, generating

1 million tokens in 12 minutes. This is an acceptable amount of time since token

generation is executed periodically, e.g., every week or every month. Note that since
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Figure 4.8: Performance with different percentage of cross-platform tasks

tokens of different constraints can be generated in parallel, SEPAR can easily parallelize

the token generation routine in order to improve the throughput. As can be seen in

Figure 4.7(b), the type of constraints, i.e., the number of specified participants, also

does not affect the performance and the token generation throughput and latency is

constant in terms of the number of participant. However, it should be noted that a more

complicated constraint, i.e., a constraint with more specified participants, requires more

tokens to be generated.

4.6.2 Performance with different Percentage of Cross-Platform

Tasks

In the second set of experiments, we measure the performance of SEPAR for workloads

with different percentages of cross-platform tasks. We consider four different workloads

with (1) no cross-platform tasks, (2) 20% cross-platform tasks, (3) 80% cross-platform

tasks, and (4) 100% cross-platform tasks. We also assume that two (randomly chosen)

platforms are involved in each cross-platform tasks and completion of each task requires a

contribution coming from a randomly chosen worker. The system includes four platforms

and each task has to satisfy two randomly chosen constraints. We consider two different

networks with crash-only and Byzantine nodes. When all nodes follow crash-only nodes,
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Figure 4.9: Performance with different types of constraints

as presented in Figure 4.8(a), SEPAR is able to process 8600 tasks with 400 ms latency

before the end-to-end throughput is saturated (the penultimate point), if all tasks are

local. Note that even when all tasks are local, the verification transaction of each task still

needs global consensus among all platforms. Increasing the percentage of cross-platform

tasks to 20%, reduces the overall throughput to 5800 (67%) with 400 ms latency since

processing cross-platform tasks requires cross-platform consensus. By increasing the

percentage of cross-platform tasks to 80% and then 100%, the throughput of SEPAR will

reduce to 1900 and 700 with the same (400 ms) latency. This is expected because when

most tasks are cross-platform ones, more nodes are involved in processing a task and more

messages are exchanged. In addition, the possibility of parallel processing of tasks will

be significantly reduced. In the presence of Byzantine nodes, as shown in Figure 4.8(b),

SEPAR demonstrates the similar behavior as the previous case (crash-only nodes). When

all tasks are local, SEPAR processes 7100 tasks with 450 ms latency. Increasing the

percentage of cross-platform tasks to 20% and 80% will reduce the throughput to 4900

and 1700 tasks with the same (450 ms) latency respectively. Finally, when all tasks are

cross-platform, SEPAR is able to process 700 tasks with 450 ms latency.
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4.6.3 Performance with different Types of Constraints

In the next set of experiments, we measure the performance of SEPAR with different

types of constraints. We consider four different scenarios where each task has to satisfy

(1) no constraints (i.e., basic scenario), (2) a one-specified constraint, (3) a two-specified

constraint, and (4) a three-specified constraint. The system consists of four platforms

and the workload includes 90% intra- and 10% cross-platform tasks (the typical settings

in partitioned databases [60,61]) where two (randomly chosen) platforms are involved in

each cross-platform tasks. As before, completion of each task requires a single contribu-

tion. To measure the overhead of group signatures and tokens, we compare the results

with the basic scenario where there is no constraints in the system, thus, there is no need

to exchange and validate tokens and signatures. When nodes follow the crash failure

model and the system has no constraints, as can be seen in Figure 4.9(a), SEPAR is able

to process 7000 tasks with 390 ms latency before the end-to-end throughput is saturated

(the penultimate point). Adding constraints to the tasks results in more phases of com-

munication between different participants to exchange tokens and signatures, however,

SEPAR is still able to process 6200 tasks (the penultimate point) with 450 ms latency

(only 11% and 15% overhead in terms of the throughput and latency respectively). The

number of participants in each constraint, on the other hand, does not significantly affect

the performance of SEPAR. This is expected, because more participants results in only

increasing the number of (parallel) tokens and signature exchanges and the consensus

protocols and other communication phases are not affected. Similarly, in the presence of

Byzantine nodes and as shown in Figure 4.9(b), SEPAR is able to process 6140 tasks with

409 ms latency with no constraints and 5331 tasks (13% overhead) with 467 ms (14%

overhead) latency with one-specified constraint. As before, the number of participants

does not significantly affect the performance.
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Figure 4.10: Performance with different number of platforms

It should be noted that increasing the number of constraints, SEPAR still demon-

strates similar performance as shown in this experiment (increasing the number of par-

ticipants in each constraints). Indeed, adding more constraints results in adding more

tokens and possibly more participants and signatures, however, it does not affect the

consensus protocols and other communication phases.

4.6.4 Performance with Different Number of Platforms

In the last set of experiments, we measure the scalability of SEPAR in crowdsourcing

systems with different number of platforms. We measure the performance of SEPAR in

networks including 1 to 5 platforms for both crash-only and Byzantine nodes (assum-

ing f = 1 in each platform). Each task has to satisfy on average two randomly chosen

constraints, two (randomly chosen) platforms are involved in each cross-platform tasks,

completion of each task requires a single contribution, and the workloads include 90%

intra- and 10% cross-platform tasks. Note that in the scenario with a single platform,

all tasks are intra-platform. As shown in Figure 4.10(a), in the presence of crash-only

nodes, the performance of the system improves by adding more platforms, e.g., with five

platform, SEPAR processes 6600 tasks with 400 ms latency whereas in a single platform

setting, SEPAR processes 3300 task with the same latency. While adding more plat-

forms improves the performance of SEPAR, the relation between the increased number
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of platforms and the improved throughput is non-linear (the number of platforms has

been increased 5 times while the throughput doubled). This is expected because adding

more platforms while increases the possibility of parallel processing of local tasks, makes

the global consensus algorithm (which is needed for every single task) more expensive. In

the presence of Byzantine nodes, SEPAR demonstrates similar behavior, e.g., processes

5500 tasks with 470 ms latency with 5 platforms.

4.7 Summary

In this chapter, we introduce SEPAR, a multi-platform crowdworking system that

enforces global regulations in a privacy-preserving and transparent manner. SEPAR

consists of two main components. First, a token-based system that enables official in-

stitutions to express legal regulations in simple and unambiguous terms, guarantees the

satisfaction of global constraints by construction, and allows participants to prove to

external entities their involvement in crowdworking tasks, all in a privacy-preserving

manner. Second, a permissioned blockchain that provides transparency using distrib-

uted ledgers shared across multiple platforms and enables collaboration among platforms

through a suite of distributed consensus protocols. To the best of our knowledge, SEPAR

is the first to address the problem of enforcing global regulation over multi-crowdworking

platforms. We prove the privacy requirements of the token-based system as well as the

correctness of the consensus protocols and conduct an extensive experimental evaluation

to measure the performance and scalability of SEPAR.
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Chapter 5

ParBlockchain: On Performance of

Permissioned Blockchains

5.1 Introduction

Large-scale data management systems require high performance in terms of through-

put and latency, e.g., a financial application needs to process tens of thousands of re-

quests every second with very low latency. Large-scale data management applications

might also have workloads with high-contention, i.e., conflicting transactions. Under

these workloads, several transactions simultaneously perform conflicting operations on a

few popular records. These conflicting transactions might belong to a single application

or even a set of applications using a shared datastore. While the sequential execution of

transactions prevents any possible inconsistency, it adversely impacts performance and

scalability.

Existing permissioned blockchains, e.g., Tendermint [33] and Multichain [32], mostly

employ an order-execute paradigm where nodes agree on a total order of the blocks of

transactions using a consensus protocol and then the transactions are executed in the
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same order on all nodes sequentially. Such a paradigm suffers from performance issues

because of the sequential execution of transactions on all nodes. Hyperledger Fabric [27],

on the other hand, presents a new paradigm for permissioned blockchains by switching

the order of the execution and ordering phases. In Hyperledger Fabric, transactions of

different applications are first executed in parallel and then an ordering service consisting

of a set of nodes uses a consensus protocol to establish agreement on a total order of all

transactions. Fabric allows the non-deterministic execution of transactions by switching

the order of the ordering and execution phases, and improves performance by executing

transactions in parallel. However, in the presence of any contention in the workload,

it has to disregard the effects of conflicting transactions which negatively impacts the

performance of the blockchain.

In this chapter, we present OXII: an order-execute paradigm for permissioned block-

chains. OXII is mainly introduced to support distributed applications processing work-

loads with some degree of contention. OXII consists of orderer and agent nodes. Orderers

establish agreement on the order of the transactions of different applications, construct

the blocks of transactions, and generate a dependency graph for the transactions within

a block. A dependency graph, on one hand, gives a partial order based on the conflicts

between transactions, and, on the other hand, enables higher concurrency by allowing the

parallel execution of non-conflicting transactions. A group of agents of each application

called executors are then responsible for executing the transactions of that application.

We then present ParBlockchain, a permissioned blockchain system designed specific-

ally in the OXII paradigm. ParBlockchain processes transactions in the ordering and

execution phases. In the ordering phase, transactions are ordered in a dependency graph

and put in blocks. In the execution phase, the executors of each application execute the

transactions of the corresponding application following the dependency graph. As long as

the partial order of transactions in the dependency graph is preserved, the transactions
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of different applications can be executed in parallel.

A key contribution of this chapter is to show how workloads with conflicting transac-

tions can be handled efficiently by a blockchain system without rolling back (aborting)

the processed transactions or executing all transactions sequentially. This chapter makes

the following contributions:

• OXII, a new paradigm for permissioned blockchains to support distributed applica-

tions that execute concurrently. OXII uses a dependency graph based concurrency

control technique to detect possible conflicts between transactions and to ensure

the valid execution of transactions while still allowing non-conflicting transactions

to be executed in parallel.

• ParBlockchain, a permissioned blockchain system designed specifically in the OXII

paradigm. The experiments show that workloads with any degree of contention

will benefit from ParBlockchain.

The rest of this chapter is organized as follows. Section 5.2 briefly describes current

blockchain paradigms and their limitations. The OXII paradigm is introduced in Sec-

tion 5.3. Section 5.4 presents ParBlockchain, a permissioned blockchain system designed

specifically in the OXII paradigm. Section 5.5 shows the performance evaluation, and

Section 5.6 concludes the chapter.

5.2 Background

Ordering and execution are the two main phases of any fault-tolerant protocol. Fault-

tolerant protocols mainly follow an order-execute paradigm where the network first, orders

transactions and then executes them in the same order on all nodes sequentially.

Permissionless blockchains mainly follow the order-execute paradigm where nodes
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(a) Order-Execute Paradigm
(Permissionless)

(b) Order-Execute Paradigm
(Permissioned)

(c) Execute-Order Paradigm
(Permissioned)

Figure 5.1: Existing Paradigms for Blockchains

validate the transactions, put the transactions into blocks, and try to solve some crypto-

graphic puzzle. The lucky peer that solves the puzzle multicasts the block to all nodes.

When a node receives a block of transactions, it validates the solution to the puzzle and

all transactions in the block. Then, the node executes the transactions within a block

sequentially. Such a paradigm requires all nodes to execute every transaction and all

transactions to be deterministic.

Figure 5.1(a) shows the transaction flow for a permissionless blockchain. When a

peer receives transactions from clients, in step 1, the peer validates the transactions,

puts them into a block, and tries to solve the cryptographic puzzle. If the peer is lucky

(p3 in the figure) and solves the puzzle before other peers, it multicasts the block to all

the peers. All the nodes then validate the block and its transactions (step 3), execute

the transactions sequentially (step 4), and finally, update their respective copies of the

ledger. Note that if multiple peers solve the puzzle at the same time, a fork happens in

the blockchain. However, once a block is added to either of the fork branches, nodes in

the network join the longest chain.

In permissioned blockchains, on the other hand, since the nodes are known and iden-

tified, traditional consensus protocols can be used to order the requests [72]. A permis-

sioned blockchain can follow either order-execute or execute-order paradigm. In order-

94



ParBlockchain: On Performance of Permissioned Blockchains Chapter 5

execute permissioned blockchains, as can be seen in Figure 5.1(b), a set of peers (might

be all of them) validate the transactions, agree on a total order for the transactions, put

them into blocks and multicast them to all the nodes. Each node then validates the

block, executes the transactions using a smart contract, and updates the ledger.

In order-execute permissioned blockchains, similar to order-execute permissionless

blockchains, every smart contract runs on every node. The sequential execution of

transactions on every node, however, reduces the blockchain performance in terms of

throughput and latency.

In contrast to the order-execute paradigm, Hyperledger Fabric [27] presents a new

paradigm for permissioned blockchains by switching the order of execution and ordering.

The execute-order paradigm was first presented in Eve [73] in the context of Byzantine

fault-tolerant SMR. In Eve peers execute transactions concurrently and then verify that

they all reach the same output state, using a consensus protocol. In fact, Eve uses

an Optimistic Concurrency Control (OCC) [74] by assuming low data contention where

conflicts are rare.

Hyperledger Fabric uses a similar strategy; a client sends a request to a subset of

peers, called endorsers (the nodes that have access to the smart contract). Each endorser

executes the request and sends the result back to the client. When the client receives

enough endorsements (specified by some endorsement policy), it assembles a transaction

including all the endorsements and sends it to some specified (ordering) peers to establish

a total order on all transactions. This set of nodes establishes consensus on transactions,

creates blocks, and broadcasts them to every node. Finally, each peer validates a transac-

tion within a received block by checking the endorsement policy and read-write conflicts

and then updates the ledger. Since a validation phase occurs at the end, the paradigm

is called execute-order-validate. Figure 5.1(c) presents the flow of transactions in Fab-

ric. Note that in Fabric the consensus protocol is pluggable and the system can use a
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crash fault-tolerant protocol, e.g., Paxos [20], a Byzantine fault-tolerant protocol, e.g.,

PBFT [54], or any other protocol.

While Fabric improves the performance of blockchains by executing the transactions

in parallel (instead of sequentially as the order-execute paradigm does), it performs poorly

on workloads with high-contention, i.e., many conflicting transactions in a block, due to

its high abort rate. Two transactions conflict if they access the same data and one of

them is a write operation. In such a situation, the order of executing the transactions is

important, indeed, the later transaction in a block has to wait for the earlier transaction

to be executed first. As a result, if two conflicting transactions execute in parallel, the

result is invalid. Although Fabric guarantees correctness by checking the conflicts in the

validation phase (the last phase) and disregarding the effects of invalid transactions, the

performance of the blockchain is significantly reduced by such conflicts.

5.3 The OXII Paradigm

In this section, we introduce OXII, a new order-execute paradigm for permissioned

blockchains. OXII is mainly designed to support distributed applications with high-

contention workloads.

OXII consists of a set of nodes in an asynchronous distributed network where each

node has one of the following roles:

• Clients send operations to be executed by the blockchain.

• Orderers agree on a total order of all transactions.

• Executors validate and execute transactions.

The set of nodes in OXII is denoted by N where O of them are orderers, and E of

them are executors.
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OXII supports distributed applications running concurrently on the blockchain. For

each application a program code including the logic of that application (smart contract)

is installed on a (non-empty) subset of executor peers called the agents of the application.

We use A = {A1, ..., An} to denote the set of applications (ids) and Σ(Ai) to specify the

non-empty set of agents of each application Ai where Σ : A 7→ 2E −∅. Every peer in the

blockchain knows the agents of each application and the set of orderers.

Each pair of peers is connected with point-to-point bi-directional communication

channels. Network links are pairwise authenticated, which guarantees that a Byzantine

node cannot forge a message from a correct node, i.e., if node i receives a message m in

the incoming link from node j, then node j must have sent message m to i beforehand.

5.3.1 Orderers

Checking accesses, ordering the requests, constructing blocks, generating depend-

ency graphs, and multicasting the blocks are the main services of orderers in the OXII

paradigm.

Since multiple applications run on the blockchain and each application might have

its own set of clients, orderers act as trusted entities to restrict the processing of requests

that are sent by unauthorized clients. If a client is not authorized to perform an operation

on the requested application, orderers simply discard that request. Orderers also check

the signature of the requests to ensure their validity.

Orderers use an asynchronous fault-tolerant protocol to establish consensus. OXII,

similar to Fabric [27], uses a pluggable consensus protocol for ordering, thus resulting in

a modular paradigm. Depending on the characteristics of the network and peers OXII

might employ a Byzantine, a crash, or a hybrid fault-tolerant protocol. The number

of orderers is also determined by the utilized protocol and the maximum number of
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Figure 5.2: The Components of OXII Paradigm

simultaneous failures in the network. Furthermore, orderers do not have access to any

smart contract or the application state, nor do they participate in the execution of

transactions. This makes orderers independent of the other peers and adaptable to a

changing environment.

Orderers batch multiple transactions into blocks. Batching transactions into blocks

improves the performance of the blockchain by making data transfers more efficient es-

pecially in a geo-distributed setting. It also amortizes the cost of cryptography. The

batching process is deterministic and therefore produces the same blocks at all orderers.

Figure 5.2 shows the components of the OXII paradigm. As can be seen, clients send

requests (transactions) to be executed by different applications. Here, transactions T1

and T3 are for some application A1 and T2, T4, and T5 are for another application A2.

The orderers, i.e., o1, o2, o3, and o4, then order the transactions and put them into a

block. In the figure, orderers use PBFT [54] to order the requests. The resulting block

contains five transactions which are ordered as [T1, T5, T4, T3, T2].

Next, orderers generate a "dependency graph" for the transactions within a block.

In order to generate dependency graphs a priori knowledge of transactions’ read- and

write-set is needed. Each transaction consists of a sequence of reads and writes, each
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accessing a single record. Here we assume that the read-set and write-set are pre-declared

or can be obtained from the transactions via a static analysis, e.g., all records involved

in a transaction are accessed by their primary keys. Note that even if that assumption

does not hold, the system can employ other techniques like speculative execution [75] to

obtain the read-set and write-set of each transaction.

Given a transaction T , ω(T ) and ρ(T ) are used to represent the set of records written

and read, respectively. Each transaction T is also associated with a timestamp ts(T )

where for each two transactions Ti and Tj within a block such that Ti appears before Tj,

ts(Ti) < ts(Tj).

We define "ordering dependencies" to show possible conflicts between two transactions

from the same or different applications. Two transactions conflict if they access the same

data and one of them is a write operation.

Definition: Given two transactions Ti and Tj. An ordering dependency Ti � Tj exists

if and only if ts(j) > ts(i) and one of the following hold:

• ρ(Ti) ∩ ω(Tj) 6= ∅

• ω(Ti) ∩ ρ(Tj) 6= ∅

• ω(Ti) ∩ ω(Tj) 6= ∅

Definition: Given a block of transactions, the dependency graph of the block is a

directed graph G = (T , E) where T is the set of transactions within the block and

E = {(Ti, Tj) | Ti � Tj}

We use the example in Figure 5.2 to illustrate the dependency graph construction

process. As can be seen the block consists of five transactions which are ordered as

[T1, T5, T4, T3, T2], i.e., ts(T1) < ts(T5) < ts(T4) < ts(T3) < ts(T2). Since T4 reads data

item b which is written by an earlier transaction T1 there is an ordering dependency

T1 � T4, thus (T1, T4) is an edge of the dependency graph. Similarly, T2 writes data item
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d which is also written by T5 (T5 � T2) and T3 writes data item e which is read by T5

(T5 � T3). As a result, edges (T5, T2) and (T5, T3) are also in the graph.

The constructed graph can be used by the executors to manage the execution of trans-

actions. In particular, transactions that are not connected to each other in the depend-

ency graph, e.g., T1 and T2, can be processed concurrently by independent execution

threads.

The dependency graph generator is an independent module in the OXII paradigm.

Therefore, it can also be adapted to a multi-version database system [76]. In a multi-

version database, each write creates a new version of a data item, and reads are directed

to the correct version based on the position of the corresponding transaction in the block

(log). Since writes do not overwrite each other, the system has more flexibility to manage

the order of reads and writes. As a result, for any two transactions Ti and Tj within a

block where Ti appears before Tj, Ti and Tj can concurrently write the same data item

or Ti reads and Tj writes the same data item. However, if Ti wants to write and Tj wants

to read the same data item, they cannot be executed in parallel.

It should be noted that in some dependency graph construction approaches, e.g.,

DGCC [77], transactions are broken down into transaction components, which allows the

system to parallelize the execution at the level of operations. The dependency graph

generator module in OXII can also be designed in a similar manner.

A dependency graph exposes conflicts between transactions to give a partial order of

transactions. Hence, as long as the transactions are executed in an order consistent with

the dependency graph, the results are valid. Indeed, using dependency graphs results

in higher concurrency by enabling the non-conflicting transactions within a block to be

executed in parallel. Such parallelism improves the performance of OXII paradigm in

comparison to the traditional order-execute paradigm where transactions are executed

sequentially.
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When the dependency graph is generated, orderers multicast a message including the

block and its dependency graph to all executors. Depending on the employed consensus

protocol, either the leader or all the orderers multicast the message.

5.3.2 Executors

Executing and validating transactions, updating the ledger and the blockchain state,

and multicasting the blockchain state after executing transactions are the main services

of executor peers. Executors in OXII correspond to the endorsers in Hyperledger [27].

Each executor peer maintains three main components: (1) The blockchain ledger, (2) The

blockchain state, and (3) Some smart contracts.

When a block of transactions is executed and validated, each executor peer appends

the block to its copy of the blockchain ledger. Each executor node is an agent for one or

more applications where for each application the smart contract of that application, i.e.,

a program code that implements the application logic, is installed on the node. When an

executor receives a block from the orderers, it checks the application of the transactions

within the block. If the executor is an agent for any of the transactions, it executes the

transactions on the corresponding smart contract following the dependency graph. In

fact, the executor confirms the order of dependent transactions and executes independent

transactions in parallel. Finally, it multicasts the execution results (updated blockchain

state) to all other peers.

For each transaction within a block where the executor is not an agent of the transac-

tion, the executor waits for matching updates from a specified number of executors, who are

the agents of the transaction, before committing the update. This is needed to prevent

a malicious executor to commit an invalid result and also tolerate the non-deterministic

execution of transactions. The required number of matching results from executors is
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Figure 5.3: The Flow of Transactions in ParBlockchain

decided by the system and known to all executors (similar to endorsement policies in

Hyperledger). We use τ(A) to denote the required number of matching updates for the

transactions of application A.

In Figure 5.2, executor nodes e1 and e2 are the agents of application A1 (with trans-

actions T1 and T3) and executor nodes e3 and e4 are the agents of application A2 (with

transactions T2, T4 and T5).

5.4 ParBlockchain

In this section, we present ParBlockchain, a permissioned blockchain designed spe-

cifically in the OXII paradigm. We first give a summary of ParBlockchain and then

explain the ordering and execution phases in detail.

5.4.1 ParBlockchain Overview

ParBlockchain is a permissioned blockchain designed in the OXII paradigm to execute

distributed applications.
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The normal case operation for ParBlockchain to execute transactions proceeds as fol-

lows. Clients send requests to the orderers and the orderers run a consensus algorithm

among themselves to reach agreement on the order of transactions. Orderers then con-

struct a block of transactions and generate a dependency graph for the transactions

within the block.

Once the dependency graph is generated, the block along with the graph is multic-

ast to all the executor nodes. The executors which are the agents of the applications of

transactions within the block, execute the corresponding transactions and multicast the

results, i.e., updated records in the datastore, to every executor node. Each executor node

in the network waits for the required number of matching results from the executors before

updating the ledger and blockchain state (datastore). The required number of matching

results for each application, which is needed to deal with malicious executors and the

non-deterministic execution of transactions, is determined by the system and might be

different for different applications.

The flow of transactions in ParBlockchain can be seen in Figure 5.3 where p3, p4,

and p5 are the orderer nodes, and p1, p2, and p6 are the executor nodes from which p1

and p2 are the agents for the requests. Upon receiving requests from clients, orderers

order the requests, put them into a block, generate the dependency graph for the block,

and multicast the block along with the graph to all the executor nodes. The agents of

the corresponding application (p1 and p2) execute the transactions and multicast the

updated state of the blockchain to the other executor nodes. Upon receiving the required

number of matching messages for each transaction, each executor commits (or aborts) the

transaction by updating the blockchain state. The block is also appended to the ledger.
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5.4.2 Ordering Phase

The goal of the ordering phase is to establish a total order on all the submitted

transactions. A client c requests an operation op for some application A by sending a

message
〈

REQUEST, op, A, tsc, c
〉
σc

to the orderer p it believes to be the primary (an orderer

node that initiates the consensus algorithm). Here, tsc is the client’s timestamp and the

entire message is signed with signature σc. We use timestamps of clients to totally order

the requests of each client and to ensure exactly-once semantics for the execution of client

requests.

Upon receiving a client request, the primary orderer p checks the signature to ensure

it is valid, makes sure the client is allowed to send requests for application A (access

control), and then initiates a consensus algorithm by multicasting the request to other

orderers. Depending on the utilized consensus protocol, several rounds of communication

occurs between orderers to establish a total order on transactions.

Once the orderers agree on the order of a transaction, they put the transaction in a

block. Batching multiple transactions into blocks improves the throughput of the broad-

cast protocol. Blocks have a pre-defined maximal size, maximal number of transactions,

and maximal time the block production takes since the first transaction of a new block

was received. When any of these three conditions is satisfied, a block is full. Since trans-

actions are received in order, the first two conditions are deterministic. In the third case,

to ensure that the produced blocks by all orderers are the same, the primary sends a

cut-block message in the consensus step of the last request.

When a block is produced, orderers generate a dependency graph for the block as

explained in Section 5.3.1. Generating dependency graphs requires a priori knowledge of

transactions’ read- and write-set. Here, we assume that the requested operations include

the read- and write-set.
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Algorithm 6 Execution of Transactions on an executor e
Input: A block B and its dependency graph G(B)
1: Initiate Set We to be empty transaction x in B e is an agent of x’s application
2: Add x to We We in not empty transaction(node) x in We all Pre(x) are in Ce ∪Xe

3: trigger Execute(x)

When the graph is constructed, each orderer node o multicasts a message
〈

NEWBLOCK,

n, B,G(B),A, o, h
〉
σo

to all executor nodes where n is the sequence number of the block,

B is the block consisting of the request messages, G(B) is the dependency graph of B, A

is the set of applications that have transactions in the block, and h = H(B′) where H(.)

denotes the cryptographic hash function and B′ is the block with sequence number n−1.

5.4.3 Execution Phase

Each request for an application is executed on the specified set of executors, i.e., agents

of that application. Upon receiving a new block message
〈

NEWBLOCK, n, B,G(B),A, o, h
〉
σo

from some orderer o, executor e checks the signature and the hash to be valid and logs

the message. It also checks the set A to see if the block contains any transaction that

needs to be executed by the node, i.e., an application Ai ∈ A such that e ∈ Σ(Ai).

When an executor node receives a specified number of matching new block messages,

e.g., f + 1 messages if the consensus protocol is PBFT, it marks the new block as a valid

block and enters the execution phase. The execution phase consists of three procedures

that are run concurrently: (1) Executing the transaction following the dependency graph,

(2) Multicasting commit messages including the execution results to other executor nodes,

and (3) Updating the blockchain state upon receiving commit messages from a sufficient

number of executor nodes.

If an executor node is not an agent of any transaction within the block, the node

becomes a passive node and only the third procedure is run to update the blockchain state.

However, if a node is an agent for some transaction’s application in the block, it runs
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Algorithm 7 Multicasting the Results
1: Initialize set Xe to be empty
2: cut = false
3: Upon obtaining an execution result (x, r)
4: Add pair (x, r) to Xe

5: Remove x fromWe y where (x, y) is an edge in G(B) y’s application is different from x’s application
6: cut = true
7: break cut = true
8: Multicast

〈
COMMIT, Xe, e

〉
σe

to all executors
9: Clear Xe

all three procedures; executes the corresponding transactions following the dependency

graph, multicasts the results, and also updates the blockchain state.

A transaction can be executed only if all of its "predecessors" in the dependency graph

are committed. We define functions Pre and Suc to present the set of predecessors

and successors of a node in a dependency graph respectively. More formally, Given a

dependency graphG = (T , E), and a node (transaction) x in T , Pre(x) = {y | (y, x) ∈ E}

and Suc(x) = {y | (x, y) ∈ E}.

The execution procedure on a node e is shows in Algorithm 6. An empty set We is

initiated to keep all the transactions that will be executed by executor e, i.e., e is an agent

for the application of those transactions. SetXe stores the executed transactions by e and

Ce keeps the committed transactions. For each transaction x inWe, the procedure checks

the predecessors of x, if x has no predecessor, or all of its predecessors are executed by e

or committed, transaction x is ready to be executed, so an execution thread is triggered.

To multicast the execution results depending on the transactions’ applications three

different situations could happen. If all the transactions within a block belong to the

same application, an agent e executes all of the transactions following the dependency

graph and multicast a commit message
〈

COMMIT, S, e
〉
σe

to all other executor nodes. Here,

S presents the state of the blockchain and consists of a set of pairs (x, r) where x is a

transaction (id) and r is the set of updated records resulting from the execution of x on
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the datastore. Note that if a transaction x is not valid, the executor puts (x,"abort") in

S.

If the transactions within a block are for different applications but the transactions

of each application access a disjoint set of records, the agents still can execute the corres-

ponding transactions independently and multicast a single commit message with all the

results to other executor nodes. In this case, the dependency graph is disconnected and

can be decomposed to different components where the transactions of each component

are for the same application and there is no edge that connects any two components.

However, if there are some dependencies between the transactions of two applications,

the agents of those two applications cannot execute the transactions independently. In

fact, the agents of one application have to wait for the agents of other applications

to execute all their transactions and send the commit message which might result in a

deadlock situation.

Figure 5.4 shows three dependency graphs for a block of seven transactions T1 to T7.

In Figure 5.4(a), all the seven transactions belong to the same application, A1. Therefore,

the agents of application A1 can execute the transactions following the dependency graph

and multicast the results of all transactions together when they all are executed. In

Figure 5.4(b) although the transactions belong to different applications (T2, T3, T5, and

T7 are for application A1 and T1, T4 and T6 are for application A2), there is no dependency

between the transactions of application A1 and the transactions of application A2. As

a result, the agents can still execute independently and multicast the results once the

execution of their transactions is completed. However, in Figure 5.4(c) since there are

some dependencies between the transactions of the two applications, the agents cannot

execute their transactions independently. For example, to execute transaction T2, the

agents of application A2 need the execution results of transaction T5 from the agents of

A1. Similarly, transaction T4 cannot be executed before committing the execution results
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Algorithm 8 Updating the Blockchain State
1: Initialize set Re(x) to be empty
2: Initialize set Ce to be empty
3: Upon Receiving a valid

〈
COMMIT, S, n

〉
σn

message valid (x, r) ∈ S
4: Add (r, n) to Re(x) Matching records in Re(x) ≥ τ(A)
5: Update the blockchain state
6: Add x to Ce

of transaction T6.

To prevent a deadlock situation, one possibility is that agents send a commit message

as soon as the execution of each transaction is completed. While this approach solves

the blocking problem, the number of exchanged commit messages will be large. Indeed,

if a block includes n transactions and each application has on average m agents, there

will be total n ∗m exchanged commit messages for the block.

A more efficient way is to send commit messages when the execution results are

needed by some other agents. Basically, an agent keeps executing the transactions and

collecting the results until the results of an executed transaction is needed by some other

transactions which belong to other applications. At that time, the agent generates a

commit message including the results of all the executed transactions and multicasts it to

all executor nodes. Upon receiving a commit message from an executor, the node validates

the signature and logs the message. Once the node receives the specified number of

matching results for a transaction, the results are reflected in the datastore and the

transaction is marked as committed.

Algorithm 7 presents the multicasting procedure on a node e. An empty set Xe

is initiated to store the results of the executed transactions. When the execution of a

transaction x is completed, the execution result (x, r) is added to Xe and transaction x

is removed from the waiting transactions We.

Then, the procedure checks all the successor nodes of x in the dependency graph. If

any of the successor nodes of x belongs to an application different from the application
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Figure 5.4: Three dependency graphs

of x, the execution result of transaction x might be needed by other agents, thus a

multicasting has to occur. To do so, node e removes all the stored results from Xe and

puts them in a commit message and multicast the commit message to all other executor

nodes.

For example, in Figure 5.4(c), upon executing the transaction T5, since T5 has a

successor node T2 that belongs to another application, the executor node multicasts a

commit message including the execution results of T5 to all other executor nodes. Note

that if T1 is already executed, the executor node puts the execution results of T1 in the

commit message as well. Similarly, when the execution of T6 is completed, the executor

node multicasts a commit message including the execution results of T6 and any other

executed but not yet multicast transactions.

Finally, the updating procedure receives commit messages from other executor nodes

and updates the blockchain state. The updating procedure on a node e is presented

in Algorithm 8. the procedure first initializes an empty set Re(x) for each transaction

x in the block. It also initializes an empty set Ce to collect committed transactions.

When node e receives a commit message
〈

COMMIT, S, n
〉
σn

from some executor n, it checks

the signature to be valid and then checks the set S. Recall that S consists of pairs of

transactions and their execution results. For each pair (x, r), it first checks whether node

n is an agent for the application of transaction x and then a pair of (r, n), i.e., execution
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results and the executor to Re(x). Assuming A is the x’s application, If the number of

the matching tuples in Re(x) is equal to τ(A), i.e., the specified number of messages for

the transaction’s application, the execution results are valid and can be committed. As a

result, the procedure updates the blockchain state (datastore) and adds the transaction

x to the committed transactions Ce.

5.5 Experimental Evaluations

In this section, we conduct several experiments to evaluate different paradigms for

permissioned blockchains. We discussed the two existing paradigms for permissioned

blockchains in Section 5.2: sequential order-execute (OX) where requests are ordered and

then executed sequentially on every node, and execute-order-validate (XOV) introduced

by Hyperledger Fabric [27] where requests are executed by the agents of each application,

ordered by the ordering service, and validated by every peer. We implemented two

permissioned blockchain systems specifically designed in the OX and XOV paradigms as

well as ParBlockchain that is designed in the OXII paradigm. It should be noted that our

implementation of XOV is different from the Hyperledger fabric system. Hyperledger is

a distributed operating system and includes many components which are not the focus of

our evaluations. In fact, the purpose of our experiments is to compare the architectural

aspect of the blockchain systems, thus, all three systems are implemented using the same

programming language (Java). To have a fair comparison, we also used similar libraries

and optimization techniques for all three systems as far as possible.

We implemented a simple accounting application where each client has several ac-

counts. Each account can be seen as a pair of (amount, PK) where PK is the public

key of the owner of the account. Clients can send requests to transfer assets from one or

more of their accounts to other accounts. For example, a simple transaction T initiated
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Figure 5.5: Increasing the block size

by client c might "transfer x units from account 1001 to account 1002". The transaction

is valid if c is the owner of account 1001 and the account balance is at least x. Here the

read-set of transaction T is ρ(T ) = {1001} and its write-set is ω(T ) = {1001, 1002}. A

transaction might read and write several records.

The experiments were conducted on the Amazon EC2 platform. Each VM is Compute

Optimized c4.2xlarge instance with 8 vCPUs and 15GM RAM, Intel Xeon E5-2666 v3

processor clocked at 3.50 GHz. For orderers, similar to Hyperledger [27], we use a typical

Kafka orderer setup with 3 ZooKeeper nodes, 4 Kafka brokers and 3 orderers, all on

distinct VMs. Unless explicitly mentioned differently, there are three applications in

total each with a separate executor (endorser) node.

When reporting throughput measurements, we use an increasing number of clients

running on a single VM, until the end-to-end throughput is saturated, and state the

throughput just below saturation. Throughput numbers are reported as the average

measured during the steady state of an experiment.

5.5.1 Choosing the Block Size

An important parameter that impacts both throughput and latency is the block size.

To evaluate the impact of the block size on performance, in this set of experiments, as-

suming that the transactions have the same size, we increase the number of transactions
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in each block from 10 to 1000 in a no-contention workload. For each block size, the

peak throughput and the corresponding average end-to-end latency is measured. As can

be seen in Figure 5.5, by increasing the number of transactions per block till ∼200, the

throughput of OXII increases, however, any further increasing reduces the throughput

due to the large number of required computations for the dependency graph generation.

Similarly, by increasing the number of transactions per block till ∼200, the delay de-

creases. Afterward, adding more transactions to the dependency graph becomes more

time consuming than multicasting the block. As a result, OXII is able to process more

than 6000 transactions in 78ms with 200 transactions per block. In the OX paradigm,

since nodes execute transactions sequentially, the block creation time is negligible in

comparison to the execution time, thus other than in the first experiment, increasing

the number of transactions per block does not significantly affect the throughput and

latency. In the XOV paradigm, since executors (endorsers) of the three applications can

execute the transactions in parallel, the performance is better than OX (twice as much

as OX in its peak throughput). However, its performance is still much less than OXII,

i.e., the peak throughput of XOV is 30% of the peak throughput of OXII as OXII can

execute many (and not only three) non-conflicting transactions in parallel. As can be

seen, the peak throughput of XOV is obtained in ∼100 transactions per block.

5.5.2 Performance in Workloads with Contention

In the next set of experiments, we measure the performance of all three paradigms for

workloads with different degrees of contention. we consider no-contention, low-contention

(20% conflict), high-contention (80% conflict), and full-contention workloads where the

results are shown in Figure 5.6(a)-(d) respectively. Note that the dependency graph of

each block in the first workload has no edge whereas the dependency graph of each block
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Figure 5.6: Increasing the degree of contention

in the last workload is a chain. In OX and OXII there are 200 transactions per block

and for XOV, we keep changing the block size to find its peak throughput. Contentions

could happen between the transactions of the same application or the transactions of

different applications (if they access shared data). In OX, since nodes execute transac-

tions sequentially, there is no difference between these two types of contention. In XOV

also, since the execution is the first phase, there is no much difference between contention

within an application or across applications and they both result in transaction abort.

In OXII, however, as discussed in Section 5.4.3, for contention across applications, the

agents of different applications communicate to each other during the execution of a block

of transactions, thus the performance is affected. As a result, in this set of experiments,

for each workload, we report the performance of OX, XOV, OXII with conflicting trans-

actions within an application, and OXII with conflicting transactions across applications

(the dashed line).

As mentioned earlier, in the OX paradigm, transactions are executed sequentially.

As a result, the performance of OX remains unchanged in different workloads. XOV

can execute 3 (number of applications) transactions in parallel and since the workload

has no-contention, the execution results are valid. OXII, on the other hand, significantly

benefits from no-contention workloads by executing the transactions in parallel. As shown

in Figure 5.6(a), OXII executes more than 6000 transactions with latency less than 80 ms
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whereas the peak throughput of OX is 900 transactions with more than 500 ms latency.

XOV can also execute around 1800 transactions in 600 ms (70% less throughput and 7.5

times latency in comparison to OXII). Since the workload has no conflicting transaction,

there is no contention across applications.

By increasing the degree of contention (Figure 5.6(b) and Figure 5.6(c)), the through-

put of XOV decreases dramatically, e.g., the peak throughput of XOV in a high-contention

workload is around 25% of its peak throughput in a no-contention workload. This de-

crease is expected because XOV validates and aborts the conflicting transactions at the

very end (last phase). The throughput of OXII is also affected by increasing the degree

of contention, however, it still shows better performance than both OX and XOV, i.e.,

OXII is still able to process 1600 transactions in sub-second latency whereas OX and

XOV process 900 and 350 transactions respectively. Processing the workloads with con-

tention across the applications decreases the performance of OXII due to the increasing

rounds of communication between executors of different applications.

In a full-contention workload, as can be seen in Figure 5.6(d), OXII similar to OX,

executes the transactions sequentially, but, because of the dependency graph generation

overhead, its performance is a bit worse than OX. The performance of the XOV paradigm,

on the other hand, is highly reduced. Since all the transactions within a block conflict, it

can only commit one transaction per block (we reduced the block size of XOV to record

its peak throughput).

In a full-contention workload with contention across applications (dashed line in Fig-

ure 5.6(d)), OXII has high latency and low throughput. Such a workload can be seen as

a chain of translations where consecutive transactions belong to different applications.

As a result, to execute each transaction, a message exchange between a pair of executors

is needed.
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Figure 5.7: Scalability over multiple data centers

5.5.3 Scalability over Multiple Data Centers

In the last set of experiments, we measure the scalability of the blockchain systems

over multiple data centers. To this end, each time we move one group of nodes, i.e.,

clients, orderers, executors, or non-executors, to AWS Asia Pacific (Tokyo) Region data

center, leaving the other nodes in the AWS US West Region data center (the RTT

between these two data centers is 113 ms). We consider a no-contention workload. The

results can be seen in Figure 5.7.

Moving the clients has the most impact on the XOV paradigm because in XOV

clients participate in the first two phases. Indeed, they send the requests to the executors

(endorsers), receive endorsements, and then send the endorsements to the orderer nodes.

Whereas in OX and OXII, clients send the requests and do not participate in other phases

of the protocol. As a result, as can be seen in Figure 5.7(a), the delay of XOV becomes

much larger.

Orderers are the core part of all three blockchains; they receive transactions from

clients, agree on the order of the transactions, put the transactions into blocks, and send

the blocks to every node. As a result, moving them to a far data center, as shown in

Figure 5.7(b), results in a considerable delay. Note that in OX, a subset of nodes are

considered as orderers.

115



ParBlockchain: On Performance of Permissioned Blockchains Chapter 5

In the last two experiments (Figure 5.7(c)-(d)), we move executor (endorser) and non-

exe nodes to the far data center. Since there is no such a separation between nodes in

the OX paradigm, we do not perform these two experiments. Moving executor nodes adds

latency to the two phases of communication in XOV (clients to executors and executors to

clients) and one phase of communication in OXII (orderers to executors). Note that when

the executors execute the messages and receive enough number of matching results from

other executors, the transaction is counted as committed. In addition, no communication

between executors is needed since we consider a no-contention workload. Finally, moving

non-executor nodes has no impact on the performance of OXII, because those nodes

are only informed about the blockchain state. But in XOV, non-executors validate the

blocks.

5.6 Summary

In this chapter, we proposed OXII, an order-execute paradigm for permissioned block-

chain to support distributed applications that execute concurrently. OXII is able to

handle the workload with conflicting transactions without rolling back the processed

transactions or executing transactions sequentially. Conflicts between the transactions of

a single application as well as the transactions of different applications are addressed in

OXII. We also presented ParBlockchain, a high performance permissioned blockchain sys-

tem designed specifically in the OXII paradigm. Our experimental evaluations show that

in workloads with conflicting transactions, ParBlockchain shows a better performance in

comparison to both order-execute and execute-order permissioned blockchain systems.
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Chapter 6

SharPer: On Scalability of

Permissioned Blockchains

6.1 Introduction

Scalability is one of the main obstacles to business adoption of blockchain systems.

Scalability is the ability of a blockchain system to process an increasing number of trans-

actions by adding resources to the system. The scalability of blockchain systems has

been addressed in several studies using different on-chain, e.g., increasing the block size,

and off-chain, e.g., Lightning Networks [78] [34], techniques. Increasing the block size,

however, increases both the propagation time and the verification time of the block which

makes operating full nodes more expensive, and this in turn could cause less decentraliza-

tion in the network [79]. Off-chain solutions also suffer from security issues [80] especially

denial-of-service attacks 1.

Partitioning the data into multiple shards that are maintained by different subsets

of non-malicious nodes is a proven approach to improve the scalability of distributed
1https://www.trustnodes.com/2018/03/21/lightning-network-ddos-sends-20-nodes
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databases [35]. In such an approach, the performance of the database scales linearly

with the number of nodes. Recently, sharding has been utilized by several approaches

in the presence of Byzantine nodes in both permissionless and permissioned blockchain

systems. Sharded permissionless blockchains, e.g., Elastico [81], OmniLedger [82], and

Rapidchain [83], ensure probabilistic correctness by randomly assigning nodes to com-

mittees (partitions) resulting in a uniform distribution of faulty nodes in committees.

OmniLedger and Rapidchain also support cross-shard transactions using Byzantine con-

sensus protocols.

Sharding techniques have also been used by different permissioned blockchains, e.g.,

Fabric [27], Cosmos [84], RSCoin [85], and AHL [86]. In Fabric, channels are introduced

to shard the system. A channel is a partitioned state of the full system that is autonom-

ously managed by a (logically) separate set of nodes, but is still aware of the bigger system

it belongs to [28]. By using channels, Fabric is able to process intra-shard transactions

efficiently. However, processing any cross-shard transaction needs either the existence

of a trusted channel among the participants or an atomic commit protocol [28]. Cos-

mos [84] introduces Inter-Blockchain Communication (IBC) to initiate cross-blockchain

operations. Interacting chains in IBC, however, must be aware of the state of each other

which requires establishing a bidirectional trusted channel between two blockchains. In

AHL [86], Dang et al. employ a trusted hardware (the technique that is presented

in [87] [88] [89]) to decrease the number of required nodes within each committee. AHL

randomly assigns nodes to the committees and ensures safety with a high probability if

each committee consists of 80 nodes (instead of ∼600 nodes in OmniLedger). Neverthe-

less, running Byzantine fault-tolerant protocols among 80 nodes results in high latency.

In addition, in AHL [86], consensus on the order of cross-shard transactions not only

requires an extra set of nodes (called a reference committee), but also results in a large

number of communication phases. Furthermore, since a single reference committee pro-
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cesses cross-shard transactions, AHL is not able to process cross-shard transactions with

non-overlapping committees in parallel.

In many systems, especially permissioned blockchains, the number of available Byz-

antine nodes is much larger than 3f + 1. In such systems, using all the nodes to estab-

lish consensus degrades performance since more messages are being exchanged without

providing improved resiliency, e.g., in PBFT [21], the number of message exchanges is

quadratic in terms of the number of nodes. Different techniques have been presented to

address this issue. In the active/passive replication technique, the protocol relies only

on 3f+1 active nodes to establish consensus whereas FaB [38] uses 5f+1 replicas to

establish consensus in two phases instead of three as in PBFT. Similar techniques have

been presented for crash failures to use 3f+1 replicas instead of 2f+1 [90] [91]. However,

such techniques do not utilize the extra nodes efficiently when a very high percentage of

nodes are non-faulty.

In this chapter, we present a model including a blockchain ledger for sharded permis-

sioned blockchains, introduce consensus protocols to order both intra- and cross-shard

transactions on either crash-only or Byzantine nodes and design a sharded permissioned

blockchain system, SharPer, to improve scalability. SharPer partitions the nodes into

clusters of either 2f + 1 crash-only or 3f + 1 Byzantine nodes to guarantee safety and

can be used specifically in networks with very high percentage of non-faulty nodes.

SharPer assigns data shards to the clusters where each cluster processes the transac-

tions that access its corresponding shard. If a transaction accesses only a single shard,

i.e., an intra-shard transaction, the corresponding cluster orders and executes the trans-

action locally. As a result, intra-shard transactions of different clusters are independent

of each other, and can be processed in parallel. However, for a cross-shard transaction,

agreement among all and only involved clusters is required. Nevertheless, if two cross-

shard transactions have no overlapping clusters, they still can be processed in parallel.
119



SharPer: On Scalability of Permissioned Blockchains Chapter 6

Since the ordering of different transactions might be performed in parallel and the system

includes cross-shard transactions, the blockchain ledger of SharPer is represented as a

directed acyclic graph including all intra- and cross-shard transactions. Nonetheless, for

the sake of performance, the blockchain ledger is not maintained by any node and nodes

of each cluster maintain their own view of the ledger including its intra-shard transactions

and the cross-shard transactions that the cluster is involved in. The main contributions

of this chapter are:

• SharPer, a permissioned blockchain system that supports the concurrent processing

of transactions by clustering the nodes into clusters and sharding the data and the

blockchain ledger. SharPer supports both intra-shard and cross-shard transactions.

• Two flattened consensus protocols for ordering cross-shard transactions among all

and only the involved clusters in networks consisting of either crash-only or Byz-

antine nodes. The protocols order cross-shard transactions with non-overlapping

clusters in parallel.

The rest of this chapter is organized as follows. The SharPer model is introduced

in Section 6.2. Sections 6.3 and 6.4 show how consensus works in SharPer. Section 6.5

presents a performance evaluation of SharPer, and Section 6.6 concludes the chapter.

6.2 The SharPer Model

SharPer is a permissioned blockchain system designed specifically to achieve high

scalability in networks with a very large percentage of non-faulty nodes. SharPer par-

titions the nodes into clusters and assigns a data shard to each cluster. Each node, in

addition to a data shard, stores a view of the blockchain ledger. In this section, we show

how clusters and shards are formed and then, introduce the blockchain ledger.
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Figure 6.1: The infrastructure of SharPer with 16 Byzantine nodes where f = 1

6.2.1 Cluster and Shard Formation

In existing sharded permissionless blockchain systems, e.g., OmniLedger [82], nodes

are assigned to clusters (committees) randomly. In such systems, to ensure safety, i.e.,

each cluster includes at most one-third faulty nodes, with a high probability (1−2−20),

each cluster consists of hundreds of nodes. In the permissioned blockchain system AHL

[86], safety is ensured with the same probability with clusters of only 80 nodes using

trusted hardware, however, as discussed earlier, running fault-tolerant protocols among

80 nodes results in high latency. In SharPer, on the other hand, the number of nodes, N ,

is assumed to be much larger than 3f + 1 (or 2f + 1 if nodes are crash-only), thus, nodes

are partitioned into clusters each large enough to tolerate f failures. As a result and in

contrast to AHL, SharPer provides a deterministic safety guarantee (not a probabilistic

one), hence there is no need to reconfigure clusters or assign nodes to clusters in a random

manner. Note that both the probabilistic approach and trusted hardware technique can

also be utilized in SharPer resulting in enhanced performance.

In SharPer and in the presence of crash-only nodes, each cluster includes 2f+1 nodes

(the last cluster might include more nodes) and similarly, in the Byzantine failure model,

each cluster includes 3f + 1 nodes. Nodes are assigned to the clusters mainly based on

their geographical distance, i.e., nodes that are close to each other are assigned to the

same cluster to reduce the latency of communication within a cluster. We denote the

set of clusters by P = {p1, p2, ...}. If nodes are crash-only, the number of clusters, |P |, is
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equal to N
2f+1 . Similarly, in the presence of Byzantine nodes, the number of clusters, |P |,

is N
3f+1 . The number of clusters in SharPer, indeed, depends on the number of nodes,

number of failures, and the failure model of nodes. As a result, the lower the percentage

of faulty nodes, the more the number of clusters. Since there are |P | clusters, the data

is also sharded into |P | shards, thus each cluster maintains a single data shard that is

replicated on the nodes of the cluster. We denote shards by d1, ..., d|P | where each shard

di is replicated over the nodes of cluster pi.

Figure 6.1 illustrates the SharPer infrastructure for a blockchain system consisting

of 16 nodes following Byzantine failure model where f = 1. As can be seen, the system

consists of four clusters (|P |=16
4 ) of size four (3f+1). The data is sharded into four

shards where each shard di is replicated on the nodes of cluster pi. Nodes within each

cluster, in addition to a data shard, store a view of the blockchain ledger.

An appropriate sharding needs to be workload-aware, i.e., have prior knowledge of

the data and how the data is accessed by different transactions. Workload-aware data

sharding increases the probability of maintaining the records which are accessed by a

single transaction in the same shard [92]. Different approaches have been proposed to

minimize the number of distributed transactions in a sharded system [93], nevertheless,

there might still be a portion of transactions that accesses records from different shards.

As a result, SharPer supports two types of transactions: intra-shard transactions that

access the records within a shard and cross-shard transactions that accesses records from

different shards.

6.2.2 Blockchain Ledger

In SharPer, each data shard is replicated on all nodes of a cluster. As a result,

to ensure data consistency, a total order among transactions (both intra- and cross-
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Figure 6.2: (a): A blockchain ledger, (b)-(e): Different views of the blockchain

shard) that access the same data shard is needed. The total order of transactions in

the blockchain ledger is captured by chaining transaction blocks (we assume each block

consists of a single transaction) together, i.e., each block includes a sequence number or

the cryptographic hash of the previous transaction block. Since more than one cluster

is involved in each cross-shard transaction, similar to CAPER, the ledger is formed as a

directed acyclic graph. The ledger also includes a unique initialization block, called the

genesis block.

Fig. 6.2(a) shows a blockchain ledger created in the SharPer model consisting of four

clusters p1, p2, p3, and p4 (data shards d1, d2, d3, and d4). In this figure, λ is the

genesis block of the blockchain. Intra- and cross-shard transactions are also specified.

For example, t10, t11, t13, t14, and t16 are the intra-shard transactions of cluster p1. Each

cross-shard transaction is labeled with to1,..,ok where k is the number of involved clusters

and oi indicates the order of the transaction among the transactions of the ith involved

cluster. This is needed to ensure that cross-shard transactions are ordered correctly with

regard to the intra-cluster transactions of all involved clusters. For example, t12,22 and

t15,25,35,45 are two cross-shard transactions where t12,22 accesses data shards d1 and d2,
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whereas t15,25,35,45 accesses all four data shards.

As can be seen, there is a total order among the transactions (both intra- and cross-

shard) that access a data shard, e.g., t10, t11, t12,22, t13, t14, t15,25,35,45, and t16 are chained

together. In addition, intra-shard transactions of different clusters can be added to the

blockchain ledger in parallel, e.g., t11, t21, t31, and t41 can be processed by different

clusters in parallel. Similarly, if two cross-shard transactions access disjoint subsets of

shards, they can be added to the ledger in parallel as well, e.g., t12,22 and t32,42.

In SharPer, similar to CAPER, the entire blockchain ledger is not maintained by any

cluster and each cluster maintains only its own view of the blockchain ledger including

the transactions that access the data shard of the cluster. The blockchain ledger is indeed

the union of all these physical views.

Fig. 6.2(b)-(e) show the views of the ledger for clusters p1, p2, p3, and p4 respectively.

As can be seen, each cluster pi maintains only a view of the ledger consisting of the

intra-shard transactions of pi and the cross-shard transactions that access di. Those

transactions are chained together.

6.3 Consensus with Crash-Only Nodes

In this section, we first show how consensus is established in SharPer for intra-shard

and cross-shard transactions in the presence of crash-only nodes. Then, the primary

failure handling routine of SharPer is presented and finally the correctness of SharPer is

proven.

6.3.1 Intra-shard consensus

SharPer uses multi-Paxos, a variation of Paxos [20], where the primary (a pre-elected

node that initiates consensus) is relatively stable, to establish consensus on the order
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of intra-shard transactions. In SharPer, clients send signed requests to the primary.

The primary then assigns a sequence number to the request (to provide a total order

among transactions) and multicasts a propose message (called accept in Paxos) including

the intra-shard transaction to every node within the cluster. Instead of a sequence

number, the primary can also include the cryptographic hash of the previous transaction

block, H(t), in the message where H(.) denotes the cryptographic hash function and

t is the previous block that is ordered by the cluster. Upon receiving a valid propose

message from the primary, each node sends an accept (i.e., accepted) message to the

primary. The primary waits for f acceptmessages from different nodes (plus itself becomes

f + 1), multicasts a signed commit message to every node within the cluster, appends the

transaction block including the transaction and the commit message (as evidence of the

transaction’s validity) to the blockchain ledger, executes the transaction, and sends a reply

to the client. Upon receiving a commit message from the primary, each node appends

the transaction block including the transaction and the received commit message to its

blockchain ledger. The client also waits for a valid reply from the primary to accept the

result. If the client does not receive replies soon enough, it multicasts the request to all

nodes within the cluster. If the request has already been processed, the nodes simply

send the execution result back to the client. Otherwise, if the node is not the primary,

it relays the request to the primary. If the primary does not multicast the request to

the nodes of the cluster, it will eventually be suspected to be faulty by nodes by the

nodes. Note that since commit messages include the digest (cryptographic hash) of the

corresponding transactions, appending valid signed commit messages to the blockchain

ledger in addition to the transactions, provides the same level of immutability guarantee

as including the cryptographic hash of the previous transaction in the transaction block,

i.e., any attempt to alter the block data can easily be detected.
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Algorithm 9 Cross-shard Consensus with Crash-Only Nodes
1: init():
2: r := node_id
3: pi := the cluster that initiates the consensus
4: π(pj) := the primary node of cluster pj
5: P := set of involved clusters

6: upon receiving valid request m and (r == π(pi))
7: multicast 〈PROPOSE, hi, d,m〉 to P

8: upon receiving valid 〈PROPOSE, hi, d,m〉 from primary π(pi)
9: if r is not waiting for commit message of request m′ where m and m′ intersect in some other cluster pk
10: send 〈ACCEPT, hi, hj , d, r〉 to primary π(pi)

11: upon receiving f+1 valid matching 〈ACCEPT, hi, hj , d, r〉 from every cluster pj in P and (r == π(pi))
12: multicast 〈COMMIT, hi, hj , ..., hk, d〉σπ(pi) to P
13: append the transaction and commit message to the ledger

14: upon receiving 〈COMMIT, hi, hj , ..., hk, d〉σπ(pi) from π(pi)
15: append the transaction and commit message to the ledger

6.3.2 Cross-Shard Consensus

Cross-shard transactions access records from different data shards which are main-

tained by different clusters. To ensure data consistency, cross-shard transactions have

to be appended to the blockchain ledgers of all involved clusters in the same order. As

a result, consensus among all involved clusters on the order of cross-shard transactions

is needed. In this section, we show how SharPer processes cross-shard transactions in a

network consisting of crash-only nodes.

A client sends its request (i.e., a cross-shard transaction) to the (pre-elected) primary

node of a cluster (i.e., one of the clusters that store data records accessed by the cross-

shard transaction). Note that once a primary node of a cluster is elected, it initiates all

intra-shard transactions of the cluster as well as cross-shard transactions that are sent

to the cluster by clients. Upon receiving a valid request from a client, primary node

π initiates the protocol among the involved clusters by multicasting a propose message

including the transaction to all nodes of all involved clusters, i.e., all clusters that store

data records accessed by the cross-shard transaction. Once a node receives a valid propose

message, it sends an acceptmessage to the primary. The primary waits for matching accept
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messages from f+1 nodes of each involved cluster to ensure that the majority of every

cluster agree with the order of the transaction (recall that each cluster includes 2f+1

nodes). The primary then multicasts a commit message to all nodes of every involved

cluster, appends the transaction block to its ledger, executes the transaction, and sends

a reply to the client. Upon receiving a commit message from the primary, each node also

appends the transaction block to its ledger.

Algorithm 9 presents the normal case operation for SharPer to process a cross-shard

transaction in the presence of crash-only nodes. Although not explicitly mentioned, every

sent and received message is logged by nodes. As indicated in lines 1-5 of the algorithm,

pi is the cluster that initiates the transaction, π(pj) represents the primary node of cluster

pj, and P is the set of involved clusters in the transaction.

As shown in lines 6-7, upon receiving a valid signed cross-shard requestm = 〈REQUEST,

op, τc, c〉σc from an authorized client c (with timestamp τc) to execute operation op, the

primary node π(pi) of the initiator cluster pi assigns sequence number hi to the request

and multicasts a propose message 〈PROPOSE, hi, d,m〉 to the nodes of every involved cluster

where m is the client’s request message and d = D(m) is the digest of m. The sequence

number hi represents the correct order of the transaction block in the initiator cluster pi.

Since all nodes are crash-only, there is no need to sign messages.

Upon receiving a propose message, as indicated in lines 8-10, each node r of an involved

cluster pj validates the message and its sequence number. If node r is currently waiting

for a commit message of some cross-shard request m′ where the involved clusters of two

requests m and m′ intersect in some other cluster pk, the node does not process the new

request m before the earlier request m′ gets committed. This ensures that requests are

committed in the same order on different clusters. Otherwise, node r sends an accept

message 〈ACCEPT, hi, hj, d, r〉 to primary node π(pi) where hj is the sequence number,

assigned by r, that represents the correct order of request m in cluster pj and d is the
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Figure 6.3: Two concurrent cross-shard transaction flows for crash-only nodes

digest of m.

Once primary π(pi) receives valid matching accept messages from f+1 nodes of every

involved cluster pj with matching hj and also hi and d that match to the propose message

sent by π(pi), as presented in lines 11-13, it collects all valid sequence numbers (e.g.,

hi, hj, ..., hk) from the accept messages of all involved clusters (e.g., pi, pj, ..., pk) and

multicasts a commit message 〈COMMIT, [hi, hj, ..., hk], d〉σπ(pi)
to the nodes of all involved

clusters. The order of sequence numbers hi, hj, ..., hk in the message is an ascending

order determined by their cluster ids. The sequence number, indeed, consists of multiple

sub-sequence numbers where each sub-sequence number presents the local order of the

transaction in one of the involved clusters. The primary signs its commit message because

it might be used later by nodes to prove the correctness of the transaction block.

Finally, as shown in lines 14-15, once a node of some cluster pj receives a valid commit

message from primary π(pi), the node considers the transaction as committed (even if

the node has not sent an accept message for that request). If all transactions with lower

sequence numbers than hj has been committed, the node appends the transaction as well

as the corresponding commit message to the ledger and executes it. This ensures that all

replicas execute requests in the same order as required to provide the safety property.

Figure 6.3 shows the normal case operation for SharPer to execute two concurrent
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cross-shard transactions in the presence of crash-only nodes where each transaction ac-

cesses two disjoint shards. The network consists of four clusters where each cluster

includes three nodes (f = 1).

6.3.3 Dealing with Conflicting Messages

In the presented consensus protocol and after multicasting propose messages, the

primary might not receive a quorum ofmatching accept messages from f+1 nodes of every

involved cluster (i.e., received accept messages might have different sequence numbers) for

two reasons. First, the primary nodes of different clusters might multicast their propose

messages in parallel, hence, different nodes in an overlapping cluster might receive the

messages in different order. Second, nodes might assign inconsistent sequence numbers

since they have not necessarily received the latest propose message from the primary of

their own cluster. We now propose an optimization to reduce the likelihood of such con-

flicts. This optimization is demonstrated in Algorithm 10. In case of non-matching accept

messages, as indicated in lines 1-2 of Algorithm 10, primary π(pi) needs to re-initiate the

request in only the conflicting clusters, i.e., clusters that have not sent f + 1 matching

accept messages to the primary node. However, to prevent any further conflicts, primary

π(pi) multicasts a super-propose message with the same structure as propose messages only

to the primary nodes of the conflicting clusters. Once primary π(pi) sends a super-propose

message for transaction m to the primary node of a cluster, π(pi) does not accept any

further accept messages for transaction m from that cluster. As shown in lines 3-4, the

primary node of each conflicting cluster then assigns a sequence number and multicasts

a super-accept message (with the same structure as accept messages) to the nodes of its

cluster and also the initiator primary π(pi). Upon receiving a super-accept message from

the primary of its cluster, as presented in lines 5-6, each node logs the message and sends

129



SharPer: On Scalability of Permissioned Blockchains Chapter 6

a super-accept message with the same sequence number to primary π(pi). Once primary

π(pi) has received valid matching super-accept messages from f+1 nodes of every conflict-

ing cluster, it returns to its normal operation, as presented in lines 16-18 of Algorithm 9,

and multicasts commit messages.

In heavy workloads with a high percentage of cross-shard transaction, the probability

of receiving conflicting accept messages might be high. Therefore, instead of multicasting

propose messages, waiting for probably conflicting accept messages and then re-initiating

the transaction by multicasting super-propose messages, the primary node of the initiator

cluster can initially multicast super-propose messages to the primary nodes of other in-

volved clusters as well as the nodes of its own cluster. In this way, since the primary of

each cluster assigns all sequence numbers for both intra-shard and cross-shard transac-

tions, no conflicts will occurs. It should be noted that, this solution comes with an extra

(intra-cluster) message passing from the primary to the nodes of each cluster. Note that

depending on the type of workload and percentage of cross-shard transactions, SharPer

can dynamically switch between these two techniques to deal with conflicting messages

efficiently.

To deal with conflicting cross-shard transactions, i.e., cross-shard transactions that

are initiated in parallel and overlap in some clusters, the system designer can also specify

mega-primary nodes. A mega-primary node is the primary node of one of the clusters

in any set P which initiates all cross-shard transactions that access all clusters in P .

In particular, any transaction that accesses a set of clusters {pi, pj, ..., pk} is initiated

by the primary node of cluster i where i = min(i, j, ..., k). For example, if SharPer

includes three clusters p1, p2, and p3, using a mega primary, cross-shard transactions

that access two clusters p1 and p2, two clusters p1 and p3, or all three clusters p1, p2,

and p3 are initiated by the primary node of p1 (since 1 = min(1, 2, 3)) and cross-shard

transactions that access two clusters p2 and p3 are initiated by the primary node of p2
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Algorithm 10 Dealing with Conflicting ACCEPT Messages
******The configuration is the same as Algorithm 9******

1: if accept messages of cluster pj not matching and r == π(pi)
2: multicast 〈SUPER-PROPOSE,hi,d,m〉 to π(pj)

3: upon receiving 〈SUPER-PROPOSE,hi,d,m〉 from π(pi) and r==π(pj)
4: multicast 〈SUPER-ACCEPT, hi, hj , d, r〉 to π(pi) and all nodes of pj

5: upon receiving 〈SUPER-ACCEPT,hi,hj ,d,π(pj)〉 from π(pj) and r∈pj
6: send 〈SUPER-ACCEPT, hi, hj , d, r〉 to π(pi)

(since 2 = min(2, 3)). Note that different systems can specify mega primary nodes in

different ways depending on the workload and geographical distance between clusters.

6.3.4 Primary Failure Handling

The goal of the primary failure handling routine is to provide liveness by allowing

the system to make progress when a primary fails. It prevents replicas from waiting

indefinitely for requests to execute. The primary failure handling routine must guarantee

that it will not introduce any changes in a history that has been already completed at

a correct client. The routine is triggered by timeout. When node r of some cluster

pj receives a valid propose message from a primary for either an intra-shard or a cross-

shard transaction, it starts a timer that expires after some predefined time τ . Time τ

for cross-shard transactions is larger because processing cross-shard transactions requires

agreement from all involved clusters and takes longer. If the timer has expired and the

node has not received any message from the primary node, the node suspects that the

primary is faulty. The primary failure handling routine is performed by the nodes of

the same cluster as the faulty primary. However, if a node r is involved in a cross-shard

transaction that was initiated by some other cluster pi and the timer of r has expired,

node r (of cluster pj) multicasts an accept-querymessage 〈ACCEPT-QUERY, hi, hj, d, r〉message

to every node of the initiator cluster pi (the cluster of the faulty primary) where hi

and hj are the sequence numbers assigned to the transaction by clusters pi and pj (in
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the corresponding propose and accept messages). Note that nodes of a cluster do not

participate in the primary failure handling routine of other clusters except for sending

accept-query messages. Otherwise (when the node r and the faulty primary are in the

same cluster), the protocol uses the leader election phase of Paxos [20] to elect the new

primary, and the new primary will handle all the uncommitted intra- and cross-shard

transactions, and take care of the new client requests. Indeed, similar to Paxos, the

node r tries to become the primary node of the cluster by multicasting a prepare message

〈PREPARE, H, r〉 to every node of its cluster whereH is a proposal number higher than every

sequence number received from the previous primary nodes. If a node q receives a prepare

message with a proposal number H higher than every previous sequence or proposal

number received, the node returns a promise message 〈PROMISE, H, q〉 to the sender. The

node that receives f promise messages (including itself becomes f + 1) becomes the new

primary.

Once the new primary is elected, it multicasts accept-query message 〈ACCEPT-QUERY, h〉

to the nodes of its cluster for any sequence number h (h < H) that is still uncommitted

(either unknown or accepted). If h is a cross-shard transaction, the primary multicasts the

accept-query message to every node of all involved clusters. The primary becomes aware

of transaction type (intra- or cross-shard) and hence the involved clusters either from the

received propose message or from the received responses. Once a node receives an accept-

query message for some sequence number h, if the node has already received a commit

message (from the previous primary) for sequence number h, it sends a committed message

〈〈COMMITTED, h, d〉,m〉 to the new primary where m is the commit message received from

the previous primary. Note that for cross-shard transactions, as explained earlier, h is a

combination of several sequence numbers (one per each involved cluster). Otherwise, if

the node has received a propose message for sequence number h, sent an accept message to

the previous primary but has not received a commit message, it resends its accept message
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to the new primary. Finally, if the node has not received either propose or commit message

for sequence number hi, it sends an unknown message 〈UNKNOWN, h,∅〉 to the primary.

The primary collects all responses for each sequence number h. If the primary has

received a commit message or f+1 matching propose messages (from each involved cluster

in case of a cross-shard transaction) for a sequence number h, it multicasts a commit

message to every node (of all involved clusters). Else, if the primary has received at

least one (and at most f) matching propose messages (from any involved cluster in case

of cross-shard transactions) for a sequence number h, it multicasts a propose message

to every node (of all involved clusters). Otherwise, the primary multicasts a propose

message 〈PROPOSE, hi, d, no-op〉 to the backups where the "no-op" command leaves the

state unchanged. The last situation happens when the previous primary has assigned

sequence number and multicast propose messages to every node, however, no one has

received its message. Once all unknown transactions to the primary are processed, the

primary starts processing new transactions.

6.3.5 Correctness Arguments

Consensus protocols have to satisfy safety and liveness properties. Safety means all

correct nodes receive the same requests in the same order whereas liveness means all

correct requests are eventually ordered. In this section, the safety (agreement, validity,

and consistency) and liveness (termination) properties of SharPer in the presence of crash-

only nodes are demonstrated. Since intra-shard transactions follow Paxos, we mainly

focus on cross-shard transactions.

Lemma 6.3.1 (Agreement) If node r commits request m with sequence number h, no

other correct node commits request m′ (m 6= m′) with the same sequence number h.

Proof: Let m and m′ (m 6= m′) be two committed requests with sequence numbers
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h = [hi, hj, hk, ...] and h′ = [h′k, h′l, h′m, ..] respectively. Committing a request requires

matching accept messages from f + 1 different nodes of every involved cluster. Therefore,

if the involved clusters of m and m′ intersect in cluster pk, at least f + 1 nodes of cluster

pk have sent matching accept messages for m, and similarly, at least f+1 nodes of cluster

pk have sent matching accept messages for m′. Since each cluster includes 2f + 1 nodes

and nodes are non-malicious, hk 6= h′k. Note that the same proof logic applies in special

cases where m or m′ is an intra-shard transaction (i.e., h = hk or h′ = h′k).

If the primary fails, since each committed request has been replicated on a quorum

Q1 of f + 1 nodes and to become elected primary agreement from a quorum Q2 of f + 1

nodes is needed, Q1 and Q2 must intersect in at least one node that is aware of the

latest committed request. Hence, SharPer guarantees the agreement property for both

intra-shard as well as cross-shard transactions.

Lemma 6.3.2 (Validity) If a correct node r commits m, then m must have been pro-

posed by some correct node π.

Proof: In cross-shard consensus with crash-only nodes, validity is ensured since

crash-only nodes do not send fictitious messages.

Lemma 6.3.3 (Consistency) Let Pµ denote the set of involved clusters for a request µ.

For any two committed requests m and m′ and any two nodes r1 and r2 such that r1 ∈ pi,

r2 ∈ pj, and {pi, pj} ∈ Pm ∩Pm′ , if m is committed before m′ in r1, then m is committed

before m′ in r2.

Proof: As mentioned in Section 6.3.2, once a node r1 of some cluster pi receives

a propose message for some cross-shard transaction m, if the node is involved in some

other uncommitted cross-shard transaction m′ where |Pm ∩ Pm′ | > 1, i.e., some other

cluster pj is also involved in both transactions, node r1 does not send an accept message
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for transaction m before m′ gets committed. In this way, since committing request m

requires f + 1 accept messages from every involved cluster, m cannot be committed until

m′ is committed. As a result the order of committing messages is the same in all involved

nodes. In the special case where i = j (both nodes r1 and r2 belong to the same cluster),

if the primary of the cluster assigns the sequence number, there will be no inconsistency

among nodes. Otherwise, when the nodes assign sequence numbers and even if r1 and

r2 initially assign inconsistent sequence numbers, since at least f + 1 matching accept

messages from different nodes of the cluster are needed to commit a request and the

cluster includes 2f + 1 nodes, the order of committing transactions on nodes r1 and r2

must be consistent.

It should be noted that in such a case we might face a deadlock where different clusters

might need to re-initiate their transactions after some predefined time. To prevent any

further deadlock, SharPer defines different waiting times for different clusters.

Lemma 6.3.4 (Termination) A request m issued by a correct client eventually com-

pletes.

Proof: SharPer, as mentioned earlier and due to the FLP impossibility result [53],

guarantees liveness only during periods of synchrony. To show that a request issued by

a correct client eventually completes, we need to address three scenarios. First, if the

primary is non-faulty and accept messages are non-conflicting, as shown in Algorithm 9,

the protocol ensures that the correct client receives reply from the primary. Second, if

a non-faulty primary has multicast propose messages but not received matching accept

messages from f + 1 nodes of every involved clusters, as explained in Sections 6.3.3, the

primary re-initiates the transaction by multicasting super-propose messages to only the

primary nodes of the involved clusters. In this way, since the primary node of each cluster

assigns the sequence number (in its super-accept message), super-accept messages that are
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received from each cluster are matching, thus increasing the chances of termination. If the

primary node of any involved cluster has failed before multicasting super-accept messages,

the primary failure handling routine will trigger and the new elected primary will handle

the transaction. Third, if the primary fails, as explained in Sections 6.3.4, the nodes that

are involved in an uncommitted transaction (initiated by the faulty primary) detect its

failure (using timeouts) and trigger the primary failure handling. The new primary then

will handle all uncommitted transactions.

6.4 Consensus with Byzantine Nodes

In this section, intra- and cross-shard consensus in the presence of Byzantine nodes

are presented first followed by the view change routine. Then, the correctness of SharPer

with malicious failures is proven, and finally, an optimization for clustered networks is

discussed,

6.4.1 Intra-Shard Consensus

Most Byzantine fault-tolerant protocols, e.g., PBFT [21], require 3f+1 nodes to guar-

antee safety in the presence of at most f malicious nodes. PBFT consists of agreement

and view change routines where the agreement routine orders requests for execution by

the nodes, and the view change routine coordinates the election of a new primary when

the current primary is faulty. The nodes move through a succession of configurations

called views [94] [95] where in each view, one node, called the primary, initiates the

protocol and the others are backups.

To establish consensus on the order of intra-shard transactions during a normal case

execution of PBFT, a client c requests an intra-shard transaction by sending a signed

request message to the primary. When the primary receives a valid request from an
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authorized client, it initiates the consensus protocol by assigning a sequence number

and multicasting a propose (called pre-prepare in original PBFT) message including the

requested transaction to all nodes within the cluster. Once a node receives a valid

propose message from the primary, it multicasts an accept (prepare) message to every node

within the cluster. Each node then waits for 2f valid accept messages from different nodes

(including itself) that match the propose message and then multicasts a commit message

to all the nodes within the cluster. Once a node receives 2f valid commit messages from

different nodes that match its own commit message, it appends the transaction block

including all 2f + 1 commit message to the ledger (to ensure immutability), executes the

transaction, and sends a reply to the client. Finally, the client waits for f+1 valid matching

responses from different replicas to make sure at least one correct replica executed its

request. If the client does not receive reply messages soon enough, it multicasts the

request to all nodes within the cluster. If the request has already been processed, the

nodes simply re-send the reply message to the client (replicas remember the last reply

message they sent to each client). Otherwise, if the node is not the primary, it relays the

request to the primary. If the primary does not multicast the request to the nodes of the

cluster, it will eventually be suspected to be faulty by nodes to cause a view change.

6.4.2 Cross-Shard Consensus with Byzantine Nodes

In the presence of malicious nodes, a Byzantine fault-tolerant protocol is needed

to order cross-shard transactions where for each cross-shard transaction, similar to the

crash-only case, agreement from all involved clusters is needed. Unlike in the case of

crash failure where the quorum size is f + 1, in consensus with Byzantine nodes, the

quorum size is 2f + 1. In addition and due to the potential malicious behaviour of

the primary node, all nodes of every involved cluster multicast both accept and commit
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Algorithm 11 Cross-shard Consensus with Byzantine Nodes
1: init():
2: r := node_id
3: pi := the cluster that initiates the consensus
4: π(pj) := the primary node of pj
5: P := set of involved clusters

6: upon receiving valid transaction m and (r == π(pi))
7: multicast 〈〈PROPOSE, hi, vid〉σπ(pi) ,m〉 to P

8: upon receiving valid 〈〈PROPOSE, hi, vid〉σπ(pi) ,m〉 from π(pi)
9: if r is not involved in any uncommitted request m′ where m and m′ intersect in some other cluster pk
10: multicast 〈ACCEPT, hi, hj , vi, vj , d, r〉σr to P

11: upon receiving valid matching 〈ACCEPT, hi, hj , vi, vj , d, r〉σr from 2f+1 different nodes of every cluster pj in P
12: multicast 〈COMMIT, hi, hj , ..., hk, vi, vj , ..., vk, d, r〉σr to P

13: upon receiving valid 〈COMMIT, hi, hj , ..., hk, vi, vj , ..., vk, d, r〉σr from 2f + 1 nodes of every cluster in P
14: append the transaction and commit messages to the ledger

messages to each other. In cross-shard consensus with Byzantine node, similar to PBFT,

nodes of each cluster move through views where views are numbered consecutively. Node

π (1 ≤ π ≤ 3f+1) is the primary of view v if π=(v mod (3f+1)).

In the presence of malicious nodes, and upon receiving a valid request (cross-shard

transaction) from a client, similar to the crash-only case, primary node π initiates the

protocol among the involved clusters by multicasting a propose message including the

transaction to all nodes of all involved clusters. Once a node receives a valid propose

message, it multicasts an accept message to all nodes of every involved clusters. Each

node then waits for 2f + 1 matching valid accept messages from different nodes of each

involved cluster before multicasting a commit message to all nodes of the involved clusters.

Upon receiving 2f+1 matching valid commitmessage from different nodes of each involved

cluster, each node appends the transaction block to the ledger.

The normal case operation for SharPer to process a cross-shard transaction in the

presence of Byzantine nodes is presented in Algorithm 11. Similar to Algorithm 9 and as

shown in lines 1-5, pi is the initiator cluster, P is the set of involved clusters, and π(pj)

indicates the primary node of cluster pj.

Once the initiator primary π(pi) receives a valid signed cross-shard request from an
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authorized client, as presented in lines 6-7, the primary assigns sequence number hi to

the request and multicasts a signed propose message including sequence number hi, view

number vi (that indicates the view of cluster pi in which the message is being sent) and

digest d of the request. As before, sequence number hi is used to ensure that the new

transaction block is ordered correctly with respect to the blocks that the cluster has

been involved in. Requests are piggybacked in propose messages to keep propose messages

small. Since the network might include malicious nodes, the primary signs its message.

Once a node r of an involved cluster pj receives a propose message for a request m, as

indicated in lines 8-10, it validates the signature and message digest. If the node belongs

to the initiator cluster (i = j), it also checks hi to be valid (within a certain range)

since a malicious primary might multicast a request with an invalid sequence number.

Furthermore, if the node is currently involved in an uncommitted cross-shard request m′

where the involved clusters of two requests m and m′ overlap in some other cluster, as

explained in the crash-only case, the node does not process the new request m before

the earlier request m′ is processed. This is needed to ensure requests are committed in

the same order on different clusters. The node then multicasts a signed accept message

including the corresponding sequence number hj (that represents the order of request m

in cluster pj), the view number vj of cluster pj as well as the digest d of request m to

every node of all involved clusters.

Each node waits for valid accept messages with matching sequence and view numbers

from 2f+1 nodes of every involved cluster with hi, and d that match the propose message

which is sent by primary π(pi). We define the predicate accepted-localpj(m,hi, hj, vi, vj, r)

to be true if and only if node r has received the request m, a propose for m with sequence

number hi in view vi of the initiator cluster pi and 2f + 1 singed accept messages form

different nodes of an involved cluster pj that match the propose message. The predicate

accepted(m,h, v, r) where h = [hi, hj, ..., hk] and v = [vi, vj, ..., vk] is then defined to be
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true on node r if and only if accepted-localpj is true for every involved cluster pj in cross-

shard request m. The order of sequence numbers and view numbers in the predicate

is an ascending order determined by their cluster ids. Here, since nodes might behave

maliciously, each cluster includes 3f + 1 nodes and 2f + 1 matching messages from all

involved clusters for each step of the protocol are needed. The propose and accept phases

of the algorithm basically guarantee that non-faulty nodes agree on a total order for

the transactions. When accepted(m,h, v, r) becomes true, as presented in lines 11-12,

the node r multicasts a signed commit message 〈COMMIT, h, v, d, r〉σr to every node of all

involved clusters.

Finally, as shown in lines 13-14, each node waits for valid matching signed commit

messages from 2f + 1 nodes of every involved clusters that match its commit message.

The predicate committed-localpj(m,h, v, r) is defined to be true on node r if and only if

accepted(m,h, v, r) is true and node r has accepted 2f+1 valid matching commit messages

from different nodes of cluster pj that match the propose message for cross-shard request

m. The predicate committed(m,h, v, r) is then defined to be true on node r if and only

if committed-localpj is true for every involved cluster pj in cross-shard request m. The

committed predicate indeed shows that at least f + 1 nodes of each involved cluster have

multicast valid commit messages. When the committed predicate becomes true, the node

considers the transaction as committed. If the node has executed all transactions with

lower sequence numbers than hj, it appends the transaction as well as the corresponding

commit message to the ledger and executes it.

Figure 6.4 shows the processing of two concurrent cross-shard transactions in the

presence of Byzantine nodes where each transaction accesses two disjoint data shards.

The network consists of four clusters where each cluster includes four nodes (f = 1).
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Figure 6.4: Two concurrent cross-shard transaction flows for Byzantine nodes

6.4.3 Dealing with Conflicting Messages

Algorithm 12 Dealing with Conflicting ACCEPT Messages
******The configuration is the same as Algorithm 11******

1: if accept messages of cluster pj not matching and (r == π(pj))

2: multicast 〈SUPER-ACCEPT, hi,hj , vi, vj , d, r〉σr to nodes of pj

3: upon receiving 〈SUPER-ACCEPT, hi,hj ,vi,vj ,d,π(pj)〉σπ(pj) and r∈pj

4: if less than 2f + 1 valid accept messages from pj for m is logged

5: multicast 〈SUPER-ACCEPT, hi,hj , vi, vj , d, r〉σr to P

In the consensus protocol with Byzantine nodes, similar to the crash-only case, nodes

might not receive a quorum of 2f + 1 matching accept messages from every cluster due to

conflicting accept messages. In such a situation, as presented in lines 1-2 of Algorithm 12,

the primary node of each conflicting cluster pj (i.e., a cluster with less than 2f + 1

matching accept messages) multicasts a super-accept message (with the same structure

as accept messages) to the nodes of its own cluster. Once a node receives a super-accept

message for some cross-shard transaction m from the primary node of its cluster, as

shown in lines 3-5, it first validates the message. If the node has already received 2f + 1

matching accept messages for transaction m from the nodes of its cluster (which might

happen in case of a malicious primary), the node simply ignores the received super-accept

message. Otherwise, the node multicasts a super-accept message to all nodes of every
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involved cluster.

In heavy workloads with a high percentage of cross-shard transactions, since the

probability of receiving conflicting accept messages is high, Similar to the crash-only case,

the primary node of the initiator cluster can initially multicast super-propose messages to

the primary nodes of other involved clusters as well as the nodes of its own cluster.

In addition, SharPer can employ the mega-primary technique where for any set P

of clusters, the primary node of one of the clusters, called mega-primary, initiates all

cross-transactions that access all clusters in P .

6.4.4 View Change

The view change routine provides liveness by allowing the system to make progress

when a primary fails. Similar to the crash-only case, view changes are triggered by

timeout. If the timer of some node r expires, node r suspects that the primary is faulty

and starts a view change. There are two cases. First, if the initiator primary is not in

the cluster of node r, similar to the crash-only case, node r multicasts a signed accept-

query message to every node of the initiator cluster (the cluster of the faulty primary).

If a node receives accept-query messages from 2f + 1 different nodes of another cluster,

the node suspects that the primary of its cluster is faulty and initiates a view change.

Second, when node r and the faulty primary are in the same cluster, similar to PBFT,

node r initiates a view change. To begin the view change routine, node r stops accepting

propose, accept, super-accept, and commit messages and multicasts a view-change message〈
VIEW-CHANGE, v+1, h, ξ,A, C, r

〉
σr

to every node within its cluster where h is the sequence

number of the last stable checkpoint (is explained later) known to r, ξ is the proof of

checkpoint, A is the set of received valid intra- and cross-shard accept and super-accept

messages, and C is the set of received valid commit messages for requests with a sequence
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number higher than h. An accept-query message is valid if it is received from at least

2f + 1 different nodes of the same cluster. Note that, SharPer, similar to PBFT, use the

state transfer technique to checkpoint the state of different nodes. Each node generates

checkpoints periodically when a request sequence number is divisible by some constant

(checkpoint period) and multicasts them to other nodes in its cluster. Once a node

has received 2f + 1 checkpoint messages (called the proof of checkpoint) for a sequence

number, the checkpoint becomes stable.

When primary π′(pj) of new view v + 1 receives 2f valid view-change messages from

different nodes of its cluster, it multicasts a
〈

NEW-VIEW, v+1,Σ,P ′, C ′,
〉
σπ′(pj)

message to

all nodes where Σ is the set of 2f + 1 valid view-change messages (2f messages from other

nodes plus its own message), and P ′ and C ′ are two sets of propose and commit messages

respectively which are constructed as follows.

Let l be the sequence number of the latest checkpoint, and h be the highest sequence

number of a propose message in all the received A sets. For each sequence number n

where l < n ≤ h.

• It first checks all commit messages in set C of the received view-change messages.

If the primary finds 2f + 1 valid matching commit messages from either cluster pj for

intra-shard request m or from every cluster for cross-shard request m, the primary adds

the commit messages to C ′.

• If the primary node π′(pj) finds a set of 2f+1 matching valid accept messages for an

intra-shard transaction or a set of 2f + 1 matching valid accept or super-accept messages

coming from the same cluster for a cross-shard transaction, the primary π′(pj) adds a〈
PROPOSE, v+1, n, d

〉
σπ′(pj)

to P ′ where d is the digest of the request.

• If accept messages of the nodes of its cluster are not matching and the request is a

cross-shard transaction initiated by other cluster, the primary assigns a sequence number
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and adds
〈

SUPER-ACCEPT, v+1, n, d
〉
σπ′(pj)

to P ′ where d is the digest of the request.

• Otherwise, the primary adds a
〈

PROPOSE, v+1, n, d∅
〉
σπ′(pj)

to P ′ where d∅ is the

digest of a special no-op command that is transmitted by the protocol like other requests

but leaves the state unchanged.

The primary then inserts all the messages in P ′ and C ′ to its log. It also checks the

log to make sure its log contains the latest stable checkpoint. If not, the primary inserts

checkpoint messages for the checkpoint l and obtain missing blocks in its blockchain

form another node. For each cross-shard transaction, the primary also multicasts the

corresponding message, e.g., propose, accept, or super-accept to the nodes of all involved

clusters.

Once a node in view v receives a valid new-view message from the primary of view

v+ 1, the node logs all messages, updates its checkpoint in the same way as the primary,

and for each propose or super-accept message, multicasts an accept or super-accept message

(respectively) to the nodes of the involved clusters. Note that non-faulty nodes in view

v will not accept a propose message for a new view v′ > v without having received a

new-view message for v′.

Note that nodes redo the protocol for requests with sequence number between l and h,

however, they do not re-execute requests. In addition, if a node does not have a request

message or or a stable checkpoint, it obtains missing information from another node.

6.4.5 Correctness Arguments

In this section we demonstrate how SharPer satisfies safety (agreement, validity, and

consistency) and liveness (termination) properties in the presence of Byzantine nodes.

Lemma 6.4.1 (Agreement) If node r commits request m with sequence number h, no

other correct node commits request m′ (m 6= m′) with the same sequence number h.
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Proof: The propose and accept phases of the Byzantine cross-shard consensus pro-

tocol guarantee that correct nodes agree on a total order of requests within a view.

Indeed, if the accepted(m,h, v, r) predicate where h = [hi, hj, ..., hk] and v = [vi, vj, ..., vk]

is true, then accepted(m′, h, v, q) is false for any non-faulty node q (including r = q)

and any m′ such that m 6= m′. This is true because (m,h, v, r) implies that accepted-

localpj(m,hi, hj, vi, vj, r) is true for each involved cluster pj and since each cluster include

3f+1 nodes, at least 2f+1 nodes within the cluster (from which at least f+1 nodes are

non-faulty) have sent accept (or propose) messages for request m with sequence number hj

in view vj. As a result, for accepted(m′, h, v, q) to be true, at least one of those non-faulty

nodes needs to have sent two conflicting accept messages with the same sequence number,

same view number, but different message digest. This condition guarantees that first, a

malicious primary cannot violate the safety and second, at most one of the concurrent

conflicting transactions, i.e., transactions that overlap in at least one cluster, can collect

the required number of messages (2f + 1) from each overlapping cluster.

Across different views, the view-change routine of SharPer guarantees that non-faulty

nodes of some cluster pj agree on the sequence number of requests that are committed-

local in different views at different node. The committed-localpj predicate becomes correct

on node r if r has received a quorum Q1 of 2f+1 matching commit messages from different

nodes of cluster pj. To change the view of cluster pj, a quorum Q2 of 2f + 1 valid view-

change messages is needed. Since there are 3f + 1 nodes in each cluster, Q1 and Q2

intersect in at least one correct node, thus if a request is accepted in a previous view, it

is propagated to subsequent views.

Lemma 6.4.2 (Validity) If a correct node r commits m, then m must have been pro-

posed by some correct node π.

Proof: In the presence of Byzantine nodes, validity is guaranteed mainly based
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on standard cryptographic assumptions about collision-resistant hashes, encryption, and

signatures which the adversary cannot subvert them (as explained in Section 6.2). Since

the request as well as all messages are signed and either the request or its digest is included

in each message (to prevent changes and alterations to any part of the message), and

in each step 2f + 1 matching messages (from each cluster) are required, if a request is

committed, the same request must have been proposed earlier.

Lemma 6.4.3 (Consistency) Let Pµ denote the set of involved clusters for a request µ.

For any two committed requests m and m′ and any two nodes r1 and r2 such that r1 ∈ pi,

r2 ∈ pj, and {pi, pj} ∈ Pm ∩Pm′ , if m is committed before m′ in r1, then m is committed

before m′ in r2.

Proof: Consistency is guaranteed in the same way as crash-only nodes (Lemma

6.3.3).

Lemma 6.4.4 (Termination) A request m issued by a correct client eventually com-

pletes.

Proof: To provide termination during periods of synchrony, similar to the crash-

only case, three scenarios need to be addressed. If the primary in non-faulty and accept

messages are non-conflicting, following Algorithm 11, requestm completes. If the primary

in non-faulty, however accept messages are conflicting, as mentioned in Section 6.4.3, the

request will be re-initiated in the conflicting clusters using super-proposemessages. Finally,

view change routines (Section 6.4.4) handle primary failures.

6.4.6 An Optimization for Clustered Networks

We now illustrate how prior knowledge of where the faulty nodes are placed could

help in increasing the number of clusters, and hence parallelism and overall performance.
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In SharPer and in the presence of crash-only nodes, we assume that the number of

nodes is much more than 2f + 1 and therefore, partition the network into clusters of

2f + 1 nodes. This is needed because we are not aware of where the f faulty nodes are

placed. As a result, since they all might be in the same cluster, to guarantee safety each

cluster includes 2f + 1 nodes. Similarly, and in the presence of Byzantine nodes, each

cluster consists of 3f + 1 nodes. However, if we have some prior knowledge of where

the faulty nodes are placed, we might be able to increase the number of clusters. In

particular, nodes might be (geographically) partitioned into several groups (e.g., clouds)

where f is known for each individual group of nodes. Hence, clustering can be performed

within each group instead of the entire network. Indeed, different cloud environments

might have different failure properties, e.g., while renting nodes from a particular cloud

might be expensive, the maximum number of possible concurrent failures, f , in that

cloud could be smaller than a cloud with cheaper nodes. As an example, consider a

network of Byzantine nodes with n = 23 and f = 3 where nodes are partitioned into

two groups of A and B (placed in two different cloud environments) such that nA = 7,

nB = 16, fA = 2, and fB = 1. Without being aware of A and B, since there are totally

23 nodes and f = 3, the number of clusters is |P | = n
3f+1 = 23

10 = 2. However, knowing

fA and fB, we can cluster A and B separately and as a result, |PA| = nA
3fA+1 = 7

7 = 1

and |PB| = nB
3fB+1 = 16

4 = 4. Thus, the network is partitioned into five clusters (three

more clusters in comparison to the previous case). This is useful especially in cloud

environments where nodes are placed in different clouds with different properties (e.g.,

different f). Note that the same technique can be applied when the nodes are crash-only.
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6.5 Experimental Evaluations

In this section, we conduct several experiments to evaluate SharPer. We have im-

plemented a blockchain-based accounting application where the data records are client

accounts (every client might have several accounts). Clients of the application can initi-

ate transactions to transfer assets from one or more of their accounts to other accounts

(accounts might be in the same shard or different shards). A transaction might read and

write several records. The experiments were conducted on the Amazon EC2 platform.

Each VM is c4.2xlarge instance with 8 vCPUs and 15GB RAM, Intel Xeon E5-2666 v3

processor clocked at 3.50 GHz. When reporting throughput measurements, we use an

increasing number of clients running on a single VM, until the end-to-end throughput is

saturated, and state the throughput (x axis) and latency (y axis) just below saturation.

Throughput and latency numbers are reported as the average measured during the steady

state of an experiment.

6.5.1 Impact of Cross-Shard Transactions with Crash-Only Nodes

In the first set of experiments, we measure the performance of SharPer for workloads

with different percentages of cross-shard transactions where nodes are crash-only. We

compare SharPer with the two main approaches for exploiting the availability of extra

resources: the active/passive replication technique and Fast Paxos [90]. We implemen-

ted two permissioned blockchain systems referred to as APR-C and FPaxos where their

consensus protocols follow the active/passive replication and Fast Paxos designs respect-

ively. In addition to SharPer and these two systems, we also implemented a modified

version of the state of the art sharded permissioned blockchain system AHL [86]. AHL

has two novel aspects: first, its intra-shard consensus protocol that uses trusted hardware

to restrict the malicious behavior of nodes, and second, its cross-shard consensus protocol
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where a reference committee uses 2PC to order the transactions. Since the emphasis of

the experiments is on cross-shard transactions, we implemented a modified version of

AHL, called AHL-C where the intra-shard transactions are processed similar to SharPer,

however, the cross-shard transactions are performed similar to AHL [86]. In this set

of experiments, since the nodes are crash-only, the reference committee uses Paxos [20]

to establish consensus. Note that, since intra-shard consensus is pluggable, the trusted

hardware technique can be employed in SharPer as well.

We consider a network with 12 nodes. In SharPer and AHL-C, the nodes are divided

into four clusters where each cluster consists of 3 nodes and uses Paxos with f=1 to

establish consensus. In AHL-C, a reference committee of three crash-only nodes is also

considered to establish consensus on the order of cross-shard transactions. The data is

also equally sharded into four shards. In the APR-C blockchain system, 3 nodes are

used as the active replicas and the execution results are sent to the remaining 9 nodes

whereas FPaxos uses 4 nodes (3f + 1) to establish consensus and the results are sent to

the remaining 8 nodes.

We consider four different workloads with (1) no cross-shard transactions, (2) 20%

cross-shard transactions, (3) 80% cross-shard transactions, and (4) 100% cross-shard

transactions. We also assume that two (randomly chosen) shards are involved in each

cross-shard transaction. Note that since APR-C and FPaxos do not use sharding, the

percentage of cross-shard transactions does not affect their performance. The load is also

equally distributed among all the nodes.

As can be seen in Figure 6.5(a), when there are no cross-shard transactions, SharPer

is able to process 35230 transactions with 91 ms latency before the end-to-end throughput

is saturated (the penultimate point). Note that in this setting, since there are no cross-

shard transactions, each cluster orders and executes its transactions independently, thus

the throughput of the entire system will increase linearly with the increasing number of
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Figure 6.5: Increasing the percentage of cross-shard transactions (crash-only nodes)

clusters. Since for intra-shard transactions, AHL-C uses the same technique as SharPer,

its results are identical to SharPer. APR-C and FPaxos are also able to process 8800

and 10700 transactions with 95 ms and 75 ms latency respectively before the end-to-end

throughput is saturated (the penultimate points). Note that since FPaxos establishes

consensus in less number of phases, it has better performance than APR-C. However, they

both have much lower throughput in comparison to SharPer (25% and 33% of SharPer

at 60 ms latency). The results mainly demonstrate the effectiveness of employing the

sharding technique in blockchain.

By increasing the percentage of cross-shard transactions to 20% (Figure 6.5(b)), the

throughput is reduced due to the overhead of cross-shard transactions. In this setting,

SharPer is still able to process 23000 transaction with 100 ms latency (the penultimate

point) whereas AHL-C processes 21000 transactions at the same latency. This is expected

because first, SharPer, in contrast to AHL-C, is able to process non-overlapping cross-

shard transactions in parallel, and second, the cross-shard protocol of SharPer involves

less number of communication phases. As mentioned before, since the sharding technique

is not utilized by APR-C and FPaxos, the percentage of cross-shard transactions does

not affect their performance.

Similarly, increasing the percentage of cross-shard transactions to 80% (Figure 6.5(c))
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and finally, 100% (Figure 6.5(d)) reduces the peak throughput of SharPer to 12300 and

10500, respectively. Note that by increasing the percentage of cross-shard transactions,

SharPer still shows much better performance compare to AHL-C (44% better in their peak

throughput with 100% cross-shard transactions) because SharPer is still able to process

non-overlapping cross-transactions in parallel and also needs less number of communica-

tion phases. In these two scenarios, since APR-C and FPaxos order the transactions using

only three (2f+1) and four (3f+1) nodes, their latency is lower than SharPer. Specially

FPaxos processes transactions with significantly lower latency due to its fast consensus

routine. However, since a large percentage of transactions is cross-shard, SharPer needs

the participation of all involved clusters to order transactions and using sharding has no

significant advantage.

6.5.2 Impact of Cross-Shard Transactions with Byzantine Nodes

In the second set of experiments, we repeat the previous scenarios on networks with

Byzantine nodes. Similar to the previous section, we implement four permissioned block-

chain systems: (1) SharPer, (2) APR-B where its consensus protocol follows the act-

ive/passive replication technique on Byzantine nodes), (3) FaB where its consensus pro-

tocol follows Fast Byzantine Consensus protocol [38] and uses 5f + 1 nodes (instead of

3f +1) to establish consensus in two phases (instead of three as in PBFT), and (4) AHL-

B where its intra-shard transactions are processed using PBFT (similar to SharPer) and

its cross-shard transactions follow AHL [86].

We consider a network with 16 nodes. In SharPer and AHL-B, the nodes are parti-

tioned into 4 clusters where each cluster consists of four nodes and uses PBFT protocol

with f = 1 to establish consensus on its transactions. In addition to these 16 nodes,

in AHL-B, a reference committee of four Byzantine nodes is also considered to establish
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Figure 6.6: Increasing the percentage of cross-shard transactions (Byzantine nodes)

consensus on the order of cross-shard transactions. In the APR-B blockchain system, 4

nodes are used as the active replicas and finally, FaB uses 6 nodes (5f + 1) to establish

consensus. Similar to the previous case, since APR-B and FaB do not use sharding, the

percentage of cross-shard transactions does not affect their performance.

As shown in Figure 6.6(a), with no cross-shard transactions, SharPer is able to process

more than 25000 transactions with 200 ms latency. As before, since for intra-shard

transactions, AHL-B uses the same technique as SharPer, the results of SharPer and

AHL-B are the same. APR-B and FaB also process 5900 and 6800 transactions (23%

and 27% of SharPer) with 220 ms and 130 ms latency respectively. Note that since

transactions are processed in two phases (instead of three), FaB has lower latency in

comparison to APR-B.

Increasing the percentage of cross-shard transactions to 20%, reduces the peak through-

put of SharPer to 18700 (with 240 ms latency). In this scenario and in comparison

to AHL-B, SharPer is able to process 15% more transactions (at their respective peak

throughput) because of the parallel ordering of cross-shard transactions and establishing

cross-shard consensus in less number of phases. As mentioned before, since the sharding

technique is not utilized by APR-B and FaB, the percentage of cross-shard transactions

does not affect their performance. Note that with 20% cross-shard transactions, the peak

throughput of SharPer is 320% and 270% of the peak throughput of APR-B and FaB
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respectively.

With 80% cross-shard transactions, the peak throughput of SharPer reduces to 8600

which is still 34% higher than the peak throughput of AHL-B (6400) due to parallel

processing of non-overlapping cross-shard transactions. Finally, when all transactions are

cross-shard, SharPer is able to process 7500 transactions with 700 ms latency whereas

AHL-B processes 5000 transactions (67% of SharPer) with the same latency. In the last

two scenarios (80% and 100% cross-shard transactions), because of the high percentage of

cross-shard transactions, using sharding techniques has no significant advantage and since

APR-B and FaB rely on only four (3f+1) and six (5f+1) nodes to order transactions

respectively, their latency is lower than SharPer. However, in SharPer, simultaneous

processing of non-overlapping transactions results in improved throughput.

6.5.3 Performance with Different Number of Nodes

In the last set of experiments, we measure the performance of SharPer in networks

with different number of nodes. We measure the performance of SharPer in a network

including 6, 9, 12, and 15 crash-only nodes as well as 8, 12, 16 and 20 Byzantine nodes

(2, 3, 4 and 5 clusters). The workloads also include 90% intra- and 10% cross-shard

transactions (the typical settings in partitioned databases [60] [61]).

As can be seen in Figure 6.7(a), when nodes follow the crash failure model, by in-

creasing the number of nodes (clusters) the throughput of the system increases almost

linearly. This is expected because 90% of transactions are intra-shard transactions and,

as shown earlier, for intra-shard transactions, the throughput of the entire system will

increase linearly with the increasing number of clusters. In addition, since cross-shard

transactions access two clusters, by increasing the number of clusters, the chance of par-

allel processing of such transactions increases. As shown in Figure 6.7(a), in the settings
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Figure 6.7: Increasing the number of nodes

with five clusters, SharPer is able to process 37000 transactions with 100 ms latency.

Since increasing the number of nodes does not significantly affect the performance of

APR-C and FPaxos systems, their performance will be similar to what is reported in

Figure 6.5. However, as can be seen, in a network consisting of 6 nodes (50% more nodes

than FPaxos) SharPer processes upto 11060 transactions (88% more than FPaxos) with

the same (75 ms) latency.

Similarly, when nodes follow the Byzantine failure model, increasing the number of

clusters enhances the overall throughput of SharPer, as shown in Figure 6.7(b). In this

scenario, SharPer can process more than 27000 transactions with 240 ms latency on a

network with five clusters. Furthermore, in a network with 8 nodes and with 200 ms

latency, SharPer, using only 33% more nodes, is able to process 58% more transactions

than FaB. This set of experiments demonstrates the scalability of SharPer as the number

of clusters increases.

6.5.4 Discussion

Overall, the evaluation results can be summarized as follow.

First, in typical settings where workloads include low percentage (less than 20%) of

cross-shard transactions, SharPer demonstrates better performance with both crash-only
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and Byzantine nodes in comparison to other approaches. The performance of SharPer

is better than AHL [86] because of the cross-shard consensus routine of SharPer that,

in contrast to AHL, can order cross-shard transactions with non-overlapping clusters in

parallel. The performance of SharPer is much (three to four times) better than both

FPaxos (FaB) and active/passive replication (APR-C and APR-B) since SharPer uses

the sharding technique and is able to process intra-shard transactions of different clusters

in parallel whereas in both FPaxos (FaB) and active/passive replication, transactions

are processed sequentially. Furthermore, and as shown in Figure 6.7, the performance

of SharPer enhances semi-linearly with the increasing number of clusters, which clearly

demonstrates the scalability of SharPer.

Second, in settings with high percentage of cross-shard transactions, using sharding

techniques has no significant advantage. As a result, in the presence of extra nodes,

using FPaxos (FaB) and active-passive replication (APR-C and APR-B) results in better

performance (specially less latency). Note that as mentioned before, the typical settings

in partitioned database systems includes only 10% cross-shard transactions [60] [61].

6.6 Summary

In this chapter, we proposed SharPer, a permissioned blockchain system which is

designed specifically for networks with a very high percentage of non-faulty nodes (N �

3f + 1 for Byzantine or N � 2f + 1 for crash-only nodes). SharPer utilizes the extra

resources by partitioning the nodes into clusters of 3f+1 Byzantine (or 2f+1 crash-only)

nodes and processing the transactions on different clusters in parallel. The blockchain

ledger in SharPer is formed as a directed acyclic graph which in not maintained by any

node. Nodes of each cluster indeed maintain a view of the blockchain ledger including

the intra-shard transactions of the cluster as well as the cross-shard transactions that

155



SharPer: On Scalability of Permissioned Blockchains Chapter 6

the cluster is involved in. A flattened consensus protocol is also introduced to order

cross-shard transactions without relying on an extra set of nodes or trusted participants.

Furthermore, SharPer is able to process cross-shard transactions with non-overlapping

clusters in parallel. Our experiments show that in workloads with low percentage of cross-

shard transactions (typical settings), SharPer demonstrates better performance with both

crash-only and Byzantine nodes in comparison to other approaches and the throughput

of SharPer will increase semi-linearly by increasing the number of clusters.
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Chapter 7

SeeMoRe: On Fault Tolerance of

Permissioned Blockchains

7.1 Introduction

Permissioned blockchain rely on consensus protocols to provide fault tolerance. Fault-

tolerant protocols are the main building block of permissioned blockchain systems and

have also been extensively used in the distributed database infrastructure of large en-

terprises such as such as Google’s Spanner [35], Amazon’s Dynamo [36], and Facebook’s

Tao [37], thus highlighting the critical role of SMR in data management. While today’s

enterprises mostly rely on cloud storage to run their business applications and benefits

from its scalability, and easy access of cloud storage [96], storing data on a single cloud

may reduce robustness and performance [97] [98] [99]. Robustness is the ability to ensure

availability (liveness) and one-copy semantics (safety) despite failures, while performance

deals with response time (latency) and the number of processed requests per time unit

(throughput) [42]. Fault-tolerant protocols are designed to satisfy both robustness and

performance concerns using State Machine Replication (SMR) [50] techniques.
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Large scale data management systems utilize SMR to provide fault tolerance and to

increase the performance of the system. While large enterprises might have their own

Geo-replicated fault-tolerant cloud storage around the world, smaller enterprises may

only have a local private cloud that is lacking in resources to guarantee fault tolerance.

One solution is to store all the data on third-party public cloud providers [100] [101]

[102]. Public clouds provide several advantages like elasticity and durability, but they

often suffer from security concerns, e.g., malicious attacks [103]. Private clouds, on the

other hand, may not provide sufficient elasticity and durability, however, they are more

secure. The trustworthiness of a private cloud allows an enterprise to build services

that can utilize crash fault-tolerant protocols, i.e., protocols that make progress when a

bounded number of replicas only fail in a benign manner, for example by either crashing

or being unresponsive. But due to lack of private resources, if a third-party public cloud

is used, the nodes of the public cloud may behave maliciously, in which case a more

robust fault-tolerant protocol is needed that allows the system to continue operating

correctly, even when some replicas exhibit arbitrary, possibly malicious behavior. Current

Byzantine fault-tolerant protocols (e.g., PBFT [21]) introduce significant communication

and latency overheads in order to tolerate failures since they consider all failures as

malicious.

An alternative solution to storing all the data in a public cloud is to use a hybrid

cloud storage system consisting of both private and public clouds [98]. In a hybrid cloud,

the nodes in the private cloud are trusted and may crash but do not behave maliciously

whereas the nodes in the public cloud(s) might be malicious. Hybrid clouds address the

security concerns of using only public clouds by giving enterprises the ability to still use

their private clouds with their trusted, non-malicious nodes. In addition, storing data

on multiple clouds is more reliable, e.g., if a cloud outage happens, the system might

still process requests. Moreover, while a small private cloud may represent a scalability
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bottleneck, the system can rent as many servers as required from public clouds. The

benefits of hybrid clouds necessitate designing new protocols that can leverage the trust

of private clouds and the scalability of public clouds.

Despite years of intensive research, existing fault-tolerant protocols do not adequately

address all the characteristics of hybrid environments. On one hand, the existing Byz-

antine fault-tolerant protocols [21] [38] [39] [40] [41] [42] [43] do not distinguish between

crash and malicious failures, and consider all failures as malicious, thus incurring a higher

cost in terms of performance. On the other hand, the hybrid protocols [44] [45] that have

been designed to tolerate both crash and malicious failures, make no assumption on where

the crash or malicious failures may occur. As a result, using these protocols in a hybrid

environment (either cloud or blockchain), where all machines in the private environment

are known to be trusted while machines in the public environment could be compromised

and hence malicious, results in an unnecessary performance overhead.

In this chapter, we present SeeMoRe1: a State Machine Replication protocol that

leverages the localization of crash and malicious failures in a hybrid environment. SeeMoRe

considers a private environment consisting of trusted replicas, a subset of which may fail-

stop, and a public environment where a subset of the replicas may behave maliciously.

SeeMoRe takes explicit advantage of this knowledge to improve performance by reducing

the number of communication phases and messages exchanged and/or the number of

required replicas. SeeMoRe has three different modes of operation which can be used

depending on the load on the private environment, and the latency between the public

and the private environment. We also introduce a dynamic technique to transition from

one mode to another.

A key contribution of this chapter is to show how being aware of where different types
1SeeMoRe is derived from Seemorq, a benevolent, mythical bird in Persian mythology which appears

as a peacock with the head of a dog and the claws of a lion. Seemorq in Persian literature also refers to
a group of birds who flew together to achieve a common goal.
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of failures (crash and malicious) may occur in hybrid environments, results in designing

more efficient protocols. In particular, this chapter makes the following contributions:

• A model for hybrid environments is presented which can be used by enterprises

that do not have enough servers in their trusted private environment, e.g., cloud

to run fault-tolerant protocols and gives them the option of renting from untrusted

public environment.

• SeeMoRe, a hybrid protocol that tolerates both crash and malicious failures, is

developed in three different modes. Being aware of where the crash faults may

occur and where the malicious faults can occur results in reducing the number of

communication phases, messages exchanged and/or required replicas. In addition, a

technique to dynamically switch between different modes of SeeMoRe is presented.

The rest of this chapter is organized as follows. The system model is introduced in

Section 7.2. Section 7.3 presents a method to compute the required number of replicas

from a public cloud. The design of SeeMoRe is proposed in Section 7.4. Section 7.5

shows the performance evaluation, and Section 7.6 concludes the chapter.

7.2 System Model

In this section, we introduce the system model wherein an application layer, such as

a distributed database management system, relies on a replication service to store copies

of data across an environment consisting of private and public clouds. The replication

service aims to replicate the data across some trusted and some untrusted servers. The

replicas can be geo-distributed to provide low data access latency to clients across the

globe or they can be geographically confined to tolerate both crash or malicious failures.

Such a replication service can use SeeMoRe and we specify the assumptions on which
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SeeMoRe is built in this section.

7.2.1 Basic Assumptions

We consider a hybrid failure model that admits both crash and malicious failures in a

hybrid environment, e.g., cloud, where crash failures may occur in the private cloud and

malicious failures may only occur in the public cloud. Note that a malicious failure can

encompass a crash failure but since the trust assumptions are low, we do not distinguish

between a crash or a malicious failure in the public cloud. This is indeed a realistic

assumption as the private cloud is hosted locally where the client resides, and hence under

their control, while the public cloud is managed externally by public cloud providers. We

call the nodes in the private cloud trusted and the nodes in the public cloud untrusted.

The model puts no restrictions on clients, except that their numbers must be finite,

however, safety and liveness require some constraints on the number of faulty servers.

7.2.2 Quorum and Network Size

We consider a cloud environment consisting of private and public clouds. The system

is an asynchronous distributed system containing a set of N (N=S+P ) replicas where S

of them are in a private and P of them are in a public cloud. The private cloud consists

of non-malicious (either non-faulty or crashed) nodes, whereas nodes in the public cloud

can be either non-faulty nodes or Byzantine nodes. The bound on the maximum number

of crashed nodes in the private cloud and malicious nodes in the public cloud is assumed

to be c and m respectively. We call the nodes in the private cloud trusted and the nodes

in the public cloud untrusted. All the clients and the replicas know which replicas are

trusted and which are untrusted.

Failures are divided into two disjoint classes: malicious and crash failures. In crash
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fault-tolerant models, e.g., Paxos [20], given that c nodes can crash, a request is replicated

to a quorum consisting of at least c+ 1 nodes to provide fault tolerance and to guarantee

that a value once decided will remain decided in spite of failures (safety). Furthermore,

any two quorums intersect on at least one node and as a result, 2c + 1 is the minimum

number of nodes that allows an asynchronous system to provide the safety property.

In the Byzantine failure models, e.g., PBFT [21], given thatm nodes can be malicious,

the quorum size should be at least 2m+ 1 to ensure that non-faulty replicas outnumber

the malicious ones, i.e., a request is replicated in enough non-faulty nodes to guarantee

safety in the presence of m failures. This implies that any two quorums intersect with

at least m + 1 nodes to ensure one correct node in the intersection, thus the minimum

network size is 3m+ 1 [55].

Likewise, in the hybrid model, to tolerate c crash andmmalicious failures, the quorum

size must include at least 2m+c+1 nodes [45]. This also guarantees that the intersection

of any two quorums includes at least m+1 nodes. Since the quorum size is 2m+c+1 and

the intersection of any two quorum Q and Q′ is m+ 1 nodes, |Q|+ |Q′| = N +m+ 1 =

4m+ 2c+ 2, thus, as shown in [45], the (minimum) network size, N , is

N = 3m+ 2c+ 1. (7.1)

Intuitively, if there are f failures (of any type) in a network, the network size has to

be at least f larger than the quorum size, as any network with smaller size could lead to a

deadlock situation where none of the f faulty servers are participating. Since, f = m+ c

and the quorum size Q is 2m + c + 1, the network size should be at least Q + f i.e.,

3m+ 2c+ 1.
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7.3 Public Cloud

The hybrid failure model presented in Section 7.2 can be used by enterprises that

own private clouds with a limited number of trusted servers which is insufficient to run

a fault-tolerant protocol. This model gives them the option of renting from untrusted

public clouds. In this section, we present two methods to identify the number of servers

an enterprise needs to rent from a public cloud.

A business that owns an insufficient number of trusted (crash-only) servers needs to

rent more servers from some untrusted public clouds to satisfy the minimum network

size constraints (3m + 2c + 1). Public clouds might provide some statistics that show

the percentage of faulty nodes in the cloud. If there is no information on the type of

failures, i.e. crash or malicious, within the public cloud, we consider all the faulty nodes

as malicious and We assume that the ratio of malicious nodes in public cloud (m) to the

size of public cloud (P) is known and is equal to α = m
P . Note that, we assume a uniform

distribution of malicious nodes in public cloud, i.e., in any set π ⊆ P , at most α × π

nodes are malicious.

Given the size of the private cloud S, the bound on the maximum number of crashed

nodes c in the private cloud, and the ratio α of malicious nodes (m) in the public cloud

to the size of the public cloud (P), the task is to identify the required number of nodes

P to be rented from the public cloud that allows satisfying the protocol constraints.

The total number of nodes in the network is N = S+P . Given our assumption of α,

we get m = αP . Replacing m in Equation 7.1, we get N = 3αP + 2c+ 1, which means,

(3α− 1)P = S − (2c+ 1), thus:

P =
⌈
S − (2c+ 1)

3α− 1

⌉
(7.2)
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As an example consider the situation that a private cloud has 2 servers where one of them

might be faulty, i.e., S = 2, and c = 1, and we want to rent servers from a public cloud

with α = 0.3. Here, P = 2−2−1
3∗0.3−1 = −1

−0.1 = 10, which means we need to rent 10 servers

from the public cloud to provide the safety constraints of the replication protocol.

In Equation 7.2, if the size of the private cloud (S) is equal or greater than 2c + 1,

then the private cloud does not need to rent any nodes and can run a crash fault-tolerant

protocol like Paxos [20] by itself. If there is no private cloud (S = 0) or all the nodes in

the private cloud are faulty (S = c), using the private cloud has no advantage and it is

more reasonable to rent all the required nodes from the public cloud and run a Byzantine

fault-tolerant protocol in the public cloud. However, if c < S < 2c + 1, renting nodes

from a public cloud and running SeeMoRe will result in better performance.

Similarly, if α ≥ 1/3, (i.e., more than one-third of the nodes in the public cloud are

malicious), then the public cloud cannot satisfy the network size constraint for Byzantine

fault-tolerance. Hence, an enterprise will need to rent servers if its private cloud size, S,

is between c+ 1 and 2c, and it can rent servers from public cloud providers that satisfy

α < 1/3. It should be noted that even if the size of the private cloud is equal or greater

than 2c + 1, and the public cloud does not satisfy the α<1/3 constraint, an enterprise

might still rent some replicas from the public cloud for load balancing purposes.

Note that Equation 7.2 can easily be extended to address the situation where the

public cloud provides information on the ratio of both malicious and crash nodes, i.e.,

the ratio of malicious nodes to the size of public cloud (α = m
P ) as well as the ratio of crash

nodes to the size of public cloud (β = c
P ) are known. In such a situation, Equation 7.2

can be rewritten as:

P = dS − (2c+ 1)
3α + 2β − 1 e (7.3)

This method, which identifies the required number of nodes from a public cloud,
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assumes a uniform distribution of faulty nodes in the public cloud. However, public

clouds might not guarantee a uniform distribution of α and alternatively specify the

maximum number of concurrent failures in a cluster of rental nodes explicitly. In such

a setting, even if an enterprise rents a portion of that cluster, there is no guarantee

that the percentage of the faulty nodes in that portion is equal to the percentage of the

faulty nodes in the entire cluster. For example, a public cloud might guarantee that

in a cluster of 10 nodes, at most two concurrent failures can occur. Nonetheless, if an

enterprise rents only two nodes from that cluster, both of them might fail at the same

time. Assuming that the number of concurrent malicious failures in a (cluster of nodes in

a) public cloud is given and equal to M , we would want to identify the required number

of nodes P to rent from such a public cloud. The total number of nodes in the network

is N = 3m + 2c + 1 = S + P and there is no guarantee on a uniform distribution of

malicious nodes in the public cloud, thus m = M . Hence, the required number of nodes

is P = (3M + 2c+ 1)− S.

Similar to the first method, if the public cloud distinguishes between different types

of failures and provides information on the number of both crash and malicious failures,

given as C and M , the required number of nodes from the public cloud is P = (3M +

2C + 2c+ 1)−S where c, similar as before, is the number of crash failures in the private

cloud.

Finally, it should be noted that both methods of identifying the public cloud size

can be generalized to multiple public clouds as well. In Such a settings, since different

public clouds might have different ratio (number) of faulty nodes, the equation might

have multiple solutions.
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7.4 SeeMoRe

In this section, we present SeeMoRe, a hybrid fault-tolerant protocol for a pub-

lic/private cloud environment that tolerates m malicious failures in the public and c

crash failures in the private cloud.

SeeMoRe is inspired by the known Byzantine fault-tolerant protocol PBFT [41] and

consists of agreement and view change routines where the agreement routine orders re-

quests for execution by the replicas, and the view change routine coordinates the election

of a new primary when the current primary is faulty.

Based on the impossibility (FLP) result [53], SeeMoRe, similar to most fault-tolerant

protocols, ensures the safety property without any synchrony assumption, however, a

weak synchrony assumption is needed to satisfy liveness.

We identify each replica using an integer in [0, ..., N−1] where replicas in the private

cloud, i.e., trusted replicas, have identifiers in [0, ..., S−1] and replicas in the public cloud,

i.e., untrusted replicas, are identified using integers in [S, ..., N−1].

In SeeMoRe, the replicas move through a succession of configurations called views

[94] [95]. In a view, one replica is the primary and the others are backups. Depending on

the mode, some backups are passive and do not participate in the agreement. Views are

numbered consecutively. All replicas are initially in view 0 and are aware of their current

view number.

We explain SeeMoRe in three different modes: Trusted Primary, Centralized Co-

ordination (TPCC), Trusted Primary, Decentralized Coordination (TPDC), and Untrus-

ted Primary, Decentralized Coordination (UPDC). In the first mode, TPCC, the primary

is always in the private cloud, thus the primary is non-malicious. The second mode,

TPDC, is used to reduce the load on the private cloud by assuming that the primary is

still in the private cloud, but instead of processing the client requests itself, depends on
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(a) The TPCC Mode (b) The TPDC Mode (c) The UPDC Mode

Figure 7.1: The normal case operation of the three modes of SeeMoRe

3m + 1 nodes in the public cloud to process the requests. This mode reduces the load

on the private cloud, because except for the primary, which does a single broadcast of

the client’s request, other replicas in the private cloud are passive and do not particip-

ate in any phases. Finally, in the third mode, UPDC, an untrusted node is chosen as

the primary and the protocol relies completely on the public cloud to process requests.

This mode is useful when we intentionally rely completely on the public cloud for two

purposes: (1) load balancing when all the nodes in the private cloud are heavily loaded,

or (2) reducing the delay when there is a large network distance between the private

and the public cloud and the latency of having one more phase of communication within

the public cloud is less than the latency of exchanging messages between the two clouds.

The agreement routine of the UPDC mode is the same as PBFT [41], however, the view

change routine can be more efficient.

In this section, we describe each of these three modes in detail, followed by a technique

to dynamically switch between the modes. We use π to show the current mode of the

protocol where π ∈ {1, 2, 3} and 1, 2, and 3 are the TPCC, TPDC, and UPDC modes

respectively. We also present a short discussion on the different modes of SeeMoRe and

compare them with some known relevant protocols.
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7.4.1 TPCC Mode: Trusted Primary, Centralized Coordina-

tion

Owning a private cloud gives SeeMoRe the chance to choose a trusted node as the

primary. When the primary is trusted, all the non-faulty backups receive correct messages

from the primary, which eliminates the need to multicast messages by replicas to realize

whether all the non-faulty ones receive the same message or not. Thus, we can reduce

one phase of communication and a large number of messages.

Figure 7.1(a) shows the normal case operation of the TPCC mode. Here, replicas 0

and 1 are trusted (S = 2) and the four other replicas, 2 to 5, are untrusted (P = 4).

In addition, one of the trusted replicas (1) is crashed (c = 1) and one of the untrusted

replicas (5) is malicious (m = 1). With a trusted primary, the total number of exchanged

messages is 3N .

The pseudo-code for the TPCC mode is presented in Algorithm 13. Although not

explicitly mentioned, every sent and received message is logged by the replicas. Each

replica is initialized with a set of variables as indicated in lines 1-4 of the algorithm. The

primary of view v is a replica p such that p = (v mod S). A client ς requests a state

machine operation op by sending a message 〈REQUEST, op, tsς , ς〉σς to replica p it believes

to be the primary. The client’s timestamp tsς is used to totally order the requests and

to ensure exactly-once semantics. The client also signs the message with signature σς for

authentication.

As indicated in lines 5-8, upon receiving a client request, the primary p first checks

if the signature and timestamp in the request are valid and simply discards the message

otherwise. The primary assigns a sequence number n to the request and multicasts a

signed 〈〈PREPARE, v, n, d〉σp , µ〉 message to all the replicas where v is the current view, µ

is the client’s request message, and d is the digest of µ. At the same time, the primary
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Algorithm 13 The Normal-Case Operation in the TPCC mode
1: init():
2: r := replicaId
3: v := viewNumber
4: if r = (v mod S) then isPrimary := true

5: upon receiving µ=〈REQUEST, op, tsς , ς〉σς and isPrimary:
6: if µ is valid then
7: assign sequence number n
8: send 〈〈PREPARE, v, n, d〉σp , µ〉 to all replicas

9: upon receiving 〈〈PREPARE, v, n, d〉σp , µ〉 from primary p:
10: if v is valid then
11: send 〈ACCEPT, v, n, d, r〉 to primary p

12: upon receiving 〈ACCEPT, v, n, d, r〉 from 2m+c replicas and isPrimary:
13: send 〈〈COMMIT, v, n, d〉σp , µ〉 to all replicas
14: execute operation op
15: send 〈REPLY, π, v, tsς , u〉σp to client ς with result u

appends the message to its log. The primary signs its message, because it might be used

by other replicas later in view changes as a proof of receiving the message.

As shown in lines 9-11 of the algorithm, upon receipt of 〈〈PREPARE, v, n, d〉σp , µ〉 from

primary p, replica r checks if view v is equal to the replica’s view. It then logs the

prepare message, and responds to the primary with 〈ACCEPT, v, n, d, r〉 message. Since

accept messages are sent only to the trusted primary and are not used later for any other

purposes, there is no need to sign these messages.

Upon collecting 2m+c valid acceptmessages from different replicas (plus itself becomes

2m+c+1) for the request µ in view v with sequence number n, as seen in lines 12-15, the

primary multicasts a commit message 〈〈COMMIT, v, n, d〉σp , µ〉 to all replicas. The primary

attaches the request µ to its commit message, so that if a replica has not received a prepare

message for that request, it can still execute the request. The primary also executes the

operation op and sends a reply message 〈REPLY, π, v, tsς , u〉σp to client ς. Mode number π

and view number v are sent to clients to enable them to track the current mode and view

and hence the current primary. It is important especially when a mode change or view

change occurs, replacing the primary.

Once a replica receives a valid commit message with correct view number from the
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primary, it executes the operation op, if all requests with lower sequence numbers than n

has been executed. This ensures that all non-malicious replicas execute requests in the

same order as required to provide the safety property. Note that even if the replica has

not received a prepare message for that request, as long as the view number is valid and

the message comes from the primary, the replica considers the request as committed.

When the client receives a reply message 〈REPLY, π, v, tsς , u〉σp with a valid signature

from primary p and with the same timestamp as the client’s request, it accepts u as the

result of the requested operation. If the client does not receive a reply from the primary

after a preset time, the client may suspect a crashed primary. The client then broadcasts

the same request to all replicas. A replica, upon receiving the client’s request, checks if

it has already executed the request; if so, it simply sends the reply message to the client.

The client waits for a reply from the private cloud or m+ 1 matching reply messages from

the public cloud before accepting the result. The primary will eventually be suspected

to be faulty by enough replicas to trigger a view change.

State Transfer. A fault-tolerant protocol must provide a way to checkpoint the state

of different replicas. It is especially required in an asynchronous system where even non-

faulty replicas can fall arbitrarily behind. Checkpointing also brings slow replicas up to

date so that they may execute more recent requests. Similar to [21], in our protocol,

checkpoints are generated periodically when a request sequence number is divisible by

some constant (checkpoint period).

Trusted primary p produces a checkpoint and multicasts a 〈CHECKPOINT, n, d〉σp message

to the other replicas, where n is the sequence number of the last executed request and d

is the digest of the state. A server considers a checkpoint to be stable when it receives

a checkpoint message for sequence number n signed by trusted primary p. We call this

message a checkpoint certificate, which proves that the replica’s state was correct until
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that request execution.

View Changes. The goal of the view change routine is to provide liveness by allowing

the system to make progress when a primary fails. It prevents replicas from waiting

indefinitely for requests to execute. A view change must guarantee that it will not

introduce any changes in a history that has been already completed at a correct client.

Most view change routines [95] [94] [21] [39] [104] [105] [106] are triggered by timeouts

and require enough non-faulty replicas to exchange view change messages. SeeMoRe uses

a similar technique in the TPCC mode. In such a situation, replicas detect the failure

and reach agreement to change the view from v to v′. The primary of new view v′ then

handles the uncommitted requests, and takes care of the new client requests.

View changes are triggered by timeout. When a replica receives a valid preparemessage

from the primary, it starts a timer that expires after some defined time τ . When the

backup receives a valid commit message, the timer is stopped, but if at that point the

backup is waiting for a commit message for some other request, it restarts the timer.

If the timer of a replica r for some prepare message expires, the backup suspects that

the primary is faulty, it stops accepting prepare and commit messages and multicasts a

〈VIEW-CHANGE, v+1, n, ξ,P , C〉 message to all replicas where n is the sequence number of

the last stable checkpoint known to r, ξ is the checkpoint certificate, and P and C are

two sets of received valid prepare (without the request message µ) and commit messages

for requests with a sequence number higher than n. When primary p′ of new view

v + 1 receives 2m + c valid view-change messages from different replicas, it multicasts a

〈NEW-VIEW, v + 1,P ′, C ′ 〉σp′ message to all replicas where P ′ and C ′ are two sets of prepare

and commit messages respectively which are constructed as follows.

Let l be the sequence number of the latest checkpoint, and h be the highest sequence

number of a prepare message in all the received P sets. For each sequence number n where
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l < n ≤ h, the primary does the following steps:

1) It checks all commit messages in set C of the view-change messages. If the primary

finds a commit message with a valid signature σp (p was the primary of view v) for request

µ, the primary adds a 〈〈COMMIT, v + 1, n, d〉σp′ , µ〉 to C ′

2) If no such commit message is found, the primary checks the prepare messages in P

sets:

• If the primary finds 2m+ c+ 1 valid prepare messages for n, it adds a 〈〈COMMIT, v+

1, n, d〉σp′ , µ〉 to C ′.

• Else, if it receives at least one valid prepare message for n, the primary adds a

〈〈PREPARE, v+1, n, d〉σp′ , µ〉 to P ′.

3) If none of the above situations occur, there is no valid request for n, so the primary

adds a 〈PREPARE, v+1, n, d〉σp′ , µ
∅〉 to P ′ where µ∅ is a special no-op command that is

transmitted by the protocol like other requests but leaves the state unchanged. The

third situation happens when no replica has received a prepare message from the previous

primary.

In contrast to PBFT, since the primary is trusted, it does not need to append all the

view-change messages in the new-view message which makes the new-view messages much

smaller. The primary inserts all the messages in P ′ and C ′ to its log. It also checks the

log to make sure its log contains the latest stable checkpoint. If not, the primary inserts

checkpoint messages for the checkpoint l and discards the earlier information from the

log.

Once a replica in view v receives a new-view message from the primary of view v + 1,

the replica logs all prepare and commit messages, updates its checkpoint in the same way

as the primary, and for each prepare message, sends an accept message to the primary.

Non-faulty replicas in view v will not accept a prepare message for a new view v′ > v

without having received a new-view message for v′.
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Correctness. Within a view, since the primary is trusted and it assigns sequence num-

bers to the requests, safety is ensured as long as the primary does not fail. Indeed, for

any two committed requests r1 and r2 with sequence numbers n1 and n2 respectively, if

D(r1) = D(r2), then n = n′.

If the primary fails a view change is executed. To ensure safety across views, the

primary waits for 2m + c accept messages (considering itself, a quorum of 2m + c + 1)

from different replicas to ensure that committed requests are totally ordered across views.

In fact, for any two committed requests r1 and r2 with sequence numbers n1 and n2, since

a quorum of 2m+ c+ 1 replicas commits r1 and a quorum of 2m+ c+ 1 replicas commits

r2, and these two quorums have at least m + 1 overlapping nodes, there should be at

least one non-faulty node that commits both r1 and r2 but this is not possible because

the node is not faulty. As a result, if D(r1) = D(r2), then n = n′. This guarantees that

in the event of primary failure, any new quorum of 2m+ c+ 1 replicas will have at least

m + 1 overlapping nodes that received a prepare message (and sent accept) for request µ

from the previous primary. Thus, there is at least one non-faulty node in that quorum

that helps the protocol to process request µ in the new view.

7.4.2 TPDC Mode: Trusted Primary, Decentralized Coordina-

tion

The TPDC mode is proposed to reduce the load on the private cloud. In this mode,

a trusted primary receives a request message, assigns a sequence number, and relies on

3m + 1 untrusted nodes (in the public cloud) to process the request. These 3m + 1

nodes are called proxies. Since a trusted primary assigns the sequence number to the

request before broadcasting, this reduces the scope of any malicious behaviour. Whereas

in PBFT, when replicas receive a message from the primary, they perform one round
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of communication to make sure all non-faulty replicas agree on a total order for the

requests within a view. However, here, since a trusted primary assigns the sequence

numbers, similar to the TPCC mode, there is no need for that phase.

Figure 7.1(b) shows the normal case operation of SeeMoRe with a trusted primary

(node 0). As before, two replicas are trusted (S = 2), four replicas are untrusted (P = 4),

c = 1, and m = 1. Since a trusted primary assigns sequence numbers, the protocol,

similar to Paxos, needs two phases to process requests. However, since the protocol

tolerates malicious failures, the number of messages in terms of the number of replicas,

similar to PBFT, is quadratic. Here, there are totally N + (3m + 1)2 + (3m + 1) ∗ N

messages exchanged where 3m+ 1 is the total number of proxies. In this example, since

m = 1, all replicas in the public cloud are proxies.

Algorithm 14 provides the pseudo-code for the TPDC mode. Lines 1-5 indicate the

initialization of state variables for the primary and proxies. A replica r in the public cloud

is a proxy in view v if r−(v mod P )∈[S, ..., S+3m]. Here since replicas are in the public

cloud, r is an integer in [S, ..., N−1]. The public cloud might have more than 3m+1

replicas, however, 3m+1 is enough to establish consensus and any additional replicas

may degrade the performance. The trusted primary of view v is chosen in the same way

as the first mode, i.e., p is the primary if p=(v mod S).

As shown in lines 6-9 of the algorithm, the primary, upon receiving request µ, validates

the timestamp and signature of µ, assigns a sequence number n, and multicasts signed

prepare message 〈〈PREPARE, v, n, d〉σp , µ〉 to all replicas.

When a proxy receives a prepare message from the primary, as indicated in lines 10-

12, it validates the view number, logs the message and sends a signed accept message

〈ACCEPT, v, n, d, r〉σr to all the other proxies. Here, in contrast to the first mode, the

proxy signs its message as a proof of message reception in case of a view change.

As described in lines 13-17 of the algorithm, upon receiving 2m + 1 matching accept
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Algorithm 14 The Normal-Case Operation in the TPDC mode
1: init():
2: r := replicaId
3: v := viewNumber
4: if r = (v mod S) then isPrimary := true
5: else if r − (v mod P ) ∈ [S, .., S + 3m] then isProxy := true

6: upon receiving µ = 〈REQUEST, op, tsς , ς〉σς and isPrimary:
7: if µ is valid then
8: assign sequence number n
9: send 〈〈PREPARE, v, n, d〉σp , µ〉 to all replicas

10: upon receiving 〈〈PREPARE, v, n, d〉σp , µ〉 from the primary p and isProxy:
11: if v is valid then
12: send 〈ACCEPT, v, n, d, r〉σr to all proxies

13: upon receiving 〈ACCEPT, v, n, d, r〉 from 2m+1 proxies:
14: send 〈COMMIT, v, n, d, r〉σr to all other proxies
15: send 〈INFORM, v, n, d, r〉σr to all private cloud nodes and non-proxy nodes in public cloud
16: execute operation op
17: send 〈REPLY, π, v, tsς , u〉σr to client ς with result u

messages (including its own message) with correct signatures, a proxy r multicasts a

commit message 〈COMMIT, v, n, d, r〉σr to the other proxies. Each proxy r also sends a

signed inform message 〈INFORM, v, n, r, d〉σr to all the nodes in the private cloud and all

non-proxy nodes in the public cloud. Non-proxy nodes wait for 2m + 1 valid matching

inform messages from different proxies which are matched by the prepare message that

they received from the primary before executing the request. If a proxy has executed all

requests with sequence numbers lower than n, it executes the request n and sends a reply

message 〈REPLY, π, v, tsς , u〉σr to the client.

Any other replica that receives m + 1 matching commit messages from the proxies

with valid signatures, correct message digest, and view numbers equal to its view number

considers the request as committed, and executes the request. Since all the replicas receive

prepare messages from the primary, they have access to the request and can execute it.

The client also waits for m+ 1 matching reply messages from different proxies before

accepting the result. If the client has not received a valid reply after a preset time, the

client multicasts the request to the proxies. The proxies re-send the result if the request

has already been processed and the client waits for m+ 1 matching reply messages from
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the proxies before accepting the result. Otherwise, similar to the first mode, eventually

the primary will be suspected to be faulty by enough replicas and a view change will be

triggered.

State Transfer. Checkpointing in the TPDC mode works in the same way as the TPCC

mode. Trusted primary p multicasts a signed checkpoint message to all other replicas

with the sequence number of the last executed request and the digest of the state. Upon

receiving a checkpoint message from the primary, a server considers that a checkpoint is

stable and logs the message which is used later as a checkpoint certificate.

View Changes. In the TPDC mode, similar to the TPCC mode, the primary of new

view handles the view change, however, only nodes in the public cloud send view-change

messages. The view-change messages 〈VIEW-CHANGE, v + 1, n, ξ,P〉 are sent to all the nodes

in the public cloud and the primary of the next view where ξ is the checkpoint certificate

for sequence number n, and P is the set of received valid prepare messages with a sequence

number higher than n.

Primary p′ of the new view waits for 2m+1 valid view-changemessages from the proxies

of the last active view, i.e., the view with a non-faulty primary, and multicasts a new-view

message 〈NEW-VIEW, v + 1,P ′ 〉σp′ to all the replicas where for each sequence number n

(between the latest checkpoint and the highest sequence number of a prepare message),

if there is any valid prepare message in set P of the received view-change messages, the

primary adds a 〈PREPARE, v+1, n, d〉σp′ to P ′. Else, there is no valid request for n, so similar

to the TPCC mode, the primary adds a no-op prepare message 〈PREPARE, v+1, n, d〉σp′ , µ
∅〉

to P ′.

Here, again, since the primary is trusted it does not need to include view-change

messages in the new-view message. The primary then inserts all the messages in P ′ to its

log and updates its checkpoint, if needed.
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Once a proxy of view v + 1 receives a new-view message from the primary of view

v + 1, the proxy logs all prepare messages, updates its checkpoint, and multicasts an

accept message to all the proxies for each prepare message in P ′. Other replicas also

receive the new-view message to be informed that the view is changed.

Correctness. Within a view, since the primary is trusted and it assigns sequence number

to the requests, similar to the TPCC mode, safety is ensured as long as the primary does

not fail. To ensure safety across views, since 3m + 1 nodes participate in the protocol,

to commit a message, 2m+ 1 matching accept messages are needed. In fact, for any two

committed requests r1 and r2 with sequence numbers n1 and n2, since a quorum of 3m+1

replicas commits r1 and a quorum of 3m+ 1 replicas commits r2, and these two quorums

have at least m+1 overlapping nodes, there is at least one non-faulty node that commits

both r1 and r2. But this is not possible because the replica is non-faulty. As a result, if

D(r1)=D(r2), then n=n′.

7.4.3 UPDCMode: Untrusted Primary, Decentralized Coordin-

ation

One characteristic of online services is the ever changing patterns in client requests.

While there might be periods of high traffic thus overloading some servers, at other

periods, the resources may be underutilized. Also, depending on server placements and

communication delays, enterprises may benefit from protocols that allow a subset of the

servers, e.g. only the public cloud, to handle certain client requests.

The third mode of the protocol, the UPDC mode, is presented to handle two different

situations. First, when the private cloud is heavily loaded and the public cloud can handle

the requests by itself for load balancing. Second, when there is a large network distance

between the private and the public cloud and the latency due to one more phase is less
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than the latency of exchanging messages between the two clouds. In both situations, the

nodes in the private cloud become passive replicas in the agreement routine and are only

informed about the committed messages. However, they still may participate in the view

change routine.

In the UPDC mode, SeeMoRe completely relies on 3m+ 1 nodes in the public cloud

to process the requests using PBFT [21]. The untrusted primary of view v in the UPDC

mode is replica p where p = (v mod P ) + S. Similar to the TPDC mode, since there

might be more than 3m+ 1 replicas in the public cloud, in each view, 3m+ 1 are chosen

as proxies. Node i is a proxy in view v if i− (v mod P ) ∈ [S, ..., S + 3m]. This ensures

that the primary is always a proxy. As indicated in Figure 7.1(c), similar to PBFT, the

UPDC mode processes the requests in three phases: pre-prepare, prepare, and commit. As

can be seen, the replicas in the private cloud have no participation in any phases and are

only informed about the committed requests. The total number of exchanged messages

in the UPDC mode is N + 2 ∗ (3m+ 1)2 + (1 + S) ∗ (3m+ 1).

The normal case operation of this mode is similar to PBFT [21] in terms of the

required number of phases (three) and the message passing pattern. Figure 7.1(c) show

the normal case operation of SeeMoRe in the Peacock mode. As can be seen, the replicas

in the private cloud have no participation in any phases and are only informed about the

committed request.

In particular, the algorithm works as follow. A client sends a request µ to an untrusted

primary. The primary then, validates the message, assigns a sequence number to the

request and multicasts a signed pre-prepare message along with the request to all the

replicas. The primary also, adds the digest of µ to the message which is used later by

the other replicas to validate the message.

Upon receiving a valid pre-prepare message from the primary, a proxy checks the

message and multicasts a signed prepare message to all other proxies. Nodes other than
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proxies only log the received pre-prepare message. When a proxy receives 2m + 1 valid

matching prepare messages from other proxies for a request, it multicasts a commit message

to all other proxies. As soon as a proxy has accepted 2m+1 commits (possibly including

its own) from different proxies that match the pre-prepare message for the request, it

executes the request and sends a reply including the result of the execution to the client.

The client waits form+1 valid replies from different proxies of that view before accepting

the result. When the request is committed, each proxy r also sends a signed inform

message
〈

INFORM, v, n, r, d
〉
σr

to all the nodes in the private cloud and all non-proxy nodes

in the public cloud. Other nodes also wait for m+ 1 valid matching inform messages from

different proxies before executing the request.

State Transfer. In the Peacock mode of the protocol, since the primary might be

a malicious node, we can not rely on it to produce the checkpoint, so all the replicas

participate in checkpointing. Once a replica r executes a request with a sequence number

n equal to the checkpoint period, it produces a checkpoint message
〈

CHECKPOINT, n, d, r
〉
σr

and multicasts the message to the other replicas. The replica has to sign the checkpoint

message because it will be used later in view changes. A server considers that a checkpoint

is stable when it receives 2m+ c+ 1 checkpoint messages for sequence number n with the

same digest d from different replicas (possibly including its own message). This set of

messages is called a checkpoint certificate, which proves that the replica’s state was correct

until that request execution.

View Changes. In the UPDC mode, we rely on a trusted node in the private cloud,

called transferer, to change the view. Indeed, instead of the primary of the new view,

a transferer changes the view. Replica t in the private cloud is the transferer of view v′

(changes the view from v to v′) if t = (v′ mod S). Choosing a transferer to change views

helps in minimizing the size of new-view messages and more importantly, reduces the
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delay between the request and its reply. Because even if there are consecutive malicious

primary nodes, since the transferer takes care of the uncommitted requests of view v, the

protocol does not carry the messages from one view to another. In contrast, in PBFT,

it is possible that a valid request in view v be committed in view v +m (when there are

m consecutive primaries). Other than the transferer, view change in the UPDC mode

is similar to PBFT. proxies multicast view-change messages consisting of the sequence

number n of the last stable checkpoint known to the proxy, the checkpoint certificate ξ

(a set of 2m + c + 1 checkpoint messages), and a set A consisting of 2m + 1 valid accept

messages for each request with a sequence number higher than n. When the transferer t

of new view v+1 receives 2m+1 valid view-change messages from different proxies of view

v, it multicasts a new-view message to all replicas in both public and private clouds. The

new-view message contains a set of prepare messages P ′ where for each sequence number

n, if the transferer finds a set of 2m + 1 valid accept message in set A of a received

view-change messages, it adds a prepare message
〈

PREPARE, v+1, n, d
〉
σp′

to P ′. Else, the

transferer adds a no-op prepare message
〈

PREPARE, v+1, n, d∅
〉
σp′

to P ′. Here, since the

transferer is trusted, it does not need to put all the view-change messages in the new-view

message.

The transferer then logs all the prepare messages that are sent and updates its check-

point if needed. proxies, on the other hand, log all the prepare messages, update their

checkpoints, and send an accept message to all other proxies for each prepare message.

Other nodes in the private and public cloud receive the new-view to be informed that the

view is changed. Once the transferer has changed the view and the new primary receives

the new-view message from the transferer, it starts to process new requests in view v+ 1.

In this mode, we might have consecutive views with malicious primaries. As a result,

the uncommitted requests in view v will be carried from one view to another. However,

since there are at most m malicious replicas, in the worst case scenario, after m view
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changes, a non-faulty replica becomes the primary.

Correctness. In the UPDC mode, the protocol ensures safety and liveness similar to

PBFT [21].

7.4.4 Dynamic Mode Switching

We now show how to dynamically switch between different modes of SeeMoRe. An

enterprise might prefer to use the TPCC mode of SeeMoRe, because it needs fewer phases

(in comparison to the UPDC mode) and less number of message exchanges (in comparison

to the TPDC or UPDC mode). However, if the private cloud becomes heavily loaded,

or at some point, a high percentage of requests are sent by clients that are far from the

private cloud and much closer to the public cloud, it might be beneficial to switch to the

TPDC or UPDC mode. SeeMoRe might also plan to switch back to the TPCC mode,

e.g., when the load on the private cloud is reduced. To change the mode, the protocol

also has to change the view, because the primary and the set of participant replicas might

be different in different modes. Therefore, to handle a mode change, the protocol first

performs a view change, and then the primary of the new view in the new mode starts

to process new requests.

For the switch to happen a trusted replica s multicasts a 〈MODE-CHANGE, v + 1, π′〉σs to

all the replicas where π′ is the new mode of the protocol, i.e., TPCC, TPDC, or UPDC.

When the protocol wants to switch to the TPCC or TPDC mode, replica s is the primary

of view v+1, and when it switches to the UPDC mode, replica s is the transferer of view

v + 1.
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Table 7.1: Comparison of fault-tolerant protocols
Protocol phases messages Receiving Network Quorum size
TPCC 2 O(n) 3m+2c+1 2m+c+1
TPDC 2 O(n2) 3m+1 2m+1
UPDC 3 O(n2) 3m+1 2m+1
Paxos 2 O(n) 2f+1 f+1
PBFT 3 O(n2) 3f+1 2f+1
UpRight 2 O(n2) 3m+2c+1 2m+c+1

7.4.5 Discussion

In this section, we compare the different modes of SeeMoRe with three well-known

protocols: the crash fault-tolerant protocol Paxos [20], the Byzantine fault-tolerant pro-

tocol PBFT [21], and the hybrid fault-tolerant protocol UpRight [45]. We consider (1)

the number of communication phases, (2) the number of message exchanges, (3) the re-

ceiving network size, and (4) the quorum size in this comparison. The results are reported

in Table 7.1.

The knowledge of where a crash or a malicious failure may occur and thus choosing a

trusted primary simply reduces one phase of communication. In fact, in PBFT, the prepare

phase is needed only to make sure that non-faulty replicas receive matching pre-prepare

messages from the primary. In contrast, in the TPCC and TPDC modes of SeeMoRe,

since the primary is a trusted node, replicas receive the same message from the primary,

thus there is no need for that phase of communication and the requests, similar to Paxos,

are processed in two phases (while in contrast to Paxos malicious failures can occur in

the public cloud). In comparison to Upright, although Upright processes the requests

in two phases, it utilizes the speculative execution technique introduced by Zyzzyva [39]

which becomes costly in the presence of failures.

The number of message exchanges in the TPCC mode is similar to Paxos and is linear

in terms of the total number of replicas. In the TPDC mode, the number of messages
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is quadratic, however it is still much less than PBFT (since it has one phase of n-to-n

communication instead of two). UPDC and Upright also have a quadratic number of

messages. The higher number of message exchanges results in higher latency especially

in networks with a large number of nodes.

The TPCC mode, similar to Upright, needs 3m + 2c + 1 nodes to receive a client

request. In the TPDC mode, however, only the trusted primary and 3m+ 1 nodes from

the public cloud participate in each phase. Since the UPDC mode utilizes PBFT, the

number of phases and message exchanges are the same as PBFT. However, since the

primary is in the public cloud, communicating with the private cloud has no advantage,

thus it proceeds with 3m+1 nodes instead of 3m+2c+1 as in the TPCC mode and

UpRight.

7.5 Experimental Evaluation

This section evaluates the performance of the SeeMoRe protocol. SeeMoRe is imple-

mented by adapting the BFT-SMaRt library [107]. We mainly reuse the communication

layer of BFT-SMaRt but implement our agreement and view change routines for the

different modes of the protocol. Note that the SeeMoRe implementation follows the op-

timized implementation of Paxos and PBFT from the original BFT-SMaRt codebase,

resulting in a similar implementation complexity.

In each experiment, we compare different modes of SeeMoRe with an asynchronous

crash fault-tolerant (CFT) protocol, an asynchronous Byzantine fault-tolerant (BFT)

protocol, and a simplified version of the asynchronous hybrid fault-tolerant protocol

UpRight [45] (we call it S-UpRight). For both CFT and BFT we use the original BFT-

SMaRt codebase (the optimized implementations of Paxos [20] and PBFT [21]). UpRight

consists of first, a hybrid model that tolerates both crash and malicious failures (in a
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network of size 3m + 2c + 1), and second, an optimistic protocol that combines a set of

techniques such as speculative execution [39] and separation of ordering and execution

[104]. S-UpRight includes the UpRight hybrid model since this part of the UpRight

is relevant to SeeMoRe, however, to ensure a fair comparison with other protocols and

since all other protocols use the pessimistic approach, we use a PBFT-like protocol (i.e.,

PBFT protocol with 3m+ 2c+ 1 nodes instead of 3f + 1 nodes) instead of the UpRight

protocol. Note that, both the speculative execution and separation of ordering from

execution techniques can be integrated into SeeMoRe as well.

The experiments were conducted on the Amazon EC2 platform. Each VM is Compute

Optimized c4.2xlarge instances with 8 vCPUs and 15GB RAM, Intel Xeon E5-2666 v3

processor clocked at 3.50 GHz. In the experiments (except for part C), both the public

and private clouds are located in the same data center i.e., AWS US West Region.

In each experiment, we vary the number of requests sent by all the clients per second

from 103 to 106 (by increasing the number of clients running on a single VM) and measure

the end-to-end throughput (x axis) and latency (y axis) of the system. Each client waits

for the reply before sending a subsequent request.

7.5.1 Fault-Tolerance Scalability

In the first set of experiments, we evaluate the performance of SeeMoRe with different

number of maximum possible failures (f). We consider the 0/0 micro-benchmark (both

request and reply payload sizes are close to 0 KB) and evaluate SeeMoRe, S-UpRight,

CFT, and BFT protocols. Since, f = c + m, we evaluate CFT and BFT to tolerate

c + m failures in each experiment. In all these scenarios and for SeeMoRe, we put 2c

nodes in the private and 3m + 1 nodes in the public cloud. The results are shown in

Fig. 7.2(a)-(d).
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(b) f = 4 (c = 2, m = 2),

N : SeeMoRe,

S-UpRight=11, CFT=9,

BFT=13
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(c) f = 4 (c = 1, m = 3),

N : SeeMoRe,

S-UpRight=12, CFT=9,

BFT=13
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(d) f = 4 (c = 3, m = 1),

N : SeeMoRe,

S-UpRight=10, CFT=9,

BFT=13

Figure 7.2: Performance with different number of failures

In the first scenario, when f = 2 (c = m = 1), the network size of the different

protocols is close to each other (BFT requires 7, SeeMoRe and S-UpRight require 6, and

CFT requires 5 nodes). As a result, as can be seen in Fig. 7.2(a), the performance of

the TPCC mode becomes very close to CFT (8% difference in their peak throughput).

Similarly, the performances of S-UpRight and BFT are close to each other (4% difference

in their peak throughput). Note that the UPDC mode shows better performance than

S-UpRight (still worst than the TPDC and TPCC modes) because in the UPDC mode,

SeeMoRe relies only on the public cloud which consists of only 4 nodes. In addition,

while in comparison to the TPCC mode, both the UPDC and TPDC modes need less

number of nodes, the TPCC mode has better performance because it needs less number

of phases and message exchanges.

In the next three scenarios, the network tolerates the same number of failures (f = 4),

as a result, the performance of BFT and CFT does not change from one scenario to

another. However, since the number of crash and malicious failures are varied, the

network size of SeeMoRe and S-UpRight changes. Hence, they show different performance

in different scenarios.

When both m and c increase to 2 (Fig. 7.2(b)), The TPDC mode shows similar
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performance to the TPCC mode. This is the result of the trade-off between the quorum

size and the message complexity; Only 5 nodes (2m+ 1) participate in the TPDC mode

which requires O(n2) number of messages whereas the quorum size of the TPCC mode is

7 (2m+c+1) but it requires O(n) messages (see Table 7.1). In addition, since SeeMoRe

in the UPDC mode communicates with only 7 nodes, it shows much better performance

than BFT (24% more throughput) and even S-UpRight (18% more throughput).

By increasing the number of tolerated malicious failures to 3 while reducing the

number of tolerated crash failures back to 1 (Fig. 7.2(c)), the network size of SeeMoRe

becomes closer to the BFT network size. As a result, CFT shows better performance

(12% difference in its peak throughput) than the TPCC mode and also the performance

of the UPDC and TPDC modes, which communicate with 10 nodes in the public cloud,

becomes closer to S-UpRight and BFT (with 12 and 13 nodes).

On the other hand, increasing the number of tolerated crash failures to 3 while main-

taining the number of malicious failures to 1 (Fig. 7.2(d)) results in a network size close

to CFT. In this setting, the performance of the TPDC and UPDC modes become better

than both the TPCC mode and CFT. This is expected because the TPDC mode pro-

cesses a request in the public cloud which needs only 4 replicas (since m = 1) but with

the same number of phases as the TPCC mode. Similarly, although the UPDC mode

processes requests in three phases, since it needs fewer servers to proceed, its performance

is better than the TPCC mode and CFT. In fact, since the number of malicious failures

in this scenario is the same as the first scenario, both the TPDC and UPDC modes show

the same performance as the first scenario (Fig. 7.2(a)).
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Figure 7.3: Performance with different payload size (c = m = 1)

7.5.2 Changing Payload Size

We now repeat the base case scenario (c=m=1) of the previous experiments (Fig. 7.2(a))

using two micro-benchmarks 0/4, 4/0 to show how request and reply sizes affect the per-

formance of different protocol. Figs. 7.3(a) and 7.3(b) show the throughput and latency

for 0/4 and 4/0 micro-benchmarks respectively. Since the TPCC and TPDC modes need

less communication phases and message exchanges, their performance is close to CFT,

e.g., for latency equal to 4 ms, the throughput of the TPCC and TPDC modes is 10%

and 17% less than CFT respectively. Similarly, the UPDC mode and S-UpRight are

close to BFT, e.g., with 4 ms latency, the throughput of the UPDC mode is the same as

BFT. Note that due to the overhead of request transmission, the request size affects the

performance of all protocols more than the reply size.

7.5.3 Scalability Across Multiple Data Centers

We next repeat the base case scenario (c=m=1) of the first experiment (Fig. 7.2(a)),

however, place the private and public clouds on different data centers, i.e., California and

Oregon, with RTT = 22ms and place clients first close to the private cloud (Fig. 7.4(a))

and then close to the public cloud (Fig. 7.4(b)). In this set of experiments, we assume

that the primary node of CFT, BFT, and S-UpRight protocols is in the private cloud.

Fig. 7.4(a) clearly shows the advantages of SeeMoRe as the clients are close to the
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Figure 7.4: Performance with multiple data centers (c = m = 1)

private cloud. In this case all requests in all three modes of SeeMoRe as well as CFT only

require two phases of cross-cloud communication (one round trip). BFT and S-UpRight,

on the other hand, require three phases of communication between the clouds which

results in significantly higher latency.

Fig. 7.4(b) clearly demonstrates the significant advantages of the UPDC mode, where

the clients are close to the public cloud and hence all requests are entirely processed in

the public cloud without any cross-cloud communication. TPDC requires two cross-

cloud phases of communications (clients to the primary and the primary to the public

cloud) whereas TPCC as well as CFT process the requests with three phases of cross-

cloud communication. Finally, BFT and S-UpRight process requests with higher latency

because of the four required phases of cross-cloud communication (including request

messages coming from clients to the primary).

Comparing the results of multi data centers experiments and the experiments with

more number of nodes shows that latency within a quorum of recipients (across data

centers) is much more important than the quorum size.
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Figure 7.5: Performance during view change

7.5.4 Performance During View Change

Finally, we evaluate the impact of view change on the performance of SeeMoRe.

We trigger a primary failure during the processing of the last request before the end

of a checkpoint period to evaluate the worst-case overhead that can be caused by a

failure. To simulate failures, the process of the faulty nodes has been terminated. We

consider the base case scenario (c = m = 1) with a total network of N = 6 nodes (for

SeeMoRe), where 2 nodes are in the private cloud and 4 in the public cloud (both clouds

are placed in the same data center). The experiment was run with micro-benchmark 0/0

and with a checkpoint period of 10000 request i.e., a checkpoint is taken every 10000

requests. Fig. 7.5 shows the behavior of SeeMoRe, S-UpRight and BFT where the y-axis

is throughput and the x-axis is a timeline with a failure injected around time 30. As can be

seen, the protocols behave as expected until the failure is triggered. This failure and the

view change routine cause the protocols to be temporarily out of service (in particular, 15,

20, and 24 millisecond in the TPCC, TPDC, and UPDC modes respectively). However,

when the view change is complete, the throughput increases to the original level for each

protocol. As can be seen, BFT takes twice as much time as the TPCC mode to revive and

continue to process the requests. The UPDC mode also recovers faster than S-UpRight

and BFT due to its use of transferers. Note that since mode switching is performed

in the same way as view change, the results of this experiment are applicable to mode
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switching as well.

Overall, the evaluation results for a network that tolerates f = m + c failures where

m and c are the number of malicious and crash failures respectively, can be summarized

as follow. First, when c is equal or less than m (for small c and m), the performance

of SeeMoRe in the TPCC mode is very close to Paxos due to the required number of

phases and message exchanges in the TPCC mode. In addition, when c is larger than m,

SeeMoRe in both TPDC and UPDC modes demonstrates better performance than the

TPCC mode and Paxos since in both modes, SeeMoRe relies completely on the public

cloud to process the requests. Furthermore, if the clients are close to the public cloud,

UPDC processes the requests with significantly lower latency. Moreover, all three modes

of SeeMoRe show better performance than the hybrid protocol S-UpRight since SeeMoRe

is aware of where different types of faults may occur. Finally, all three modes also have

better performance than BFT since they reduce the number of communication phases,

messages exchanged and required nodes.

7.6 Summary

In this chapter, we proposed SeeMoRe, a hybrid state machine replication protocol

to tolerate both crash and malicious failures in a public/private cloud environment.

SeeMoRe is targeted to be used by smaller enterprises that own a small set of serv-

ers and intend to rent servers from public cloud providers. Such an enterprise can highly

benefit from SeeMoRe, as the protocol distinguishes between crash failures that could

occur within the trusted private cloud and malicious failures that could only occur in

the public cloud. SeeMoRe can execute in any one of three modes, TPCC, TPDC, and

UPDC, and can dynamically switch among these modes. The TPCC and TPDC modes

of SeeMoRe require less communication phases and message exchanges while the UPDC
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mode is useful for a heavily loaded private cloud or when there is a large network dis-

tance between the two clouds. Our evaluations show that the performance of TPCC and

TPDC modes is close to Paxos while in contrast to Paxos, which only tolerates crash

failures, malicious failures can occur in both TPCC and TPDC. In the UPDC mode,

since the primary is in the public cloud, its performance is similar to PBFT with m

failures. However, in comparison to UpRight, which requires quorums of size 2m+ c+ 1,

UPDC needs quorums of size 2m+ 1, and hence is more efficient.
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Related Work

8.1 Performance and Confidentiality

A permissioned blockchain consists of a set of known, identified nodes that might

not fully trust each other. In permissioned blockchains, traditional consensus protocols

can be used to order the requests [72]. The Order-execute paradigm is widely used

in different permissioned blockchains. Existing permissioned blockchains that employ

the order-execute paradigm, differ mainly in their ordering routines. The ordering pro-

tocol of Tendermint [33] differs from the original PBFT in two ways, first, only a sub-

set of nodes participate in the consensus protocol and second, the leader is changed

after the construction of every block (leader rotation). Quorum [31] as an Ethereum-

based [46] permissioned blockchain introduces a consensus protocol based on Raft [108]:

a well-known crash fault-tolerant protocol. Quorum, similar to CAPER, supports pub-

lic and private transactions, however, in Quorum, both public and private transactions

are ordered using the same consensus protocol resulting in low throughput. Quorum

also uses the Zero-knowledge proof technique to ensure confidentiality of private trans-

actions. Chain Core [109], Multichain [32], Hyperledger Iroha [110], Corda [111], and
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ResilientDB [112], are some other prominent permissioned blockchains that follow the

order-execute paradigm. Hyperledger Fabric [27] is a permissioned blockchain that em-

ploys the execute-order-validate (XOV) paradigm introduced by Eve [73]. Fabric lever-

ages parallelism by executing the transactions of different enterprises simultaneously and

presents modular design, pluggable fault-tolerant protocol, policy-based endorsement,

and non-deterministic execution for the first time in the context of permissioned block-

chains. In a recent release, Fabric also utilizes the Raft protocol [108] for its ordering

service where a leader node is elected (per channel) and replicates messages to the follow-

ers. Raft mainly helps organizations to have their own ordering nodes, participating in

the ordering service, which leads to a more decentralized system. Several recent studies

attempt to improve the performance of Fabric [113–119]. ParBlockchain utilizes some

of the Fabric properties such as modular design and pluggable fault-tolerant protocol.

However, ParBlockchain is an order-execute paradigm. In addition, while Fabric checks

the read-write conflict in the last phase (validation) which might result in transaction

abort, ParBlockchain ensures correct results by generating dependency graphs in the first

phase (ordering). As a result, workloads with contention benefit most from ParBlock-

chain. Fabric also needs four phases of communications other than the ordering protocol

(clients to endorsers, endorsers to clients, clients to orderers, and orderers to peers) while

ParBlockchain requires three phases (clients to orderers, orderers to executors, execut-

ors to peers) resulting in less latency. It should be noted that since execution is the

first phase of Fabric, in comparison to ParBlockchain, its performance is less affected

by the inconsistencies between the execution results (arise from malicious executors or

non-deterministic execution). CAPER also utilizes some of the Fabric properties such as

modular design and pluggable protocol. In addition, and in contrast to single-channel

Fabric, CAPER constructs blocks simultaneously and ensures the confidentiality of both

transaction data and ledger, whereas Fabric ensures only transaction data confidentiality
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using Private Data Collections [29]. Private Data Collections manage confidential data

that two or more entities want to keep private from other entities. Fabric also addresses

atomic cross-chain swap between permissioned blockchains that are deployed on different

channels by either assuming the existence of a trusted channel among the participants or

using an atomic commit protocol [28] [27]. CAPER is different from Fabric in two ways:

First, cross-chain communications follow the service level agreements and are visible to

everyone, and second, CAPER does not need a trusted channel among the participants.

Enterprises deployed on the same or different blockchains need to communicate with

each other in order to exchange assets or information. Atomic cross-chain swaps [24] are

used for trading assets on two unrelated blockchains. Atomic swaps use hash-lock and

time-lock mechanisms to either perform all or none of a cryptographically linked set of

transactions. AC3WN [25] is another atomic cross-chain commitment protocol where

an open permissionless network of witnesses is used to guarantee that conflicting events

could never simultaneously occur and either all smart contracts in an atomic cross-chain

transaction are redeemed or all of them are refunded. Interledger protocols (ILPV [26])

which are presented by the World Wide Web Consortium (W3C) use a generalization of

atomic swaps and enable secure transfers between two blockchain ledgers using escrow

transactions. Since the redemption of an escrow transaction needs fulfillment of all

the terms of an agreement, the transfer is atomic. Lightning network [120] [34] also

generalizes atomic swap to transfer assets between two different clients via a network

of micro-payment channels. Blocknet [121], BTC [122], Xclaim [123], POA Bridge [124]

(designed specifically for Ethereum), Wanchain [125], and Fusion [126] are some other

blockchain systems that allow users to transfer assets between two chains.

Using sidechains is proposed in [127] to transfer assets from a main blockchain to the

sidechain(s) and execute some transactions in the sidechain(s). Sidechains can reduce

confirmation time, support more functionality than the main blockchain, and reduce
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the transaction cost. In sidechains, a set of known nodes, called functionaries, are re-

sponsible for moving the assets back from the sidechain to the main chain. Liquid [128],

Plasma [129], Sidechains [130], and RSK [131] are some other blockchain systems that

use sidechains. Polkadot [132] and Cosmos [133] also construct a main chain which is

used by a set of (side) blockchains, i.e., parachains in Polkadot and zones in Cosmos, to

exchange value or information. Both Polkadot and Cosmos rely on Byzantine consensus

protocols in both sender and receiver sides.

The DAG structure is mainly used to increase the throughput of the system by exploit-

ing the parallel construction of blocks resulting in the parallel execution of transactions

in different blocks. In such a structure, the blocks (transactions) that are independent

of each other can be appended to the ledger simultaneously. Since in a DAG structure,

the blocks are constructed in parallel, existing permissionless blockchain systems present

different techniques to prevent (resolve) the double spending problem. Byteball [134]

and Iota [135] are two DAG structured permissionless blockchains. In Byteball, a set of

privileged users, called witnesses, determines a total order on the DAG to prevent double

spending, whereas, in Iota [135], the number of descendant transactions is used to commit

a transaction and abort the other one. In Iota, the blockchain, called Tangle, grows in

more than one direction. Indeed, once a user issues a transaction, the user must pick two

existing transactions and approve them (results in adding edges from the new transaction

to the existing ones). The user will also solve a small PoW puzzle similar to Bitcoin.

Hashgraph [136] is another DAG structured permissioned blockchain that combines a vot-

ing algorithm with a gossip protocol to achieve consensus among nodes. In Hashgraph

nodes submit transactions (events) and gossip about transactions by randomly choosing

other nodes (neighbors). Each transaction in Hashgraph includes the hash of the previ-

ous transactions of both sender and receiver. This process continues until convergence

when all nodes become aware of all transactions. Hashgraph, in contrast to CAPER,
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does not distinguish between internal and cross-enterprise transactions which results in

lower performance as well as confidentiality issues. Vegvisir [137], which is designed for

IoT environments, Ghost [138], Inclusive protocol [139], DagCoin [140], Phantom [141],

Spectre [142], and MeshCash [143], are some other DAG structured blockchain systems.

In CAPER, in contrast to all these blockchains, internal transactions of different enter-

prises are added independent of each others and only cross-enterprise transactions need

a global consensus. As a result, first, the double spending problem never occurs, and

second, internal transactions can be processed simultaneously, which results in lower

latency and higher throughput. In SharPer and in contrast to all these blockchains,

since intra-shard transactions of different clusters access disjoint data shards, they can

be processed simultaneously which results in lower latency and higher throughput.

8.2 Verifiability

Enhancing privacy in the context of crowdworking has been addressed by several

recent studies with various kinds of guarantees, from differential privacy [144, 145] to

cryptography [146–148], mostly focusing on spatial crowdsourcing and the use of geo-

location to perform assignment. In ZebraLancer [30] and ZKCrowd [149], blockchains

and consensus protocols are also used to add transparency guarantees on top of privacy.

However, all these works consider a single-platform context, with no external constraints,

preventing many real-life legislation to apply. To the best of our knowledge, SEPAR is

the first to support a multi-platform crowdworking context, with external constraints,

transparency, and privacy expectations at the same time.

Providing anonymity as well as untraceability has been addressed by ZCash [150]

which is restricted to the management of crypto-currency issues. Hawk and Raziel [151,

152] manage wider issues, and include general smart contracts. However, these solutions
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do not incorporate infrastructures with multiple platforms, nor implement constraints

(let alone anonymized ones). Finally, Solidus [153] proposes to privately manage a multi-

platform banking system, with individual banks managing their own clients, while allow-

ing cross-platform transactions. While Solidus may be sufficient for banking systems, it

does not consider users that subscribe to multiple platforms, nor envisions global profiles

or constraints.

8.3 Scalability

Scalability is the ability of a system to process an increasing number of transactions

by adding resources to the system. While the Visa payment service is able to handle

on average 2000 transactions per second, Bitcoin and Ethereum can handle at most 7

and 15 transactions per second respectively. To address the scalability issue different

techniques have been proposed. Off-chain (layer two) solutions, which are built on top

of the main-chain, do not increase the throughput of the protocol, rather move a portion

of the transactions off the chain. For example, in Lightning Networks [78] [34], assets

are transferred between two different clients via a network of micro-payment channels

instead of the main blockchain. While off-chain solutions increase the throughput of the

system, they suffer from security issues, e.g., denial-of-service attacks.

In general security, decentralization, and performance are known as the scalability

trilemma in blockchain systems. Security requires resistance to threats such as the denial-

of-service attacks, 51% attack, or Sybil attacks; decentralization means no single entity

can hijack the chain, censor it, or introduce changes in governance; and performance is

the ability to handle thousands of transactions per second.

On-chain (layer one) solutions, on the other hand, increase the throughput of the

main chain. Layer one solutions are categorized into vertical and horizontal techniques.
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In vertical scalability, more power is added to each node to perform more tasks. One

trivial solution is to increase the block size which results in processing more transactions

at once, thus enhancing performance. Increasing the block size, however, increases both

the propagation time and the verification time of the block which makes operating full

nodes more expensive, and this in turn could cause less decentralization in the network.

Horizontal techniques, on the other hand, increase the number of nodes in the network

to process more transactions. However, most blockchain systems require every transac-

tion to be processed by every single node in the network. As a result, increasing the

number of nodes, does not necessarily enhance the performance of the system.

Another horizontal solution to enhance the scalability of blockchain systems is shard-

ing. Partitioning the data into multiple shards that are maintained by different subsets

of nodes is a proven approach to enhance the scalability of databases [35]. Data sharding

techniques are commonly used in globally distributed databases such as H-store [154],

Calvin [60], Spanner [35], Scatter [155], Google’s Megastore [156], Amazon’s Dynamo [36],

Facebook’s Tao [37], and E-store [61]. In such systems servers (nodes) are assumed to be

crash-only and a coordinator node is used to process crash-shard transactions. Agrawal

et al. [157] categorize sharded, replicated database systems into replicated object sys-

tems, e.g., Spanner [35] and replicated transaction systems, e.g., replicated commit pro-

tocol [158]. SharPer is inspired by distributed database systems and has applied the

sharding technique to the blockchain domain. Furthermore, SharPer proposes consensus

protocol for network consisting of Byzantine nodes and introduces a flattened cross-shard

consensus protocol instead of a coordinator-based one.

Sharding techniques have been used in both permissionless, e.g., Elastico [81], Om-

niLedger [82], and Rapidchain [83], and permissioned blockchain systems, e.g., multi-

channel Fabric [28], AHL [86], Cosmos [84], and RSCoin [85] to improve scalability. In

Elastico [81], nodes randomly join different committees by solving some PoW puzzle.
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Committees, then, run PBFT [21] individually to reach consensus on the order of intra-

shard transactions. Finally, a leader committee verifies the transactions that are ordered

by committees and creates a global block. In Elastico, the blockchain ledger is main-

tained by all nodes and cross-shard transactions are not supported. In addition, while

running PBFT among hundreds of nodes decreases the performance of the protocol, re-

ducing the number of nodes within each shard increases the failure probability [82]. The

considerable overhead and latency in re-configuring committees, which is needed in every

epoch, and the possibility to bias the randomness, which might result in compromising

the committee selection process by malicious nodes, are some of the other drawbacks of

Elastico [83].

OmniLedger [82] attempts to fix some of the drawbacks of Elastico by introducing

a more secure method to assign nodes to committees and proposing an atomic pro-

tocol for cross-shard transactions. The intra-shard consensus protocol of OmniLedger

uses a variant of ByzCoin [159] and assumes partially-synchronous channels to achieve

fast consensus. However, it relies on a client to participate actively and coordinate a

lock/unlock protocol to process cross-shard transactions which, as shown in [86], might

result in blocking issues. Furthermore, as mentioned in [83], OmniLedger is vulnerable

to denial-of-service (DoS) attacks. In multi-channel Fabric [27] [28], as explained in Sec-

tion 4.1, processing cross-shard transactions, in contrast to SharPer, requires either the

existence of a trusted channel among the participants or an atomic commit protocol (in-

spired by two-phase commit) [28]. Similarly, in Cosmos [84], interacting chains in any

Inter-Blockchain Communication must be aware of the state of each other which requires

establishing a bidirectional trusted channel between two blockchains.

AHL [86] employs a trusted hardware (the technique that is presented in [87–89])

to restrict the malicious behavior of nodes which results in committees of 2f + 1 nodes

(instead of 3f+1). The system also relies on an extra set of nodes, called a reference com-
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mittee, to process cross-shard transactions using the classic two-phase commit (2PC) and

two-phase locking (2PL) protocols where the reference committee plays the coordinator

role. The system, however, suffers from several drawbacks. First, running fault-tolerant

protocols among 80 nodes results in high latency. Second, the protocol requires an ex-

tra set of nodes to form the reference committee resulting in significant communication

overhead between nodes and the reference committee. Finally, since a single reference

committee processes cross-shard transactions, the protocol is not able to process cross-

shard transactions with non-overlapping clusters in parallel. In SharPer and in contrast

to AHL, there is no need for an extra set of nodes to process cross-application trans-

actions. In addition, cross-shard transactions are ordered in only three communication

phases. Furthermore, cross-shard transactions with non-overlapping committees can be

processed simultaneously. Note that since intra-shard consensus is pluggable, the trusted

hardware technique can be employed to decrease the number of required nodes within

each cluster.

8.4 Fault Tolerance

Many practical large-scale data management systems such as ISIS [160], Eternal [161],

Google’s Spanner [35], Amazon’s Dynamo [36], and Facebook’s Tao [37], use consensus

protocols to provide fault tolerance. Consensus algorithms are a form of State Machine

Replication [50]. SMR regulates the deterministic execution of client requests on multiple

copies of a server, called replicas, such that every non-faulty replica must execute every

request in the same order [51] [50].

Several approaches [51] [20] [108] generalize SMR to support crash failures among

which Paxos [20] is the most well-known. Paxos guarantees safety in an asynchronous

network using 2f+1 processors despite the simultaneous crash failure of any f processors.
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Many protocols are proposed to either reduce the number of phases, e.g., Multi-Paxos

which assumes the leader is relatively stable or Fast Paxos [90] and Brasileiro et al. [91]

which add f more replicas, or reduce the number of replicas, e.g., Cheap Paxos [162]

which tolerates f failures with f+1 active and f passive processors.

Byzantine fault tolerance refers to servers that behave arbitrarily after the seminal

work by Lamport, et al. [163]. Early Byzantine fault-tolerant protocols (SecureRing [164]

and Rampart [165]) were synchronous where a round based algorithm is developed to

exclude faulty nodes from the group. Such systems are vulnerable to denial-of-service

attack where an attacker may compromise the safety of service by delaying non-faulty

nodes or the communication between them until they are tagged as faulty and excluded

from the group.

Practical Byzantine fault tolerance protocol (PBFT) [21] is one of the first and the

most known state machine replication protocol to deal with Byzantine failures in an

asynchronous network. Although practical, the cost of implementing PBFT is quite

high, requiring at least 3f +1 replicas, 3 communication phases, and a quadratic number

of messages in terms of the number of replicas. Thus, numerous approaches have been

proposed to explore a spectrum of trade-offs between the number of phases/messages

(latency), number of processors, the activity level of participants (replicas and clients),

and types of failures.

FaB [38] and Bosco [166] reduce the communication phases by adding more rep-

licas. Speculative protocols, e.g., Zyzzyva [39], HQ [106], and Q/U [167], also reduce

the communication by executing requests without running any agreement between rep-

licas and optimistically rely on clients to detect inconsistencies between replicas. To

reduce the number of replicas, some approaches rely on a trusted component (a counter

in A2M-PBFT-EA [87], MinBFT [88], and, EBAWA [89], a hypervisor [168], or a whole

operating-system instance [169]) that prevents a faulty replica from sending conflicting
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(i.e., asymmetric) messages to different replicas without being detected. SBFT [170]

and Hotstuff [171] attain linear communication overhead by increasing the number of

communication phases and using advanced encryption techniques, e.g., signature ag-

gregation [172]. Finally, MultiBFT [173] uses multiple parallel primary nodes to par-

allelize transaction processing and hence improve performance. In addition, optimistic

approaches reduce the required number of replicas during the normal-case operation by

either utilizing the Cheap Paxos [162] solution and keeping f replicas in a passive mode

(REPBFT [174]), or by separating agreement from execution [104]. In ZZ [40] both

passive replicas and separating agreement from execution are employed. Note that all

these approaches need 3f + 1 replicas upon occurrence of failures. REMINBFT [174]

and CheapBFT [41] use a trusted component to reduce the network size to 2f + 1 and

then keep f of those replicas passive during the normal-case operation. In contrast to

optimistic approaches, robust protocols (Prime [175], Aardvark [176], Spinning [177],

RBFT [178]) consider the system to be under attack by a very strong adversary and try

to enhance the performance of the protocol during periods of failure.

Consensus with multiple failure modes were initially addressed in synchronous proto-

cols [179] [180] [181] [182]. Recent protocols such as VFT [183], XFT [43], and SBFT [170]

have focused on partial synchrony, a technique that defines a threshold on the number

of slow (partitioned) processes. VFT is similar to PBFT regarding the number of phases

and massage exchanges, however, it optimistically assumes that an adversary cannot

fully control the malicious nodes and as a result, reduces the phases of communication

and message exchanges. SBFT also reduces the number of message exchanges by assum-

ing the adversary controls only crash failures. Scrooge [44], as an asynchronous hybrid

protocol, uses a speculative technique to reduce the latency. UpRight [45], which is the

closest protocol to SeeMoRe, requires 3m+2c+1 nodes as the minimum network size from

which 2m + c + 1 are required to participate in each communication quorum. UpRight
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also utilizes the agreement routines of PBFT [21], Aardvark [176], and Zyzzyva [39] and,

similar to [104], separates agreement from execution. However, UpRight is not aware

which nodes may crash and which may be malicious, therefore, does not take advant-

age of this knowledge by placing particular processes executing specific protocol roles on

crash-only or Byzantine sites. On the other hand, SeeMoRe knows where the crash or

malicious faults may occur, thus, it either reduces the number of communication phases

and message exchanges by placing the primary in the crash-only private cloud, or de-

creases the number of required nodes by placing the primary in the untrusted public

cloud.

Storing data on multiple clouds to enhance fault tolerance is addressed for both crash

(ICStore [102], SPANStore [101]) and malicious (DepSky [184], SCFS [185]) failures.

DAPCC [186] solves the consensus in a dual failure mode assuming a synchronous envir-

onment. Hypris [98] reduces the number of required servers to 2f + 1 (f + 1 when the

system is synchronous and no faults happen) by keeping the metadata in a private cloud

assumed to be partially synchronous.
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Conclusion

9.1 Summary and Concluding Remarks

Large-Scale Data Management systems have increasingly utilized permissioned block-

chains over the past several years. The unique features of blockchain such as transparency,

provenance, and authenticity, are appealing to a wide range of large-scale data manage-

ment applications in permissioned settings. However, these applications deal with five

main challenges, confidentiality, verifiability, performance, scalability, and fault tolerance

that need to be supported by blockchain systems. While confidentiality and verifiability

are needed in multi-application systems (to preserve the confidentiality of application

data and to enable verifiability of the transactions of an application for other applica-

tions without revealing any information), performance, scalability, and fault tolerance

are required in systems with either a single application or multiple applications. In this

dessertation, we propose different techniques to address these challenges. A permissioned

blockchain system can utilize any of these techniques to address its challenges.
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9.1.1 Large-Scale Data Management Challenges

Confidentiality. Confidentiality of data is required in distributed applications consist-

ing of a set of collaborating enterprises. In such applications, enterprises collaborate with

each other following Service Level Agreements (SLAs) to provide different services. While

collaboration between enterprises, e.g., cross-enterprise transactions, should be visible to

all enterprise, the internal data of each enterprise, e.g, internal transactions, might be

confidential. In this dissertation, we proposed CAPER, a permissioned blockchain system

that supports both internal and cross-enterprise transactions of collaborating enterprises.

In CAPER, the blockchain ledger is not maintained by any node and each enterprise

maintains its own local view of the ledger including its internal and all cross-enterprise

transactions. CAPER also distinguishes between trust at the node level and trust at the

enterprise level and allows an enterprise to behave maliciously for its benefit while its

nodes are non-malicious. Furthermore, CAPER introduces three consensus protocols to

globally order cross-enterprise transactions: using a separate set of orderers, hierarchical

consensus, and one-level consensus.

Verifiability. Verifiability deals with checking the satisfaction of predefined global con-

straints on the entire system in a privacy-preserving manner in many multi-application

systems, participants need to verify all or some of the transactions that are initiated

by other applications (platforms/enterprises) to ensure satisfaction of some predefined

constraints. In particular, crowdworking platforms need to interface with legal and so-

cial institutions. Global regulations must be enforced, such as minimal and maximal

work hours that participants can spend on crowdworking platforms. Moreover, while

collaborating to enforce global regulations or while processing complex tasks that require

the transparent sharing of information about the tasks, the system needs to preserve the

privacy of all participants. In this dissertation, we presented SEPAR, a blockchain-based
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multi-platform crowdworking system that enforces global constraints on distributed in-

dependent entities. In SEPAR, Privacy is ensured using lightweight and anonymous

tokens, while transparency is achieved using a permissioned blockchain shared across

multiple platforms. To support fault tolerance and support collaboration among plat-

forms, SEPAR provided a suite of distributed consensus protocols.

Performance. distributed applications require high performance in terms of throughput

and latency, e.g., financial applications need to process tens of thousands of requests every

second with very low latency. Existing blockchain systems, however, suffer from architec-

tural limitations resulting in performance issues. While recent permissioned blockchain

systems, e.g., Hyperledger Fabric, have tried to overcome these limitations, their focus

has mainly been on workloads with no-contention, i.e., no conflicting transactions. In this

dissertation, we introduced OXII, a new paradigm for permissioned blockchains to sup-

port distributed applications that execute concurrently. OXII is designed for workloads

with (different degrees of) contention. We then presented ParBlockchain, a permissioned

blockchain designed specifically in the OXII paradigm.

Scalability. Scalability is one of the main obstacles to business adoption of blockchain

systems. Scalability is the ability of a blockchain system to process a growing number

of transactions by adding resources to the system. Partitioning the data into multiple

shards that are maintained by different subsets of nodes is a proven approach to enhance

the scalability of databases [35]. Despite recent intensive research on using sharding

techniques to enhance the scalability of blockchain systems, existing solutions do not

efficiently address the efficient processing of cross-shard transactions. In this dissertation,

we introduce SharPer, a permissioned blockchain system that improves scalability by

clustering (partitioning) the nodes and assigning different data shards to different clusters

where each data shard is replicated on the nodes of a cluster. SharPer supports both intra-
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shard and cross-shard transactions and processes intra-shard transactions of different

clusters as well as cross-shard transactions with non-overlapping clusters simultaneously.

SharPer also incorporates a flattened protocol to establish consensus among clusters on

the order of cross-shard transactions.

Fault Tolerance. Large scale data management systems utilize State Machine Replic-

ation to provide fault tolerance. Fault-tolerant protocols are the main building block of

permissioned blockchain systems. Fault-tolerant protocols are also extensively used in

the distributed database infrastructure of large enterprises such as Google, Amazon, and

Facebook. However, and in spite of years of intensive research, existing fault-tolerant

protocols do not adequately address hybrid environments, e,g., cloud or cluster, con-

sisting of trusted and untrusted environments which are widely used by enterprises. In

this dissertation, we considered a trusted environment consisting of non-malicious nodes

(crash-only failures) and an untrusted environment with possible malicious failures. We

introduced SeeMoRe, a hybrid State Machine Replication protocol that uses the know-

ledge of where crash and malicious failures may occur in a hybrid environment to improve

overall performance. SeeMoRe has three different modes that can be used depending on

the private cloud load and the communication latency between the public and private

clouds. SeeMoRe can dynamically transition from one mode to another.

9.1.2 Large-Scale Data Management Applications

We now discuss several large-scale data management applications and show how pro-

posed techniques can be used to satisfy the requirements of these applications.

Supply Chain Management. Lack of trust between different parties is one of the most

important problems in supply chain management. To tackle such an issue, a permissioned

blockchain can be used to monitor the execution of the collaborative process and check
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conformance between the execution and SLAs. The utilized blockchain system needs to

support both internal and cross-enterprise transactions where in contrast to the cross-

enterprise transactions which are visible by all participants, the internal transactions of

each enterprise is confidential, e.g., the internal transactions of the Manufacturer show

its internal process for producing a product which the Manufacturer might intend to

keep as a secret. To address the confidentiality challenge of Supply Chain Management

applications, CAPER can be used.

Large-Scale Databases. Sharding techniques are extensively used in distributed data-

bases such as Google’s Spanner [35] and Facebook’s Tao [37] to address the scalability

issue. Such systems mainly assume a crash failure model and rely on a trusted coordin-

ator to process cross-shard transaction. In a blockchain-based data management system

that needs to tolerate malicious failures, however, the scalability issue can be addressed

using SharPer. SharPer can also be integrated with CAPER if the confidentiality of

shards is required. In a hybrid environment where different shards have different failure

models, SeeMoRe can also be used to provide fault tolerance.

Multi-Platform Crowdsourcing. Crowdsourcing empowers open collaboration over

the Internet. A crowdsourcing system includes platforms, requesters, and workers where

requesters submit their tasks and workers send their contributions for a particular task to

the platform. A crowdsourcing system might need to perform thousands of transactions

per second, thus, has to be high performance. In addition, a multi-platform crowdsourcing

system should scale appropriately with the increasing number of platforms, workers, and

requesters, thus requires scalability. Moreover, the system has to provide verifiability

of transactions against the predefined global constraints, e.g., a worker can work no

more than 40 hours per week or a framework should process no less than 100 tasks per

week, while preserving the confidentiality of transactions. To implement such a complex
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system, we have presented SEPAR. While the main focus of SEPAR was on verifiability

requirement, it uses the blockchain ledger view that is presented in CAPER to ensure

confidentiality. In addition, the sharding technique of SharPer as well as the parallel

execution of ParBlockchain can be integrated with SEPAR to provide higher performance

and scalability.

9.2 Future Directions

This section summarizes some of the future directions that we think will be areas of

active research pursuit in the coming years.

A general framework for large-scale data management applications. In this dis-

sertation, we have focused on five different requirements of large-scale data management

systems and proposed five techniques to address these five requirements. We then im-

plemented these techniques within five different systems, i.e., CAPER, SEPAR, SharPer,

ParBlockchain, and SeeMoRe. While these systems can used by different applications,

a future direction is to develop a general framework to enable users to choose a right

set of techniques depending of the requirement of their large-scale data management ap-

plication. The framework should then integrate the requested techniques and develop a

permissioned blockchain that satisfies the desired requirements.

Supporting non-deterministic execution in contentious workloads. Hyperledger

Fabric [27] supports non-deterministic execution of transactions by employing execute-

order-validate paradigm. In this paradigm, since transactions are executed at the first

phase by a set of nodes (endorsers), any non-deterministic execution of transactions can

be detected easily. Fabric, in the presence of any contention in the workload, how-

ever, has to disregard the effects of conflicting transactions which negatively impacts the

performance of the system. ParBlockchain, on the other hand, orders transaction first
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and generates a dependency graph exposing conflicts between transactions. As a result,

ParBlockchain is able to handle contentious workloads without rolling back the pro-

cessed transactions or executing transactions sequentially. However, since transactions

are executed in the last phase, any non-deterministic execution of transactions negatively

impacts the performance of the system. A research problem is to design a permissioned

blockchain system that supports non-deterministic execution in contentious workloads.

Enhancing performance by parallel ordering of transactions. Ordering and ex-

ecution are the two main phases of transaction processing. While parallel execution of

transactions, as mentioned earlier, improves the performance of blockchain systems, the

sequential ordering of transactions is still a reason for poor performance. Nodes in a

blockchain system establish consensus on the total order of transaction blocks to guar-

antee data consistency in the presence of data dependency among transactions. In many

applications, however, there is no need for the sequential ordering of all transactions.

A research goal is to enhance the performance of permissioned blockchain systems by

supporting parallel ordering of transactions.

Data Analytics in Blockchain. Blockchain technology is rapidly transforming the Big

Data Analytics landscape. Blockchain has brought a whole new way of managing and

operating with data. Blockchain systems could help data scientists in different ways such

as ensuring trust, making predictions, and enabling real-time data analysis. Exploring

the connection between blockchain and data analytics is another direction to pursue.

Designing the Right set of Fault-tolerant Protocols. Fault-tolerant protocols

are an essential component of any large-scale data management system. On one hand,

while fault-tolerant protocols have explored a spectrum of performance trade-offs between

the number of required participants, number of phases/messages (latency), and message

complexity, they have not adequately addressed all the characteristics of large-scale data
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management applications. On the other hand, many large-scale data management ap-

plications still rely on basic protocols that might not be adapted for such applications.

In particular, the increasing number of malicious attacks in data management systems,

which results in changing the trust assumptions about the underlying infrastructure, as

well as introducing more complex data management systems, emphasizes the need for

developing the right set of protocols for enterprises to manage their data on untrusted

infrastructures.
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