
Ziziphus: Scalable Data Management Across
Byzantine Edge Servers

Mohammad Javad Amiri1 Daniel Shu2 Sujaya Maiyya3 Divyakant Agrawal2 Amr El Abbadi2
1University of Pennsylvania, 2University of California Santa Barbara, 3University of Waterloo
1mjamiri@seas.upenn.edu, 2{danielshu, agrawal, amr}@cs.ucsb.edu, 3smaiyya@uwaterloo.ca

Abstract—Edge computing while bringing computation and
data closer to users in order to improve response time, distributes
edge servers in wide area networks resulting in increased com-
munication latency between the servers. Synchronizing globally
distributed edge servers, especially in the presence of Byzantine
servers, becomes costly due to the high communication complex-
ity of Byzantine fault-tolerant consensus protocols. In this paper,
we present Ziziphus, a geo-distributed system that partitions edge
servers into fault-tolerant zones where each zone processes trans-
actions initiated by nearby clients locally. Global synchronization
among zones is required only in special situations, e.g., migration
of clients from one zone to another. On the one hand, the two-
level architecture of Ziziphus confines the malicious behavior of
nodes within zones requiring a much cheaper protocol at the top
level for global synchronization. On the other hand, Ziziphus
processes local transactions within zones by edge servers closer
to clients resulting in enhanced performance. Ziziphus further
introduces zone clusters to enhance scalability where instead of
running global synchronization among all zones, only zones of a
single cluster are synchronized.

Index Terms—Edge Computing, Scalability, Consensus

I. INTRODUCTION

Edge computing shifts computation and data closer to
users [9][23][28][33]. While this computational paradigm im-
proves response time and saves bandwidth, edge servers may
be distributed in a wide area network where communication
among servers incurs high latency. Edge servers communicate
mainly to establish agreement on the order of transactions
using fault-tolerant protocols. While large-scale data man-
agement systems such as Google’s Spanner [14], Amazon’s
Dynamo [16], and Facebook’s Tao [11] rely on crash fault-
tolerant (CFT) protocols, e.g., Paxos [27], consensus among
edge servers requires Byzantine fault-tolerant (BFT) protocols,
e.g., PBFT [13] due to the non-trustworthiness of edge infra-
structures.

BFT protocols suffer from high communication and mes-
sage complexity, especially in wide-area networks. For in-
stance, PBFT [13], the most popular BFT protocol, requires
3f + 1 servers (where f is the number of maximum simul-
taneous malicious servers), three communication phases, and
quadratic message complexity in terms of the number of
servers, which make it impractical in establishing consensus
among edge servers distributed over wide area networks.

Various attempts have been made to reduce the complexity
of BFT protocols in large-scale geo-distributed systems over
wide area networks. These include both hierarchical fully
replicated and sharded partially replicated solutions.

On the one hand, in Steward [2] and Blockplane [30], data
is fully replicated across multiple fault-tolerant clusters. Both
systems use a hierarchical approach where the maliciousness
of Byzantine servers is confined within clusters and a CFT
protocol is used to establish global consensus among clusters.
Thus, every single transaction needs to be globally synchron-
ized to ensure the mutual consistency of all copies of data and
availability in case of data center-scale outages.

On the other hand, sharded distributed systems shard data
and replicate a data shard on each cluster. A transaction that
accesses a single shard is processed by the nodes of the specific
cluster, while a global cross-shard transaction is executed on
all shards. Since nodes may be malicious, clusters use BFT
protocols to process their local transactions. While sharded
distributed systems, e.g., Caper [3], and Qanaat [8], do not
run a global consensus for every transaction, such systems use
BFT protocols for global consensus, resulting in high latency.

In the context of edge computing networks, we use the
notion of zones where each zone maintains the data of its
nearby clients. This paper presents Ziziphus, a geo-distributed
system that supports edge computing applications with pos-
sibly mobile edge clients that migrate from one zone to
another. Ziziphus thus represents a trade-off between the full
replication approach and the sharded approaches where each
shard is replicated within a cluster. Ziziphus provides a zonal
abstraction where client data is replicated on nodes of a single
fault-tolerant zone and only made accessible in other zones
when it is needed to process global transactions, e.g., client
migration. This zonal abstraction confines the maliciousness
of Byzantine servers within each zone while supporting large-
scale geo-distributed applications.

In this paper, this abstraction is used to support edge
computing applications where data accesses have an affinity
towards locality. In Ziziphus, edge nodes are partitioned into
Byzantine fault-tolerant zones consisting of 3f+1 nodes where
f is the maximum number of maliciously faulty nodes in a
zone. At the local level, each zone processes local transactions
initiated by its nearby clients independent of other zones. Thus,
the global synchronization in Ziziphus is considerably reduced
compared to geo-replicated systems.

A geo-distributed system might require to enforce network-
wide policies, e.g., a zone cannot host more than 10000 clients,
or a client can migrate at most 10 times a year. Ziziphus main-
tains global system meta-data, including the number of clients
of each zone, the number of client migrations, application-



dependent data, etc. on all nodes. Global synchronization
among all zones is only needed when the global system meta-
data needs to be updated. The most common case of global
synchronization occurs when a client migrates from one zone
to another. In this case, Ziziphus runs a consensus protocol
among all zones where, in contrast to sharded distributed
systems, the protocol requires linear communication, and only
the majority of zones to participate. Ziziphus presents a data
synchronization protocol to support the global synchronization
of zones and a data migration protocol to migrate the client
data from the source to the destination zone.

Ziziphus is able to tolerate f failures within each zone
and bZ−12 c entire zone failures out of Z zones, which might
fail due to natural disasters, for global transactions. How-
ever, replicating local transactions on only the nodes of a
single (nearby) zone weakens the availability guarantees of
Ziziphus compared to geo-distributed systems in case an entire
zone fails. To partially tolerate failures for local transactions,
Ziziphus uses lazy synchronization where local updates are
periodically shared with all other zones , e.g., when global
synchronization is needed.

As the system scales, the number of zones might increase
to hundreds or even thousands over wide area networks.
Running global synchronization among all these zones for
every global transaction results in high latency. To address
this problem, Ziziphus defines zone clusters where each zone
cluster consists of a set of zones in a region. Zones within a
zone cluster maintain the same (regional) system meta-data,
which is different from the system meta-data maintained by
other zone clusters. Using zone clusters, instead of running
global synchronization among all zones, only zones of a single
cluster are synchronized. A cross-cluster data synchronization
protocol is presented to handle migration cases where the
source and destination zones are in two different zone clusters.

The contributions of this paper are three-fold:
• Ziziphus, a geo-distributed system that partitions Byz-

antine edge servers into fault-tolerant zones where each
zone processes transactions initiated by nearby clients
locally and global synchronization among zones is re-
quired only in special situations, e.g., the migration of
nodes between zones;

• A data synchronization protocol to globally synchronize
zones and a data migration protocol to migrate client data
from a source to a destination zone; and

• Zone clusters to enhance the scalability of Ziziphus where
instead of running global synchronization among all
zones, only the zones of a single cluster are synchronized.

II. MOTIVATION

In this section, we briefly describe healthcare as a practical
edge computing application that can realize the full potential of
Ziziphus. Healthcare applications are usually delay-sensitive;
hence, deploying healthcare applications in cloud environ-
ments results in a high processing latency due to the large
network distance between patients and cloud servers [21].

In an edge computing-enabled healthcare application, edge
servers store and process the data collected from patients’

devices such as sensors, cameras, medical devices, or smart-
phones to enable advanced remote-patient monitoring. A
healthcare application might need to process the data of thou-
sands or even millions of patients. Hence, only the nearby edge
server(s) process each client’s data to improve response time.
Healthcare applications need to support patients’ mobility
as well when a patient moves from one spatial area (zone)
to another. Furthermore, each healthcare application needs
to enforce network-wide policies and regulations issued by
official institutions, e.g., insurance companies.

In a nutshell, to support such edge computing applications,
Ziziphus needs to deal with four main requirements.
Spatial locality. In a healthcare application, transactions on
patient data are typically issued by nearby edge devices,
e.g., patients, doctors, etc. The co-location of processing
infrastructure and edge devices significantly reduces latency,
and alleviates the cost and congestion of network use [36].
Edge device mobility. While the data of each patient is
maintained by its nearby edge servers, the mobility of patients
across zones needs to be supported.
Global synchronization. An edge computing application re-
quires enforcing network-wide policies across all zones. These
policies might affect the migration of patients from one zone to
another, e.g., insurance policies in the healthcare application.
Scalability. An edge computing application might need to
process the data of millions of clients located in hundreds or
even thousands of zones over a wide area. In such a setting,
different areas (e.g., states, countries) might even have their
own policies and regulations, e.g., GDPR, to be enforced.

III. SYSTEM MODEL

Ziziphus is designed for edge computing applications where
performance in terms of throughput and latency is para-
mount, data accesses have an affinity towards locality and
the probability of failure of an entire zone is insignificant.
To address these requirements, Ziziphus makes two main
design decisions: (1) clustering nodes into fault-tolerant zones,
and (2) replicating local transactions of edge devices only
on nodes of their nearby zone. These two design decisions
demonstrate two trade-offs. First, similar to most clustered
distributed systems, Ziziphus is more prone to denial-of-
service attacks in comparison to a flat system with the same
number of nodes because it is easier for an attacker to target a
single zone (i.e., cluster, shard) instead of the entire network.
This represents a trade-off between scalability and security.
Second, the availability of Ziziphus is reduced if an entire
zone fails, e.g., due to natural disasters. This design decision
demonstrates a trade-off between performance and availability.
A. Network Infrastructure

The underlying infrastructure consists of a set of nodes in
a large-scale asynchronous distributed system. Nodes follow
the Byzantine failure model where faulty nodes may exhibit
arbitrary, potentially malicious behavior. We assume a strong
computationally-bounded adversary that can coordinate ma-
licious nodes and delay communication to compromise the
service. However, the adversary cannot subvert cryptographic



assumptions. Ziziphus clusters nodes into fault-tolerant zones
where each zone consists of 3f+1 Byzantine nodes to guaran-
tee safety in the presence of f malicious nodes [10]. Each zone
has a designated primary node that initiates local consensus
among the nodes of the zone and participates in the processing
of global transactions with other zones. Nodes within a zone
are ideally located geographically close to each other and have
low communication latency amongst themselves.
B. Data and Transactions

Each zone maintains the data of its nearby clients. Client
data in each zone is local and only replicated on the nodes of
the zone to provide fault tolerance. In addition to local data,
all zones maintain global system meta-data. The global system
meta-data contains data that are needed to enforce network-
wide policies, e.g., a zone cannot host more than 10000 clients
or a client can migrate at most 10 times a year. The meta-data
is small in size and includes only the required information to
enforce such policies, e.g., the number of clients per zone and
the number of migrations per client. Global system meta-data
is globally replicated on every node of every zone.

Ziziphus supports local and global transactions. Local
transactions, which are assumed to have locality affinity, are
initiated by the clients of a zone on their local data in the
zone. Nodes of a zone process local transactions independently
of other zones and update the local data accordingly. On
the other hand, the global system meta-data needs to be
updated as a result of a global transaction. Clients of an edge
network might be mobile and migrate from a source zone
to a destination zone. When a client migrates, it initiates a
global transaction. Since client data in each zone is local and
stored only on nodes of the zone, Ziziphus does not need
to deal with cross-zone transactions (in contrast to sharded
distributed systems where a transaction might access multiple
shards). However, the zonal abstraction presented by Ziziphus
can be easily extended to support cross-zone transactions.

IV. TRANSACTION PROCESSING IN ZIZIPHUS

Ziziphus relies on the State Machine Replication (SMR)
algorithm [26][32] used for building a fault-tolerant service.
An SMR-based BFT protocol commits transactions as a linear-
izable log to provide a consistent view of the log equivalent
to a single non-faulty node, while providing safety, i.e., all
non-faulty nodes commit the same requests in the same order,
and liveness, i.e., all non-faulty client requests are eventually
ordered. Ziziphus guarantees safety in an asynchronous net-
work; however, it assumes a synchrony assumption to ensure
liveness (FLP impossibility result [19]).
A. Local Transactions

Ziziphus targets edge computing applications where clients’
transactions are processed by nearby edge servers. The client
data are replicated on nodes of the nearby zone where nodes
process transactions without any communication with other
zones. Since nodes may fail in a Byzantine manner, all local
transactions in Ziziphus need to be processed using a BFT
protocol. The local consensus protocol is pluggable and any
BFT protocol can be used to process local transactions. In

its current design, Ziziphus processes local transactions using
PBFT [24]. In PBFT, nodes move through a succession of
configurations called views [17][18]. In a view, one node is
the primary and the others are backups where the primary
initiates consensus among nodes.

During a normal case execution of PBFT, a client sends a
local request to the primary node of the nearby zone. Upon
receiving a valid request from an authorized client, the primary
first ensures that the client’s data within the zone is up-to-date.
Nodes maintain a lock bit for each client to keep track of its
mobility, i.e., if the lock bit is TRUE the client data is up-
to-date. The primary then assigns a sequence number to the
request and broadcasts a pre-prepare message to all nodes of
the zone. Nodes then go trough prepare and commit phases to
commit and execute the request. PBFT also has a view change
routine that provides liveness when the primary fails.
B. Global Transactions

Global transactions are needed when the global system
meta-data, which is replicated on all zones, needs to be
updated. The most common case occurs when a client migrates
from a source to a destination zone; hence, we describe global
transactions for this case. The global transaction to support
client migration consists of two atomic sub-transactions. The
first sub-transaction updates the global system meta-data of all
zones using the data synchronization protocol, and the second
sub-transaction copies the actual client data from the source
to the destination zone using the data migration protocol.
1) Data Synchronization Protocol

In the data synchronization protocol, in contrast to local
transactions where votes from more than two-thirds of nodes
is required, Ziziphus establishes consensus on the order of
a global transaction with agreement from only a majority
of zones. This is because Ziziphus confines the effect of
all malicious behavior of Byzantine nodes within zones. As
a result, instead of using PBFT that has a quadratic com-
munication complexity and requires more than two-thirds of
nodes to participate in each communication phase, the data
synchronization protocol processes transactions with linear
communication complexity and agreement from a majority
of zones. The data synchronization protocol is a two-level
protocol where at the top level, only the primary node of each
zone participates to globally agree on the order of a global
transaction and at the bottom level, all nodes within each zone
communicate with each other to endorse the message that will
be sent by the primary node at the top level.

To prevent a primary node from acting maliciously in
communication with the primary nodes of other zones at the
top level, the messages sent by a primary node at the top level
need to be endorsed by the nodes of its zone. Each primary
node constructs a certificate proving that a quorum of 2f + 1
different nodes within its zone agree on the message it sends.
A certificate for message consists of a collection of 2f + 1
(identical) messages m signed by different nodes within the
same zone. Ziziphus can also use a threshold signature scheme
to represent 2f + 1 signatures (out of 3f + 1) using a single
constant-sized threshold signature [34][12].



Figure 1. Global transaction processing

Using certificates, the maliciousness of nodes is confined
within zones and if a primary node acts maliciously at the top
level, its behavior can be easily detected (i.e., its messages
will be invalid). As a result, the data synchronization protocol
at the top level, As shown in Figure 1, follows the crash
fault-tolerant protocol Paxos and proceeds through propose,
promise, accept, accepted, and commit phases. The goal of
the propose and promise phases is to elect the primary (i.e.,
leader) node, the goal of the accept and accepted phases is
to decide on the request (i.e., value) and the commit phase
replicates the request on every node.

The first sub-transaction is initiated by a client. When the
client migrates from a source to a destination zone, it sends
a migration request message m to the primary node of the
destination zone. This primary is referred to as the global
primary. The destination zone is referred to as the initiator
zone, and all other zones, the follower zones. Note that each
message sent by the nodes to a client includes the current view
number, allowing the client to track the view and hence the
current primary. Nonetheless, if a backup (non-primary) node
receives a migration request from a client, it relays it to the
global primary. Upon receiving a migration request message,
as shown in Figure 1, the local consensus protocol, PBFT,
is run in three phases (i.e., pre-prepare, prepare and commit)
within the initiator zone to assign a Ballot number, establish
consensus on the global request and endorse the message.

All other bottom-level communications (green boxes) within
either the initiator or follower zones, however, as shown
in Figure 1, consist of only the pre-prepare and commit
communication phases and the prepare phase of PBFT is
skipped. This is because the goal of the prepare phase in
PBFT is to ensure that non-faulty nodes agree on the order
(i.e., Ballot number) that is assigned by the primary node, i.e.,
they all received the matching message from the primary. In
Ziziphus, however, since the Ballot number is already assigned
by the global primary and certified by 2f + 1 nodes of the
initiator zone, there is no need to run the prepare phase of
PBFT and upon receiving valid messages from the primary
of the zone, nodes multicast commit messages. The primary
node of each zone then collects 2f + 1 messages from nodes
of its zone to construct a certificate that is used at the top level
communication with the primary node of other zones.

Algorithm 1 presents the normal case operation of the data
synchronization protocol. Although not explicitly mentioned,
every sent and received message is logged by the nodes. As
indicated in lines 1-5, r denotes the id of the node running

the algorithm, zi is the initiator zone, v(z) specifies the view
number of the node in zone z, and π(z) is the primary of zone
z. We use Qz to denote a quorum of 2f + 1 different nodes
in zone z and QM to denote a majority of primary nodes of
different zones. Qz is used for local consensus within a zone
and QM is used for global consensus where agreement from
the majority of zones is needed.
Propose phase. The goal of the propose and promise phases
is to elect the primary (i.e., leader) node. Upon receiving a
valid signed migration request m from an authorized client
c (with timestamp tc) to execute a transaction o on global
system meta-data (lines 6-8), the primary node π(zi) of the
initiator zone zi (the global primary) assigns a global Ballot
number 〈n, zi〉 to the request where n is the highest global
sequence number that π(zi) is aware of it and zi is the zone
id and multicasts a pre-prepare message to all nodes of its
zone zi. Timestamp tc is used to ensure exactly-once semantics
for the execution of requests and prevent replay attacks. The
timestamps for requests of each client are totally ordered. o is
a simple operation that updates meta-data based on the pre-
defined policies once executed, e.g., updates the number of
clients in the source and the destination zones.

Upon receiving a pre-prepare message, as indicated in lines
9-11, each node r of the initiator zone zi checks the migration
request to be valid and sequence number n to be the highest
global sequence number that the node knows and also be
within a predefined small range to prevent a malicious primary
from exhausting the space of sequence numbers by choosing
a very large value [13]. Node r then multicasts a prepare
message to all nodes of the initiator zone zi. Upon receiving
a quorum of matching prepare messages from 2f different
nodes (including itself) that match the pre-prepare message
received from the primary (lines 12-13), it multicasts a local-
propose message (equal to commit message in PBFT) to all
nodes of the initiator zone zi. This local-propose message is
used by the primary in constructing the certificate to prove
that a quorum of 2f + 1 nodes within zone zi agree with the
propose message. The primary aggregates a quorum of 2f+1
local-propose messages (lines 14-15) to construct a certificate
C and multicasts a propose message to all nodes of every zone.
Promise phase. When the primary node of a follower zone
zf receives a propose message, as shown in lines 16-19, it
first checks the request, the message and the certificate C to
be valid and the global sequence number n to be greater than
any global sequence number that the node is aware of. Nodes,
as mentioned before, maintain a lock bit for each client to
keep track of its mobility where lock = TRUE means the client
data is up-to-date. If zf is the source zone, its primary node
sets lock(c) to be FALSE. At this point, the source zone does
not accept any local requests from client c anymore.

The primary node of the follower zone zf then multicasts
〈PRE-PREPARE, v(zf ), 〈n, zi〉, 〈l, zl〉, p, dp, d〉σπ(zf )

message to
the nodes of its zone zf to initiate consensus on the received
propose message. In the pre-prepare message, p is the received
propose message, dp is its digest, and 〈l, zl〉 is the Ballot
number of the latest migration request that has been accepted



Algorithm 1 Data Synchronization Protocol
1: r := Id of the node running the algorithm, zi := the initiator zone id
2: v(z) := view number of node r in zone z
3: π(z) := the primary node of zone z
4: Qz := a quorum of 2f + 1 different nodes in zone z
5: QM := a (majority) quorum of primary node from different zones

Endorsement in the initiator zone (PROPOSE phase)
B r = π(zi):

6: upon receiving valid m = 〈MIG-REQUEST, op, tsc, c〉σc
7: assign Ballot number 〈n, zi〉 to m
8: multicast 〈PRE-PREPARE, v(zi), 〈n, zi〉, d,m〉σπ(zi)

to zi
B r ∈ zi:

9: upon receiving 〈PRE-PREPARE, v(zi), 〈n, zi〉, d,m〉σπ(zi)

10: if message m and Ballot number 〈n, zi〉 are valid then
11: multicast 〈PREPARE, v(zi), 〈n, zi〉, d, r〉σr to zi
12: upon receiving 〈PREPARE, v(zi), 〈n, zi〉, d, r〉σr from Qzi
13: multicast 〈LOCAL-PROPOSE, v(zi), 〈n, zi〉, d, r〉σr to zi

B r = π(zi):
14: upon receiving 〈LOCAL-PROPOSE, v(zi), 〈n, zi〉, d, r〉σr from Qzi
15: multicast 〈PROPOSE, v(zi), 〈n, zi〉, C, d,m〉σπ(zi)

to every node
Endorsement in a follower zone zf (PROMISE phase)
B r = π(zf ):

16: upon receiving p = 〈PROPOSE, v(zi), 〈n, zi〉, C, d,m〉σπ(zi)

17: if n is greater than any received sequence number and C is valid
18: if zf is the source zone then lock(c) = FALSE

19: multicast 〈PRE-PREPARE, v(zf ), 〈n, zi〉, 〈l, zl〉, p, dp, d〉σπ(zf )
to zf

B r ∈ zf :
20: upon receiving 〈PRE-PREPARE, v(zf ), 〈n, zi〉, 〈l, zl〉, p, dp, d〉σπ(zf )

21: if zf is the source zone then lock(c) = FALSE

22: multicast 〈LOCAL-PROMISE, v(zf ), 〈n, zi〉, 〈l, zl〉, d, r〉σr to zf
B r = π(zf ):

23: upon receiving 〈LOCAL-PROMISE, v(zf ), 〈n, zi〉, 〈l, zl〉, d, r〉σr from Qzf
24: multicast 〈PROMISE, v(zf ), 〈n, zi〉, 〈l, zl〉, Cf , d〉σπ(zf )

to zi
Endorsement in the initiator zone (ACCEPT phase)
B r = π(zi):

25: upon receiving q=〈PROMISE, v(zf ), 〈n, zi〉, 〈l, zl〉, Cf , d〉σπ(zf )
from QM

26: multicast 〈PRE-PREPARE, v(zi), 〈n, zi〉, 〈l, zl〉, q1,.., dq1 ,.., d〉σπ(zi)
to zi

B r ∈ zi:
27: upon receiving 〈PRE-PREPARE, v(zi), 〈n, zi〉, 〈l, zl〉, q1,.., dq1 ,.., d〉σπ(zi)

28: multicast 〈LOCAL-ACCEPT, v(zi), 〈n, zi〉, 〈l, zl〉, d, r〉σr to zi
B r = π(zi):

29: upon receiving 〈LOCAL-ACCEPT, v(zi), 〈n, zi〉, 〈l, zl〉, d, r〉σr from Qzi
30: multicast 〈ACCEPT, v(zi), 〈n, zi〉, 〈l, zl〉, C, d〉σπ(zi)

to every node
Endorsement in a follower zone zf (ACCEPTED phase)
B r = π(zf ):

31: upon receiving a=〈ACCEPT, v(zi), 〈n, zi〉, 〈l, zl〉, C, d〉σπ(zi)

32: if n is greater than any received sequence number and C is valid
33: multicast 〈PRE-PREPARE, v(zf ), 〈n, zi〉, 〈l, zl〉, a, da, d〉σπ(zf )

to zf
B r ∈ zf :

34: upon receiving 〈PRE-PREPARE, v(zf ), 〈n, zi〉, 〈l, zl〉, a, da, d〉σπ(zf )

35: multicast 〈LOCAL-ACCEPTED, v(zf ), 〈n, zi〉, 〈l, zl〉, d, r〉σr to zf
B r = π(zf ):

36: upon receiving 〈LOCAL-ACCEPTED, v(zf ), 〈n, zi〉, 〈l, zl〉, d, r〉σr from Qzf
37: multicast 〈ACCEPTED, v(zf ), 〈n, zi〉, 〈l, zl〉, Cf , d〉σπ(zf )

to zi
Endorsement in the initiator zone (COMMIT phase)
B r = π(zi):

38: upon recv. a=〈ACCEPTED, v(zf ), 〈n, zi〉, 〈l, zl〉, Cf , d〉σπ(zf )
from QM

39: multicast 〈PRE-PREPARE, v(zi), 〈n, zi〉,〈l, zl〉,a1,.., da1 ,..,d〉σπ(zi)
to zi

B r ∈ zi:
40: upon receiving 〈PRE-PREPARE, v(zi), 〈n, zi〉, 〈l, zl〉, a1, .., da1 , .., d〉σπ(zi)

41: multicast 〈LOCAL-COMMIT, v(zi), 〈n, zi〉, 〈l, zl〉, d, r〉σr to zi
B r = π(zi):

42: upon receiving 〈LOCAL-COMMIT, v(zi), 〈n, zi〉, 〈l, zl〉, d, r〉σr from Qzi
43: multicast 〈COMMIT, v(zi), 〈n, zi〉, 〈l, zl〉, C, d〉σπ(zi)

to every node
Updating Global Meta-data (EXECUTION phase)
B ∀r:

44: upon receiving 〈COMMIT, v(zi), 〈n, zi〉, 〈l, zl〉, C, d〉σπ(zi)

45: execute client request o on global meta-data

(and either committed or not) by the follower zone zf . The
digest dp is used to detect changes and alterations to any part
of the message. Ballot number 〈l, zl〉 determines the execution
order of global requests. Note that sending the Ballot Number
of the latest accepted migration request irrespective of whether
it was committed or not is different from Paxos where follower

(i.e., acceptor) nodes send the latest (actual) value that is
decided (i.e., accepted) but not yet committed (because the
previous leader has failed) to the new leader and the new
leader has to propose and commit that value before proposing
its own value. The reason is that in Ziziphus, when the primary
of a zone fails, another node from the same zone becomes the
primary and will continue to process the request, hence, there
is no need for the primary node of other zones to recover
an accepted value. However, the order of the global requests
needs to be preserved, i.e., a request with a lower sequence
number must be executed earlier than a request with a higher
sequence number. It is also different from PBFT where a single
primary node assigns incremental sequence numbers to the
requests and nodes execute requests in the same order. Here,
since different nodes, i.e., the primary node of different zones,
might become the global primary and there might be some gap
between the sequence number of consecutive global requests,
each request includes the sequence number of its previous
global request to provide an ordering for the execution, e.g.,
if a zone has not received the previous global request, the
zone becomes aware of that request by checking the 〈l, zl〉
parameter in the current request.

Upon receiving a pre-prepare message from the primary of
zone zf (lines 20-22), each node r in zf checks the request,
the message, the certificate C, and both Ballot numbers to
be valid. Similarly, if zf is the source zone, each node sets
lock(c) to be FALSE. The node then multicasts a local-promise
message to all nodes of zone zf . Upon receiving 2f +1 valid
matching local-promise messages from different nodes (lines
23-24), the primary node of each follower zone zf aggregates
these messages to construct a certificate Cf and then multicasts
a promise message to the nodes of the initiator zone zi.
Accept phase. The accept and accepted phases are used to de-
cide on the request. The global primary π(zi) waits for promise
messages from the majority of zones (including itself). This is
because each valid message at the top level has been certified
by a quorum of 2f + 1 signatures. Hence, any malicious
behavior of a Byzantine node (e.g., sending invalid messages)
can be easily detected by nodes without communicating with
each other. As a result, the safety condition of CFT protocols,
e.g., Paxos [27] is sufficient to guarantee the safety of the
data synchronization protocol. This is in contrast to PBFT
where to detect the malicious behavior of a Byzantine node
(e.g., sending an inconsistent message to different replicas)
communication between nodes (prepare messages) is needed.

Upon receiving sufficient promise messages from different
follower zones (lines 25-26), the global primary multicasts
〈PRE-PREPARE, v(zi), 〈n, zi〉, 〈l, zl〉, q1, q2,.., dq1 , dq2 ,.., d〉σπ(zi)

to all nodes of its zone zi where l is the greatest (previous)
global sequence number that either π(zi) is aware of or is
received in promise messages and each qj is the promise
message received from zone zj and dqj is its digest. Nodes
of zi validate the received pre-prepare message and multicast
a local-accept to the primary node of zi (lines 27-28).
Upon receiving a quorum of 2f + 1 local-accept messages
(lines 29-30), the global primary aggregates these messages,



constructs a certificate C, and multicasts an accept message
to all nodes of every zone.
Accepted phase. Upon receiving a valid accept message (lines
31-33), the primary node of a follower zone zf checks the
message and the certificate C to be valid and the global
sequence number n to be greater than any sequence number
that the node is aware of and ensures that it has not accepted
any global sequence number greater than l. The primary node
then multicasts pre-prepare message to all nodes of its zone,
zf . Nodes of zf validate the received pre-prepare message and
multicast a local-accepted to the primary node of zf (lines
34-35). The primary of zf waits for a quorum of 2f + 1
local-accepted messages from different nodes (lines 36-37),
constructs a certificate Cf , and multicasts an accepted message
to the nodes of the initiator zone zi.
Commit phase. The global primary waits for accepted mes-
sages from the primary nodes of a majority of zones (lines
38-39) and then multicasts a pre-prepare message to all the
nodes of zone zi to establish consensus on the received
accepted message and construct a certificate. In the pre-
prepare message, each aj is the accepted message received
from zone zj and daj is its digest. Nodes of zi validate the
received pre-prepare message and multicast a local-commit to
the primary node of zi (lines 40-41). Upon receiving a quorum
of 2f + 1 local-commit messages (lines 42-43), the global
primary aggregates these messages, constructs a certificate C,
and multicasts a commit message to all nodes of every zone.
Execution phase. Once a node in any zones receives a
valid commit message from the global primary, the node
considers the global transaction as a committed transaction.
if the node has executed the previous global transaction with
Ballot number 〈l, zl〉, the node executes the client request
on the global system meta-data. This ensures that all nodes
execute requests in the same order as required to ensure safety.
Depending on the predefined network-wide policies, executing
the request might result in updating the number of clients in the
source and the destination zone and incrementing the number
of clients’ migrations in some period.

Nodes of the initiator zone also send a reply including the
execution results to the client to inform that the first sub-
transaction has been committed. The client waits for f + 1
matching responses from different nodes of the initiator zone
to ensure that at least one correct node executed its request.

Ziziphus can benefit from the stable leader technique used
in multi-Paxos to process global transactions more efficiently.
Using the stable leader technique, one of the zones initiates all
global transactions and clients irrespective of the source and
the destination zones send their migration request messages to
the stable initiator zone. In this manner, there is no need for
the propose and promise (leader election) phases in the data
synchronization protocol.
2) Data Migration Protocol

The first sub-transaction of the global transaction establishes
agreement among all zones on the client migration and updates
the global system meta-data. In the second sub-transaction, the
client data is migrated from the source to the destination zone.

Algorithm 2 Data Migration Protocol
init():

1: r := Id of the node running the algorithm
2: zi := the initiator zone id
3: zs := the source zone id
4: zd := the destination zone id
5: v(z) := view number of node r in zone z
6: π(z) := the primary node of zone z
7: Qz := a quorum of 2f + 1 different nodes in zone z
8: R(c) := records of client c

Record generation in the source zone zs
B r = π(zs):

9: upon receiving valid m = 〈COMMIT, v(zi), 〈n, zi〉, C, d〉σπ(zi)

10: extract R(c) from database
11: multicast 〈PRE-PREPARE, v(zs), 〈n, zi〉, R(c), dc, d〉σπ(zs)

to zs
B r ∈ zs:

12: upon receiving valid 〈PRE-PREPARE, v(zs), 〈n, zi〉, R(c), dc, d〉σπ(zs)

13: multicast 〈PREPARE, v(zs), 〈n, zi〉, dc, d, r〉σr to zs
14: upon receiving matching 〈PREPARE, v(zs), 〈n, zi〉, dc, d, r〉σr from Qzs
15: multicast 〈LOCAL-STATE, v(zs), 〈n, zi〉, dc, d, r〉σr to zs

B r = π(zs):
16: upon receiving matching 〈LOCAL-STATE, v(zs), 〈n, zi〉, dc, d, r〉σr from Qzs
17: multicast 〈STATE, v(zs), 〈n, zi〉, C, R(c), dc, d〉σπ(zs)

to zd
Record appending in the destination zone zd
B r = π(zd):

18: upon receiving valid h=〈STATE, v(zs), 〈n, zi〉, C, R(c), dc, d〉σπ(zs)

19: multicast 〈PRE-PREPARE, v(zd), 〈n, zi〉, h, dh〉σπ(zd)
to zd

B r ∈ zd:
20: upon receiving valid 〈PRE-PREPARE, v(zd), 〈n, zi〉, h, dh〉σπ(zd)

21: multicast 〈LOCAL-COMMIT, v(zd), 〈n, zi〉, d, dh, r〉σr to zd
22: upon receiving 〈LOCAL-COMMIT, v(zd), 〈n, zi〉, d, dh, r〉σr from Qzd
23: lock(c) = TRUE

24: append R(c) to the database
25: send 〈REPLY, v(zd), tc〉σr to client c

Since the actual client data might be large, only the client data
state consisting of the information that is needed to process
its transactions, e.g., the account balance of the client in a
micropayment application, needs to be moved.

The second sub-transaction is initiated by the primary node
of the source zone, i.e., the zone that the client has migrated
from, since the source zone maintains the fresh date. The
primary needs to generate the state of the client, establish
consensus on the client state within its zone to construct a
certificate including 2f + 1 signatures and multicast the state
to the destination zone. The destination zone validates the
message and appends the state to its database. At this point,
the destination zone can process the client requests.

Algorithm 2 presents the normal case operation of the data
migration protocol to process the second sub-transaction of
a global transaction. Although not explicitly mentioned, every
sent and received message is logged by the nodes. As indicated
in lines 1-8 of the algorithm, r denotes the node id and zi, zs
and zd are the initiator, the source and the destination zones
respectively. Note that in the common case, the destination
zone is the same as the initiator zone (zd = zi). Using the
stable leader technique, however, the destination zone might
be different from the initiator zone. v(z) specifies the view
number of node r in zone z, π(z) is the primary node of zone
z, Qz is a quorum of 2f + 1 different nodes in zone z and
R(c) refers to the data records of client c in the source zone.
Record Generation. When the primary node of zone zs has
committed and executed a migration request received from a
client c that has migrated from zs to zd, as shown in lines
9-11, the primary node π(zs) first generates the application-
dependent client data state R(c). The node then initiates local



consensus, i.e., PBFT, on R(c) by multicasting a pre-prepare
message to the nodes of zone zs. Upon receiving a valid pre-
prepare message including a client state R(c) from the primary
node (lines 12-13), each node r of the zone zs multicasts a
prepare message to all nodes in zone zs. Each node waits for
a quorum of 2f + 1 valid prepare messages and multicasts
a local-state message to all nodes in zone zs (lines 14-15).
The primary π(zs) collects 2f + 1 local-state messages from
different nodes (lines 16-17), constructs a certificate C, and
multicasts a state message to the destination zone zd.
Record Appending. Upon receiving a valid state message,
the primary node of the destination zone zd, as shown in lines
18-19, checks the message and certificate C to be valid and
multicasts pre-prepare message to nodes of its zone. Nodes of
zd validate the received pre-prepare message and multicast a
local-commit to all nodes within zone zd (lines 20-21). Upon
receiving a quorum of 2f + 1 local-commit messages from
different nodes (lines 22-25), each node in zd sets lock(c) to
be TRUE to show that the client data is up-to-date, appends the
client state R(c) to its database and sends a reply to the client
informing that the migration has been performed successfully.
3) Cross-Zone Transactions

The goal of Ziziphus is to support edge computing ap-
plications where transactions have location affinity and only
update data in a single zone. However, the zonal abstraction
of Ziziphus can be used to support cross-zone transactions,
where a transaction accesses different data located in different
zones. This will require a few minor modification in the
data synchronization protocol. First, in processing cross-zone
transactions, we consider the initiator zone as the primary. As a
result, there is no need for the primary election phase. Second,
in communication across zones, messages are sent only to
the involved zones (not all zones), and finally, since zones
maintain different data, each zone needs to run consensus on
the order of transactions. This contrasts with global synchron-
ization where all zones maintain the same global system meta-
data. Hence, the primary zone proposes a transaction order,
and all other zones only validate the order (without the need
to rerun consensus).

V. ZIZIPHUS ANALYSIS

In this section, we discuss the primary failure handling
routine of Ziziphus and analyze the fault tolerance, availability,
and correctness of Ziziphus.
A. Primary Failure Handling

The timeout mechanism prevents the protocol from blocking
and waiting forever. Nodes use different timers for local
and global transactions because processing transactions across
zones usually takes more time. For local transactions and upon
failure of the primary node of a zone, the view change routine
of PBFT is triggered by timeouts to replace the faulty primary.

However, for global transactions, detecting and handling
failures is more difficult. While the data synchronization
protocol follows CFT protocols, i.e., it requires linear commu-
nication phases and majority quorums, the participants in the
global consensus are (Byzantine) primary nodes of different

zones. Since any messages need to be endorsed by 2f + 1
nodes of a zone, the malicious behavior of a Byzantine primary
node can be easily detected by other nodes without requiring
any communication. A malicious primary node can choose
not to send any endorsed messages or only send messages to
a subset of the nodes. Hence, in the worst-case scenario, all
nodes participating in the global consensus might be malicious
and not send any messages. The failure handling of Ziziphus
needs to handle all such situations.

If the follower zone zf has gone through the accepted phase
for a request and node r of a follower zone does not receive
a commit message from the global primary (i.e., the primary
node of the initiator zone zi) and its timer expires, node r
multicasts a 〈RESPONSE-QUERY, v(zf ), 〈n, zi〉, d, r〉σr message
to all nodes of the initiator zone including the request digest
d. Similarly, nodes of the initiator zone multicast response-
query messages to the nodes of a follower zone if they do not
receive accepted messages for their migration request.

In all such cases, if the message has already been processed,
the nodes simply re-send the corresponding response and
log the response-query messages to detect denial-of-service
attacks initiated by malicious nodes. If the node (of a fol-
lower zone) has accepted another migration request with a
higher ballot number in between, the node simply ignores the
response-query messages. If a node receives response-query
message from 2f+1 nodes of another zone (without receiving
any other migration request with a higher ballot number in
between), it suspects that the primary node of its zone might be
faulty triggering the execution of the failure handling routine.
Moreover, since all messages from a primary of a zone (either
initiator or follower) are multicast to every node of the other
zone(s), if the primary of the receiver zone does not initiate
consensus on the message among the nodes of its zone (even
after the message is relayed by nodes of its zone), it will
eventually be suspected to be faulty by the nodes of its zone.

The data migration protocol handles failure in the same
way for state messages. Finally, if a client does not receive
a reply soon enough, it multicasts the request to all nodes
of the destination zone. If the request has already been
processed, the nodes simply send the execution result back to
the client. Otherwise, if the node is not the primary, it relays
the request to the primary. If the nodes do not receive pre-
prepare messages, the primary will be suspected to be faulty,
triggering the primary failure handling routine.
B. Fault Tolerance and Availability

Ziziphus, as discussed in Section III, clusters nodes into
fault-tolerant zones, and replicates local transactions of edge
devices only on nodes of their nearby zone. These two
decisions demonstrate two trade-offs; one between perform-
ance and security, and the other, between performance and
availability. In this section, we analyze these two trade-offs.

Proposition 5.1: Ziziphus tolerates bZ−12 c failures out of
Z zones for global transactions.

Ziziphus processes global transactions with agreement from
only a majority of zones. This means that at the global level,
Ziziphus tolerates bZ−12 c failures out of Z zones for global



transactions. Other than a malicious primary, a zone might fail
due to natural disasters like tornadoes or earthquakes.

This clearly demonstrates the advantage of clustering the
nodes into zones in order to confine the maliciousness of
Byzantine nodes within their zones.

Proposition 5.2: Ziziphus guarantees the availability of a
zone data if at least 2f + 1 nodes of the zone are non-faulty.

Since each zone includes 3f+1 nodes, safety is guaranteed
even if f nodes within a zone are compromised [10].

Proposition 5.3: A clustered fault-tolerant system, e.g.,
Ziziphus, provides weaker security guarantees compared to
a flat fault-tolerant system with the same number of nodes.

Ziziphus is more prone to denial-of-service attacks because
it is easier for an attacker to compromise f nodes within
a single zone instead of Z ∗ f nodes in the entire network
where Z is the number of zones. This represents a trade-
off between performance and security. Ziziphus assumes pre-
determined fault-tolerant zones where each zone includes less
than one-third faulty nodes. To avoid security attacks, nodes
can be randomly assigned to zones in order to uniformly
distribute faulty nodes. While this solution provides higher
security guarantees, it only guarantees probabilistic safety as
a zone might include more than one-third faulty nodes (unlike
Ziziphus which guarantees deterministic safety). To achieve
high probability, e.g., 1−2−20, however, the clusters need to be
large-sized, e.g., 80 nodes in AHL [15], resulting in increased
latencies. Moreover, to prevent security attacks, clusters need
to be reconfigured periodically, e.g., OmniLedger [25].

Proposition 5.4: Given a Ziziphus deployment; if an entire
zone fails, the zone data becomes unavailable.

In Ziziphus local data are only updated in nodes of a single
zone. As a result, if an entire zone fails, other zones are
not able to process the local transactions of the failed zone.
Hence, the zone data becomes unavailable during the zone
failure, without impacting safety, since no local transactions
are executed. This is in contrast to Steward [2] and Blockplane
[30] where the failure of zones is tolerated for all transactions
by replicating transactions on all zones.

To provide availability despite zone failure, Ziziphus can
replicate local transactions on multiple zones where for every
local transaction that requires zonal fault tolerance, consensus
among all the zones that maintain the data is needed. This
approach is similar to the cross-zone transaction processing,
discussed in Section IV.B(3). However, in this case, different
zones maintain the same data rather than different data. The
consequence of this design choice is that while availability
is increased, every transaction will incur latencies that are at
geo-scale (i.e., 100s of milliseconds versus 10s of milliseconds
or less), demonstrating a trade-off between performance and
availability.

To partially address this problem, Ziziphus can use lazy
synchronization techniques to provide a weaker degree of
fault tolerance for local transactions without running global
synchronization for every transaction.

BFT protocols, e.g., PBFT, use a checkpointing mechanism
to produce the last stable state of data (i.e., a persisted

state). Checkpoints are generated periodically when a trans-
action with a sequence number divisible by some constant
is executed. The checkpoint is generated by the primary and
multicast to all nodes (as part of the pre-prepare messages).

Each checkpoint needs to be signed by a quorum of 2f +1
nodes within the zone (as part of the local-accepted messages)
and the primary of the zone includes that in the accepted
message sent to the global primary node. The global primary
then puts all received stable checkpoints in its commit message
and multicasts it to all zones. Each zone then replicates the
latest stable state of every zone consisting of all executed local
transactions on all its nodes. In this way, if an entire zone fails,
transactions that are executed before its last stable checkpoint
have been replicated on all other zones.

Choosing the right checkpointing period is challenging and
depends on the characteristics of transactions and the work-
load. In an edge network where the percentage of migration
requests is not supposed to be high, zones can generate check-
points whenever they receive a migration request. However,
generating checkpoints for every migration request reduces
performance in workloads with a high percentage of global
transactions. Similarly, for mission-critical applications, the
system might decide to generate a checkpoint whenever a zone
receives a migration request even if the workload includes a
high percentage of global transactions.
C. Correctness

Consensus protocols have to satisfy safety and liveness. We
briefly analyze the safety and liveness properties of Ziziphus.

Lemma 5.5: If node r commits transaction m with sequence
number n, no other non-faulty node commits request m′ (m 6=
m′) with the same sequence number n.
Proof: PBFT guarantees safety [13]. We just need to show
that safety is guaranteed for the data synchronization and data
migration protocols. To commit transaction m (promise and)
accepted messages from a majority of zones are needed. As
a result, if two different transactions m and m′ have been
committed with sequence numbers n and n′ and n = n′,
at least the primary node of one zone sends valid accepted
messages for both transactions.

To send a valid accepted message the primary node needs to
collect a quorum 2f+1 matching votes from different nodes of
its zone to construct certificates. As a result, to send accepted
messages for both m and m′, a quorum of 2f + 1 nodes,
Qm has agreed with n and a quorum of 2f + 1 nodes, Qm′

has agreed with n′. since Qm and Qm′ intersect on at least
one non-faulty node, the non-faulty node must have agreed
with both sequence numbers, violating the definition of non-
faulty nodes. Hence, if m 6= m′ then n 6= n′ (where n′ is the
sequence number of m′) and safety is guaranteed.

Lemma 5.6: A request m issued by a correct client will be
complete if the majority of zones can still communicate.
Proof: Due to the FLP result [19], Ziziphus guarantees live-
ness only during periods of synchrony where a majority of
zones can still communicate. Ziziphus addresses liveness in
primary failure and collision situations. In case of primary
failure within a zone, as discussed in Section V-A, the failure



Figure 2. Ziziphus scalability using zone clusters

of the primary is detected, and using the view change routine
the primary node is replaced. A collision situation happens
when the primary nodes of different zones try to initiate global
transactions (i.e., data synchronization protocol) in parallel. In
this case, when a primary node can not collect a majority
quorum, its request’s timer will expire, and the primary node
needs to re-propose the request. To reduce the probability of
consecutive collisions, Ziziphus, similar to Paxos, randomizes
the waiting time for the nodes that want to re-propose requests.

VI. ZIZIPHUS SCALABILITY

Processing global transactions in Ziziphus requires estab-
lishing consensus among all zones. However, as the system
scales, the number of zones might increase to hundreds or
even thousands of zones over the wide area network. Running
consensus among all these zones for every single global
transaction results in low throughput and high latency.

To address this problem, Ziziphus defines zone clusters
where each zone cluster consists of a set of zones in a region,
e.g., country. Zones within a zone cluster maintain the same
(regional) system meta-data (instead of global meta-data).
Different zone clusters, however, maintain different system
meta-data. This is a reasonable assumption because most
policies need to be enforced at the regional level, e.g., GDPR,
and if zones are spread all around the world, zones in Europe
and zones in North America, for instance, do not necessarily
follow the same set of policies. As a result, there is no need
to maintain global system meta-data by all zones.

Figure 2 demonstrates a network with 100 different zones z1
to z100 where zones are clustered into different zone clusters
C1 to C22. Each cluster consists of several zones, e.g., C1 has
3 zones z1, to z3 while C3 consists of 7 zones z7 to z13.

When a client migrates from a source to a destination
zone where both source and destination zones are within the
same zone cluster, Ziziphus uses the data synchronization and
data migration protocols (Algorithms 1 and 2) to process the
request. For example, in Figure 2, if a client migrates from
zone z1 to z2, the data synchronization protocol is run within
zone cluster C1 among only zones z1, z2, and z3 independent
of other zone clusters in the network.

If a client migrates to a zone in a different zone cluster,
e.g., from z1 in C1 to z4 in C2, Ziziphus requires agreement
from zones of both zone clusters C1 and C2. In this case,
the zonal abstraction of Ziziphus can be applied on top of

Figure 3. cross-cluster data synchronization protocol

two clusters to present a cross-cluster data synchronization
protocol. The protocol establishes agreement on the order of
the global transaction among the source and the destination
cluster. This is different from the data synchronization protocol
used within a cluster where all zones need to participate.

Figure 3 presents the cross-cluster data synchronization
protocol between two zone clusters C1 and C2 where z1 is
the destination (initiator) zone and z4 is the source zone. The
destination zone (i.e., z1) initiates the cross-cluster protocol
(i.e., plays the coordinator role) and also initiates consensus
within the destination cluster (i.e., C1) and the source zone
(i.e., z4) initiates consensus within the source cluster (i.e., C2).

Upon receiving a migration request m from client c, the
(global) primary π(zi) of the initiator zone zi, similar to the
data synchronization protocol, validates the request, assigns
a ballot number 〈n, zi〉 to the request, and initiates local
consensus among nodes of its zone zi using PBFT.

During cross-cluster data synchronization and to communic-
ate across zone clusters, in contrast to cross-zone communica-
tions, Ziziphus does not rely only on the primary nodes. This is
because zone clusters process each transaction independently
of each other and communicate with each other only in the
first and the last phases (i.e., cross-propose and prepared
messages). As a result, a malicious global primary might
not multicast the cross-propose message to the source zone
cluster resulting in high latency (since other zones within the
destination cluster cannot detect the malicious behavior of
the primary until the last step when they do not receive any
prepared messages from the source cluster).

To resolve this issue, we rely on a group of f + 1 nodes
within the destination zone, called proxy nodes, to commu-
nicate with the source zone. We require f + 1 nodes because
at most f nodes might be malicious. A node r in the zone z
is a proxy in view vz if (vz mod r)∈[0, ..., f ]. Note that the
primary (the node where vz mod r=0) is always a proxy.

Once local consensus on the request order in zone zi
is achieved, proxy nodes aggregate 2f + 1 local-propose
messages (received in the last phase of local consensus) to
construct a certificate C. The proxy nodes then multicasts
〈CROSS-PROPOSE, v(zi), 〈n, zi〉, C, d,m〉σπ(zi)

message to all
nodes of the source zone. The primary node also multicasts
a propose message (with the same structure) to all nodes of
every zone within its (destination) cluster.



Upon receiving a valid local-propose message, the primary
node of the source zone zj in the source cluster, e.g., z4 in
Figure 3, establishes consensus on the order of the request in
the source cluster. In the cross-cluster data synchronization
protocol, in contrast to the data synchronization protocol
where follower zones only validate the order (Ballot number)
proposed by the initiator zone, the source zone also needs
to assign a separate Ballot number and establishes consensus
on the order of the request. This is because, in the data
synchronization protocol, all zones execute global transactions
on the same global system meta-data whereas, in the cross-
cluster data synchronization protocol, each cluster executes
global transactions on its own regional system meta-data. As
a result, each cluster requires it own ordering, e.g., in Figure 3
both destination and source zones z1 and z4 run PBFT.

Both source and destination clusters then follow the next
steps, i.e., promise, accept, and accepted in the same way
as data synchronization protocol. Once accepted phase is
done, each proxy node r of the source zone zj in the source
cluster, e.g., z4, constructs a certificate Cs, and multicasts
a 〈PREPARED, v(zj), 〈m, zj〉, Cs, d, r〉σr message to all nodes
of the destination zone in the destination cluster, e.g., z1 in
Figure 3, to inform them that the message has been prepared
in the source cluster with Ballot number 〈m, zj〉.

The primary node of the destination zone waits for
(1) 2f+1 local-commit messages from the nodes of its
zone (in response to accepted messages), and (2) a
prepared message from the source zone. The primary
then constructs certificate C and multicasts commit mes-
sage 〈COMMIT, v(zi), 〈n, zi〉, v(zj), 〈m, zj〉, C, Cs, d〉σπ(zi)

to all
nodes of every zone in the source and the destination cluster.

Upon receiving a valid commit message from the initiator
primary, each node executes the request on the regional system
meta-data. Finally, the client data is migrated to the destination
zone using the data migration protocol (Algorithm 2).
Correctness. The safety and liveness of each zone is guar-
anteed by PBFT [13]. The safety and liveness of each zone
cluster also follow the correctness arguments discussed in
Section V-C. We now briefly discussed the correctness of
communication across zone clusters.

Lemma 6.1: If node r commits cross-cluster transaction m,
no other non-faulty node commits cross-cluster transaction m′

(m 6= m′) with the same sequence number.
Proof: In cross-propose, prepared, and commit phases the
message sent by the proxy nodes of the destination zone,
the proxy nodes of the source zone or the primary of the
destination zone includes a certificate consisting of 2f + 1
signatures proving the validity of the message. As a result,
since any two quorums of nodes within a zone intersect on
at least one non-faulty node, with the same argument as
Section V-C, safety is guaranteed.

Lemma 6.2: A cross-cluster request m issued by a correct
client will eventually be complete if the majority of zones
within each cluster and across clusters can still communicate.
Proof: In cross-cluster data synchronization protocol and
to handle failures, nodes of the destination zone multicast

response-query messages (with the same structure as dis-
cussed in Section V-A) to the source zone if they do not receive
prepared messages.

Similarly, if commit messages are not received and the timer
is expired, nodes of the source zone multicast response-query
messages to the destination zone. Moreover, in the cross-
cluster data synchronization protocol, any communications
across clusters are performed by f + 1 (proxy) nodes of each
zone to prevent a malicious primary from delaying the protocol
by not sending messages. The failure handling routine follows
similar steps as Section V-A.

VII. EXPERIMENTAL EVALUATIONS

The goal of our evaluations is to measure the impact of (1)
global transactions, (2) leader election, (3) number of zones,
(4) zone size, (5) node failure, and (6) zone clusters in various
scenarios on the performance of Ziziphus.

We implemented a prototype of Ziziphus using Golang and
deployed a simple banking application on top of it where the
client data is stored in a key-value store replicated on the nodes
in each zone. Each client initiates local transactions to transfer
money from its account to another client’s account within the
same zone. Local transactions are processed using PBFT [13].
If a client migrates to another zone, it initiates a migration
request resulting in running the data synchronization protocol
among all zones and the data migration protocol between the
source and the destination zones.

In each set of experiments, we consider three different
workloads with 10%, 30%, and 50% global transactions (i.e.,
client migrations). The workload with 10% global transaction
(and 90% local transaction) is the typical setting in partitioned
databases [35]. We consider 50% as the maximum percentage
of global transactions because Ziziphus is designed to support
edge networks where accesses to data have an affinity towards
locality. We simulate the migration of clients (as implementing
clients’ physical migration across zones is not feasible). We
run an instance of each client within all zones and when the
client migrates from a source to a destination zone, it can
initiate transaction within the destination zone.

We further compare Ziziphus with (1) a flat implementation
of PBFT where for every transaction, PBFT runs among all
nodes, (2) two-level PBFT (since PBFT is used in Ziziphus)
where PBFT is used for both local and global transactions, and
(3) Steward [2] that is similar to Ziziphus with 100% global
transactions (i.e., every single transaction requires global
synchronization across all zones). Note that while Ziziphus
requires Z ∗ (3f +1) nodes where Z is the number of zones,
PBFT requires 3 ∗ Zf + 1 nodes (i.e., Z − 1 fewer nodes)
where Z ∗ f is the total number of faulty nodes. Moreover,
while Ziziphus and Steward require 2F +1 zones where F is
the number of tolerated zone failures, two-level PBFT needs
to be run among 3F + 1 zones. This is because Ziziphus and
Steward use a CFT protocol, i.e., Paxos, to process global
transactions while two-level PBFT relies on PBFT at the global
level that requires 3F + 1 participants. On the other hand,
Steward tolerates zone failure while Ziziphus and two-level
PBFT are not.



100 200 300 400 500
0

15

30

45

60

Clients per zone
(a) F = 1 (3 zones)

T
hr

ou
gh

pu
t

[k
tp

s]

Ziziphus-10% Ziziphus-30% Ziziphus-50% 2L-PBFT-10% 2L-PBFT-30% 2L-PBFT-50% PBFT Steward

100 200 300 400 500

20

40

60

80

Clients per zone
(b) F = 2 (5 zones)

100 200 300 400 500
0

25

50

75

100

Clients per zone
(c) F = 3 (7 zones)

Figure 4. Throughput with increasing the number of zones

In each experiment, we increase the number of clients per
zone from 10 to 500 and measure the end-to-end throughput
(x axis) and latency (y axis) of the system. The experiments
were conducted on the Amazon EC2 platform. All instances
are size c4.large (3.75GB memory) running Amazon Linux 2
AMI. Clients execute in a closed loop. The reported results
are the average of five runs.
A. Performance with Multiple Zones

In the first set of experiments, we measure the performance
of Ziziphus in three settings with different number of zones
distributed over AWS regions: (1) three zones (2F + 1 where
F = 1) placed in California (CA), Ohio (OH), and Quebec
(QC), (2) five zones (2F+1 where F = 2) placed in California
(CA), Sydney (SYD), Paris (PAR), London (LDN), and Tokyo
(TY), and (3) seven zones (2F + 1 where F = 3) placed in
CA, OH, QC, SYD, PAR, LDN, and TY 1.

In the Ziziphus deployment, each zone consists of 4 nodes,
i.e., 3f + 1 where f = 1. In general, Ziziphus requires Z ∗
(3f +1) where Z is the number of zones while to tolerate the
same number of failures, PBFT requires Z−1 fewer number of
nodes. As a result, in each experiment, PBFT runs on 4 nodes
in CA and 3 nodes in other data centers. Two-level PBFT
require 3F + 1 zones to run global synchronization, i.e., 4, 7
and 10 zones in the above settings. To have a fair comparison,
instead of adding real zones, we add additional nodes to the CA
data center that participate the in global synchronization of the
two-level PBFT protocol as zone leaders. However, they do not
process any local transactions. For example, in the first setting,
there are three zones in CA, OH, and QC and an additional
single node that participates in global synchronization.

In this experiment, and for the data synchronization protocol
of Ziziphus, we use the stable leader technique, where a stable
primary node initiates all instances of the data synchronization
protocol.

Figure 4 and Figure 5 demonstrate the results. As shown
in Figure 4(a), with 3 zones and in the workload with 10%
global transactions, Ziziphus is able to process more than 57
ktps with 30 ms latency when 400 clients send their requests
concurrently. Two-level PBFT in the workload with 10%
global transactions and with 400 concurrent clients, processes
51 ktps with 53 ms latency (i.e., 11% lower throughput and
76% higher latency). Two-level PBFT uses PBFT to process
global transactions which is more costly than the global syn-
chronization protocol of Ziziphus. In this workload, Steward
processes 10 ktps with 212 ms latency because Steward runs

1The average Round-Trip Time (RTT) between every pair of Amazon data
centers can be found at https://www.cloudping.co/grid

100 200 300 400 500

60

120

180

240

Clients per zone
(a) F = 1 (3 zones)

L
at

en
cy

[m
s]

100 200 300 400 500

100

200

300

400

Clients per zone
(b) F = 2 (5 zones)

100 200 300 400 500

150

300

450

600

Clients per zone
(c) F = 3 (7 zones)

Figure 5. Latency with increasing the number of zones

the global synchronization protocol for every transaction (i.e.,
similar to Ziziphus with 100% global transactions). As can
be seen, in all three workloads (i.e. 10%, 30%, and 50%
global transactions), Ziziphus demonstrates better performance
compared to PBFT because first, Ziziphus processes local
transactions in parallel and second, the global transactions are
processed using a cheaper protocol than PBFT.

Increasing the number of zones to 5 and 7, as shown
in Figure 4(b) and (c), improves the overall throughput of
Ziziphus. With 10% global transactions (the typical setting
in partitioned databases [35]), and with 7 zones and 400
concurrent clients in each zone, Ziziphus processes 97 ktps
with 63 ms latency (as shown in Figure 5). This clearly
demonstrates the scalability of Ziziphus compared to PBFT;
with 5 zones and 400 concurrent clients in each zone, Ziz-
iphus processes 79.5 ktps with 43 ms latency while PBFT
processes only 5.2 ktps (6.5% throughput of Ziziphus) with
342 ms latency (795% latency of Ziziphus) in the same setting.
Ziziphus achieves this significant performance by processing
local transactions of different zones in parallel and by using a
cheap protocol to achieve global consensus among zones.
B. Performance with Node Failure

We repeat the first set of experiments under a single backup
failure in each zone. In each setting and for each protocol, we
report the throughput and latency only in the scenario (i.e.,
number of concurrent clients) where end-to-end throughput is
saturated (peak performance). As shown in Figure 6, under a
backup failure in each zone, Ziziphus with 10% global transac-
tions, attains higher throughput and incurs lower latency than
all other protocols in all networks. Faulty backups reduce the
performance of flat PBFT more than other protocols. This is
because without faulty backups, PBFT is able to construct its
quorums with a subset of zones, e.g., with 3 zones, PBFT
quorums require 7 out of 10 nodes that can be constructed
using nodes of CA and OH data centers. However, with faulty
backups, constructing quorums require the participation of all
zones resulting in higher latency.
C. Fault-Tolerance Scalability

In the next set of experiments, we measure the performance
of different protocols by increasing the number of tolerated
faulty nodes within each zone, f , from 1 to 5, i.e., increasing
the zone size from 4 to 16. The network includes 3 different
zones, placed in CA, OH, and QC data centers, resulting in
12 to 48 nodes in total (for two-level PBFT, as before, we
consider the fourth zone with a single node to participate in
global synchronization as a backup). Note that in the PBFT
protocol, the network size is between 10 and 46.



1 2 3
0

20

40

60

80

Tolerated zone failure

T
hr

ou
gh

pu
t

[k
tr

an
s/

se
c]

Ziziphus-10% Ziziphus-30% Ziziphus-50% 2L-PBFT-10% 2L-PBFT-30% 2L-PBFT-50% PBFT Steward

1 2 3

200

400

600

Tolerated zone failure

L
at

en
cy

[m
s]

Figure 6. Different number of zones (with failure)

12 21 30 39 48
0

12

24

36

48

Number of nodes

T
hr

ou
gh

pu
t

[k
tr

an
s/

se
c]

12 21 30 39 48

250

500

750

1,000

Number of nodes

L
at

en
cy

[m
s]

Figure 7. Different number of nodes per zone

1 2 3 4 5 6 7 8 9 10

200

400

600

800

Zone clusters

T
hr

ou
gh

pu
t

[k
tr

an
s/

se
c]

.1G(.1C) .3G(.1C) .5G(.1C) .1G(.5C) .3G(.5C) .5G(.5C)

1 2 3 4 5 6 7 8 9 10

30

60

90

120

Zone Clusters

L
at

en
cy

[m
s]

Figure 8. Different number of zone clusters

As can be seen in Figure 7, increasing the number of nodes,
reduces the overall throughput and increases the end-to-end
latency of all protocols. This is expected because all protocols
use PBFT to process local transactions and with larger zones,
the performance of PBFT is reduced due to its high commu-
nication complexity. Increasing the zone size, however, has
the lowest impact on the latency of Ziziphus; while Ziziphus
demonstrates only 53% higher latency in workload with 10%
global transaction by increasing the zone size from 4 to 16, the
latency of flat PBFT increases 480%. This is because in the
flat PBFT protocol, all nodes of all zones communicate with
each other while the zone size does not affect the number of
nodes participating in the global synchronization of Ziziphus.

D. Scalability using Zone Clusters

We next present the scalability of Ziziphus in settings with
multiple zone clusters (presented in Section VI). We consider
different scenarios with 1 to 10 zone clusters where each
cluster includes 3 zones and each zone contains 4 nodes
(f = 1), i.e., 120 nodes in total. Nodes of each cluster are
within the same data center where zone clusters are placed in
CA, SYD, PAR, LDN and TY data centers (at most 2 clusters
in each). For each of the three different workloads (i.e., 10%,
30%, and 50% global transactions), we consider 10% or 50%
of global transactions as cross-cluster transactions. This results
in 6 different workloads, e.g., 10% Global, 50% Cross-cluster
(.1G(.5C)). Since clustering has not been used in Steward and
two-level PBFT, we only report results for Ziziphus.

As shown in Figure 8, Ziziphus demonstrates higher
throughput by increasing the number of zone clusters. This
is expected because all local and most global transactions
are performed within zone clusters and only cross-cluster
transactions (i.e., a small percentage of global transactions)
require communication across only two zone clusters. Sim-
ilarly, increasing the number of zone clusters does not affect
latency (the latency increases from one to two clusters because
there is no cross-cluster transaction in the first case). Ziziphus
demonstrates its best performance in workload with 10%
global transactions where 10% of global transactions are cross-
cluster transactions (.1G(.1C)) and is able to process 749 ktps
in 31 ms with 10 zone clusters.

VIII. RELATED WORK

State Machine Replication (SMR) is a technique for im-
plementing a fault-tolerant service by replicating servers [26].
Several approaches [32][27][31] generalize SMR to support

crash failures among which Paxos [27] is the most well-
known. Paxos guarantees safety in an asynchronous network
using 2f+1 processors despite the simultaneous crash failure
of any f processors. DPaxos [29] is a variation of Paxos
that is, similar to Ziziphus, designed for edge networks.
DPaxos partitions nodes into different crash-only zones and
utilizes Flexible Paxos [22] to make replication quorums small.
DPaxos further allows the leader election quorum to start
small and then grow to only intersect with replication quorums
that are being used by other leaders. Ziziphus, in contrast to
DPaxos, supports the Byzantine failure of nodes. While in both
systems, global transactions are processed using a Paxos-like
protocol, Ziziphus confines the maliciousness of Byzantine
nodes within zones. Moreover, using zone clusters, Ziziphus
can be scaled to thousands of zones over wide area networks.

Partitioning Byzantine nodes into local fault-tolerant
clusters to improve scalability has been addressed in permis-
sioned blockchain systems using either fully replicated ledgers,
e.g., ResilientDB [20] and Blockplane [30], or Sharded-
ledger approaches, e.g., AHL [15], Separ [6], Chainspace [1],
Saguaro [7] and SharPer [4][5]. Ziziphus, in contrast to fully
replicated ledgers, does not require global synchronization
for every transaction and, in contrast to sharded-ledger ap-
proaches, processes global transactions using a crash fault-
tolerant protocol.

IX. CONCLUSION

Processing client transactions by edge servers is challenging
due to the non-trustworthiness of edge infrastructures and their
communication latency over wide area networks. This paper
presents Ziziphus, a geo-distributed system that partitions
Byzantine edge servers into fault-tolerant zones where each
zone processes transactions initiated by nearby clients locally.
Ziziphus provides a zonal abstraction to confine malicious-
ness of Byzantine servers within each zone. Based on our
experiments, in workloads with a low percentage of global
transactions (typical settings), Ziziphus achieves significantly
better performance compared to flat PBFT, two-level PBFT
and Steward. Similarly, the performance of Ziziphus improves
semi-linearly with increasing the number of zones or zone
clusters.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their insightful
feedback and suggestions. This work is funded by NSF
grants CNS-1703560, and CNS-2104882. Sujaya Maiyya was
partially funded by IBM PhD Fellowship.



REFERENCES
[1] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and G. Danezis.

Chainspace: A sharded smart contracts platform. In Network and
Distributed System Security Symposium (NDSS), 2018.

[2] Y. Amir, C. Danilov, D. Dolev, J. Kirsch, J. Lane, C. Nita-Rotaru,
J. Olsen, and D. Zage. Steward: Scaling byzantine fault-tolerant
replication to wide area networks. IEEE Transactions on Dependable
and Secure Computing, 7(1):80–93, 2008.

[3] M. J. Amiri, D. Agrawal, and A. El Abbadi. Caper: a cross-application
permissioned blockchain. Proc. of the VLDB Endowment, 12(11):1385–
1398, 2019.

[4] M. J. Amiri, D. Agrawal, and A. El Abbadi. On sharding permissioned
blockchains. In Int. Conf. on Blockchain, pages 282–285. IEEE, 2019.

[5] M. J. Amiri, D. Agrawal, and A. El Abbadi. Sharper: Sharding
permissioned blockchains over network clusters. In SIGMOD Int. Conf.
on Management of Data, pages 76–88. ACM, 2021.

[6] M. J. Amiri, J. Duguépéroux, T. Allard, D. Agrawal, and A. El Abbadi.
Separ: Towards regulating future of work multi-platform crowdworking
environments with privacy guarantees. In Proceedings of The Web Conf.
(WWW), pages 1891–1903, 2021.

[7] M. J. Amiri, Z. Lai, L. Patel, B. T. Loo, E. Lo, and W. Zhou. Saguaro:
An edge computing-enabled hierarchical permissioned blockchain. In
Int. Conf. on Data Engineering (ICDE). IEEE, 2023.

[8] M. J. Amiri, B. T. Loo, D. Agrawal, and A. El Abbadi. Qanaat: A
scalable multi-enterprise permissioned blockchain system with confid-
entiality guarantees. Proc. of the VLDB Endowment, 15(11):2839–2852,
2022.

[9] V. Arora, M. J. Amiri, D. Agrawal, and A. El Abbadi. M-db: A continu-
ous data processing and monitoring framework for iot applications. In
Int. Conf. on Internet of Things (iThings) and IEEE Green Computing
and Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData), pages 1096–
1105. IEEE, 2019.

[10] G. Bracha and S. Toueg. Asynchronous consensus and broadcast
protocols. Journal of the ACM (JACM), 32(4):824–840, 1985.

[11] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding,
J. Ferris, A. Giardullo, S. Kulkarni, H. Li, et al. Tao: Facebook’s
distributed data store for the social graph. In Annual Technical Conf.
(ATC), pages 49–60. USENIX Association, 2013.

[12] C. Cachin, K. Kursawe, and V. Shoup. Random oracles in con-
stantinople: Practical asynchronous byzantine agreement using crypto-
graphy. Journal of Cryptology, 18(3):219–246, 2005.

[13] M. Castro, B. Liskov, et al. Practical byzantine fault tolerance. In
Symposium on Operating systems design and implementation (OSDI),
volume 99, pages 173–186. USENIX Association, 1999.

[14] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, et al. Spanner: Google’s
globally distributed database. Transactions on Computer Systems
(TOCS), 31(3):8, 2013.

[15] H. Dang, T. T. A. Dinh, D. Loghin, E.-C. Chang, Q. Lin, and B. C.
Ooi. Towards scaling blockchain systems via sharding. In SIGMOD
Int. Conf. on Management of Data. ACM, 2019.

[16] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
amazon’s highly available key-value store. In Operating Systems Review
(OSR), volume 41, pages 205–220. ACM SIGOPS, 2007.

[17] A. El Abbadi, D. Skeen, and F. Cristian. An efficient, fault-tolerant pro-
tocol for replicated data management. In SIGACT-SIGMOD symposium
on Principles of database systems, pages 215–229. ACM, 1985.

[18] A. El Abbadi and S. Toueg. Availability in partitioned replicated
databases. In SIGACT-SIGMOD symposium on Principles of database
systems, pages 240–251. ACM, 1985.

[19] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of
distributed consensus with one faulty process. Journal of the ACM
(JACM), 32(2):374–382, 1985.

[20] S. Gupta, S. Rahnama, J. Hellings, and M. Sadoghi. Resilientdb: Global
scale resilient blockchain fabric. Proceedings of the VLDB Endowment,
13(6):868–883, 2020.

[21] N. Hassan, S. Gillani, E. Ahmed, I. Yaqoob, and M. Imran. The role of
edge computing in internet of things. IEEE communications magazine,
56(11):110–115, 2018.

[22] H. Howard, D. Malkhi, and A. Spiegelman. Flexible paxos: Quorum
intersection revisited. In 20th International Conference on Principles of
Distributed Systems, 2017.

[23] M. Hu, Z. Xie, D. Wu, Y. Zhou, X. Chen, and L. Xiao. Heterogen-
eous edge offloading with incomplete information: A minority game
approach. IEEE Transactions on Parallel and Distributed Systems,
31(9):2139–2154, 2020.

[24] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V. Mohammadi,
W. Schröder-Preikschat, and K. Stengel. Cheapbft: resource-efficient
byzantine fault tolerance. In European Conf. on Computer Systems
(EuroSys), pages 295–308. ACM, 2012.

[25] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford. Omniledger: A secure, scale-out, decentralized ledger via
sharding. In Symposium on Security and Privacy (SP), pages 583–598.
IEEE, 2018.

[26] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, 1978.

[27] L. Lamport. Paxos made simple. ACM Sigact News, 32(4):18–25, 2001.
[28] P. Mach and Z. Becvar. Mobile edge computing: A survey on archi-

tecture and computation offloading. IEEE Communications Surveys &
Tutorials, 19(3):1628–1656, 2017.

[29] F. Nawab, D. Agrawal, and A. El Abbadi. Dpaxos: Managing data
closer to users for low-latency and mobile applications. In Proceedings
of the 2018 International Conference on Management of Data, pages
1221–1236. ACM, 2018.

[30] F. Nawab and M. Sadoghi. Blockplane: A global-scale byzantizing
middleware. In 2019 IEEE 35th Int. Conf. on Data Engineering (ICDE),
pages 124–135. IEEE, 2019.

[31] D. Ongaro and J. K. Ousterhout. In search of an understandable
consensus algorithm. In Annual Technical Conf. (ATC), pages 305–319.
USENIX Association, 2014.

[32] F. B. Schneider. Implementing fault-tolerant services using the state
machine approach: A tutorial. Computing Surveys (CSUR), 22(4):299–
319, 1990.

[33] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision
and challenges. IEEE internet of things journal, 3(5):637–646, 2016.

[34] V. Shoup. Practical threshold signatures. In International Conference on
the Theory and Applications of Cryptographic Techniques, pages 207–
220. Springer, 2000.

[35] R. Taft, E. Mansour, M. Serafini, J. Duggan, A. J. Elmore, A. Aboulnaga,
A. Pavlo, and M. Stonebraker. E-store: Fine-grained elastic partitioning
for distributed transaction processing systems. Proc. of the VLDB
Endowment, 8(3):245–256, 2014.

[36] M. Zhang, C. Krintz, and R. Wolski. Sparta: A heat-budget-based
scheduling framework on iot edge systems. In International Conference
on Edge Computing, 2021.


