UC Santa Barbara Computer Science Department

On Sharding Permissioned Blockchains

Mohammad Javad Amiri, Divyakant Agrawal, Amr El Abbadi

The second IEEE International Conference on Blockchain

China Aims to Use Blockchain How important will blockchain be to the world's economy?

Nike, Telegram, Facebook, and Everyone Else Suddenly Love Blockchain

by P. H. Madore — 25/04/2019 in Bitcoin & Blockchain Investments, Blockchain News, Cryptocurrency N€ 3 min read

CNN BUSINESS

By Tim Harford Presenter, 50 Things That Made the Modern Economy

() 3 July 2019

f 🔗 🍠 🗹 < Share

3 key things to know about Facebook's Libra cryptocurrency project

By Clare Duffy, <u>CNN Business</u> Permissioned Blockchain, IEEE Blockchain, 2019 Updated 3:38 PM ET, Tue June 18, 2019

Markets Tech Me

Anyone can participate without a specific identity

Participants are known and Identified

Permissionless Blockchain

Permissioned Blockchain

A Permissioned Blockchain system consists of a set of known, identified nodes that might not fully trust each other.

On Sharding Permissioned Blockchain, IEEE Blockchain, 2019

Practical Byzantine Fault Tolerance (PBFT)

- Provides **safety** in asynchronous system (with **3f+1** replicas)
- The algorithm has three main phases: (1) *pre-prepare* picks order of requests (2) *prepare* ensures order within views, (3) *commit* ensures order across views

What if n >> 3f+1?!

Active/passive replication technique

3f+1 active replicas, others are passive and be informed about decisions

Fast Byzantine Agreement technique

Use 5f + 1 replicas to establish consensus and reduce one phase of communication in comparison to PBFT

Sharding Techniques

Partitioning the data into multiple shards that are maintained by different subsets (clusters) of nodes

Sharding Blockchains

- Partition the network into clusters of *3f+1* nodes (to guarantee safety in each cluster in the presence of f malicious nodes)
- How to form clusters such that each cluster includes at most **f** faulty nodes?
 - Assign nodes to clusters in a random manner (uniform distribution): works if f is very large
 - Assume that N is much larger than 3f+1 (reasonable assumption in blockchain environment)
- Shard the data
 - Shard the application data and assign shards to clusters
 - Each data shard is replicated across nodes of a cluster
 - Different clusters process the transactions of their corresponding shard in parallel
 - The Blockchain ledger is also sharded
- Cross-Shard transactions
 - Needs participation of all (and only) involved clusters

Blockchain Ledger

The blockchain ledger is generalized from a linear chain to a directed acyclic graph (DAG)

The entire blockchain ledger is not maintained t_{16} t_{27} t_{47} l_{37} ι₂₇ τ₃₇ ι₁₆ by any node Each node only maintains its own view of the • t_{15,26,36,46} t_{15,26,36,46} t_{15,26,36,46} t_{15,26,36,46} t_{15,26,36,46} blockchain ledger Each block includes a single transaction t_{45} • t_{14} t_{25} ι_{35} $l_{1\Delta}$ Intra-shard transactions of different clusters • t_{24,34,44} t_{24,34,44} t_{24,34,44} t_{24,34,44} are processed in parallel Cross-shard transactions with non-• $|t_{43}|$ t_{33} (t₄₃) t_{13} τρι overlapping clusters are processed in parallel A cross-shard transaction includes multiple $t_{12,22}$ ٠ $t_{32,42}$ t_{32,42} t_{32,42} $t_{12.22}$ τ_{12.22} hash pointers $|t_{41}|$ t_{31} All clusters might be involved in a cross-shard τ_{21} τ_{41} ٠ transaction t_{30} t_{40} t_{10} t_{40} P_1 P₄ P_2 P_3

٠

Intra- and Cross-Shard Consensus

- Intra-Shard Consensus: using any Byzantine fault-tolerant protocols
- Cross-Shard Consensus: needs the participation of all involved clusters
 - In each step 2f+1 nodes of every involved cluster must participate

Experimental Settings

• Systems:

- FaB: Fast Byzantine Protocol
- APR: Active/passive replication
- Sharding: Sharding technique
- Applications: Accounting
- Platform: Amazon EC2
- Measuring performance
 - Throughput
 - Latency

Performance with cross-shard transactions

16 nodes (4 Clusters) All clusters are involved in every cross-shard transactions

Performance with different number of nodes

The workload includes 10 % cross-shard transactions All clusters are involved in every cross-shard transactions

Leveraging Transaction Parallelism to enhance performance

